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Highlights 

• Single cell resolution spatial atlas resolves a cellular ecosystem of 34 cell types in 

multicellular neighborhoods that mediate efficient skeletal muscle repair  

• Highly multiplexed spatial proteomics, neural network and machine learning uncovers 

temporal dynamics in the spatial crosstalk between immune, fibrogenic, vascular, nerve, and 

muscle stem cells and myofibers during regeneration  

• Spatial pseudotime mapping reveals coherent formation of multicellular neighborhoods 

during efficacious repair and the nodal role of immune cells in coordinating muscle repair 

• In aged muscle, cellular neighborhoods are disrupted by a chronically inflamed state and 

autoimmunity 

 

Abstract (150 words) 

Our mobility requires muscle regeneration throughout life.  Yet our knowledge of the interplay 

of cell types required to rebuild injured muscle is lacking, because most single cell assays require 

tissue dissociation. Here we use multiplexed spatial proteomics and neural network analyses to 

resolve a single cell spatiotemporal atlas of 34 cell types during muscle regeneration and aging. 

This atlas maps interactions of immune, fibrogenic, vascular, nerve, and myogenic cells at sites 

of injury in relation to tissue architecture and extracellular matrix. Spatial pseudotime mapping 

reveals sequential cellular neighborhoods that mediate repair and a nodal role for immune cells. 

We confirm this role by macrophage depletion, which triggers formation of aberrant 

neighborhoods that obstruct repair. In aging, immune dysregulation is chronic, cellular 

neighborhoods are disrupted, and an autoimmune response is evident at sites of denervation. Our 

findings highlight the spatial cellular ecosystem that orchestrates muscle regeneration, and is 

altered in aging.  
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Our longevity depends on the renewal of tissues to meet the challenges of daily physical 1 

and molecular stresses. The repair process is critical for maintaining tissue function throughout 2 

life. Thus, a better understanding of regulatory mechanisms that operate during regeneration and 3 

the dysregulation that results from aging offer significant potential for the design of targeted 4 

therapies to enhance tissue repair and function (Blau and Daley, 2019; Blau et al., 2015; Fuchs 5 

and Blau, 2020). 6 

Skeletal muscle accounts for ~40% of our body mass and is subject to the physical stress 7 

of movement. Each muscle group consists of aligned contractile myofibers which are innervated 8 

by motor neurons and attach to bone via tendons. Skeletal muscle tissue is highly vascularized 9 

due to the metabolic demand of muscle contractions. In most scenarios, muscle damage incurred 10 

during exercise or injury such as muscle strains is efficiently repaired, and contractile function is 11 

restored. The repair of myofibers is carried out by muscle stem cells (MuSCs), also known as 12 

satellite cells (Blau et al., 2015; Relaix and Zammit, 2012; Wang and Rudnicki, 2012). MuSCs 13 

remain dormant in a quiescent state and respond to injury by proliferating to generate a pool of 14 

myogenic progenitors which fuse to form new myofibers (Dumont et al., 2015). However, in 15 

aging, muscles atrophy. This leads to molecular dysregulation that disrupts the signals that 16 

instruct MuSCs to proliferate and orchestrate the complex cellular symphony that underlies the 17 

regenerative process, resulting in fatty-fibrotic scarring and progressive replacement of muscle 18 

cells (Blau et al., 2015; Mann et al., 2011; Muñoz-Cánoves et al., 2020). This regenerative deficit 19 

exacerbates the muscle loss seen with aging. 20 

The niche, or stem cell microenvironment, is a critical determinant of the regenerative 21 

response (Fuchs and Blau, 2020). Single cell analysis (De Micheli et al., 2020a; Giordani et al., 22 

2019; Porpiglia et al., 2017) and genetic ablation approaches (reviewed in Bentzinger et al., 23 

2013a; Fuchs and Blau, 2020) have suggested the requirement for coordinated interactions 24 

between cell types to carry out repair. The yin and yang function of immune cells is highlighted 25 

by their critical role in normal repair, and their disruption of muscle function in inflammatory 26 

myopathies, dystrophies, and aging. When transient, proinflammatory signals and macrophage 27 

recruitment initiate the wound-healing response and activate MuSCs. This process is carefully 28 

regulated, as persistent immune responses in muscles afflicted with muscular dystrophy and 29 

systemic changes in inflammatory cells and cytokines in advanced age, through a process termed 30 

“inflammaging" (Ferrucci and Fabbri, 2018), are associated with progressive fibrotic 31 
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accumulation and progressive loss of muscle function. These studies suggest that cells reside in a 32 

delicate regenerative ecosystem in which complementary, interconnected, and interdependent 33 

relationships with other cell types are essential to carry out their programmed function in 34 

rebuilding the tissue.  35 

Despite this knowledge, there are major gaps in our understanding of the ecosystem 36 

underlying the process of regeneration and of aging, largely due to limitations in currently used 37 

technologies.   For example, cell-cell interactions cannot be assessed by methods that require 38 

tissue dissociation, such as flow cytometry, CyTOF, or single cell RNA-sequencing.  Critical 39 

information is lost, for instance about changes to the niche, a microenvironment in which 40 

spatially localized cell-cell signaling and extracellular matrix (ECM) interactions are key to 41 

efficacious regeneration. Spatially restricted regulators likely determine cell migration  behavior 42 

and fate (Bentzinger et al., 2013; Blau et al., 2015; Fuchs and Blau, 2020; Wang and Rudnicki, 43 

2012). On the other hand, traditional histological methods, in which cell integrity within tissues 44 

is maintained intact, suffer from the limited capability of visualizing only 3-4 proteins 45 

simultaneously due to secondary antibody cross-reactivity and spectral overlap. Thus, most 46 

currently used methods fail to reveal the complexity of spatially localized interactions of diverse 47 

cell types, the ECM, and secreted molecules that mediate regenerative regulatory mechanisms.  48 

Here we overcome this limitation by employing multiplex imaging to simultaneously 49 

profile the spatial distribution of cell surface, intracellular and ECM proteins during skeletal 50 

muscle regeneration and aging in mice. We explore the interplay of the plethora of cell types that 51 

spring into action to restore the complex architecture of skeletal muscle tissues after injury. We 52 

developed analytic tools that utilize neural networks to identify tissue features and unsupervised 53 

clustering for identifying 34 cell types at single cell resolution to build a single cell spatial atlas 54 

of muscle regeneration and of aging, tools that will serve as a resource for similar studies in other 55 

tissues. We uncover positional information and the temporal dynamics of intercellular crosstalk 56 

between immune, fibrogenic, vascular, nerve, and myogenic cells at sites of injury and repair, 57 

and their relationship to the extracellular matrix in multicellular neighborhoods. We employ 58 

methods we developed for spatial pseudotime mapping to build a regeneration clock of cell 59 

interactions and how they change over time, an unbiased metric of the repair process. This 60 

analysis uncovers a nodal role for immune cells in efficacious muscle regeneration and in the 61 

disruption of the cellular ecosystem that accompanies aging. Finally, our atlas not only provides 62 
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single cell resolution tissue architecture of skeletal muscle and a holistic overview of cell-cell 63 

interactions that underly muscle repair and aging, but also provides a roadmap for using neural 64 

network and unsupervised clustering approaches to understand complex changes in cellular 65 

neighborhoods that underly biological processes in a wide range of tissues.  66 

 67 

Results 68 

Identification and validation of a skeletal muscle cell regeneration antibody panel  69 

We aimed to create a comprehensive atlas detailing how distinct cell subtypes contribute 70 

to muscle regeneration after injury. To date, our knowledge of the temporal dynamics of the 71 

various cell types that participate in muscle repair derives from techniques that dissociate the 72 

tissue like flow cytometry, CyTOF, and single cell RNAseq (Bentzinger et al., 2013; De Micheli 73 

et al., 2020b, 2020a; Giordani et al., 2019; Petrany et al., 2020a; Porpiglia et al., 2017), which 74 

lack information regarding spatial relationships and cell-cell interactions. Histological studies 75 

that retain the tissue intact have suffered from limitations due to the inability to simultaneously 76 

visualize more than ~4 markers simultaneously due to spectral overlap of fluorophores using 77 

immunofluorescence. While current spatial transcriptomics approaches offer insights into 78 

cellular relationships in situ, they are currently limited by low resolutions (~10-50um) that 79 

cannot truly resolve single cells and lack the ability to resolve how cells interact with the ECM. 80 

Here we overcame these limitations by using CO-Detection by indEXing (CODEX; Fig. 1B), a 81 

high resolution method that allows up to 60 protein markers to be visualized simultaneously by 82 

iterative probe binding and microscopy in a single tissue section (Goltsev et al., 2018; Kennedy-83 

Darling et al., 2021; Schürch et al., 2020). As a result, the diverse cell types involved in 84 

efficacious regeneration can be definitively identified. This is achieved by a combination of 85 

multiplex imaging and localized protein profiling which resolves the temporal progression of the 86 

various cell subtypes and their spatial organization that are inherent to efficacious skeletal 87 

muscle regeneration.  88 

 89 

Spatial profiling of regenerating skeletal muscle by multiplex imaging  90 

We induced muscle injuries by intramuscular injections of notexin (NTX), a well 91 

characterized myotoxin that causes local myofiber damage, and monitored changes in cell-cell 92 

relationships using CODEX in transverse tissue sections over a 10-day time course during which 93 
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the injury is repaired (Fig. 1A). NTX damage models a grade 2 muscle strain that occurs in 94 

sports or traumatic injuries, where muscle tears but does not undergo complete rupture (Pollock 95 

et al., 2014). To construct a CODEX antibody panel that encompasses all cell lineages, we 96 

combined previously reported cell type-specific markers (Bentzinger et al., 2013) with additional 97 

markers identified by single cell analysis of muscle (De Micheli et al., 2020a; Giordani et al., 98 

2019; Porpiglia et al., 2017). This panel identifies myogenic, immune, vascular, fibrogenic, and 99 

motor neuron cells and their functional subsets (Fig. 1C). To distinguish a progression of 100 

myogenic cell states, we used established markers: MuSCs (Pax7), proliferating myoblasts 101 

(MyoD and Ki67), committed myocytes (myogenin (MyoG)), myotubes (embryonic myosin 102 

heavy chain; eMyHC) and myofibers (dystrophin (DMD) and adult myosin heavy chain (MyHC)) 103 

(Bentzinger et al., 2012; Silberstein et al., 1986). We used well characterized markers to 104 

distinguish immune cell types of the myeloid lineage: monocytes (CD11b), neutrophils and 105 

granulocytes (CD11b and Ly6G), macrophages (CD11b and F4/80) and dendritic cells (CD11b, 106 

CD11c, and class II major histocompatibility complex (MHC-II)) (De Micheli et al., 2020a; 107 

Giordani et al., 2019). We further distinguished macrophages by expression of CD16/32 (FcR) 108 

on FcR+ macrophages (Fitzer-Attas et al., 2000) and CD163 on M2 macrophages (Hu et al., 109 

2017) that distinguish these subsets from M1 macrophages. To differentiate immune cell types of 110 

the lymphoid lineage we used established markers for B cells (B220) and T cells (CD3 and 111 

CD90) (Bendall et al., 2011). Within the T cell population, CD4 was used to identify T Helper 112 

and T Regulatory cells, and distinguish them from CD8 marked cytotoxic T cells. We were also 113 

able to identify multiple vascular cell subtypes in the muscle tissue, including endothelial cells 114 

(CD31 and Sca1) and smooth muscle cells (a7-integrin (a7-int) and b1-integrin (CD29)).  We 115 

used CD9 to mark the Schwann cells surrounding the motor neurons that innervate muscle tissue 116 

(Anton et al., 1995). To capture the fibrosis that is a feature of damaged tissue, we identified 117 

fibroadipogenic progenitors (FAPs) by their expression of PDGFRα and Sca1 (Joe et al., 2010; 118 

Uezumi et al., 2010). Tenocytes comprise the tendons that connect the muscles to the bones and 119 

were identified by tenomodulin (TNMD) (Docheva et al., 2005; Giordani et al., 2019). Finally, 120 

we visualized the tissue ECM that provides structural and biochemical support to the tissue 121 

(laminin and reticular collagen (ERTR7)). To mark the regions of damage, we included IgM 122 

which has been shown to bind to damaged, necrotic myofibers (Petrany et al., 2020b). We 123 

validated our antibody panel by ensuring that cell subtypes co-expressed multiple markers (e.g., 124 
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co-staining of macrophages by CD45, CD11b and F4/80) and that distinct cell type subsets were 125 

clearly identifiable based on detection of unique markers (e.g.,  pericytes were distinguished by 126 

CD90 expression). Multiplexed detection of this array of antibodies allowed us to resolve 127 

specific from non-specific signal that can be detected by certain antibodies (as described in the 128 

limitations section) and discern temporal changes in antibody intensity and localization (Fig. S1). 129 

Together, this spectrum of antibodies enabled resolution of the dynamic alterations in the 130 

abundance and organization of various cell types throughout the regeneration time course.  131 

 132 

Deep learning to map regenerating muscle 133 

Multiplex imaging benefits from sub-micrometer resolution (20x magnification; 134 

0.377um/pixel), but generates massive amounts of data per experiment. To analyze this large 135 

dataset, we developed a set of computational tools to register and stitch images obtained from 136 

automated microscopes across imaging cycles, identify and segment single cells from the 137 

stitched images, and classify identified cells based on antibody staining (Fig. 2A and S2).  138 

We developed the CRISP image processing pipeline (Palla et al., 2021) to align and 139 

register our CODEX images in 3D at sub-pixel resolution. The improved image alignment and 140 

stitching CRISP provides enhanced our ability to perform in silico tissue clearing (remove 141 

autofluorescence signal) and reduced imaging artifacts. Once our images were registered, 142 

stitched, and cleared, we leveraged the exceptional image recognition abilities of convolutional 143 

neural networks (CNNs) to segment cells and tissue features. We used CellSeg, a CNN trained 144 

for the segmentation of nuclei (Lee et al., 2022), to generate masks of each nucleus and quantify 145 

the intensity of staining of each antibody within the nuclear and perinuclear compartments (Fig. 146 

S3A).  147 

While CellSeg allowed us to characterize many of the features of our tissue, its reliance 148 

on single nuclei data complicates its use in analyzing the large multinucleated myofibers and 149 

ECM structures characteristic of muscle tissue. To solve this issue, we created FiberNet, a CNN 150 

trained to recognize muscle fiber states (healthy, injured, and regenerating myofibers) and 151 

features marked by ECM (ECM scaffolds, motor neurons, and stroma) in fluorescence images 152 

(Fig. 2B). We defined “healthy muscle fibers” as those that expressed mature MyHC and 153 

dystrophin (DMD). By contrast, “injured” myofibers (labelled by IgM) exhibited a loss of DMD 154 

and a7-int due to the destructive effect of notexin on the sarcolemma. The ECM remained intact, 155 
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providing a reference of the location of the myofiber prior to damage. This provided a scaffold-156 

like structure encompass a range of cell types including eMyHC+ differentiating myotubes 157 

resided after IgM+ injured myofibers were removed. As regenerating myofibers matured, they 158 

decreased expression of eMyHC and began expressing DMD. The ECM was significantly 159 

thicker around regenerating myofibers and exhibited increased staining for ERTR7. In addition, 160 

ECM markers identify complex structures such as connective tissue of stromal regions and motor 161 

neuron tracts. Remarkably, FiberNet identifies each of these features with ~98% accuracy (Fig 162 

2C).  163 

 164 

Cellular heterogeneity and dynamics of skeletal muscle regeneration 165 

We first used previously charted notexin injury regeneration timecourses to validate our 166 

time course of regeneration and progression of myofiber states (Bentzinger et al., 2013; Hardy et 167 

al., 2016; Morton et al., 2019).   Quantification of muscle cross sections after injury revealed that 168 

1 day after injury ~80-90% of muscle fibers were damaged (Fig. S3B). ECM scaffolds devoid of 169 

IgM+ injured myofiber debris were transiently detected at day 3 before regenerating myofibers 170 

formed at day 6. By day 10 post injury, newly formed myofibers increased in size and returned 171 

to a healthy state.  172 

Using CODEX we were able to gain an in-depth view of the dynamic changes of cell 173 

subsets and their interplay during regeneration after injury at a single cell resolution (Fig. 2B). 174 

We sought to classify single cells in the tissue into cell types based on their antibody staining 175 

patterns. The automated identification of cell types from imaging data remains a computational 176 

challenge. Unlike high-throughput sequencing approaches, multiplex imaging approaches have 177 

lower dimensionality, suffer from imaging artifacts, and exhibit variable tissue autofluorescence 178 

all of which contribute to poor performance in clustering algorithms. To overcome these 179 

limitations, we developed a high-fidelity clustering pipeline (HFcluster) that is optimized for 180 

multiplexed imaging and immunofluorescence data. HFcluster is unique in that it overcomes the 181 

contribution of non-specific signals and other noise while clustering by first learning potential 182 

cell types in the tissue using the antibody staining patterns of cells with robust signal and then 183 

propagating those identities onto cells with lower signal that share similar staining patterns (Fig. 184 

S3C). We further improved our clustering by integrating tissue feature classifications from our 185 

FiberNet algorithm, which facilitated the classification of myofiber states. Using this approach, 186 
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we identified 34 distinct cell subsets that matched the expected combination of markers defined 187 

by our selected panel of antibodies (Fig. S4; additional details in Supplementary Methods). 188 

Clustering results were consistent across tissues, time points and experimental batches (Fig. S4). 189 

Since each cell was indexed with its spatial coordinates, we were able to generate a single cell 190 

resolution atlas of skeletal muscle regeneration which includes the positional information for 191 

each of the 34 distinct cellular subsets throughout the time course of muscle regeneration (Fig. 192 

2D). A progression from intact myogenic cells was followed on day 2 of injury by a dramatic 193 

influx of immune cells, followed on day 3 by an increase in endothelial and vascular cell types, 194 

which increased on day 6 and resolved on day 10 as muscle regeneration nears completion. 195 

Interestingly, while FiberNet classified regenerated myofibers at day 10 as healthy, many of 196 

these fibers showed higher DMD expression than in uninjured muscle, thus suggesting longer 197 

lasting molecular differences in regenerated myofibers (Fig. 2C-D). 198 

We identified several endothelial cell (EC) subsets distinguished by marker expression 199 

and spatial localization. We detected a range of expression of CD38, Sca1, and CD47 on other 200 

ECs (Fig. S4). Interestingly, our data reveal that CD38, a cell surface nicotinamide adenine 201 

dinucleotide nucleosidase, specifically marks capillary ECs but not the ECs of larger blood 202 

vessels (Fig. 1D, S4 and S5A). After injury, expression of CD38 in capillary ECs correlated with 203 

the presence of the red blood cell marker Ter119, suggesting a relationship with capillary 204 

perfusion (Fig. S4, S5B-C). CD38+ ECs markedly decline in the injured areas of day 3 muscles 205 

(Fig. 2E). By day 6 and 10, CD38+ capillary ECs are found in regions with DMDhigh myofibers 206 

but not in regions that continue to express embryonic myosins (Fig S5B-C). These findings 207 

suggest that CD38 expression in ECs is restricted to perfused capillaries, revealing previously 208 

uncharted changes to tissue perfusion and angiogenesis during late stages of muscle repair.  209 

We quantified each cell type subset across the regeneration time course to discern the 210 

temporal dynamics of changes in cell composition that occur during regeneration (Fig. 2E). Our 211 

analysis revealed that as muscle tissues transition through regeneration, there is a continuous flux 212 

of functional subsets of myogenic, immune, vascular and fibrogenic cellular lineages. Cellular 213 

composition is distinct at each time point (Fig. S4), and matches previously established dynamics 214 

of myogenic differentiation, and innate and adaptive immune responses as quantified by methods 215 

entailing tissue dissociation (Bentzinger et al., 2013; De Micheli et al., 2020a; Giordani et al., 216 

2019; Porpiglia et al., 2017; Tidball, 2017).  217 
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Since the abundance of specific cell subsets is in constant flux (Fig. 2E), we sought to 218 

capture the transient states of tissue regeneration through the composition of cells in each tissue 219 

and determine the overlap of subsets at each time point. Using our single-cell cell type data from 220 

CODEX and Uniform Manifold Approximation and Projection (UMAP), a dimension reduction 221 

technique (McInnes et al., 2020), we assessed the compositional similarity of each tissue. This 222 

analysis revealed that regeneration time points can be distinguished by the relative abundance of 223 

cell subsets within each tissue (Fig. 2F). We found that cell types in uninjured, day 1, day 3, and 224 

day 6 samples were largely non-overlapping (Fig. 2G). Day 3 tissues contained the largest 225 

diversity of subsets and shared common cell types with day 1 and day 6 tissues (Fig. 2G). Day 10 226 

tissues contained the most subsets in common with uninjured tissues but still contained 227 

regenerating cell types in common with day 6 tissues (Fig. 2G). These data outline a temporal 228 

cellular composition regeneration trajectory that culminates in a near return to an uninjured state 229 

(Fig. 2F). They also provide insights into the cell type composition at the tissue level that can be 230 

used to gauge the regeneration status of the muscle. Together, these findings establish a high 231 

resolution temporal spatial atlas of muscle regeneration and suggest distinct temporally 232 

determined cellular functions.  233 

 234 

Defining cellular neighborhoods of regenerating muscle 235 

We noted that some cellular subtypes from distinct cellular lineages displayed correlated 236 

dynamics, which led us to postulate that they co-exist in cellular neighborhoods. For example, 237 

there is an inverse correlation of cell types between healthy myofibers and injured myofibers 238 

(Fig. 3B). Thus, spatial relationships between pairs of cell types are often directional, and an 239 

enrichment of cell types in the vicinity of each other suggests grouping or dispersion dynamics, 240 

and that inter-lineage regulation between these distinct cell subtypes can occur. This finding fits 241 

well with  findings by others that cells are known to organize into cellular neighborhoods 242 

through chemoattractant or chemorepellent signals (Goltsev et al., 2018; Schürch et al., 2020) 243 

and reside in niches that depend on the presence or absence of other cells (Fuchs and Blau, 2020). 244 

To gain insights into the spatial arrangement of cell types in cellular neighborhoods of 245 

regenerating muscle, we analyzed the co-occurrence of cell subsets (neighbors), quantifying 246 

grouping and dispersion relationships between cell type pairs (Fig. 3A). We defined the largest 247 

set of cell-cell interactions around injured myofibers (Fig. 3B).  Pairwise interaction analysis 248 
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revealed clusters of spatially enriched cell types that correspond to regenerative processes (Fig. 249 

3B), including clusters of interactions driven by injured myofibers, adaptive immune cells, 250 

vasculature, regenerating myotubes, and healthy myofibers, as well as a cluster of other 251 

interactions involving M2 macrophages, MuSCs and CD38+ ECs.   252 

Injured myofibers exhibited reciprocal attractive relationships with early inflammatory 253 

cell types including neutrophils and M1 macrophages (Fig. 3C, top left). Cycling ECs, FAPs, and 254 

myogenic progenitors (myoblasts and myocytes) were also enriched in the vicinity of injured 255 

muscle fibers, suggesting that factors released at the site of injury may facilitate the cell cycle re-256 

entry of muscle resident stem cells (Fig. 3C, top left). Consistent with a previous report (Verma 257 

et al., 2018), we identified an enrichment of CD38+ capillary ECs in the vicinity of MuSCs, 258 

suggesting that these cells are a part of the MuSC niche. However, the enrichment is 259 

unidirectional, MuSCs are not enriched in the vicinity of CD38+ capillary ECs, indicating 260 

CD38+ ECs do not require MuSCs in their niche (Fig. 3B-C).   261 

In other neighborhoods, we uncovered changes in the interaction of immune, vascular, 262 

and stromal in response to injured myofibers, as well as temporally distinct supportive cell types 263 

that co-occur with subsets of myogenic cells in neighborhoods in which new myofibers are being 264 

formed. Neutrophils and macrophages (M1 and FcR+ subsets) mount an innate immune response 265 

to injury (Fig. 3C, top middle). These myeloid subsets largely associate with each other, recruit 266 

monocytes, and interact with dendritic cells (Fig. 3C, top middle). While most infiltrating 267 

immune cells are myeloid in accordance with an innate immune response, the accumulation of 268 

IgM in injured myofibers is consistent with an antibody mediated adaptive immune response. 269 

Indeed, injured myofibers were enriched in neighborhoods comprised of a subset of CD9+ 270 

dendritic cells and IgM+ plasma cells (Fig. 3C, bottom middle). Dendritic cells and CD9+ 271 

dendritic cells interacted with B cells and T cells in lymphoid aggregates that form around 272 

regenerating myofibers at day 6 after injury (Fig. 3C, bottom middle). Myogenic progenitors 273 

(myoblasts and myocytes) are associated with M1 macrophages and cycling endothelial cells 274 

typical of an early regenerative state, whereas fused myotubes and regenerating myofibers are 275 

associated with fibroblasts, tenocytes, and smooth muscle cells (Fig. 3C, bottom left and right) 276 

characteristic of a later regenerative state.  277 

A common feature of a later regenerative phase and uninjured muscle is that among 278 

immune cell interactions is that they all show repulsion dynamics with regenerating myofibers 279 
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and mature myofibers (DMDhigh and healthy subsets) (Fig. 3C, middle panels), indicating that the 280 

presence of mature myofibers suppresses inflammatory cell types. Similarly, most vascular and 281 

fibrogenic cell subsets exhibit repulsion dynamics with myofibers except for CD38+ ECs (Fig. 282 

3C, top and bottom right). This finding underscores the known association of capillary CD38+ 283 

ECs intertwined with the myofibers in the muscle vasculature. It also highlights the known anti-284 

fibrotic effects of myofibers on FAP differentiation (Joe et al., 2010; Uezumi et al., 2010; 285 

Wosczyna et al., 2019). Additionally, our analysis established that motor neuron-associated 286 

Schwann cell neighborhoods are enriched in M2 macrophages and accompanying vessels 287 

consisting of ECs (CD38–), which supply the nerve with nutrients (Fig. 3C, bottom right). These 288 

cell-cell interaction dynamics point to coordinated temporally regulated cellular interactions that 289 

occur in series during muscle regeneration. Specifically, injury triggers inflammation and stem 290 

cell activation, that in turn recruits additional cell types, which promote differentiation in a 291 

coordinated cascade of events entailing precisely orchestrated changes in cellular neighborhoods.  292 

 293 

Cells that traverse the myofiber basal lamina during regeneration 294 

ECM structures like the basal lamina can act as barriers, allowing only select cell types to 295 

traverse them. Since ECM scaffolds are comprised of structural proteins that are destroyed upon 296 

dissociation, the ability of cell types to traverse the ECM scaffold has remained elusive. While 297 

such scaffolds have been visualized previously by electron microscopic and intravital imaging 298 

(Vracko and Benditt, 1972; Webster et al., 2016), CODEX imaging allows us to capture the 299 

heterogeneous population of cells within these ECM scaffolds during regeneration (Fig. 2A, 3D, 300 

and S6A). In longitudinal sections along the length of the muscle, CODEX reveals ECM 301 

scaffolds as tracts outlined by precisely aligned reticular collagen fibrils (stained by ERTR7; Fig 302 

3D, top; and S6A) which accumulate IgM+ debris from injured myofibers replete with 303 

infiltrating CD45+ immune cells (Fig. 3D, middle). This contrasts with the localization of 304 

PDGFRa+ FAPs, which are mostly found outside the ECM scaffolds (Fig. 3D, middle), 305 

presumably because the ECM acts as a barrier to these cells.  306 

To gain further insights into cellular heterogeneity within ECM scaffolds and 307 

relationships between cell types that traverse the ECM, we quantified cell subsets found in ECM 308 

scaffolds and assessed their co-occurrence at each stage of regeneration. Cells were mapped 309 

based on their spatial location relative to the ECM scaffold, enumerated and identified by 310 
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FiberNet, then clustered by similarity of cellular composition (Fig. S6B). As expected, M1 311 

macrophages were the major cell type found within ECM scaffolds. M1 macrophages were 312 

associated with small numbers of other cell types such as monocytes, other macrophage subsets, 313 

dendritic cells (DCs), fibroblasts, and regenerating myofibers (Fig. S6B-C). The differential 314 

localization of the myeloid cell population was further resolved based on marker expression (Fig. 315 

3D, bottom). While CD11b+ myeloid cells were found both inside and outside of ECM scaffolds, 316 

many M1 macrophages (F4/80+ CD163–) but few CD163+ M2 macrophages were found inside 317 

the ECM scaffolds. F4/80+ CD11c+ cells were observed inside ECM scaffolds at day 6, 318 

suggesting a process of differentiation from macrophages to dendritic cells. Additional cell types 319 

such as Ly6G+ neutrophils, CD31 ECs, and myogenic progenitors were also found within ECM 320 

scaffolds at different time points (Fig. S6A).  These results suggest that the ECM scaffold is at 321 

times a highly dynamic environment where cells readily migrate across the residual endomysium 322 

and basal lamina of the myofiber after injury. 323 

Clustering analysis identified distinct ECM scaffolds that were either predominantly 324 

populated by myoblasts or by MuSCs and MyoG+ myocytes (Fig. S6C; clusters 27 vs. 21), 325 

consistent with contact mediated feedback on MuSC self-renewal from differentiating myocytes.  326 

Temporally, neutrophil-dominant and M1 macrophage-dominant ECM scaffolds appeared on 327 

day 1, became macrophage-dominant by day 3 and macrophage-derived DC-dominant by day 6 328 

(Fig. S6D-E). Most other clusters that contained primarily non-macrophage cell types appeared 329 

at later regeneration time points after day 3, suggesting that M1 macrophages facilitate the transit 330 

of other cell types into the ECM (Fig. S6E).  331 

 332 

M1 macrophages clear the way for muscle repair 333 

Macrophages play a critical role in tissue repair and signal to other support cells to 334 

coordinate their functions (Arnold et al., 2007; Brigitte et al., 2010; Chazaud et al., 2003; Du et 335 

al., 2017; Ratnayake et al., 2021; Shang et al., 2020; Tidball, 2017). Our pairwise interaction 336 

analysis indicated that M1 macrophages are enriched near ECM scaffolds (Fig. 3C, bottom right) 337 

and M1 macrophages are the predominant cell type that traverses ECM scaffolds (Fig. S6B). 338 

Moreover, the presence of M1 macrophages is largely mutually exclusive with other cells that 339 

traverse the ECM scaffolds, suggesting that M1 macrophage activity could be a rate limiting step. 340 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 10, 2022. ; https://doi.org/10.1101/2022.06.10.494732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.10.494732


 14

Thus, we hypothesized that a major function of macrophages within the ECM scaffold is to pave 341 

the way for myogenic cells to carry out regeneration.  342 

To test this hypothesis, we performed intramuscular injections of clodronate liposomes to 343 

deplete macrophages locally in muscles at day 2 after injury and assessed regeneration dynamics 344 

by CODEX multiplex imaging (Fig 3E). While we were unable to deplete all M1 macrophages, 345 

the number of M1 macrophages within the myofiber basal lamina was significantly reduced. 346 

Consistent with this reduction, the number of M1 macrophage dominated ECM scaffolds was 347 

diminished on day 3 and cell type dynamics were aberrant (Fig. S6E-F). In accordance with our 348 

hypothesis that M1 macrophage traversal across the myofiber basal lamina is required to remove 349 

injured myofibers, clodronate treated samples contained IgM+ injured myofiber debris even at 350 

day 10 (Fig. 3E and S6A). M1 macrophages eventually infiltrated the muscle, however, 351 

regeneration was significantly delayed (Fig 3E and 3G). Clodronate treated muscles at day 6 had 352 

50% fewer and smaller caliber regenerating myofibers (Fig. 3G). We also observed that 353 

myogenic differentiation was stalled, as there was an increase in ECM scaffolds containing 354 

MuSCs and myocytes at day 6 and fewer scaffolds contained mature regenerating myofibers at 355 

days 6 and 10 (Fig. S6F; clusters 21, 5 and 18, respectively).  The regenerating myofibers found 356 

in clodronate treated muscles at day 10 were abnormal in their organization due to a persistence 357 

of myofiber debris post-injury which acted as a physical barrier preventing proper fusion of 358 

myocytes and constraining hypertrophic growth (Fig. 3E). These regenerating myofibers 359 

exhibited a 25% reduction in minimum diameter and did not reach a mature state, resulting in 60% 360 

fewer regenerated healthy muscle fibers by day 10 (Fig. 3G and S6B). Additionally, the loss of 361 

M1 macrophages allowed for an increase in traversal of fibroblasts across the basal lamina at day 362 

6 and DCs at day 10 (Fig. S6E-F), suggesting that early M1 macrophage loss has a broad impact 363 

on the entire cellular response of the regenerating microenvironment. 364 

 365 

The M1 macrophage is a nodal regulator of regeneration 366 

Having established that removal of M1 macrophages from the regenerating 367 

microenvironment caused significant delays in the repair process (Fig. 3E-H), we sought to 368 

characterize the extent and mechanism of the delay by quantifying the cell types present in the 369 

tissue across time to impute a “regeneration pseudotime”. Most of the cell subsets present during 370 

a normal regeneration time course appeared transiently.  To this end, we encoded each cell in the 371 
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tissue with the average timepoint at which it appeared. We calculated a local tissue pseudotime 372 

by averaging encoded times for each cell in specific tissue regions marked by a 75 x 75 μm grid 373 

(Fig. 4A,B). We compared this local regeneration pseudotimes with the post-injury time point of 374 

tissue collection (Fig. 4A,C). Using this approach, we were able to accurately distinguish injured 375 

and uninjured areas and predict the relative regeneration time of the injured regions (Fig. 4B). 376 

This pseudotime analysis also allowed us to visualize and quantify localized delays in 377 

regeneration at day 6 and 10 induced by macrophage depletion instigated by clodronate 378 

treatment of muscles (Fig. 4C).  379 

We investigated whether the delay in regeneration after macrophage depletion could be 380 

due to a blockade in cellular progression through a normal regeneration program or via an 381 

alternative non-productive program. Since macrophage depletion by clodronate treatment 382 

disrupts myofiber regeneration and impacts a range of cell types that normally traverse the ECM 383 

(Fig 3G,H and S6F), we hypothesized that localized disruptions in key cell effectors like 384 

macrophages could further alter the spatial arrangements of cells and the timing of the normal 385 

regenerative program. To assess this, we performed a spatiotemporal cell neighborhood analysis, 386 

clustering the local co-occurrence of cell subsets during the regeneration time course. We 387 

identified 26 spatial neighborhood clusters with distinct cell type compositions (Fig. 4D). When 388 

we then cluster these spatial neighborhoods by temporal enrichment to determine which ones 389 

appear in a temporally regulated manner, we find 10 temporal clusters that change in abundance 390 

across the regeneration time course (Fig. 4D,E). These temporal clusters represent unique cell-391 

cell interaction neighborhoods that occur during regeneration: healthy muscle, perivascular, 392 

neutrophilic infiltration, early and late innate immune response, adaptive immune response, and 393 

de novo myogenesis cell-cell interaction neighborhoods (Fig. 4D,E). 394 

To determine if the delay in regeneration we observe after macrophage depletion arises 395 

from a block to the normal regeneration program or from an alternative non-productive program, 396 

we performed spatiotemporal clustering on our clodronate treated samples and compared cell-397 

cell neighborhoods and their temporal appearance within the neighborhoods. If macrophage 398 

depletion merely delayed the normal regenerative process, we would expect the local 399 

compositions of cells after clodronate treatment to match those seen during normal regeneration. 400 

However, our cell neighborhood analysis revealed a cell neighborhood (spatial neighborhood 7) 401 

that was unique to clodronate treated samples (Fig. 4D,E). The aberrant neighborhood contained 402 
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a disorganized conglomeration of injured myofibers, myogenic cell subsets characteristic of all 403 

stages, innate and adaptive immune cells, and fibroblasts (Fig. 4D,E), which normally appear in 404 

a precisely orchestrated sequence during normal regeneration (Fig. 4D). To quantify the extent of 405 

the deviation, we measured the pseudotime variance of cells in clodronate treated muscles within 406 

gridded tissue regions and compared our results to the pseudotime variance we determined 407 

during normal regeneration (Fig. 4A,F,G). We found that injured areas of normally regenerating 408 

muscle had low pseudotime variance, suggesting that normal regeneration is a temporally 409 

cohesive cellular process (Fig. 4F,G). In contrast, in clodronate treated samples pseudotime 410 

variance by day 6 and 10 was significantly increased. This is consistent with our cellular 411 

neighborhood analysis. These results suggest that macrophage depletion not only disrupts the 412 

progression of various cell types through the regeneration program, but also triggers the 413 

formation of aberrantly regenerating regions that contain cells that do not normally co-exist at 414 

the same time (Fig. 4F,G). 415 

To gain an in-depth understanding of the aberrant regenerative process triggered by 416 

macrophage depletion, we assessed changes in the progression of specific immune, myogenic, 417 

vascular, and fibrogenic cell subsets in clodronate treated samples. We observed universal tissue 418 

disruption, marked by significant changes in cell subtype abundance across multiple lineages at 419 

all time points (Fig. 4H). In clodronate-treated muscles at day 3 after NTX, we observed 420 

increases in the numbers of neutrophils (p=0.03) that are normally resolved by day 3, yet also 421 

increases in FcR+ macrophages (p=0.01) and macrophage-derived DCs (p<0.01) that normally 422 

become abundant at day 6, providing evidence of a temporally aberrant accumulation of myeloid 423 

subsets (Fig. 4H). In addition, compared to untreated day 3 samples, the abundance of MyoD+ 424 

MyoG+ myoblasts and CD38+ ECs also increased by 2.4 (p<0.02) and 1.5-fold (p<0.02), 425 

respectively, indicating that macrophage depletion profoundly impacts the abundance of cells of 426 

other lineages (Fig. 4H).  427 

These early changes coupled with the accumulation of dead myofiber debris that prevents 428 

proper myocyte fusion precipitates changes in additional cell types (Fig. 4H). We observed 429 

significant increases in DCs (p<0.005) and the appearance of a novel CD9+ DC population 430 

(p=0.001) by day 10. MuSC and MyoG+ myocyte abundance also increased at day 6 and 10 431 

(p=0.001 and 0.0040; and p=0.0065 and 0.0226, respectively). Coupled with the sustained 432 

presence of regenerating myofibers (p=0.001) and a loss of DMDhigh myofibers (p=0.001) at day 433 
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10, these findings are consistent with a delay in myotube maturation. Fibroblast abundance at 434 

day 6 (p=0.0043) was also decreased; this is consistent with our pairwise interaction analysis 435 

where fibrogenesis is coupled with myofiber maturation during regeneration. 436 

Together, our data suggest that M1 macrophages play a pivotal role in coordinating 437 

regeneration. Upon their depletion by clodronate treatment, a block in phagocyte function creates 438 

a physical barrier to regeneration, which in turn triggers widespread disruption to the standard 439 

regeneration progression of immune, myogenic, fibrogenic, and vascular cell subtypes. These 440 

changes, in turn, disrupts regenerative cell neighborhoods, temporally desynchronizing 441 

regeneration, and accelerating adaptive immunity. As a result, MuSC function is shifted toward 442 

self-renewal, myofiber formation is hindered, and fibrosis and angiogenesis are delayed (Fig 4I).  443 

 444 

Aging changes skeletal muscle architecture 445 

Aging is associated with numerous maladaptive changes in skeletal muscle including 446 

chronic inflammation, partial denervation, persistent fibrosis, and diminished regenerative 447 

capacity, which together lead to muscle wasting (Blau et al., 2015; Larsson et al., 2019; Muñoz-448 

Cánoves et al., 2020). Such aging-associated effects have been probed at the transcriptomic level, 449 

both in bulk and at single cell resolution (Petrany et al., 2020a; Schaum et al., 2020; Tabula 450 

Muris Consortium, 2020), but how aging impacts the spatial organization of cells within muscle 451 

tissue has not been thoroughly explored. To address this, we performed CODEX multiplex 452 

imaging on skeletal muscle isolated from aged mice (25-28 months) and compared it to young 453 

muscle (2 mo) to understand the how the spatial cellular neighborhood composition of aged 454 

muscle changes and how this could lead to diminished regeneration. 455 

 Our regeneration pseudotime analysis of aged uninjured mouse muscles showed that the 456 

local cellular composition of aged muscles at steady state most closely resembles day 10 of 457 

young muscle regeneration (Fig. 5A,B). This regressed state is widespread throughout aged 458 

muscles and is in stark contrast with the localized degeneration and regeneration triggered by 459 

injury in young (Fig. 5A). We also noted an increase in the variance of regeneration pseudotimes 460 

of cells found in aged muscles, suggesting that aged muscles are more heterogeneous, 461 

concurrently containing cell subtypes normally found at distinct regeneration timepoints in 462 

young (Fig. 5C,D). This aberrant composition is apparent even when aged tissues are compared 463 

to day 10 of regeneration in young.  We validated this observation by creating a UMAP 464 
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projection of tissues representing our regeneration time course. Aged tissues clustered separately 465 

from day 10 regenerating muscles, suggesting that aging alters cell composition compared to 466 

uninjured or day 10 regenerating young muscle (Fig. S7A). 467 

Uninjured aged muscles are enriched for cell types consistent with myofiber damage and 468 

repair, not young uninjured muscle (Fig. 5E), although the cell types are less abundant than we 469 

observed following young muscle injury (Fig. S4). CD38+ ECs and M2 macrophages found in 470 

the stroma of uninjured young muscles were less prevalent in aged muscles (p=0.004 and 0.02, 471 

respectively). We also observed an increase in the numbers of both injured myofibers (p<0.005) 472 

and regenerating myofibers (p=6x10-6). In addition, we detected cell composition changes 473 

associated with early injury and late regeneration simultaneously in aged tissues. FcR+ and M1 474 

macrophages and FAPs that normally increase in numbers in early regeneration were more 475 

abundant in steady state uninjured aged muscles (p=0.015, 2x10-6 and 0.02, respectively). In 476 

conjunction, MHC-II+ DCs, macrophage-derived DCs, B cells, smooth muscle cells, Thy1+ 477 

pericytes, and fibroblasts that normally increase in late regeneration were also more abundant in 478 

aged muscles than in young (p=0.005, 2x10-5, 0.008, 3x10-6 and 0.0005, respectively). Thus, 479 

aged muscles are characterized by a persistently dysregulated regenerative state. 480 

Importantly, several of the observed cell types (Thy1+ pericytes, macrophage-derived 481 

DCs) were aberrantly localized in the muscle fascia, the connective tissue encapsulating the 482 

muscle, and to small perivascular clusters within the muscle proper (Fig. 5F). The patterns 483 

observed were highly specific; a careful analysis of the perivascular/CD38low clusters revealed 484 

that only the perivascular cluster, not the ECs and healthy myofiber cluster, was increased in 485 

aged muscle (Fig. 5H). Overall, consistent with our pseudotime and cell composition analysis, 486 

our neighborhood analysis revealed an increased abundance of clusters of innate and adaptive 487 

immune cell types, de novo myogenesis, motor neuron/fascia, and perivascular/CD38low in aged 488 

muscle at steady state that is characteristic of the normal regeneration process seen in young (Fig. 489 

5G, S7B).  490 

Together, our data indicate that a combination of increased myofiber turnover, innate and 491 

adaptive inflammation, and vascular and fascia remodeling characterize aged muscles, which 492 

contribute to the loss of tissue homeostasis and alterations in the tissue microenvironment 493 

observed in aging. Moreover, our analysis reveals for the first time the complex 494 
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microenvironmental changes at the molecular, cellular, and tissue architecture level that occur 495 

with aging. 496 

 497 

Autoimmunity in aged muscle 498 

To probe molecular mechanisms that underlie the changes to the spatial neighborhood 499 

composition of aged muscle, we identified antibodies from our CODEX antibody panel that were 500 

differentially abundant in aged muscles compared to young (Fig 6A). We observed significant 501 

changes in myogenic markers (MyoD and MyoG) in myogenic neighborhoods, as well as 502 

immune markers (CD163, FcR, CD8a, CD11b) in inflammatory neighborhoods (Fig 6A). 503 

However, IgM was the sole factor that was differentially abundant across 6 of the 8 significantly 504 

changed neighborhoods we identified in aged muscle (Fig 6A).  505 

IgM is the highest molecular weight immunoglobulin and is one of the first to appear 506 

upon antigen stimulation or microorganism exposure. Our data show that during regeneration 507 

IgM accumulates transiently in young injured myofibers, in conjunction with the influx of 508 

immune cells. Thus, we hypothesized that a persistent accumulation of IgM is a indication of 509 

autoimmunity in aged mice and could facilitate the aberrant proinflammatory changes we note in 510 

aged muscle.  511 

Unique to aged muscle, we also observed strong IgM staining in the ECM and 512 

vasculature (Fig. 6B-C, S7C). IgM enriched areas in aged muscle also frequently harbored an 513 

abundance of immune cells that expressed FcR and MHC-II (Fig. 6C, S7C), which suggests that 514 

IgM promotes inflammation. We validated this finding across a range of muscle groups 515 

including diaphragm, tibialis anterior, gastrocnemius, and extensor digitorum longus muscles by 516 

traditional immunofluorescence using fluorophore-conjugated antibodies to mouse IgM 517 

(diaphragm data shown in Fig. 6D). To further understand the aging-associated changes in tissue 518 

IgM levels, we analyzed recently published proteomic mass spectrometry data of young and aged 519 

muscles (Schüler et al., 2021).  We found that the mu chain of IgM is consistently detected as 520 

one of the top age-related proteomic changes, increasing over 8-fold in gastrocnemius muscles of 521 

aged mice (Fig. 6E). Overall, these data identify IgM as a systemic factor that accumulates in 522 

aged muscle. 523 

 It has previously been shown that IgM antibodies made in response to specific antigens 524 

can cross react with  self-proteins including host IgG and act as rheumatoid factors (Dresser, 525 
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1978). Given the IgM accumulation we observed in the ECM of aged skeletal muscles, we 526 

hypothesize that this IgM could target self-proteins, contributing to the decline in muscle 527 

function characteristic of aging. To test this, we compared the autoreactivity of IgM isolated 528 

from the sera of young and aged mice to characterize its potential as a rheumatoid factor. Sera 529 

from aged mice showed a ~2-fold increase in IgM rheumatoid factor compared to young as 530 

analyzed by ELISA (Fig. 6F), consistent with increased autoantibodies and autoimmunity in 531 

aged mice. 532 

Age-related partial denervation, signified by axonal blebbing at the neuromuscular 533 

junction (NMJ) followed by the partial loss of innervation, is a major contributor to muscle 534 

wasting. However, the pathobiology of motor neuron damage and cause of this denervation is 535 

unknown. We found that IgM accumulates in the motor neuron and fascia neighborhood of aged 536 

muscle (Fig. 6A). We therefore sought to determine whether IgM accumulation impacts age-537 

related denervation. To test this, we performed immunostaining on whole mount EDL muscle 538 

isolated from young and aged mice, labeling acetylcholine receptors with bungarotoxin (BTX), 539 

the motor neuron with neurofilament, and IgM to assess whether IgM accumulates at the NMJ of 540 

aged muscle. We observed that while IgM staining is at background levels in young muscles, it is 541 

highly abundant in aged muscles (Fig. 6G-H). Indeed, our assay revealed a ~4-fold increase in 542 

the mean fluorescence intensity of IgM at the NMJs of aged mice relative to young (Fig. 6H). To 543 

establish whether the IgM accumulation in aged muscles could affect motor neuron health, we 544 

stratified aged NMJs by the morphology of pre-synaptic neurofilaments at sites of axonal 545 

blebbing, which is indicative of axonal degeneration. Axonal blebbing at aged NMJs correlated 546 

with higher IgM signal. Since IgM can trigger the classical complement cascade (Chan et al., 547 

2004; Daha et al., 2011; Sharp et al., 2019), we hypothesize that IgM accumulation underlies 548 

axonal degeneration in aged muscle. Together, our findings reveal an autoimmune origin for the 549 

pro-inflammatory changes commonly observed in aged muscle, likely mediated via IgM.  550 

 551 

Discussion 552 

We present a spatial proteomic atlas of skeletal muscle regeneration at single cell 553 

resolution obtained using CODEX multiplex imaging and unbiased computational approaches 554 

(Fig. 1-2). Using a carefully curated panel of 32 antibodies, we reveal the spatial and temporal 555 

dynamics of 34 cell types during efficacious and dysregulated repair. By combining CODEX and 556 
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new analytic tools, we show the power of this approach in resolving the spatial and temporal 557 

multicellular interactions in cellular neighborhoods that accompanies efficacious repair of 558 

muscle tissue damage and goes awry in muscle aging. Using neural network and unsupervised 559 

clustering, we are able to perform spatial pseudotime mapping of regeneration, creating a 560 

“regeneration clock” of cellular neighborhood interactions and how they change over time.  561 

These tools which enable an unbiased metric of the repair process, provide an integrated view of 562 

skeletal muscle tissue architecture at single cell resolution. Additionally, they serve as a resource 563 

for understanding complex changes in cellular neighborhoods in other tissues over time and 564 

during regeneration. Such information is lacking in widely used single cell approaches that entail 565 

tissue dissociation or non-multiplexed histological analysis. As such our atlas will serve as a 566 

reference for muscle biologists and a platform for discerning the biology underlying 567 

neuromuscular disease or regeneration in other tissues, and allow a holistic perspective of tissues 568 

that will inform therapeutic interventions. 569 

Our atlas provides a spatial context for the heterogeneous cell populations  that 570 

characterize muscle tissue, information that is lost  upon  dissociation of the tissue into single 571 

cells and nuclei for transcriptomic and proteomic studies (De Micheli et al., 2020a; Dos Santos et 572 

al., 2020; Giordani et al., 2019; Petrany et al., 2020a; Porpiglia et al., 2017). Knowledge of 573 

spatial relationships is critical to defining and characterizing specific cell-cell interactions in 574 

cellular neighborhoods. This is underscored by our ability to characterize localized biological 575 

regenerative processes, such as the clearance of ECM scaffolds and regeneration of muscle fibers 576 

(Fig. 3), the arrangement of cell types in dynamically changing cellular neighborhoods, and 577 

resolution of a temporal program of cell-cell interactions (Fig. 4D-E). By resolving the spatial 578 

temporal participation of cell types and functional subsets of cells, for the first time we can 579 

quantify localized regenerative activity (Fig. 4A-C) and identify tissue areas that deviate from 580 

the normal regeneration program (Fig. 4F-I). Our CODEX analysis of 34 cell types and 581 

characterization of 40 markers simultaneously in conjunction with the analytic tools we 582 

developed for analyzing this massive dataset enabled a previously unrecognized appreciation of 583 

the process of regeneration following muscle damage. Our data reveal the cellular mechanisms 584 

underlying impaired healing in the absence of macrophages in young (Arnold et al., 2007; 585 

Chazaud et al., 2003; Du et al., 2017; Ratnayake et al., 2021; Shang et al., 2020; Tidball and 586 

Welc, 2015; Tonkin et al., 2015). The impaired phagocytosis and accumulation of cellular debris 587 
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that occurs after macrophage depletion fosters the dysregulated behavior that occurs across cell 588 

lineages (Fig. 3-5). We also pinpoint IgM accumulation as a novel feature of aging-associated 589 

chronic muscle inflammation that appears to be most prevalent at sites of denervation (Fig. 6).  590 

By understanding and classifying the proximal enrichment of cell types during 591 

regeneration, our atlas reveals a specific temporal regenerative sequence of cell-cell interactions 592 

driven by directed signaling (i.e., signals from a source cell to a responder cell). Upon injury, 593 

injured myofibers recruit neutrophils, M1 macrophages, and FAPs and trigger endothelial 594 

expansion (Fig. 3B-C). The subsequent release of intracellular proteins, mitochondria, double 595 

stranded DNA and ATP create a damage associated molecular pattern (DAMP) recognized by 596 

innate immune cells and mesenchymal stem cells like FAPs (Vénéreau et al., 2015). 597 

Simultaneously, injured myofiber protein remnants acquire immunoglobulins (IgGs and IgMs) 598 

over time (Fig. 2B) and activate macrophages via FcR (Clynes et al., 1998; Deo et al., 1997). 599 

Neutrophils and macrophages release inflammatory lipid metabolites including prostaglandin E2 600 

(PGE2) (Giannakis et al., 2019; Ho et al., 2017) and secrete cytokines (Arnold et al., 2007; 601 

Chazaud et al., 2003; Du et al., 2017; Ratnayake et al., 2021; Shang et al., 2020; Tidball and 602 

Welc, 2015; Tonkin et al., 2015) that activate MuSCs and promote their differentiation to 603 

proliferative myoblasts. Although cytokine signaling is necessary for MuSC expansion, the 604 

primary role of macrophages is to act as phagocytes that remove myofiber debris. Using 605 

clodronate liposomes to effect macrophage depletion, we find that IgM+ debris persists in 606 

injured myofibers, hindering the formation and maturation of new myofibers.  Thus. our results 607 

demonstrate that phagocytosis is critical for clearing ECM scaffolds (Fig. 3E-H), a process 608 

required for their use as migratory tracts for myogenic progenitors to regenerate myofibers 609 

efficaciously (Webster et al., 2016).  610 

Importantly, our data reveal for the first time that regeneration is not a series of 611 

checkpoints or extrinsic feedback driven process. Specifically, while the checkpoint and 612 

feedback models predict that disruption of regeneration would lead to a stall across cell types, we 613 

reveal that upon macrophage depletion, myogenic cells proceed through programmed 614 

differentiation and immune cell types mount an adaptive response (Fig. 4F-I). The lack of a stall 615 

leads to a co-existence of cell types that do not normally interact during regeneration. 616 

Macrophage depletion triggers the loss of coherent temporally and spatially coordinated cellular 617 

regenerative processes.  Moreover, in aging we observe dysregulated changes to muscle structure 618 
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and function that share features with young muscle that is in a persistent state of regeneration. 619 

Aged muscles exhibit greater myofiber turnover (Fig. 6A and 6H-I). They also feature an 620 

increased abundance of innate and adaptive immune cells, and altered ECM structures (Fig. 621 

S8A-B) consistent with an asynchronously regenerating tissue state (Fig. 6E-F). These changes 622 

are likely driven by combinations of systemic factors and local changes such as denervation, 623 

altered vascularization, and aberrant deposition of IgM. 624 

Autoimmunity is common to a range of human neuromuscular disorders. For example, 625 

low muscle mass and sarcopenia develop in a significant proportion of rheumatoid arthritis 626 

patients, where IgM rheumatoid factor is a common diagnostic marker (Torii et al., 2019). 627 

Sjörgren’s syndrome, which can occur with rheumatoid arthritis, can also present with myositis 628 

with IgM expressing plasma cells infiltrating the muscle (Ringel et al., 1982). We found that IgM 629 

in the sera of aged mice exhibits rheumatoid factor activity (Fig. 6F), indicative of auto-reactivity. 630 

In our aged muscle data, the presence of IgM correlates with immune cell presence (Fig. 6C) and 631 

a chronic pro-inflammatory state. Additionally, the presence of IgM at the NMJ correlates with 632 

aberrant axonal blebbing (Fig. 6F,G) which could result from complement-mediated damage to 633 

the pre-synaptic cell membrane. Complement-mediated damage to neurons and muscle could 634 

cause to Ca2+ influx and negatively impact mitochondrial functions in the aged, which is a key 635 

therapeutic target for restoring neuromuscular function in the aged (Austin and St-Pierre, 2012; 636 

Palla et al., 2021). Taken together, our findings suggest that distal changes in the aged immune 637 

system could lead to age-related neuromuscular symptoms such as partial denervation and 638 

immune infiltration.   639 

Taken together, our single cell resolution spatial atlas of skeletal muscle regeneration 640 

resolves temporally localized cell-cell dynamics. Combining CODEX multiplex imaging and 641 

neural network-powered computational approaches, we demonstrate that spatial analysis can 642 

reveal insights into dynamic processes involving multiple cell types and the tissue ECM in a 643 

manner previously not possible using approaches that dissociate tissues. These approaches pave 644 

the way for a better understanding of disease mechanisms, will improve diagnosis accuracy, and 645 

help validate drug effects across multiple cell types.  646 

 647 

Limitations of the study 648 
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In the current study, fluorescence intensity signals should not be interpreted as absolute 649 

quantification of protein expression. While most antibodies were validated to reflect their 650 

expected target, unexpected cross reactivity of a few antibodies was observed (e.g. anti-TNMD 651 

antibody showed high correlation with CD163 staining on M2 macrophages). This cross 652 

reactivity did not affect clustering or cell type designation, since our approach uses the 653 

expression of all markers, thus we were able to delineate M2 macrophages as CD163+ TNMD+ 654 

and tenocytes as CD163– TNMD+ (Fig. S4). Imaging artifacts and tissue folds were minimal but 655 

could affect the accuracy of quantification and cell type designation in the affected regions. Of 656 

note, signal for secreted proteins such as IgM, laminin, ERTR7 can localize to cells that do not 657 

express these proteins, which can explain discrepancies with transcriptome profiles of these cells. 658 

Although cell type annotations were manually validated with corresponding cell types in the 659 

tissue, algorithmic cell type identification is not perfect and remains an area of research and 660 

improvement.  661 

 662 

Methods 663 

Contact for reagent and resource sharing 664 

Further information and requests for reagents and resources should be directed to and will be 665 

fulfilled by the lead contact, Helen M. Blau (hblau@stanford.edu). 666 

 667 

Data and code availability 668 

Spatial atlas of muscle cells and CODEX images have been deposited on Zenodo and are 669 

publicly available as of the date of publication. Due to the data size of raw CODEX datasets, 670 

down sampled versions of processed CODEX images are available as 671 

doi:10.5281/zenodo.6609234. Unprocessed or full resolution images are available from the lead 672 

contact upon request. Codes used for data analysis has been deposited at github.com/will-yx/. 673 

Any additional information required to reanalyze the data reported in this paper is available from 674 

the lead contact upon request. 675 

 676 

Experimental model and subject details 677 
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We performed all experiments and protocols in compliance with the institutional guidelines of 678 

Stanford University and Administrative Panel on Laboratory Animal Care (APLAC). Aged (24-679 

28 mo.) mice C57BL/6 were obtained from the US National Institute on Aging (NIA) aged 680 

colony, and young (2-4 mo.) wild-type C57BL/6 mice from Jackson Laboratory.  681 

 682 

Experimental method details 683 

Muscle injury and clodronate liposome injection 684 

Muscle injuries were induced with a single intramuscular injection of 20 μL of notexin (5 μg/mL; 685 

Latoxan, catalog no. L8104) into the Tibialis anterior (TA) muscle. Injections were performed 686 

through the skin by inserting a 0.3 mL insulin syringe (BD; cat. 324702) from the distal point of 687 

the tibialis anterior (TA) muscle toward the knee, roughly parallel to the alignment of the 688 

myofibers. For macrophage depletion, 2 days after notexin injection, 40 μL of clodronate 689 

liposomes (Clophosome, FormuMax; cat. F70101C-N) or control liposomes (FormuMax; cat. 690 

F70101-N) was injected intramuscularly into the TA. Contralateral legs without injury or 691 

liposome injections were used as uninjured controls. 692 

 693 

Construction of fresh frozen tissue section arrays 694 

Muscle samples were dissected, embedded in a 15 x 15 mm tissue cassette filled with Tissue-Tek 695 

Optimal Cutting Temperature compound (VWR; 25608-930), and frozen in liquid nitrogen-696 

cooled semi-frozen isopentane. Fresh frozen tissue samples were stored at -80 °C until 697 

processing. Tissue blocks were cryo-sectioned in a Leica CM3050S cryostat at 10µm thickness. 698 

Tissue sections were placed on square glass coverslips, 22 mm x 22 mm (Electron Microscopy 699 

Sciences; cat. 63757-10) pre-coated with poly-L-lysine (0.01% in ddH2O from 0.1% stock 700 

solution) mixture (Sigma; P8920). Single sections of a series of tissues of uninjured, day 1, 3, 6, 701 

and 10 post-injuries were arranged on each coverslip to form a tissue array. Each coverslip 702 

allowed for 4-6 tissues to fit, and they were stored at -20 °C until stained.  703 

 704 

Traditional Immunofluorescence and antibody screening 705 
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Tissues were fixed with 4% PFA, blocked with blocking buffer (5% goat serum, 0.5% BSA, 0.5% 706 

Triton-X100 for 45 min in room temperature; if candidate antibody is a mouse IgG, 1% goat 707 

anti-mouse IgG Fab fragment (Jackson Research) was added. After blocking, tissues were 708 

washed with PBS (x3) and stained with candidate primary antibody for 2 hours at room 709 

temperature or overnight at 4 oC, washed with PBS and stained with appropriate secondary 710 

antibody for 2 hours in room temperature. DAPI and TrueBlack stain were added, and then the 711 

slides were mounted and inspected under the microscope. This was done to determine whether 712 

the antibody stained the relevant target and to decide on the dilution ratio for the CODEX 713 

staining. Prior to adding the antibodies to the CODEX antibody panel, all antibodies were tested 714 

on mouse skeletal muscle sections for their staining efficiency following an IHC staining 715 

protocol, as follows.  716 

 717 

CODEX Buffers and solutions  718 

Buffers and solutions were prepared as described in Schürch et al. 2020. All buffers were filtered 719 

sterile using 500 mL 0.2 μm pore size filters and stored at room temperature unless otherwise 720 

specified. 721 

Hydration Buffer (S1), Staining Buffer (S2), and Storage Buffer (S4); (Akoya Biosciences). 722 

TE buffer: 10 mM Tris pH 8.0, 1 mM EDTA in ddH2O (Invitrogen).  723 

CODEX buffer (H2): 150 mM NaCl, 10 mM Tris pH 7.5 (Teknova), 10 mM MgCl2 · 6 H2O 724 

(Sigma), 0.1% w/v Triton X-100 (Sigma) and 0.02% w/v NaN3 in ddH2O; stored as a 10x stock 725 

solution. 726 

Blocking component 1 (B1): 1 mg/ml mouse IgG (Sigma) in S2.  727 

Blocking component 2 (B2): 1 mg/ml rat IgG (Sigma) in S2.  728 

Blocking component 3 (B3): Sheared salmon sperm DNA, 10 mg/ml in H2O (Thermo Fisher).  729 

Blocking component 4 (B4): Mixture of non-modified CODEX oligonucleotides at a final 730 

concentration of 0.5 mM in TE buffer (IDT).  731 

CODEX plate buffer: 33.3 nM Hoechst 33342 (Thermo Fisher) and 0.5 mg/mL B3 in 1x 732 

CODEX buffer. 733 
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F fixative solution (BS3): 200 mg/ml BS3 (bis(sulfosuccinimidyl)suberate; Thermo Fisher) in 734 

anhydrous DMSO (Sigma); stored at -20°C in 15 μL aliquots; used freshly thawed.  735 

CODEX antibody stabilizer solution: Antibody Stabilizer in PBS (Candor Bioscience) with 5mM 736 

EDTA and 0.01% sodium azide (Sigma). 737 

 738 

Generation of CODEX DNA-conjugated antibodies  739 

Antibody conjugations were performed, and oligonucleotide barcode sequences were as 740 

described in Schürch et al. 2020. Oligonucleotide barcodes were conjugated to antibodies via 741 

maleimide-thiol reactions.  742 

Protected 5’ maleimide-modified oligonucleotides were purchased from Trilink or GeneLink and 743 

were deprotected according to manufacturer’s protocol. In brief, lyophilized oligonucleotides 744 

were washed in anhydrous acetonitrile, then heated to >90 °C in anhydrous toluene for 4h (with 745 

an exchange with fresh toluene after 2h). Deprotected oligonucleotides were washed in 746 

anhydrous ethanol three times, resuspended in Buffer C (150 mM NaCl, 2 mM Tris (from a 50 747 

mM stock solution, pH 7.2), 1 mM EDTA and 0.02% w/v NaN3 in ddH2O), aliquoted to PCR 748 

strip tubes (100 μg per aliquot), then snap frozen by liquid nitrogen and lyophilized overnight on 749 

a FreeZone 4.5 Plus lyophilizer (Labconco). Lyophilized deprotected oligonucleotides were 750 

stored at -20oC until antibody conjugation. 751 

50 or 100 μg of a validated antibody was placed in an Amicon Ultra 0.5 mL 50 kDa molecular 752 

weight cutoff (MWCO) spin column (EMD Millipore; cat. UFC505096) and concentrated by 753 

centrifugation at 12000 g for 8 min. Antibodies with BSA or glycerol contaminants were first 754 

concentrated in a 100 kDa MWCO spin column (EMD Millipore; cat. UFC510096) and washed 755 

twice with 400 μL of PBS before being transferred to the 50 kDa column. MWCO filters were 756 

first conditioned with 500 μL of PBS-tween and spun down at 12000 g for 2 min. All 757 

centrifugation steps were at 12,000 x g for 8 min and flow-through was discarded, unless 758 

otherwise specified. To reduce disulfide bonds to free thiols, a mixture of 12.5 mM TCEP and 759 

2.5 mM EDTA in 1X PBS was added to the concentrated antibody on the spin column and 760 

incubated for exactly 30 min. Columns were centrifuged to remove the TCEP and washed with 761 

buffer C (150 mM NaCl, 2 mM Tris stock solution, pH 7.2, 1 mM EDTA and 0.02% w/v NaN3 762 
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in ddH2O). Per 50 μg of starting antibody, 100 μg of lyophilized deprotected maleimide 763 

oligonucleotides was reconstituted in 15 µl UltraPure Distilled Water (Invitrogen) and then 764 

mixed with 330 µL Buffer C and 50 µL 5M NaCl. The oligonucleotide mixture was added to the 765 

reduced antibody and incubated at room temperature for 2 h. The conjugated antibody was spun 766 

down and washed three times with 450 µl High salt PBS (PBS with 1M NaCl). Per 50 µg of 767 

starting antibody, an amount of 100 µl of CODEX antibody stabilizer solution was added to the 768 

column, mixed by pipetting, then inverted into new collection tubes and centrifuged at 4,000 x g 769 

for 2 min. Conjugated antibodies were stored at 4 °C. Antibody-oligonucleotide barcode 770 

combinations are listed in Table S1.  771 

 772 

Tissue processing and staining for CODEX  773 

Antibody staining was performed in two staining steps. Antibody Mix 1 (AM1) was prepared by 774 

pipetting Myod1, MyoG, DMD, eMyHC, p-H3, Itga7, Pax7, PDGF-alpha, Laminin a2, MyHC 775 

antibodies at indicated dilutions in Table S1 in S1 buffer and mixed with blocking reagents (B1, 776 

B2, B3, B4) in a ratio of 210:10:10:10:10. Antibody Mix 2 (AM2) was prepared by mixing B220, 777 

CD11b, CD3, CD4, CD8a, ERTR7, CD29, CD11c, CD16/32, IgM, MHCII, Ter119, CD38, 778 

GFAP, F4/80, Ki67, Ly6G, Sca1, CD45, CD90, CD47, CD31, CD163, CD9 antibodies at 779 

indicated dilutions in S2 buffer and blocking reagents.  780 

Tissue section arrays were thawed for 2 min and washed twice with Hydration Buffer (S1). 781 

Sections were fixed with 1.6% PFA in S1 for 10 min, then washed with S1. 150μL of AM1 was 782 

added to each coverslip and incubated in a hydration chamber at 4 °C overnight. Coverslips were 783 

washed with S1 and then S2 buffer. 150 μL of AM2 was added to each coverslip and incubated 784 

in a hydration chamber at room temperature for 3 h. Coverslips were then washed twice in S2, 785 

fixed with 1.6% PFA for 10 min, and washed 3 times with PBS. Tissues were then fixed with ice 786 

cold methanol for 5 min, followed by PBS washing. To reduce autofluorescence, 200 μL of 787 

TrueBlack (Biotium) was added to the coverslips for 1 min according to manufacturer’s 788 

recommendations. A final fixation step was performed F Fixative for 20 min followed with PBS 789 

washing. Coverslips were stored at 4 °C in Storage Solution (S4) until imaging.  790 

 791 
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CODEX multi-cycle reaction and image acquisition  792 

CODEX multi-cycle reactions were performed on an Akoya Bioscience CODEX instrument, 793 

according to manufacturer’s instructions, and imaged on an automated Keyence BX-700 794 

microscope equipped with a Nikon 20x NA 0.75 Plan APO len. Cycle arrangement and reporter 795 

plate setups are described in Table S2. 10 μL of each corresponding fluorophore-conjugated 796 

oligonucleotide reporter to antibodies (10 μM in TE buffer; IDT) of a given cycle was mixed 797 

with CODEX plate buffer to a total volume of 250 μL and arranged in a 96-well round bottom 798 

plate. The first cycle, and second and third last cycles designated as blank cycles to capture 799 

autofluorescence, no reporter oligonucleotides were added. The final cycle, 1 μL of DRAQ5 was 800 

added to 249 μL of CODEX plate buffer. 801 

Fluidics exchange and image acquisition were fully automated through the Akoya Biosciences 802 

CIM software and Keyence Microscope BZ-X Viewer software. Each tissue was imaged in a 5x7 803 

tiled region and with 33 z-slices with an axial resolution of 0.8 μm. Imaging regions were 804 

manually selected after initial staining with Hoechst to capture as much of each tissue as possible. 805 

The z-position of the tissue was automatically determined by the autofocus feature on the 806 

Keyence software, on the center tile of each imaging region, every cycle. 807 

 808 

Immunofluorescence of muscle fiber bundles 809 

Extensor digitorum longus (EDL) muscles were dissected and fixed in 4% PFA in PBS for 20 810 

min, then washed with PBS. EDL muscles were manually teased into myofiber bundles under a 811 

dissection microscope avoiding any contact with the endplate band. Muscle bundles were 812 

permeabilized in 0.3% Triton X-100 in PBS (PBS-T) for 30 minutes and nonspecific binding 813 

was blocked using goat serum-based blocking solution (5% goat serum in PBS-T) for 1 hour. 814 

Tissues were incubated with antibodies against neurofilament (2H3, DSHB, mouse IgG1) and 815 

synaptic vesicle (SV2, DSHB, mouse IgG1) in blocking solution at 5 ug/ml for minimum of 24 816 

hours at 4C on a rocker. Muscle fiber bundles were washed extensively with PBS-T and stained 817 

in suspension with Alexa Fluor 546 conjugated goat anti-mouse IgM and Alexa Fluor 488 818 

conjugated goat anti-mouse IgG subclass1 antibodies and Alexa Fluor 647 conjugated 819 

bungarotoxin (BTX) in blocking solution. After extensive washing in PBS muscle fiber bundles 820 
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were mounted onto SuperFrost Plus slides (Fisher, cat. 12-550-15) using Fluoromount G 821 

(Thermo Fisher; cat 00-4958-02). Muscles were imaged on a spinning disc confocal microscope. 822 

Z stacked 3D images were processed by maximum intensity projection. Neuromuscular junctions 823 

(NMJ) were masked by thresholding on BTX staining and intensities for IgM was measured in 824 

ImageJ. NMJ fragmentation, axonal blebbing phenotype were manually scored.  825 

 826 

ELISA for IgM Rheumatoid Factor 827 

Blood from young and aged mice were collected by cardiac puncture in non-heparin tubes, 828 

allowed to clot for 30mins, and spun down at 3000 x g for 10 min. Sera was collected as the 829 

supernatant, snap frozen, and stored at -80°C until analysis. On the day of analysis, sera were 830 

thawed on ice and IgM Rheumatoid Factor Mouse ELISA (BioVendor; cat 634-02689) was 831 

performed according to manufacturer’s instructions.  832 

 833 

Quantification and Statistical Analysis 834 

Computational image processing and in silico autofluorescence clearing 835 

CODEX images from repeated imaging cycles were processed using the CRISP Image Processor 836 

as described in Palla et al., 2021. Hoechst channels from each imaging cycle was used to align 837 

tiles within each tissue region, 3D drift compensation across cycles, and identify slice(s) of best 838 

focus in the Z axis. All registration and alignment steps were performed in Fourier transformed 839 

frequency domain at sub-pixel resolution. Each image stack was then deconvolved using 840 

Richardson-Lucy algorithm over 50 iterations with a computed vector point spread function (PSF) 841 

estimated using a Gibbson-Lanni model with de-ringing filters. Gibson-Lanni parameters were 842 

estimated based on the imaging conditions (xy-resolution of 0.37744 μm per pixel, z-resolution 843 

of 0.8 μm per slice, working distance (ti0) of 1000 μm, relative position of the tissue (zpos) of 10 844 

μm, coverslip thickness (tg) of 170 μm, glass refractive index (ng) of 1.500, immersion 845 

refractive index (ni) of air 1.0003, and sample refractive index (ns) of CODEX buffer containing 846 

20% DMSO ~1.397). PSFs were generated with 1000 Bessel functions (nbasis) and 1000 847 

computed angles (nrho). Independent PSFs were generated for each channel according to the 848 

emission wavelengths of the fluorophore and their full-width half-max emission as follow: 849 
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Hoechst, 455 ±70 nm; FITC, 517 ±40 nm; ATTO550 or Cy3, 580 ±30 nm; Alexa647, 675 ±25 850 

nm. During deconvolution, images were translated in Z axis in the frequency domain to fit the 851 

best focus slice for the entire tissue to a single plane. Concurrently, images were corrected for 852 

lens and microscope sensor artifacts using pre-generated flatfield and darkfield images, 853 

respectively. After deconvolution, images were re-registered in the X-Y axes, then registered 854 

across all channels and stitched into full resolution mosaics. After stitching, blank cycles imaged 855 

at the beginning and end cycles were used to subtract autofluorescence for each channel of each 856 

cycle. Linear interpolation of imaging time and exposure time was used estimate the 857 

autofluorescence contribution of signal and this signal was subtracted from each channel at 858 

single pixel resolution. 859 

 860 

Neural network identification of nuclei and tissue features 861 

Nuclei were segmented using a modified version of CellSeg as described in Lee et al., 2021. The 862 

segmentation portion of CellSeg was run using pre-trained models on the full resolution CRISP 863 

stitched image of the DRAQ5 channel with the following parameters: overlap of 80, min_area of 864 

40, increase_factor of 3, autoboost_percentile of 99.98. 865 

 866 

Tissue features were classified from select channels of the CODEX dataset using FiberNet. 867 

FiberNet is a neural network classifier that performs semantic segmentation on multi-channel 868 

images of stained tissue sections. FiberNet was trained to identify healthy, regenerating, injured, 869 

and ghost muscle fibers along with stroma, motor neurons, and background areas of tissues. 870 

The FiberNet model architecture is based on a residual neural network (ResNet) with 871 

modifications to improve rotational invariance. The network determines an object class for each 872 

pixel in the 32-channel input image, along with a confidence score for each of the eight possible 873 

classes. For each image position an input window samples the source image stack at 1 and 1/4 874 

scale, which gives the model access to local detail as well as broad context of the surrounding 875 

area. Input data is fed to two parallel paths within the network, the first of which splits the image 876 

into four quadrants and rotates them to enforce rotational invariance. Because the main branch 877 

only sees a quarter of the input window, a supplemental branch allows the network to consider 878 
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the entire breadth of the input field of view, albeit at a lower resolution. The primary 'quadrant' 879 

branch employs a series of 2D convolutions with shortcut connections typical of a ResNet 880 

architecture.  This branch then bifurcates, processing the data as well as its transpose through a 881 

final 2D convolution layer and two dense layers. The outputs of the four quadrant branches were 882 

stacked, and the mean, minimum, and maximum values were computed across the eight quadrant 883 

results. This again enforces rotational invariance between quadrants. The 'overview' branch 884 

computes a row-wise and column-wise mean of the data and concatenates the left and right and 885 

top and bottom halves of these averages into a single tensor.  Once again, only the mean, 886 

minimum, and maximum values of these four sections were taken to enforce rotational 887 

invariance. The network then concatenates the dense output of the two data paths and continues 888 

through a further series of dense layers and the final categorical output layer. The exact 889 

dimensions of the model were parametrized based on the number of convolution layers, method 890 

of padding used, and size of the ResNet output. A typical input window size is 85x85 pixels with 891 

1024 channels at the output of the convolution layers. FiberNet was trained on expert curated 892 

CODEX data on NVIDIA 2080Ti GPUs using Tensorflow (https://www.tensorflow.org). 893 

Interpretation was performed on full resolution multi-channel CODEX images to classify each 894 

pixel in the image. Results were manually reviewed and validated by experts to assure accuracy. 895 

A FiberNet Lite model was trained using only the Laminin, DNA, and autofluorescence channel 896 

to allow segmentation of myofibers in traditional immunofluorescence images of skeletal muscle 897 

cross sections. Neural network classified image were post-processed into morphological masks, 898 

refined using morphological erosion and dilation functions from the scikit-image package, and 899 

morphologically assessed for area, centroid, mean intensity, major and minor axis lengths using 900 

the measure.regionprops_table functions from the Scikit-Image (Walt et al., 2014) python 901 

package. Mask objects were filtered by area for greater than 1000 and less than 30000 pixels. 902 

 903 

Quantification of antibody staining intensity 904 

Nuclei masks segmented by CellSeg were used to quantify antibody staining intensity. Nuclei 905 

masks were expanded using morphological growth by 2.5 pixels. The border 2 pixels of the 906 

grown mask were then used to quantify cytoplasmic or membrane staining intensity of each 907 

antibody, and the remaining interior pixels were used to quantify nuclear staining of each 908 
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antibody. The mean value of pixels in each compartment for each cell was used for downstream 909 

analysis. 910 

 911 

Data preprocessing, unsupervised clustering, and annotation of single cells 912 

Single cell staining intensity data across 11 CODEX experiments (“run”) consisting of 47 tissues 913 

including young uninjured, young regenerating, young regenerating after clodronate treatment, 914 

and aged uninjured samples were concatenated together and analyzed as a single dataset using 915 

HFcluster. Highly autofluorescent cells and falsely segmented cells were removed based on 916 

intensities measured in the blank channels and lack of signal in DNA channels. Staining 917 

intensities for single cells in each run were quantile normalized to 95th percentile and zero 918 

centered at the median or 50th percentile. Normalized intensities of select markers (Table S1) 919 

were used for clustering. For HFcluster’s two step clustering approach, an automated elbow-920 

finding approach is used to estimate a threshold for high confidence positive staining. Cell 921 

intensities were high pass filtered at the threshold value. This step sparsifies the intensity matrix 922 

causing cells with low or poor staining patterns to drop out. The filtered intensity values were 923 

clustered with the Louvain algorithm (as implemented in the single cell analysis python package, 924 

Scanpy (Wolf et al., 2018)), whereby poorly stained cells will cluster together and cells with high 925 

confidence staining can be more accurately clustered. The cluster labels of cells with high 926 

confidence staining were propagated onto poorly stained cells using the pre-filtered normalized 927 

intensity matrix. The propagated clusters were merged via hierarchical clustering using 928 

correlation distances of the mean intensities of each cluster, which resulted in 75 clusters. 929 

Merged clusters were then manually annotated based on expected antibody staining patterns into 930 

33 cell subsets. Each subset was validated against the original CODEX image data for accuracy 931 

of annotation.  932 

 933 

Generation of cell-cell interaction networks and cellular neighborhoods 934 

Cell-cell interaction networks were predicted based on the spatial arrangement of cell types 935 

within tissues. For each cell in the dataset, a niche or window consisting of the index cell and its 936 

10 nearest neighbors were identified using a distance map of cells within its source tissue. The 937 
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cell type identities of the neighbors were counted to reveal the niche composition of each cell. To 938 

normalize for differences in abundances of each cell type, the niche composition was quantile 939 

normalized and the enrichment of pairwise interactions were shown as mean quantile values for 940 

niches of all cells of a given cell type.  941 

Cell neighborhoods were defined by clustering niches according to cell type compositions as 942 

described in Schürch et al. 2020 using modified clustering approaches. In brief, niches for all 943 

cells were clustered using the Leiden algorithm with resolution of 0.5. Scarce neighborhoods 944 

with a total of less than 1000 cells across all tissues were merged into an unassigned cluster. The 945 

abundance of neighborhoods in each tissue across the regeneration time course was used to meta-946 

cluster neighborhoods into temporal clusters.  947 

 948 

Tissue cell type composition and enrichment analysis 949 

Cell types and numbers of cells in each cell neighborhood were counted in each tissue, 950 

normalized to the total number of cells in the tissue, which represents the proportion of cells in 951 

the tissue. Log transformed enrichment for any given cell type or cell cluster across time is 952 

calculated as: 953 

��� 
2
�enrichment� � ���

2
� proportion

average proportion across all tissues
� 1� 

 954 

Spatial pseudotime analysis 955 

Pseudotime encoding for each cell type was calculated as a likelihood of cell type at each 956 

sampled time point. To normalize for the different numbers of cells at given time points, cell 957 

type counts were first normalized to the total number of cells found at a given time point. Then, 958 

the likelihood of a cell type being present in samples of a given time point was calculated as 959 

normalized counts divided by the sum of normalized counts across the entire normal time course 960 

of regeneration. The average pseudotime of a cell type was calculated by multiplying the 961 

likelihood with regeneration time points (days after injury; an estimated value of day 20 was 962 

used for uninjured muscle). For tissue pseudotime, the positional information of each cell in the 963 

tissue is encoded with their average pseudotime according to their cell type. Tissues were then 964 
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subsampled into ~75 x 75 μm (200 x 200 pixel) bins, whereby the mean pseudotime of cells 965 

within each bin, difference of the mean pseudotime to actual time, and variance of pseudotimes 966 

of cells within each bin were assessed using Numpy (Harris et al., 2020) and visualized using the 967 

Scikit-Image (Walt et al., 2014) python package. Bins lacking cells, thus resulting in NaN values, 968 

were ignored in the subsequent analysis. 969 

 970 

Dimensional reduction using UMAP and clustering for co-occurring cell types within 971 

neighborhoods and ECM scaffolds 972 

Dimension reduction for the cell type compositions of tissues and cells within ECM scaffolds 973 

was performed using Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 974 

2020). Input data were normalized along dimensions as proportions of total events or as 975 

enrichment across time points. Minimum distance and number of neighbors parameters were 976 

adjusted according to number of data points to maximally resolve heterogeneity. Clustering was 977 

performed on the UMAP embedding using the Leiden algorithms.  978 

 979 

Statistical analysis 980 

Statistical analysis was performed with one-way ANOVA with multiple pairwise comparisons 981 

Tukey HSD tests using the Scipy stats module (https://scipy.org) and bioinfokit (Bedre, 2021) 982 

python packages. P values of less than 0.05 were considered statistically significant.  983 

 984 

  985 
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Figure 1. Multiplexed immunofluorescence imaging to elucidate cellular heterogeneity 
during skeletal muscle regeneration.  

A) Schematic of myotoxin-induced murine skeletal muscle injury and regeneration timeline. The 
tibialis anterior (TA) muscles of young and aged mice were injected intramuscularly with 
notexin to induce myofiber damage and regeneration. 

B) Schematic of multiplexed imaging of regenerating skeletal muscle tissues using CODEX. 
Muscle tissues were cryosectioned onto coverslips, stained with a panel of DNA barcoded 
antibodies, and rendered by cyclic imaging with fluorophore conjugated cDNA probes using 
CODEX. Multicycle tissue images were registered, deconvolved, trimmed, and stitched using 
CRISP image processor. 

C) Antibody panel design to resolve cell types found during skeletal muscle regeneration. 
Overlapping and mutually exclusive protein markers were used to distinguish biologically 
relevant cell types and subsets. 

D) Representative CODEX images of uninjured and regenerating muscle sections. Pseudo-
colored antibody staining as indicated below each image. The same field-of-view is shown 
across each time point (row). Markers of cell types within each lineage are shown in each 
column. 

 

Figure 2. Single cell spatial atlas of skeletal muscle regeneration. 

A) Schematic of computational analysis pipeline to resolve spatial relationships from 
multiplexed imaging data. 

B) CODEX images of myofiber states in uninjured muscles and in a time course after injury. 
Healthy muscle fibers express myosin heavy chains (MyHC, Blue) and dystrophin (DMD, green) 
on their sarcolemma, and are surrounded by the endomysium marked by ERTR7 (cyan). The 
myotoxin used induces sarcolemmal damage, resulting in the loss of DMD and leads to the 
accumulation of IgM (grays) in the injured myofibers. Immune cells marked by CD45 (magenta) 
infiltrate the muscle at days 1 and 3. Myogenic progenitors differentiate and express embryonic 
isoforms of myosin Myh3 (eMyHC; red) marking newly formed myotubes. By day 6, eMyHC 
expression was reduced in regenerating myofibers that mature and begin to re-express DMD. By 
day 10, the muscle structure are largely restored but the regenerated myofibers showed higher 
DMD expression. The same field-of-view is shown in each column. A cartoon representation of 
each stage of myofiber degeneration, regeneration is shown below each respective panel. 

C) Representative FiberNet classification of skeletal muscle fiber states and stromal regions 
based on multiplexed imaging data. Images are pseudo-colored by the classification labels of 
tissue features from FiberNet according to the legend (left) 

D) Representative cell type annotation of uninjured and regenerating skeletal muscles regions 
based on multiplexed imaging data. Each dot is one nucleus; Prospectively annotated cell type is 
represented by the color in the legend (left). 
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E) Temporal enrichment of cell types during skeletal muscle regeneration. Enrichment is min-
max normalized for each cell type. Error bands represent s.e.m. n=4-8 per time point.  

F) UMAP embedding of the cellular composition of uninjured and regenerating skeletal muscles. 
Arrow indicates the regeneration trajectory from day 1 after injury to the uninjured state. 

G) Temporal variance of cell types found in muscles at each regeneration time point. Polar 
coordinates represent the regeneration time course and probability distribution of cells found in 
each time point across all regeneration time points.  

 

Figure 3. Spatial interactions among regenerative cell types of skeletal muscle. 

A) Schematic of single cell spatial analysis to identify enrichment pairwise interactions between 
cell types. Index cells and their nearest neighbors were quantified, and the co-occurrence of cell 
types in proximity was used to identify enriched interactions.  

B) Heatmap of pairwise cell-cell interactions during skeletal muscle regeneration. Positive 
enrichment (red) represents cell type pairs that were found in proximity at rates more than 
expected; Negative enrichment (blue) represents cell type pairs that were found in proximity at 
rates less than expected. Hierarchical clustering identified correlations between cell type pairs 
that represents co-interactions that could be grouped according to biological processes occurring 
during regeneration (left). 

C) Cross lineage interactions during skeletal muscle regeneration. Enrichment of pairwise 
interactions is indicated by arrows. Cell types are arranged by cell lineages as indicated in Fig. 
3A. Arrows indicate direction of spatial dynamics; arrow thickness is indicative of enrichment. 
Red arrows indicate grouped (>0.55 quantile) and blue arrows indicate dispersed dynamics 
(<0.45 quantile) . 

D) Longitudinal views of extracellular matrix (ECM) scaffolds and infiltrating cell types around 
injured myofibers at day 3 after myotoxin injury. ECM scaffolds (dashed lines) were marked by 
ERTR7 (green, top panel); IgM+ injured myofibers (grays), PGDFRa+ FAPs (cyan), CD45+ 
immune cells (red) and DAPI (blue) shown in the middle panel; CD11b+ myeloid cells (blue), 
F4/80+ macrophages (yellow), CD11c+ dendritic cells (cyan), and CD163+ M2 macrophages 
shown in the bottom panel. The same field-of-view is shown across all panels.  

E) Representative images of regenerating muscles at day 3, 6, and 10 after injury with or without 
intramuscular injection with clodronate liposomes at day 2. IgM+ injured myofibers (grays, top 
panels); F4/80+ macrophages (magenta, middle panels); eMyHC+ myotubes and regenerating 
myofibers (red, bottom panels); ECM scaffolds were marked by ERTR7 (green); DAPI (blue). 
The same field-of-view is shown in each column.  

F) Quantification of ECM scaffolds in regenerating muscles at day 3, 6, and 10 after injury with 
or without intramuscular injection with clodronate liposomes at day 2.  
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G) Quantification of regenerating myofibers in regenerating muscles at day 3, 6, and 10 after 
injury with or without intramuscular injection with clodronate liposomes at day 2.  

H) Minimum axis lengths of regenerating myofibers in regenerating muscles at day 3, 6, and 10 
after injury with or without intramuscular injection with clodronate liposomes at day 2.  

(F-H) Error bars represent s.e.m.; n=4-8 per group; * p<0.05; ** p<0.01; *** p<0.005. 

 

Figure 4. Spatial pseudotime and cell neighborhood analysis of tissue regeneration upon 
macrophage depletion. 

A) Schematics of spatial pseudotime analysis to reveal regeneration dynamics. Positional 
information of each cell is encoded with a pseudotime. Cells within a tissue can be sampled in a 
grid to estimate the mean local pseudotime, which can be compared with actual time after 
regeneration to estimate accelerated or delayed repair. High variance of cell pseudotimes in each 
grid space indicates the co-occurrence of cells that normally appear at different stages of 
regeneration, suggesting dysregulation or desynchronization of cellular processes. 

B) Mean local pseudotime of uninjured and regenerating muscles at day 1, 3, 6, and 10 after 
injury with or without intramuscular injection with clodronate liposomes at day 2. White dashed 
lines outline the injured region; red dashed lines outline regions affected by clodronate. 

C) Difference of local pseudotime to actual time points of uninjured and regenerating muscles at 
day 1, 3, 6, and 10 after injury with or without intramuscular injection with clodronate liposomes 
at day 2. Green and purple represent an accelerated or delayed regeneration, respectively; Black 
dashed lines outline the injured region; red dashed lines outline regions affected by clodronate. 

D) Spatial temporal cell neighborhood analysis of uninjured and regenerating muscles. Local cell 
compositions were clustered into spatial neighborhoods, revealing patterns of cellular 
interactions (left); spatial neighborhoods were further clustered by temporal dynamics during 
regeneration and after clodronate-treatment (middle heatmap) into temporal clusters. Temporal 
dynamics of representative spatial neighborhoods are shown for each cluster (right). Error bars 
represent s.e.m. of relative enrichment in control or clodronate-treated samples; n=4-8 per group. 

E) Representative temporal neighborhood clusters in uninjured and regenerating muscles at day 
1, 3, 6, and 10 after injury with or without intramuscular injection with clodronate liposomes at 
day 2. Images are pseudo-colored by cell neighborhood clusters from panel D. 

F) Variance of local pseudotime of uninjured and regenerating muscles at day 6 after injury with 
or without intramuscular injection with clodronate liposomes at day 2. Increased local variance 
indicates the co-occurrence of cells that normally appear at different stages of regeneration; 
Black dashed lines outline the injured region; red dashed lines outline regions affected by 
clodronate. 

G) Quantification of local pseudotime variance in uninjured and regenerating muscles at day 1, 3, 
6, and 10 after injury with or without intramuscular injection with clodronate liposomes at day 2. 
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Boxes indicate mean, upper and lower quartile range; whiskers are 1.5 times the inter quartile 
range; n=4-8 per group; * p<0.05; ** p<0.01; *** p<0.005. 

H) Heatmap of cellular dysregulation in after macrophage depletion by intramuscular clodronate 
injection. Log transformed enrichment of cell types in regenerating muscles at day 3, 6, and 10 
after injury with or without intramuscular injection with clodronate liposomes at day 2. Each 
column is a biological replicate; n=4-8 per group; Cell types showing significant change (p<0.05) 
with clodronate treatment are shown. 

I) Schematic of cellular dysregulation in after macrophage depletion by intramuscular clodronate 
injection. Arrow width indicates the relative alteration compared to normal regenerative 
conditions. X indicates a complete halt or absence of a given cell type. 

 

Figure 5. Localized cellular and architectural changes in skeletal muscle associated with 
murine aging. 

A) Mean local pseudotime of uninjured muscles of young and aged mice. 

B) Quantification of mean local pseudotime of uninjured muscles of young and aged mice. n=8 
young and 4 aged samples; ** p<0.01. 

C) Variance of local pseudotime of uninjured muscles of young and aged mice. 

D) Quantification of local pseudotime variance of uninjured muscles of young and aged mice. 
n=8 young and 4 aged samples; *** p<0.005. 

E) Heatmap of cellular dysregulation in aged muscle. Log transformed enrichment of cell types 
in uninjured muscles of young and aged mice. Each column is a biological replicate; n=8 young 
and 4 aged samples; Cell types showing significant change (p<0.05) with aging are shown. 

F) Representative tissues showing spatial localization of dysregulated cell types in uninjured 
muscles of young and aged mice. Each dot is one nucleus; Prospectively annotated cell type is 
represented by the color in the legend (right). 

G) Heatmap of tissue architectural dysregulation in aged muscle. Log transformed enrichment of 
temporal neighborhood clusters from Figure 4D in uninjured muscles of young and aged mice. 
Each column is a biological replicate; n=8 young and 4 aged samples; Clusters showing 
significant change (p<0.05) with aging are shown.  

H) Expanded analysis of change in spatial neighborhood subclusters in uninjured muscles of 
young and aged mice. n=8 young and 4 aged samples; * p<0.05; *** p<0.005. 

 

Figure 6. Age-related extracellular accumulation of IgM in murine skeletal muscle. 
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A) Network representation of differential mean intensity analysis of CODEX images between 
uninjured muscles of young and aged mice. Lines represent significant change in staining 
intensity in the connected temporal neighborhood cluster. The size of circles for each marker 
indicated the cumulative effect across all connected neighborhoods. n=8 young and 4 aged 
samples; Markers showing significant change (p<0.05) with aging are shown.  

B) Representative CODEX images of uninjured muscles of young (left) and aged (right) mice. 
CD29 (green, top panels) marks myofiber sarcolemma and vasculature; Laminin marks the basal 
lamina (red, top panels); IgM staining (grays, bottom panels); DAPI (blue). The same field-of-
view is shown in each column.  

C) Representative CODEX images of uninjured muscles of young (left) and aged (right) mice. 
IgM staining (grays, top panels); Laminin marks the basal lamina (yellow, 2nd row panels); 
Major-histocompatibility class II molecules (MHC-II I-A/I-E, red) and Fc-gamma receptors 
(CD16/32, cyan) marks immune cells (3rd and 4th row panels); DAPI (blue). The same field-of-
view is shown in each column. Insets show enlarged examples of IgM staining colocalized with 
immune markers. 

D) Representative traditional immunofluorescence histology for IgM in uninjured diaphragm 
muscles young (top) and aged (bottom) mice. 

E) Protein mass spectrometry quantification of the IgM mu chain in young and aged skeletal 
muscles, reanalysis of Schüler et al. 2021. Log fold-change over detected levels in muscles of 
young mice. 

F) IgM rheumatoid factor ELISA of serum from young and aged mice. n=4 young and 3 aged 
samples; * p<0.05. 

G) Representative immunofluorescence of neuromuscular junctions (NMJs) in wholemount 
uninjured EDL muscles from young (top) and aged (bottom) mice. Bungarotoxin (BTX, grays) 
marks acetylcholine receptors on the myofibers; neurofilament (NF; green) marks the motor 
neuron; IgM (red); merged image (right panels). Arrows indicate axonal blebbing observed in 
aged samples. Insets show enlarged examples of NMJs. 

H) Quantification of IgM staining intensity at neuromuscular junctions (NMJs) in wholemount 
uninjured EDL muscles from young and aged mice (left); and aged NMJs stratified by the 
appearance of axonal blebbing (right). n=3 young and 3 aged samples; Each dot is one NMJ. 
**** p<0.001. 
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