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Abstract

Germline copy number variants (CNVs) are a common source of genomic variation involved in many
genetic disorders, and their detection is crucial for clinical molecular diagnostics. Genomic microarrays,
quantitative polymerase chain reaction (qPCR), and multiplex ligation-dependent probe amplification (MLPA)
have been widely used for CNV detection in clinics for many years. Similarly, next-generation sequencing
(NGS) applications such as whole-genome sequencing (WGS) and whole-exome sequencing (WES) are
well-established, highly accurate techniques for the detection of single nucleotide variants (SNVs) and
small insertions and deletions (indels). However, CNV detection using NGS remains challenging due to
short read lengths, smaller than CNVs sizes. CNV detection using read coverage depths summarized in
genomic regions is affected by various biases that arise during the library preparation and sequencing. We
have developed a novel strategy for detecting CNVs, implemented in the tool ClinCNV (freely available on
https://github.com/imgag/ClinCNV). ClinCNV does multi-sample normalization and CNV calling, using
an original algorithm taking the best from the circular binary segmentation method and Hidden Markov
model-based approaches. Here, we describe the methods and discuss the results obtained by applying ClinCNV
to thousands of clinical WES, WGS, and shallow-WGS samples in various clinical and research settings.

I. Introduction

Short read high throughput sequencing
remains the predominantly applied tool for
SNVs and indels calling in clinical diagnostics
of genetic diseases. Despite the release of many
NGS-based CNV callers, the detection of CNVs
in clinical applications remains challenging.
There are several reasons for the reluctance of
clinicians to accept WES or even WGS-based
CNV detection as a replacement for microar-
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rays and MLPA or qPCR. Foremost, the low
sensitivity and recall of previously published
tools have been discussed in detail in a large
number of benchmark papers on real-life (non-
simulated) WES data (e.g. [Trost et al., 2018,
Whitford et al., 2019, Yao et al., 2017,
Roller et al., 2016, D’Aurizio et al., 2016]).
Also, tools often lack crucial features, such as
parent-child trio calling or means for adequate
quality control and visualization required for
efficient use of CNV callers in clinical practice.

In this study, we aimed to develop a tool for
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reliable detection of CNVs that fulfils clinical
testing needs. It includes the possibility to
work with different data types, such as WES,
WGS and shallow-WGS, in different calling
modes such as standard single sample, trio
and multi-sample cohort analysis.

Using the developed tool called ClinCNV,
we investigated the following questions.

First, we wanted to understand if the current
gold standard tools for CNVs detection in clin-
ics, e.g. SNP/CGH arrays and qPCR/MLPA,
could reliably be replaced with WES, shallow
WGS (2-7x coverage) or WGS (>30x coverage)
short-read sequencing.

Second, we wanted to understand if the de-
veloped tool’s performance is comparable to
or better than the existing solutions. We bench-
marked our tool against various existing bioin-
formatics methods on different data types, fo-
cusing on the limitations of the developed and
existing approaches.

Finally, we raised the question if the classi-
fication and labelling of calls as true and false
positive CNVs are appropriate for clinical ap-
plications. Clinical applications might favour
sensitivity over specificity to guarantee that
causal variants are not overlooked. It is usu-
ally impossible to ensure a high CNV detec-
tion power while keeping the false discovery
rate (FDR) reasonable due to the high noisi-
ness of short-read NGS data, especially WES.
Therefore, instead of simply filtering out vari-
ants that are likely to be false positives, we
advocate for an approach of estimating the
FDR for each CNV, using machine learning
methods and various characteristics of variants
as predictors. Subsequently, CNVs annotated
with FDRs can be further evaluated, combin-
ing probabilities of variants to be real (tech-
nical quality) and clinical metadata, such as
gene-phenotype matching, presence of com-
pound heterozygous mutations, segregation in
the family or population allele frequencies (e.g.,
[Engelhardt et al., 2017]). It allows interpreters
to balance the available resources for variants
evaluation and validation, unlike in traditional
hard filtering of low-quality variants.

II. Materials and methods

i. Read-depth based identification of
rare CNVs

Since the tool was supposed to work not only
with whole-genome but also with targeted se-
quencing data (WES or gene panels), we con-
centrated on the read-depth signal. Worth to
note that other signals (such as B-allele fre-
quency) can easily be added to the calling
algorithm but is more beneficial for somatic
analysis ([Demidov et al., 2019]) and not for
germline diagnostics. The main steps per-
formed by ClinCNV are:

1. binning of the genome or exome (using
windows of uniform length for WGS or
coordinates of design enrichment regions
for WES or overlapping windows of rea-
sonable size, usually 120bp, if intra-target
CNVs detection is desired);

2. reads counting for each bin;

3. within-sample normalization (GC-content,
region-length based, variance stabilization
using square root transformation);

4. finding the samples whose coverage pro-
files are the most similar to the sample
of interest normalized coverage, in other
words, clustering of samples with similar
coverage profiles;

5. between-sample normalization (using me-
dians of coverages across the clusters of
similar samples);

6. estimation of parameters for statistical
models describing different copy-number
states (taking into account per-sample and
per-region variability);

7. calculation of the matrix of likelihoods,
where the number of rows is equal to the
number of predefined copy-number states,
and the number of columns is equal to the
number of bins;

8. segmentation and calling;
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9. annotation with various QC metrics and
visualization.

Since the first (normalization) steps are anal-
ogous to many other read-depth callers pub-
lished previously, they are described in detail
in the Supplementary. The segmentation and
calling procedure was previously described
in bioRxiv preprint of the somatic part of
ClinCNV [Demidov et al., 2019], nevertheless,
we describe it in the text of this paper too. The
common CNV calling procedure is described
in [Fawcett et al., 2022]. Here we concentrate
on rare (less than 2.5% of a cohort) germline
CNVs calling only.

For rare germline CNVs, we decided to limit
the predefined copy-number space from 0 to
8. Each allowed copy-number defines a sep-
arate statistical model. We assume that most
of the samples are diploid in each particular
region. We rely on the assumption of Poisson
distributed read counts. It allows us to ap-
ply a square root transformation, which makes
the transformed normalized read counts dis-
tribution more similar to Normal and stabi-
lizes variances. We can note that since most
samples are assumed to be diploid, there are
usually not enough data points to estimate pa-
rameters for each statistical model other than
diploid. However, the variance stabilization al-
lows us to estimate the variance for the diploid
model only, using robust estimators and treat-
ing non-diploid data points as outliers, and
then assume that other copy-number models
have the same variance. We use robust esti-
mators of standard deviation and location (Qn
[Rousseeuw et al., 1993], and median). Thus,
for each copy-numbers from 0 to 8 we know the
expected location shift and dispersion, which
allows us to calculate a Normal likelihood for
each data point (normalized coverage of a par-
ticular region in a particular sample). For each
sample, we create a matrix of log-likelihoods
of each data point across the genome under
different copy-number assumptions. The ma-
trix dimensions are |G| × |S| where S is the
set of defined states (0 to 8), and G is the set
of windows in the genome where read depth
counts were summarized. Then, we assume

the baseline diploid state for rare CNVs detec-
tion in autosomes or females X chromosome
or haploid state for sex chromosomes in males.
We subtract the baseline state’s log-likelihoods
from other alternative states’ log-likelihoods.
For each region and each sample, we have a
logarithm of likelihood ratios, which is posi-
tive when the normalized coverage supports
the alternative state more than the baseline and
negative in the opposite case. The goal now is
to find a stretch of consecutive genomic win-
dows where the evidence of alternative states is
the biggest, i.e., the segment with the strongest
evidence of a CNV, which means the biggest
positive sum of log-likelihoods.

We find such segments for all the states and
choose the state with the largest evidence of
non-baseline copy-number, using maximum
sub-array sum algorithm [Bentley et al., 1984].
Then we segment the genome into three parts:
to the left and right of the segment and the
segment itself. We repeat this procedure until
the newly found segments show evidence of
an alternative state less than the pre-defined
threshold.

CNV detection in trios is performed simi-
larly, but the set of states is considered as copy-
numbers from 0 to 8 for the parents’ alleles,
all possible combinations for the child copy-
number and copy-number from 0 to 8 for de
novo CNVs in the child. The corresponding ma-
trices of likelihoods (estimated from mothers,
fathers, and probands samples) are summed
up into one, representing the whole trio like-
lihood of different combinations of different
CNVs in family members.

Closely located windows, even non-
overlapping, may show a significant correlation
of coverages and thus inflate log-likelihood.
We correct it, doing a re-calculation of the
likelihoods of neighbouring windows, using
their joint likelihood of normalized coverage
depths.
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ii. Execution, post-processing and an-
notation of calls in routine diagnostics
using MegSAP pipeline

Benchmarking of clinical samples was
done using the ClinCNV 1.16, imple-
mented as a part of a Medical Genetics
Sequence Analysis Pipeline (megSAP,
https://github.com/imgag/megSAP ).

Since the number of control samples (i.e., se-
quenced with the same protocol) can be large
in a clinic or other medical genetics facility, the
default clustering procedure implemented in
ClinCNV, becomes impractical. Thus, as the
first step of CNV calling, we sub-select 200
samples with the most similar coverage profile
to the sample we want to analyse. We pre-
calculate the matrix of between-sample sim-
ilarities (Pearson correlation between depth-
of-coverage profiles, excluding common CNV
regions and sex chromosomes).

We also added a specific mode for the clini-
cal diagnostics of CNVs in our pipeline called
“superRecall”. In a superRecall mode, all the
variants, even with the minimum evidence (log-
likelihood of 3) of CNV presence, are detected.
By default, such low-confidence CNVs are hid-
den in clinical GUI. However, investigation of
such low-confidence variants could be decisive
for some diseases with specific phenotypes or
for cases with clear pathogenic short variants
in recessive genes.

Three default filters in MegSAP pipeline
were used in this paper: "high-sensitivity" (all
the results + superRecall variants), "default"
(variants with log-likelihood bigger than 20,
overlap with common CNVs regions smaller
than 80%), "array-like" (CNV-size bigger than
35kbps and overlap with common CNVs re-
gions smaller than 95%).

The annotation of the calls includes allele
frequency of variants observed in our in-
house database of CNVs and intersections
with several other databases. For annota-
tions we use DECIPHER [Bragin et al., 2014]
(expert-reviewed clinical synopses for syn-
dromes associated with CNVs), ClinGen
Dosage Sensitivity Map [Riggs et al., 2018]

(catalogue of genes and regions which are
dosage-sensitive and recommended for tar-
geting in cytogenomic arrays), pathogenic
CNVs from ClinVar [Landrum et al., 2018]
and HGMD [Stenson et al., 2017]. CnvGe-
neAnnotation script adds a list of all af-
fected genes (transcripts extended by 5000
bp in every direction) from our in-house
database for each CNV. Additionally, it anno-
tates the gnomAD [Karczewski et al., 2019] ob-
served/expected (oe) score for each gene and
which part of the gene is affected (complete
gene, intronic/intergenic or exonic/splicing).

iii. Comparison of ClinCNV and al-
ternative methods in WGS research co-
horts of PCAWG and 1000GP

iii.1 Analysis of high coverage WGS data
from PCAWG study

We compared the performance of rare dele-
tions site detection in ClinCNV and paired-end
mapping (PEM) based tool DELLY (which also
uses Read Depth as additional evidence) us-
ing the large cohort of 2833 WGS samples (39x
coverage on average) from the PCAWG study
[ICGC/TCGA PCAWG et al., 2020]. We com-
pared deletion sites only since the paired-end
mapping methods are usually limited to tan-
dem duplications detection; thus, these meth-
ods are not comparable for the detection of
duplications.

For the False Discovery Rate estimation, we
used the Intensity Rank Sum annotation test
(IRS, [Sudmant et al., 2015]), using the data
from 787 samples from the cohort, analyzed
with Affymetrix Genome-Wide Human SNP
Array 6.0. Both callsets were adjusted and had
FDR estimated as less than 5% using Random
Forest train-test approach. For simplicity, we
concentrated on autosomal variants only.

The samples were sequenced in different cen-
tres at different times, using different protocols.
ClinCNV and DELLY utilized the same cohort
of samples; however, due to different require-
ments for data quality DELLY dataset consisted
of 2642 genomes, and the ClinCNV dataset con-
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sisted of 2471 samples. We ended up with a co-
hort of 2336 samples that passed QC filterings
for both tools. DELLY’s callset was prepared
according to the procedure described in the
preprint [Waszak et al., 2019]. ClinCNV vari-
ants detected in different samples were also
merged, using max(2KB, 90%) reciprocal over-
lap intersection criteria. All the variants with a
length of at least 1kbps and the log-likelihood
score of 15 or more were used for the merg-
ing. The resolution (window size) in PCAWG
analysis was equal to 1kbps.

ClinCNV FDR-adjusted dataset of deletion
sites for comparison with DELLY consisted of
1) 2003 common CNVs (>5% allele frequency)
and longer than or equal to 3 Kbps, 2) 20.084
deletion sites detected with rare CNV detection
algorithm. Since the primary goal of ClinCNV
was the detection of clinically relevant CNVs,
we decided to concentrate on rare deletions
in this comparison. Thus, only CNVs with a
frequency of less than 5% in the studied co-
hort were evaluated. Additional filtering on
DELLY variants suitable for comparison was
performed. Only deletions that affected at least
500bp (half) in one of the 1 kbp windows were
allowed since such a window would look more
like copy-number neutral otherwise. Such fil-
tering ended up in 19.518 deletion sites de-
tected by ClinCNV and 24.893 deletion sites
detected by DELLY.

The criteria for comparison used was: if the
overlap between a deletion site detected by
both ClinCNV and DELLY was bigger than
the maximum of 75% of the longest variant
length or 500 base pairs, these variants were
considered the same.

iii.2 Comparison with 1000GP callset

An original structual variant callset from 3rd
phase 1000 genomes project was used for the
comparison [Sudmant et al., 2015].

iv. Comparison of array-based and
NGS-based method ClinCNV in a clin-
ical setting

One of the main questions we had to an-
swer was whether WES/WGS analysis with
ClinCNV could replace arrays for CNV detec-
tion in clinical practice. More specifically, we
aimed to compare the performance of ClinCNV
as an NGS-based method with a conventional
array approach in detecting CNVs larger than
50Kbps. The threshold of 50Kbps was cho-
sen according to “Einheitlicher Bewertungs-
massstab”, 1. Quartal of 2019, Paragraph 11508
– i.e. the German national guidelines on what
is covered by the statutory health insurance,
where is stated that only CNV detection meth-
ods with a resolution of 50 kilobases or better
are allowed for postnatal total genomic exam-
ination of constitutional imbalances and only
under condition that karyotyping using optical
microscopy methods did not provide sufficient
results.

Here and below, we use an acronym for Ag-
ilent SureSelect Human All Exon panels as
ssHAE. The number after the acronym denotes
the version of the panel.

NGS platform Num of samples
WGS TruSeq PCR-free 9
WES ssHAEv6 197
WES ssHAEv7 79
Overall: 285

Table 1: Overview of NGS analysed samples available

Microarray platform Num of samples
CytoScan HD 39
CytoScan 750K 217
CytoScan Optima 12
Overall: 268

Table 2: Overview of array analysed samples available

All the in-house samples for which array in-
tensities and sequencing results were available
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were selected as test samples. NGS results were
WGS (TrueSeq PCR-free) and WES (ssHAE V6
and V7). The same samples were analyzed
with the CytoScan platform (HD, 750K and Op-
tima). Overall numbers of samples analysed
with each platform are provided in table 1 and
table 2. Only high-quality samples were used,
resulting in less than 300 CNVs detected with
the array-based method. All the arrays were
analyzed with the tool provided by the array’s
manufacturer, according to the guidelines.

v. Sensitivity of ClinCNV for detec-
tion of CNVs longer than 15kbp in shal-
low WGS data

One of the questions we wanted to answer is to
which extent CNV detection can be done using
shallow whole-genome sequencing. A cohort
of 65 samples with known clinically relevant
CNVs detected by alternative methods such as
SNP microarrays, MLPA or high-depth whole-
exome sequencing was formed.

Initially, shallow sequencing was planned
to be around 4x depth. Nonetheless, due to
the significant non-uniformity of library prepa-
rations, samples were sequenced with depth
from 0.3x to 9.0x. After estimating the poten-
tial level of signal-to-noise ratio, we decided to
calculate the coverage depth of such samples
for windows of 5 kbps and aim to detect CNVs
longer than three consecutive windows.

vi. Detection of CNVs in WES data

vi.1 Comparison between ClinCNV and Ex-
omeDepth using research WES sam-
ples

ExomeDepth [Plagnol et al., 2012] is a versatile
tool that was used multiple times in different
studies for the germline calling of CNVs in
whole-exome data. The study itself was pub-
lished in 2012, but the tool was updated multi-
ple times and, according to the manual, the last
update was done in August 2019. ExomeDepth
v. 1.1.12 was used for comparison.

We had 40 samples from the CLL study
[Puente et al., 2015] sequenced with ssHAE v.

5 kit with BAM files available, and we decided
to test ClinCNV and ExomeDepth using these
40 samples. The sequencing depth was rela-
tively low, around 40x (Suppl. Figure 9). For
the comparison, we used Intensity Rank Sum
test, as described before. FDR was estimated
as two multiplied by the number of p-values
bigger than 0.5, divided by the overall number
of CNVs.

vi.2 Comparison between ClinCNV and Ex-
omeDepth using well covered clinical
WES samples

Since the samples we used for comparison
were covered with fewer reads than is expected
by modern standards, we decided to perform
an additional check using 70 in-house clini-
cal exomes (coverage around 130x), sequenced
with ssHAE v7 panel. These samples were
also analysed with CytoScan 750K arrays. We
used ClinCNV results obtained from the clini-
cal routine. However, we tested ExomeDepth
only within these 70 samples since our dataset
consisted of more than 4.500 exomes, and it
was not possible to analyse them all with Ex-
omeDepth in a feasible time. CNVs were
post-processed similarly - CNVs with less than
10% of the length or one kbps distance be-
tween breakpoints were merged. Then we
post-filtered results of ClinCNV to have ap-
proximately the same FDRs as ExomeDepth,
using the simple strategy (hard thresholds for
overall log-likelihood and likelihood per target
region). It was not possible to achieve exactly
the same numbers due to rounding up the
quality values of variants.

vi.3 Detection of CNVs in clinical WES
data in trios

The algorithm for detection of variants in trios
was applied to two available cohorts of WES
sequenced samples – 634 samples were se-
quenced with ssHAEv6 exome enrichment,
and 317 were sequenced with ssHAEv7, with a
total of 951 samples. Interestingly we did not
have only 317 trios (951/3), but 332. The reason
is that in some families, several siblings were
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sequenced, and their parents’ DNA samples
were sequenced only once (i.e. these are not
trios, but quadruples or larger families, which
we split into trios for this benchmark).

We concentrated on analysing autosomal
CNVs since the interpretation of CNVs in sex
chromosomes is complex. To assess the quality
of a call, we have chosen the following rule. If a
region in the trio was detected as copy number
2 in both parents and copy-number different
than 2 in the child, we would consider this as
a de novo event. We have tried different qual-
ity thresholds for called CNVs (20, 40, 60 and
80), taking into account that 20 is our default
threshold for calling in WES samples.

In the beginning, we filtered out all the
events that had more than 50% overlap with
polymorphic regions detected in the PCAWG
cohort. Since the density of enrichment regions
of WES is uneven, we used not the reciprocal
overlap but the overlap of 50% of the length of
a detected variant as a measure of overlap. We
used the same set of parameters we use for rou-
tine calling: the minimum length of a detected
variant was set to 1 region, and clustering was
performed, requiring at least 50 samples in
each cluster. We filtered out samples that had
more than 100 de novo CNVs or more than 1.500
CNVs detected in the whole trio of samples,
ending up with a cohort of 235 families.

vii. Estimation of quality of WES vari-
ants using array data and Quantile Ran-
dom Forest Regression

Even though several thousand samples were
sequenced with different exome enrichment
kits in our clinics, we had no orthogonal mi-
croarray data for most of them. Therefore, we
used only 255 samples that were analysed with
microarrays and WES. (ssHAEv6, ssHAEv7
enrichment kits) Nevertheless, the whole co-
hort of samples was used for the normalisa-
tion (each sample was analysed with 200 most
similar ones, as described above in MegSAP
pipeline paragraph). The average depth of di-
agnostic exome samples was around 130x.

We have tried two modes of CNV detection,

merging and validation: using all the data
and using QC-filtered data and concluded that
adding samples with many CNVs improves
neither the predictive model nor the final qual-
ity of predictions. Thus, we excluded samples
with more than 1750 CNVs called with a very
high sensitivity: log-likelihood score of at least
five and the intersection with common CNVs
regions smaller than 80%. In the table 3 we
describe our dataset. Overall, 235 out of 255
samples passed the QC control on the number
of CNVs.

ssHAEv6 ssHAEv7
CytoScan750K 143 73
CytoScanHD 39

Table 3: Number of samples available for testing.

We use the same Intensity Rank Sum test as
before to annotate our CNVs with p-values of
the Wilxocon test (if at least one array probe
is located within this CNV). Our goal for all
CNVs was to estimate the probability of being
a False Positive (FP) discovery (false-discovery
rate, FDR). We tested our prediction procedure
in 2 ways: within one kit and between kits. For
ssHAEv6 kit we used 40% to 60% test-train
set split. We also predicted FDR for CNVs in
samples enriched with ssHAEv7 using 100% of
variants detected in samples sequenced with
ssHAEv6 kit as a train set.

We merged CNVs from different samples us-
ing 1kb difference in borders as the merging
criterion. We kept our approach similar to the
one used in IRS test. Since we intentionally in-
cluded many FP CNVs, we could not separate
True Positives (TP) and FPs simply by relying
on the fact that p-values of FP variants are dis-
tributed uniformly, and p-value corresponding
to TP variants are small. Instead of classifying
variants as TP or FP, we decided to predict the
expected p-value (which is closely related to
FDR) from the Wilcoxon test, with one group
containing array intensities in samples with a
CNV call and another with array intensities in
samples without this call. We used Quantile
Regression Random Forest with two thousand
trees to predict p-values (predictors described
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in Supplementary). For each variant, we had
a distribution of predicted p-values instead
of one value, using a discrete set of quantiles
(from 0.5 to 0.999 with the step of 0.001). We
decided to assign an FDR of α to a variant if
α is the smallest quantile where the predicted
p-value is still smaller than 0.5 and the next
quantile is already bigger.

Thus, all the CNVs had a value assigned to
them, from 0.002 to 1, which is double the FDR
estimated at the previous step. We denote this
value for the CNV c with i-th index ci as f dri.
The real p-value obtained from the IRS test for
the CNV will be denoted as pi. All the CNVs
discovered will form a set denoted as C.

Thus, we may perform the following pro-
cedure for the test cohort. At first, we esti-
mate the number of False Positive results as
FP = 2 · |p > 0.5| - 2 times the number of p-
values greater than 0.5. Then, for FDR α we
can find the following values:

• number of CNVs that have FDR less than
α: |Cα|, ∀ci ∈ C : f dri < α

• estimated number of False Positive CNVs
for all variants with estimated f dr < α:
∑∀i: f dri<α f dri;

• real number of False Positive CNVs for all
variants with estimated f dr smaller then
α: FPα = 2 · |pi > 0.5|, ∀i : f dri < α;

• amount of True Positive events discovered:
|Cα |−2·FPα

|C|−2·FP , where for all CNVs ci from Cα

f dri < α (note: this value may be bigger
than 1).

III. Results

i. Comparison of ClinCNV and alter-
native methods in WGS research co-
horts of PCAWG and 1000GP

i.1 Comparison of ClinCNV and DELLY us-
ing PCAWG cohort

12.250 sites from DELLY generated callset were
mapped to 12.189 sites from ClinCNV. Since
the numbers are comparable, it shows that
ClinCNV variants were not over-segmented.
These numbers did not change a lot when more

relaxed criteria for mapping were used (50% re-
ciprocal overlap). ClinCNV detected 7.329 sites,
missing in DELLY results and DELLY detected
12.643 CNVs not detected with ClinCNV.

Analyzing the histograms of variants ob-
tained from different methods (fig. 1b), first
of which (DELLY) uses paired-end distance
and orientation information for CNVs detec-
tion and read-depth signature for filtering and
genotyping. The second (ClinCNV) uses read-
depth signature only. We conclude that:

1. ClinCNV and Delly detected many CNVs
unique for a particular caller. Thus, both
strategies should be applied for the detec-
tion of CNVs in WGS samples;

2. ClinCNV’s sensitivity breaks down for
deletions that span less than three kbps,
but it finds more unique events longer
than ten kbps than DELLY;

3. Read-depth methods can detect different
genomic duplications while paired-end
methods are mainly limited to tandem du-
plications (comparison is not shown due to
the absence of duplications in the DELLY
generated dataset).

7.553 duplications and 20.084 deletions over-
all were detected in 2.471 WGS sequenced sam-
ples by ClinCNV (lengths are shown at fig. 2).
Since the common CNVs were detected as a
separate step, we checked if all the common
CNVs were detected. The number of CNVs
more frequent than 2.5% and detected via rare
CNV detection algorithm was equal to 59 for
deletions and 12 duplications. These reason-
ably small numbers show the efficiency of the
common CNVs detection algorithm.

i.2 Comparison with 1000GP callset

Then we compared our callset with the callset
of structural variants from the 1000 Genomes
Project [Sudmant et al., 2015]. As before, we
used ClinCNV’s callset of 7,553 rare duplica-
tion sites and 20,084 rare deletion sites for com-
parison with 35,868 deletion sites (and CNVs)
and 8,954 duplication sites (and CNVs) longer
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Comparison of lengths of CNV sites detected by DELLY and ClinCNV
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(a) Comparison of lengths of all deletion sites that
were detected by both tools. Blue color denotes
deletion sites detected by DELLY, red color – by
ClinCNV.

Comparison of lengths of CNV sites detected by one tool only
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(b) Comparison of lengths of deletion sites that were
detected by only one tool. Blue color denotes
deletion sites detected by DELLY, red color – by
ClinCNV.

Lengths of Deletions and Duplications in ClinCNV PCAWG dataset

Length in base pairs

F
re

qu
en

cy

0
10

00
20

00
30

00
40

00
50

00

1000 10000 100000 1000000

Figure 2: Lengths of detected sites. Red indicates dele-
tions, blue duplications.

than 500 base pairs from 1000GP callset. Only
5,682 of the ClinCNV deletions were presented
in the 3rd phase 1000GP structural variant
callset. For duplications, we used 50% over-
lap instead of 75% as a mapping criterion since
the non-tandem duplications were detected us-
ing five kbps overlapping windows in 1000GP;
thus, the resolution of our methods was differ-

ent and less strict thresholds had to be applied.
1,392 rare duplications detected by ClinCNV
mapped to 1,394 duplications (and CNVs) de-
tected in the 3rd phase of 1000GP.

As a concluding remark for the analysis of
PCAWG and 1000GP data, we can say that:

1. Read-depth method (ClinCNV) detects
many deletion sites not presented in the
callset of the paired-end method (DELLY)
and vice versa, which means that neither
method outperforms the other, and they
have to be used together for the CNV call-
ing;

2. 14,402 deletion sites and 6,161 duplication
sites from our FDR-adjusted callset were
not presented in the 1000GP 3rd phase SV
callset, and thus, our callset can be con-
sidered a valuable source of information
about structural variants in the human
population. It is worth noting that the
1000GP analysis was done in a larger num-
ber of comparatively low covered whole
genome samples, but many different meth-
ods were used for CNV calling. Thus, the
power of detection was different.
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ii. Comparison between array-based
and NGS-based method ClinCNV in a
clinical setting

We concentrate on sensitivity since it is prior-
itized in clinical genetic diagnostics. Instead
of the estimated specificity for clinical applica-
tions we provide an expected number of CNVs
per sample (table 9) per different NGS method.
It roughly (before disease-related gene filering)
shows the actual burden of work a clinician
can face. FDR of CNVs is described in details
below (table 12).

ii.1 Sensitivity of ClinCNV in WGS data in
detection of CNVs longer than 50 kilo-
bases

We compared the callsets obtained using the de-
fault settings of ClinCNV (column name “De-
fault”). A comparison using the High Sensi-
tivity mode is provided under column name
“All”.

Comparison of the ClinCNV callset obtained
from high-coverage (> 30x) WGS samples was
performed in a 9 sample cohort where only
22 suitable CNVs (longer than 50Kbps, not
intersecting with polymorphic regions) were
detected. Only one CNV was not found (ta-
ble 4). It was covered by six array markers
and was 57Kbps long. We found no visual evi-
dence of such CNV in NGS coverage data, so
we concluded that this CNV was a False Posi-
tive discovery of the array technology. Based
on the high concordance between WGS-based
and array-based results, we concluded that
ClinCNV using WGS data could successfully
replace array-based analysis for CNV detection
in clinical diagnostics.

all default
% detected 95.45 95.45
% found, but CN mismatch 0 0
% missed 4.55 4.55

Table 4: Results of comparison, ClinCNV in WGS and
microarray detected CNVs, 22 CNVs discov-
ered with microarray technology were used

ii.2 Sensitivity of ClinCNV for detection of
CNVs longer than 50kbp in WES data

To compare the performance of CNV calling
on whole-exome sequenced samples, we used
ClinCNV in several different modes. First, we
assessed the results with and without using
off-target reads. Additionally, CNV calling on
variants containing or not containing enrich-
ment probes (e.g., purely intronic/intergenic
and off-target) was assessed. Similarly to the
previous analysis, we focused on CNVs that
were longer than 50 kbps and had less than 20%
intersection with CNPs. 406 CNVs called using
array technology were used for validation.

all default
% detected 45.07 43.35
% found, but CN mismatch 2.96 1.97
% missed 51.97 54.68

Table 5: Comparison of array-based CNV calls with
ClinCNV WES results (without off-target
reads), 406 CNVs discovered with microarray
technology were used

ClinCNV missed 222 of 406 CNVs using de-
fault parameters (211 under high sensitivity
mode). Missed CNVs were mainly located in
intronic or intergenic regions that do not over-
lap with WES exons. For WES data without
off-target reads we concluded that arrays could
not be replaced with WES + ClinCNV analysis
due to its inability to reliably detect CNVs in
gene deserts, intergenic regions or long introns.

When ClinCNV calling quality was assessed
on the CNVs overlapping with at least one
enrichment probe, its performance improved.

Upon enforcing the intersection between
CNVs and on-target probes, the amount of
False Negative results dropped by more than
30%, as can be seen from table 6. Given the
high number of False Negatives, we performed
a manual check of the results.

As can be seen in table 7, we have found that
slightly less than half of the False Negative
variants in NGS are likely artefacts.

Finally, we have tested how high is
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all default
% detected 79.22 76.19
% found, but CN mismatch 5.19 3.46
% missed 15.58 20.35

Table 6: Comparison of array-based CNV calls with
ClinCNV WES results (only CNVs contain-
ing at least one on-target probe), 192 CNVs
detected in arrays were used.

Category Number of FNs
(Likely) artefact 15
(Likely) TP, but <50Kbps 7
TP (centromeric region) 2
TP (only one exon affected) 3
TP (6/60/131 exons) 3

Table 7: Results of manual check of array-based CNVs
not detected in WES data by ClinCNV.

ClinCNV’s Sensitivity in comparison with ar-
rays when including off-target reads.

all default
% detected 79.64 69.57
% found, but CN mismatch 4.33 3.05
% missed 16.03 27.48

Table 8: Comparison of array-based CNV calls with
ClinCNV WES results (using both on- and
off-target reads), 406 CNVs discovered with
microarray technology were used.

Our results showed that ClinCNV analysis of
WGS data could replace platform-specific soft-
ware array-based CNV detection in diagnos-
tics. ClinCNV WES analysis without off-target
reads misses all purely intronic/intergenic
CNVs, with off-target reads still missing 15%
CNVs (also mainly intronic or intergenic). The
number of false negatives reduces to 5% for
CNVs larger than 200k. We observed that ar-
rays also miss some CNVs longer than 50Kbps
(at least 3 cases within our test cohort) and are
highly unreliable for CNVs shorter than 50kbp,
producing many artefacts. We suggest that

only whole-genome sequencing results should
be used as the gold standard in future studies.

ii.3 Sensitivity of ClinCNV for detection
of CNVs longer than 15kbp in shallow
WGS data
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Figure 3: Analysis of Shallow WGS cohort: each dot
is one sample, number of detected CNVs on
y-axis, read depth on x-axis. Green color:
CNV succesfully found. Yellow: CNV was
not found, but its length was smaller than
the detection limit (15Kbps). Red: CNV was
detected as longer tha 15Kbps and not found
by ClinCNV. Robust linear model shown to
indicate the trend.

Correlation of the number of detected CNVs
and coverage depth is shown in Figure fig. 3.

Four False Negative samples contained three
or more CNVs or a very long CNV suitable
for detection. However, neither a single one
was detected by ClinCNV, nor any signs of de-
creased/increased coverage were observed. All
of these four samples were analyzed with an
external read-depth based CNV detection tool
using Agilent SureSelect PathWay BRCA v2
panel (three samples) or ssHAE v6 (one sam-
ple), thus, it is highly likely that all the detected
CNVs were False Positive in the primary anal-
ysis due to low Specificity of CNV detection in
targeted sequencing.

All the CNVs detected by ClinCNV had con-
cordant genotypes with CNVs detected by al-
ternative methods (1 homozygous and15 het-
erozygous deletions, one homozygous and six
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heterozygous duplications).

Concordance of lengths of detected variants between methods

Length of variant detected by ClinCNV
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Figure 4: Overview of variants and their lengths de-
tected and missed by shallow WGS analysis
by ClinCNV. Red dashed lines denote detec-
tion limit, each dots is a CNV. Many CNVs
which were previously detected as shorter than
15Kbps according to MLPA analysis (green
dots below red horizontal line) were detected
by ClinCNV since their true size was bigger.

We have shown that ClinCNV can be used
to detect CNVs in shallow WGS samples, but
the size of the detected CNVs is dependent on
the actual depth of sequencing. For example,
we identified three events of length ∼ 15 kbps
in samples with coverage depths 6.4x, 6.3x,
4.5x. One CNV of approximately 30Kbps size
was detected in the sample with 1.5x coverage.
Since parameters of calling were not specifi-
cally calibrated for desired Precision / Recall,
we manually checked all samples with CNVs
shorter than 15Kbps in the genome browser,
but no visually recognizable CNVs were iden-
tified.

ii.4 Expected number of CNVs in clinical
settings

We describe the expected number of CNVs
after “default” megSAP filtering for each type
of analysis (WES, WGS, shallow WGS) as mode,

minimum and maximum in the table 9.

Min Mode Max
WES 43 87 141
WGS 578 950 1651
shallow WGS 47 148 286

Table 9: Visually defined minimum, mode and maxi-
mum of the distribution of number of high-
quality CNVs, per platform.

iii. Detection of CNVs in WES data

iii.1 Comparison between ClinCNV and Ex-
omeDepth using research WES sam-
ples

Using the default parameters, the following
results were obtained (shown in table 10).

FDR, sites FDR, CNVs # sites
CC del 0.559 0.094 900
ED del 0.149 0.005 130
CC dup 0.409 0.064 354
ED dup 0.067 0.001 182

Table 10: FDR of ExomeDepth and ClinCNV (raw
calls), CC = ClinCNV, ED = ExomeDepth

As a first conclusion, we noticed that using
ClinCNV on 40 relatively low-covered WES
samples did not allow accurate statistical pa-
rameter estimation. When we used 155 sam-
ples from the same study including these 40
(results provided in Supplementary), the raw
CNV site FDR was equal to 44.5% for deletion
and 34.9% for duplication sites, using the same
parameters. Thus, an increase in sample size
leads to considerably better results for WES
cohorts.

By default, the number of calls and FDRs
of callsets obtained with ClinCNV and Ex-
omeDepth were drastically different. In or-
der to make them comparable, we had to se-
lect quality filtering parameters. For deletions,
when we increase the Log-Likelihood score to
30 and the Log-Likelihood score per 1kb to 3,
we get 0.143 FDR of sites but detect 238 dele-
tions instead of 130 detected by ExomeDepth.
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Increasing the threshold to 34, we detect a sim-
ilar number of deletions but with even bet-
ter FDR. Introducing of Log-Likelihood per
kb metric is not artificial; it helps to resolve
long variants with a small number of targeted
probes in between the borders, which are al-
most always artifacts, a similar feature was im-
plemented in ExomeDepth since version 1.05.
However, it was not possible to establish a
comparable threshold for ClinCNV to achieve
a similar FDR for duplications found by Ex-
omeDepth. We used a threshold of 23 for the
selection of 179 duplication sites and still got
worse FDR (table 11).

FDR, sites FDR, CNVs # sites
CC del(30) 0.143 0.004 238
CC del(34) 0.123 0.003 133
ED del 0.149 0.005 130
CC dup 0.25 0.02 179
ED dup 0.067 0.001 182

Table 11: FDR of ExomeDepth and ClinCNV (filtered
set), CC = ClinCNV, ED = ExomeDepth

We checked how our filtered findings from
two callsets with similar properties intersect.
We used a relaxed threshold: two detected
CNV sites from different callsets intersect if
their intersection is bigger than the max(100
base pairs, 50% of the smallest variant). 56 of
ExompeDepth deletion sites were mapped to
51 ClinCNV results, and 70 ExomeDepth du-
plication sites were mapped to 76 ClinCNV’s.

In summary, ClinCNV detects deletions in
relatively low covered WES samples better,
while ExomeDepth detects duplications better.
We described the potential reasons for such
discrepancy in Supplementary.

iii.2 Comparison between ClinCNV and Ex-
omeDepth using well covered clinical
samples

The results of calling for singleton CNVs are
shown in table 12.

For all CNVs, the results were similar to the
previous evaluation using research, relatively
low-covered WES samples – ClinCNV detected

# sites FDR
ClinCNV del 604 0.403
ExomeDepth del 473 0.428
ClinCNV dup 832 0.385
ExomeDepth dup 399 0.385

Table 12: Comparison of ExomeDepth and ClinCNV us-
ing in-house samples, singleton variants.

the same number of CNV sites as ExomeDepth,
having better FDR (1.316/1.315 deletions with
FDRs of 0.364 and 0.39 and 1.049/1.002 duplica-
tions with FDRs of 0.313 and 0.377). From here,
we can conclude that ClinCNV outperforms
ExomeDepth., this time for both deletions and
duplications. It may happen because, for high
coverage samples and large cohorts, normal
distribution approximation is accurate enough,
while for relatively low coverage WES robust
negative binomial model used by ExomeDepth
is preferable.

iii.3 Detection of CNVs in clinical WES
data in trios
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Figure 5: Density of number of CNV sites per trio vs
amount of de novo CNV calls in a child.

The main interest in trio calling is the num-
ber of real de novo CNVs and the number of
Mendelian errors. The plot in fig. 5 shows
density of numbers of de novo CNV calls per
sample (one exon or longer). Only 192 trios
had less than 20 de novo CNVs with a quality
score of 20 or higher (and thus formed this
density). 43 trios with more than 20 de novo
CNVs were excluded. The number of vari-
ants is decreasing rapidly with increasing the
quality threshold. We can conclude that ap-
proximately two-thirds of the analyzed trios
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have less than 20 candidate CNVs even before
diagnostic gene list filtering, which is realistic
for further analysis, considering observed phe-
notype and other clinical data. For one-third of
samples, potentially, higher quality thresholds
can be applied. For samples with many CNVs
detected, the resequencing of failed samples
can be considered an option.
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Figure 6: Density of number of CNV sites per trio vs
amount of de novo heterozygous deletion and
duplication calls in child.

IIt is well known that WES samples have a lot
of technical artefacts, such as coverage outliers,
which may be mistakenly detected as CNVs.
Such extremely low or high coverage events
can not be filtered via increasing quality thresh-
olds since they are extreme. We decided to re-
peat the analysis, counting only copy-number
changes such as heterozygous deletion or du-
plication in regions normally diploid in par-
ents since such events are more likely to be
real. Comparing the new plot (fig. 6) with the
previous one, we may conclude that around 5
CNVs per sample are highly likely to be tech-
nical artefacts (detected as homozygous dele-
tions/duplications or higher copy-numbers).
It further reduces the number of variants for
clinical evaluation.

In order to estimate the advantage of joint
trio calling compared to single sample calling
and merging of results, we estimated the den-
sity of the number of CNVs detected only in
the child but not in parents (thus, it would
be falsely considered as a de novo event). We
can see that using a single sample calling, we
detect fewer CNVs using the same thresholds
(fig. 7).

Errors can be of another type – CNV is not
detected in a child in single sample calling
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Figure 7: Density of number of CNV calls found in both
child and one of the parents in joint analysis,
but only in child in single sample analysis vs
number of CNV sites detected using single
sample calling.

but presented in both child and one of the
parents and recognised in joint trio calling. The
average number of such errors is represented
in fig. 8. Such errors may be clinically relevant,
especially in the case of recessive diseases.
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Figure 8: Density of number of CNV calls found in one
of the parents and child according to joint anal-
ysis, but only in parent using single sample
calling vs number of CNV sites detected using
single sample calling.

QC failed (having too many CNV calls) trios
must be analyzed carefully, using more strict
thresholds. A QC failure of one out of three
samples is enough to ruin the whole trio anal-
ysis. Accurate analysis is impossible for the
case when the child sample has too many CNV
calls, but for the parent with too many CNV
calls, it is feasible unless the number of CNVs
in a parent sample is of an order of thousands
- in this case, real CNVs in the child can be
“masked” by false-positive variants in a parent.
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Figure 9: Estimated precision and recall for internal training and validation within ssHAEv6 cohort (60/40% split),
black line - observed, rainbow line - predicted using machine learning technique. Numbers from 0.1 to 1.0 are
showing the quality metric of each CNV, included into the cohort. Each dot denotes 0.002 step of allolwed
individual CNVs’ FDR.

iv. Estimation of quality of WES vari-
ants using array data and Quantile Ran-
dom Forest Regression

As described in the introduction, a standard
evaluation of CNVs called in NGS data with
array data, namely, calling CNVs in microar-
ray data and intersecting with NGS results, is
sub-optimal. Assigning True/False positive la-
bels for CNV calls is impossible for regions
containing small numbers of markers or noisy
regions. Thus, a more sophisticated method
for performance evaluation was required.

The results (predicted and actual Precision
and Recall) are shown at fig. 9 (internal valida-
tion of ssHAEv6 samples) and and fig. 10 (train-
ing in ssHAEv6, test with ssHAEv7 samples).
Since no real True/False Positive labels were
available and we always worked with probabil-
ities, the Precision-Recall curve estimation is
not monotonic. As we can see, the predicted
(rainbow curve) and observed curves (black)
match very well, which means the method
we used was adequate to evaluate the Preci-
sion/Recall of each separate variant.

The estimation of Recall, unlike FDR, is more

tricky since the distribution of p-values is not
exactly uniform. It is especially true for the
values in the bottom right corner (high Recall
and low Precision) – due to the random chance
alone, we could have higher or lower propor-
tion of False Positive variants (p-value bigger
than 0.5) than in the whole cohort, that is why
the plots are largely unstable in this part and
Recall may occur to be larger than 1. This
volatility may be resolved via randomization
and averaging. However, we show the original
plots with one iteration of training and predic-
tion. In general, these Recall values can be used
as a rough approximation in order to under-
stand where the curve “breaks”. It can not be
used as a measure of the actual performance.
Moreover, we tested the Recall of the CNVs
that we could retrieve using ClinCNV with
the relaxed threshold and, as described above,
around 15% of array-detected CNVs that affect
at least one exonic region were missed in the
primary analysis.

Several differences between fig. 9 and fig. 10
worth to be discussed. At first, the predicted
curves for deletions almost perfectly follow
the curve of observed curves, but the Recall is
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Figure 10: Estimated precision and recall for training within ssHAEv6 cohort and validation using ssHAEv7 cohort,
black line - observed, rainbow line - predicted using machine learning technique. Numbers from 0.1 to
1.0 are showing the quality metric of each CNV, included into the cohort. Each dot denotes 0.002 step of
allolwed individual CNVs’ FDR.

smaller in internal validation within ssHAEv6
enriched cohort. It may happen due to 1) in-
creased by more than 50% of training set size,
2) increased quality of data for ssHAEv7 cohort
due to both higher depth of sequencing and
improved panel design. Also, our FDR seems
to be overly pessimistic for deletions from
ssHAEv7 cohort, which may be explained by
the increased quality of calls or slight changes
in target design (more probes are located in
the tested regions). For the duplications pre-
dicted curve seems to be over-optimistic for
ssHAEv7 samples. The large drops in Preci-
sion are likely due to the discreteness of our
data and several unfortunate outliers since we
have tried to analyse random sub-samples of
ssHAEv7 cohort and, if averaged, there is no
large drop in Precision as observed in the plot.

IV. Discussion

In this paper, we have described the CNV de-
tection pipeline used for calling from NGS data
in clinical settings. The main conclusions are:

• paired-end mapping based and read-

depth based methods should be used
jointly for detection of CNVs in WGS data
since the results they provide are not iden-
tical, even after controlling for FDR;

• microarray-based CNV calling, using de-
tection of 50kbps CNVs as a criterion
(genome-wide), can be replaced with high-
coverage or shallow WGS-based, but not
with WES-based analysis;
• the novel tool for read-depth based de-

tection of CNVs in WES data does not
outperform the existing well-established
tool ExomeDepth in low coverage WES
samples, but shows a similar perfor-
mance. ClinCNV performs better than Ex-
omeDepth in clinical-grade WES sequenc-
ing data;

• detection of CNVs in trios should be per-
formed using either method that takes
inheritance patterns into account (imple-
mented in ClinCNV) or be performed with
the relaxed thresholds per single sample
and then merged to avoid false-negative
results;

• calling of CNVs in clinical settings should
not be concentrated on the False Discov-
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ery Rate of the whole callset, as commonly
done in research projects. However, FDR
for each variant and the additional con-
siderations such as biological relevance
should be included in the evaluation.

Our paper does not address the complex
cases, such as complex SVs detection, mosaic
CNVs detection, detection of variants in par-
alogous genes such as SMN1/2 or inside low
mappability regions and comparison of the ac-
curacy of calling between NGS-based and long-
read based methods. However, we provide
a comprehensive evaluation of the developed
tool in a wide variety of clinically relevant sce-
narios. Additionally, we provide guidance on
the practical usage of our tool, quality control
parameters and filtering.
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