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Abstract

The primary step in tissue cytometry is the automated distinction of
individual cells (segmentation). Since cell borders are seldom labeled,
researchers generally segment cells by their nuclei. While effective
tools have been developed for segmenting nuclei in two dimensions,
segmentation of nuclei in three-dimensional images remains a chal-
lenging task for which few tools have been developed. The lack of
effective methods for three-dimensional segmentation represents a bot-
tleneck in the realization of the potential of tissue cytometry, par-
ticularly as methods of tissue clearing present researchers with the
opportunity to characterize entire organs. Methods based upon deep
learning have shown enormous promise, but their implementation is
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hampered by the need for large amounts manually-annotated train-
ing data. Here we describe 3D Nuclei Instance Segmentation Net-
work (NISNet3D), a deep learning-based approach in which train-
ing is accomplished using synthetic data, profoundly reducing the
effort required for network training. We compare results obtained
from NISNet3D with results obtained from eight existing techniques.

Keywords: Fluorescence microscopy images, generative adversarial networks,
nuclear instance segmentation, synthetic microscopy image generation

1 Introduction

Over the past ten years, various technological developments have provided
biologists with the ability to collect microscopy images of enormous scale
and complexity. Methods of tissue clearing combined with automated confo-
cal or lightsheet microscopes have enabled three-dimensional imaging of entire
organs or even entire organisms at subcellular resolution. Novel methods of
multiplexing have been developed so that researchers can now simultaneously
characterize 50 or more targets in the same tissue. However, as biologists turn
to the task of analyzing these extraordinary volumes (tissue cytometry), they
quickly discover that the methods of automated image analysis necessary for
extracting quantitative data from images of this scale are frequently inadequate
to the task. In particular, while effective methods for distinguishing (seg-
menting) individual cells are available for analyses of two-dimensional images,
corresponding methods for segmenting cells in three-dimensional volumes are
generally lacking. The problem of three-dimensional image segmentation thus
represents a bottleneck in the full realization of tissue cytometry as a tool in
biological microscopy.

There are two main categories of segmentation approaches, traditional
image processing and computer vision techniques and techniques based on
machine learning and in particular deep learning [1, 2]. Traditional techniques
(e.g. watershed, thresholding, edge detection, and morphological operations)
can be effective, but generally require careful optimization of processing param-
eters so that settings are seldom robust, even across images to be pooled or
compared. Segmentation techniques based on deep learning have shown great
promise, in some cases providing accurate and robust results across a range
of image types [3–7]. However, their utility is limited by the large amounts of
manually annotated (ground truth) data needed for training, validation, and
testing. Annotation is a labor-intensive and time-consuming process, especially
for a 3D volume. While tools have been developed to facilitate the laborious
process of manual annotation [8–11], the generation of training data remains
a major obstacle to implementing segmentation approaches based upon deep
learning.
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To some degree, the problem of generating sufficient training data can
be alleviated using data augmentation, a process in which existing manually-
annotated training data is supplemented with synthetic data generated from
modifications of the manually annotated data [12–15]. An alternative approach
is to use synthetic data for training [14, 16, 17]. In [18], 2D distributions of
fluorescent markers are generated using GANs, and 3D microscopy volumes
are generated by stacking the 2D synthetic image slices. Similarly, in [19], a
3D GAN was used to generate fully 3D volumetric cell masks with variability
matching real volumes. We have shown that Generative Adversarial Networks
(GANs) can be used to generate synthetic microscopy volumes that can be
used for training [7, 20–22], and incorporated this approach into the DeepSynth
segmentation system [6].

Here we describe the 3D Nuclei Instance Segmentation Network (NIS-
Net3D), a deep learning-based segmentation technique that use synthetic
volumes, manually annotated volumes or a combination of synthetic and anno-
tated volumes. NISNet3D is a true 3D segmentation method based on a 3D
Convolutional Neural Network (CNN). CNNs have had great success for solv-
ing problems such as object classification, detection, and segmentation [23, 24]
and the encoder-decoder architectures have been widely used for biomed-
ical image analysis including volumetric segmentation [25–27] and medical
image registration [28]. CNNs have also been developed for nuclear segmen-
tation [3, 6, 15, 29–33] but are designed for segmentation of two-dimensional
images and either cannot be used for segmentation of 3D volumes [29, 32, 34]
or involve a process in which objects segmented in two dimensional images
are fused together to form 3D objects [3, 14, 30] that fail to represent
the 3D anisotropy of microscope images. In contrast, NISNet3D is a true
three-dimensional segmentation system that operates directly on 3D volumes,
using 3D CNNs to exploit 3D information in a microscopy volume, thereby
generating more accurate segmentations of nuclei in 3D image volumes.

We demonstrate that NISNet3D can accurately segment individual nuclei
using five different types of microscopy volumes. The qualitative and quan-
titative evaluation results show that NISNet3D achieves promising results on
nuclei instance segmentation with and without the use of manual ground truth
annotations when compared to other approaches.

We summarize the contributions of this paper as follows:

• We designed a fully convolutional neural network with residual concatena-
tion and self-attention mechanism for nuclei instance segmentation for 3D
volumes. We proposed new 3D markers for nuclei instance segmentation
using 3D marker-controlled watershed.

• NISNet3D can use annotated volumes and/or synthetic microscopy volumes
for training and can analyze large 3D microscopy volume using a divide-
and-conquer inference strategy.

• We present three error/difference visualization methods for visualizing seg-
mentation errors in large 3D microscopy volumes without the need of ground
truth annotations.
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• We conducted experiments on a variety of microscopy volumes using
multiple evaluation metrics, and compared NISNet3D to other deep learn-
ing image segmentation methods to demonstrate the effectiveness of our
approach.
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Fig. 1 Overview of NISNet3D for 3D nuclei instance segmentation. Note: The training
and synthetic image generation are also shown but are not explicitly part of NISNet3D.
NISNet3D is trained with synthetic microscopy volumes generated from SpCycleGAN and/or
with annotated actual volumes as indicated

2 PROPOSED METHOD

The block diagram of our proposed nuclei instance segmentation system is
shown in Figure 1, which includes: (1) 3D microscopy image synthesis and
annotated data, (2) NISNet3D training and inference, and (3) 3D nuclei
instance segmentation.

2.1 Notation and Overview

In this paper, we denote I as a 3D image volume of size X × Y × Z voxels,
and I(x,y,z) is a voxel having coordinate (x, y, z) in volume I. We will use

superscripts to indicate the types of image volumes. For example, Iorig, Ibi and
Isyn denote the original microscopy volumes, binary segmentation masks and
synthetic microscopy volumes, respectively. I label is the gray-scale label volume
for Ibi where different nuclei are marked with unique pixel intensities. This is
done to distinguish each nuclei instance. In addition, Itarget is a four-channel
volume of size 4 × X × Y × Z, where the first three channels denote the 3D
vector field volume Ivec that contains the nuclei shape and size information,
and the last channel is the 3D binary masks Ibi. To represent the 3D nuclei
centroid and boundary information in Ivec, each nuclei voxel Ivec(x,y,z) denotes a

3D vector V⃗(x,y,z) that points to its nearest nucleus centroid. The details of 3D
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vector field generation will be discussed in Section 2.3.1. Imask and Îvec are the
output of NISNet3D where Imask is the 3D binary segmentation mask and Îvec

is the estimated 3D vector field volume. Note that Îvec(x), Îvec(y), and Îvec(z)

represent the x, y, and z channel of Îvec, respectively. Îvec is then decoded
to generate the gradient volume IG where nuclei boundaries are highlighted.
Imark is the high quality markers generated from IG. To separate touching
nuclei, we use 3D marker-controlled watershed segmentation with the pairs of
Imark and Imask, which will be discussed in Section 2.3.2. The post-processing
includes small object removal and nuclei color coding for visualization. Iseg

is the final color-coded segmentation volume. The overview of our proposed
approach is shown in Figure 1.

2.2 3D Microscopy Image Synthesis

Deep learning methods generally require large amounts of training samples
to achieve accurate results. However, manually annotating ground truth is a
tedious task and impractical in many situations especially for 3D microscopy
volumes. To address this issue, NISNet3D can use synthetic microscopy
3D volumes for training the segmentation network. It must be emphasized
that NISNet3D can use synthetic volumes or annotated real volumes or
combinations. We demonstrate this in the experiments.

For generating synthetic volumes we first generate synthetic segmenta-
tion masks which are used as the ground truth masks, and further translate
the synthetic segmentation masks to synthetic microscopy volumes using an
unsupervised image-to-image translation model known as SpCycleGAN [7].

2.2.1 Synthetic Segmentation Mask Generation

We first generate synthetic binary nuclei segmentation mask Ibi by iteratively
adding candidate binary nucleus Inuc to an empty 3D volume of size 128 ×
128 × 128. To synthesize ellipsoidal nuclei, the candidate nuclei are modeled
as 3D binary ellipsoids with random size and orientation parameterized by
a and θ. Then we iteratively generate N candidate nuclei in different size
and orientation, where a range these parameters are randomly selected based
on the observation of nuclei characteristics in actual microscopy volume (e.g.
nuclei size, shape, and orientation).

The nuclei size is parameterized by the semi-axes length a = [ax, ay, az]T

of an ellipsoid, the orientation is defined by a rotation angle θ = [θx, θy, θz]T ,
and the location is represented by a translation vector t = [tx, ty, tz]T towards
the origin. Equation 1 defines the kth candidate nucleus with voxel intensity
k ∈ {1, ..., N}. The voxels are assigned intensity values to differentiate them
from each other.

Inuc(x,y,z) =

{
k, if ( x

ax
)2 + ( y

ay
)2 + ( z

az
)2 < 1

0, otherwise
(1)
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Equation 2 defines the translated nucleus coordinates X̃.

X̃ =

x̃ỹ
z̃

 = Rz(θz)Ry(θy)Rx(θx)

x + tx
y + ty
z + tz

 (2)

where Rx(θx), Ry(θy) and Rz(θz) are rotation matrices around the x, y, z
axes with angles θx, θy, and θz respectively. Note that the maximum overlap
between two candidate nuclei cannot be more than to voxels.

Fig. 2 Non-ellipsoidal shaped nuclei in actual microscopy volumes (left) and synthetic
binary nuclei segmentation masks after using elastic deformation (right)

Many of the nuclei are not strictly ellipsoidal. Instead, they look more like
deformed ellipsoids (See Figure 2 (left)). To model these non-ellipsoidal nuclei,
we use elastic transformation [35] to deform the 3D binary mask of the nuclei.
Suppose the 3D binary volume to be deformed is denoted as Ibi and is of size
X × Y × Z. We define the amount of deformation using what we will call a
displacement vector field. We define the “smooth displacement vector field”
Ismooth as a matrix of size 3 × X × Y × Z to represent three 3D volumes
Ismooth(x), Ismooth(y), Ismooth(z) each of size X × Y × Z. In Ismooth(x), each

voxel I
smooth(x)
(x,y,z) indicates the distance the voxel Ibi(x,y,z) needs to be shifted on

the x-axis. Similarly, for Ismooth(y) and Ismooth(z), each voxel I
smooth(y)
(x,y,z) and

I
smooth(z)
(x,y,z) indicates the distance of the voxel Ibi(x,y,z) that needs to be shifted

on the y and z-axis, respectively. We then describe how to construct Ismooth.
Next we define the “coarse displacement vector field” Icoarse as a matrix of

size 3×d×d×d, where d controls the amount deformation in the nuclei. Each
entry in Icoarse is a random variable that is independent and normally dis-
tributed N (0, σ2). The “smooth displacement vector field” Ismooth is obtained
from Icoarse using spline interpolation [36] or bilinear interpolation [35]. The
deformation control, d, is used to define the size of Icoarse. A larger d will result
in more deformation for Ismooth whereas lower d indicates less deformation for
Ismooth. In our experiments, we used spline interpolation and d ∈ {4, 5, 10}.
Examples of deformed ellipsoids are shown in Figure 2 (right).
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Fig. 3 The architecture of SpCycleGAN that is used for generating synthetic microscopy
volumes

2.2.2 Synthetic Microscopy Volume Generation

We use the unpaired image-to-image translation model known as SpCycleGAN
[7, 37] for generating synthetic microscopy volumes. By unpaired we mean
that the binary segmentation mask we created above is not the ground truth
of actual microscopy images. The input to the SpCycleGAN is the binary
segmentation masks we created and actual microscopy images (i.e. unpaired).
As shown in Figure 1, we use the binary segmentation mask we created Ibi and
actual microscopy volumes Iorig for training the SpCycleGAN. After training
we generate synthetic microscopy volumes (Isyn) by using different synthetic
microscopy segmentation masks (Ibi) we created as input to the SpCycleGAN.
Note that since the SpCycleGAN generates 2D slices, we then use the slices
to construct a 3D synthetic volume. The SpCycleGAN [7], an extension of
CycleGAN [37], is shown in Figure 3. SpCycleGAN consists of two generators
G and F , two discriminators D1 and D2. G learns the mapping from Iorig to
Ibi whereas F performs the reverse mapping. Also, SpCycleGAN introduced a
segmentor S for maintaining the spatial location between Ibi and F (G(Ibi)).
The entire loss function of SpCycleGAN is shown in Equation 3.

L(G,F, S,D1, D2) = LGAN(G,D1, I
bi, Iorig)

+ LGAN(F,D2, I
orig, Ibi)

+ λ1Lcycle(G,F, Iorig, Ibi)

+ λ2Lspatial(G,S, Iorig, Ibi) (3)

where λ1 and λ2 are weight coefficients controlling the loss balance between
Lcycle and Lspatial, and

LGAN(G,D1, I
bi, Iorig) = EIorig [log(D1(Iorig))]

+ EIbi [log(1 −D1(G(Ibi)))]
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LGAN(F,D2, I
orig, Ibi) = EIbi [log(D2(Ibi))]

+ EIorig [log(1 −D2(F (Iorig)))]

Lcycle(G,F, Iorig, Ibi) = EIbi [∥F (G(Ibi)) − Ibi∥1]

+ EIorig [∥G(F (Iorig)) − Iorig∥1]

Lspatial(G,S, Ibi, Iorig) = EIbi [∥S(G(Ibi)) − Ibi∥2] (4)

where ∥·∥1 and ∥·∥2 denotes the L1 norm and L2 norm. EI is the expected
value over all input volumes of a batch to the network.
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Fig. 4 Overview of NISNet3D - 3D nuclei instance segmentation

2.3 NISNet3D

The overview of NISNet3D is shown in Figure 4. In this section, we describe
the architecture of modified 3D U-Net in NISNet3D, how to train and inference
the modified 3D U-Net, and nuclei instance segmentation of NISNet3D.

3D NISNet
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Fig. 5 The proposed NISNet3D uses a modified 3D U-Net architecture with residual blocks,
attention gates and multi-task learning module
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Fig. 6 (a) Conv3D Block, (b) Residual Block, (c) Attention Gate, (d) TransConv3D Block

2.3.1 Modified 3D U-Net

In this section we describe the modified 3D U-Net of NISNet3D as shown in
Figure 4. NISNet3D uses an encoder-decoder network (See Figure 5) which
outputs the same size volume as the input. The encoder consists of multiple
Conv3D Blocks (Figure 6(a)) and Residual Blocks (Figure 6(b)) [38]. Instead
of using max pooling layers, we use Conv3D Blocks with stride 2 for feature
down-sampling, which introduces more learnable parameters. Each convolution
block consists of a 3D convolution layer with filter size 3 × 3 × 3, a 3D batch
normalization layer and a leaky ReLU layer. The decoder consists of multiple
TransConv3D blocks (Figure 6(d)) and attention gates (Figure 6(c)). Each
TransConv3D block includes a 3D transpose convolution with filter size 3 ×
3 × 3 followed by 3D batch normalization and leaky ReLU. We use a self-
attention mechanism described in [39] to refine the feature concatenation while
reconstructing the spatial information.

Training The Modified 3D U-Net. The modified 3D U-Net can
be trained on both synthetic microscopy volumes Isyn or actual microscopy
volumes Iorig if manual ground truth annotations are available.

We define the “3D vector field volume,” Ivec, as a volume where each
nucleus voxel is a 3D vector that points to the centroid of the current nucleus
in I label that is being used for training. Ivec is generated from I label and used as
part of the ground truth for training the modified 3D U-Net. We next describe
the steps for 3D vector field volume generation (VFG).

As shown in Figure 4, during training, the modified 3D U-Net in NISNet3D
takes Isyn or Iorig, I label and Ivec as input, and outputs the estimated 3D vector
field volume Îvec (Îvec(x), Îvec(y), Îvec(z)) and the 3D binary segmentation
masks Imask. I label is the gray-scale label volume for Ibi with size X × Y × Z
where different nuclei are marked with unique pixel intensities. As shown in
Figure 7, the first step for 3D vector field volume generation (VFG) is to obtain
the centroid of each nucleus in I label. We denote the kth nucleus as the voxels
with intensity k in I label, and the centroid of kth nucleus is (xk, yk, zk).

Ivec is a matrix of size 3 × X × Y × Z that represents the three vol-
umes Ivec(x), Ivec(y), Ivec(z) each of size X × Y × Z. Note that Ivec(x,y,z) =
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Fig. 7 Steps for 3D vector field volume generation (VFG). Each nucleus voxel in the 3D
vector field volume, Ivec represents a 3D vector that points to the centroid of current nucleus

(I
vec(x)
(x,y,z), I

vec(y)
(x,y,z), I

vec(z)
(x,y,z)). We use Ivec(x,y,z) to represent a 3D vector at the cur-

rent location and points to its nearest nucleus centroid. Note that if a voxel
I label(x,y,z) is a background voxel (i.e. I label(x,y,z)=0), the corresponding voxels Ivec(x,y,z)

in the vector field volume are set to 0. Equation 5 shows the definition of Ivec.

Ivec(x,y,z) =

{
V⃗

k

(x,y,z), if I label(x,y,z) ̸= 0

0, otherwise
(5)

V⃗
k

(x,y,z) is a 3D vector from (x, y, z) to (xk, yk, zk). By using the 3D vector
field volume, the boundary information is more easily learned since the vectors
in boundary regions points to very different directions which will result in
very large gradients. Ivec is used as part of the training groundtruth for the
network to learn nuclei centroid and boundary information whereas I label is
used for learning the segmentation masks. Finally, Ivec and I label are used as
the ground truth for training modified 3D U-Net.

Loss Functions. The modified 3D U-Net simultaneously learns the
nuclei segmentation masks Imask and the 3D vector field volume Îvec. Two
branches are used and there is no sigmoid function used to obtain Îvec because
the vector represented at a voxel can point to anywhere in a volume. In other
words, the voxel in Îvec can be a negative number or a large number. Unlike
previous methods [31, 40, 41] that directly learn the distance transform map,
the 3D vector field volume contains both nuclei centroid and boundary infor-
mation which can avoid over-detection for irregular nuclei. The output 3D
vector field volumes Îvec are compared with the ground truth vector field vol-
ume Ivec and optimized using the Mean Square Error (MSE) loss function,
whereas the segmentation results Imask are compared with the ground truth
binary volumes Ibi and optimized using the combination of Focal Loss [42] LFL

and Tversky Loss [43] LTL. The entire loss function is shown in Equation 6,

L(S, Ŝ, V, V̂ ) = λ3LTL(S, Ŝ) + λ4LFL(S, Ŝ)

+ λ5LMSE(V, V̂ ) (6)
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where

LTL =

∑P
i=1 si1ŝi1∑P

i=1 si1ŝi1 + α1

∑P
i=1 si1ŝi0 + α2

∑P
i=1 si0ŝi1

,

LFL = − 1

P

P∑
i=1

{βsi1ŝγi0log(ŝi1) + (1 − β)si0ŝ
γ
i1log(ŝi0)},

LMSE =
1

P

P∑
i=1

(vi − v̂i)
2 (7)

where α1 +α2 = 1 are two hyper-parameters in Tversky loss [43] that controls
the balance between false positive and false negative detections. β and γ are
two hyper-parameters in Focal loss [42] where β balances the importance of
positive/negative voxels, and γ adjusts the weights for easily classified voxels.
In addition, S is the ground truth binary volume, Ŝ is the segmentation volume,
V is the ground truth vector field volume and V̂ is the estimated vector field
volume. vi ∈ V is the ith voxel in V , and v̂i ∈ V̂ is the ith voxel in V̂ . Similarly,
si ∈ S is the ith voxel in S, and ŝi ∈ Ŝ is the ith voxel in Ŝ. We define ŝi0
as the probability that the ith voxel in Ŝ is the nuclei class, and ŝi1 as the
probability that the ith voxel in Ŝ is the background class. Similarly, si1 = 1
if si is a nuclei voxel and 0 if si is a background voxel, and vice versa for si0.
Lastly, P is the total number of voxels in a volume.

(a) (b)

𝐾/4 …

Interior window

𝐾/4

𝐾/4

Inference window Padded window

Stride = !
"

Fig. 8 Proposed divide-and-conquer inference scheme for segmenting large microscopy vol-
umes

Modified 3D U-Net Inference. To segment a large microscopy vol-
ume, we propose an divide-and-conquer inference scheme shown in Figure 8.
We use an inference window of size K ×K ×K that slides along the original
microscopy volume Iorig of size X × Y × Z and crops a subvolume. Consider-
ing that the partially included nuclei on the border of the inference window
may cause inaccurate segmentation results, we construct a padded window by
symmetrically padding each cropped subvolume by K

4 voxels on each border.

Also, the stride of the moving window is set to K
2 so every step it slides, it

will have a K
2 voxel overlapping with the previous window. For the inference
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results of every K ×K ×K window, only the interior K
2 × K

2 × K
2 subvolume,

denoted as interior window, in the center will be used as the segmentation
results. In this paper, we use K = 128 for all testing data. Once the inference
window slides along the entire volume, a segmentation volume Imask and 3D
vector field volume Îvec of size X × Y × Z will be generated. In this way, we
can inference on any size input volume, especially very large volumes. Imask is
the binary segmentation results whereas Îvec is the estimated 3D vector field
volume that needs to be decoded to locate the nuclei centroids using 3D nuclei
instance segmentation.

2.3.2 3D Nuclei Instance Segmentation

Figure 4 shows an overview of the proposed method for 3D nuclei instance
segmentation. Based on the output of the modified 3D U-Net, a 3D gradient
field generation, marker generation and marker refinement step is used for
separating densely clustered nuclei. The estimated 3D vector field volume Îvec

is a 3-channel volume with the same size as the ground truth 3D vector field
volume Ivec where each nuclei voxel represents a 3D vector pointing to its
nearest nucleus centroid. The neighbor voxels on the boundary of two touching
nuclei generally point to different directions and thus have a large gradient.
Let ∇Îvec be the gradient of Îvec. We use Îvec to obtain the gradient map IG

as described in Equation 8,

∇Îvec =
[
∇Îvec(x) ∇Îvec(y) ∇Îvec(z)

]T
=

[
∂Îvec(x)

∂x
∂Îvec(y)

∂y
∂Îvec(z)

∂z

]T
=

[
Sx ∗ Îvec(x) Sy ∗ Îvec(y) Sz ∗ Îvec(z)

]T
(8)

where Îvec(x), Îvec(y), and Îvec(z) are the x, y, and z channel of the estimated 3D
vector field volume Îvec. Sx, Sy, Sz are 3D Sobel filters and ∗ is the convolution
operator. In Equation 9, the gradient map IG is then determined by choosing
the maximum gradient component of each vector on the x, y and z direction.

IG = max(∇Îvec(x),∇Îvec(y),∇Îvec(z)) (9)

The boundary of touching nuclei in IG have larger values (larger gradients)
which can be used to identify individual nucleus. In Equation 10, Imask is
the binary segmentation mask from the modified 3D U-Net and τ(x, t) is a
thresholding function such that τ(x, t) = 1 if x ≥ t otherwise 0. τ(IG, Tm) is
used to highlight the boundary of individual nuclei and σ(∗) is a rectifier that
sets all negative values to 0. Iblob is the interior regions of the nuclei which
are potential markers for watershed segmentation [44, 45]

Iblob = σ(Imask − τ(IG, Tm)) (10)

Imark = δtf (δtc(I
blob, Bc), Bf) (11)
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To better refine Iblob, we use a 3D conditional erosion with a coarse structuring

(a) (b)

Fig. 9 (a) coarse 3D structuring element Bc and (b) fine 3D structuring element Bf for 3D
conditional erosion

element Bc and fine structuring Bf shown in Figure 9. We first iteratively
erode each object using Bc until the object size is smaller than tc then erode
each object using Bf until the size of each object is smaller than tf . The
markers Imark for watershed segmentation are obtained using Equation 11
where δtc(I

blob, Bc) defines the iterative erosion of all objects in Iblob with
coarse structuring element Bc until the size of each object is smaller than
coarse object threshold tc. Similarly, the output of δtc(I

blob, Bc) is then eroded
with fine structuring element Bf and fine object threshold tf . Finally, marker-
controlled watershed [45] is used to generate instance segmentation masks Iseg.
Small objects less than 20 voxels are then removed, and each object is color
coded for visualization.

Table 1 The description of the five datasets used in the evaluations

Original Microscopy Volumes
Volume
Name

Source
Original Size
(X × Y ×Z)

Annotated
Subvolume Size

V1 cleared rat kidney 512 × 512 × 200 128 × 128 × 64
V2 rat liver 512 × 512 × 32 128 × 128 × 32
V3 cleared rat kidney 512 × 512 × 415 128 × 128 × 64
V4 cleared mouse intestine 512 × 930 × 157 128 × 128 × 40
V5 zebrafish brain 2000 × 1450 × 397 64 × 64 × 64

3 EXPERIMENTAL RESULTS

3.1 Evaluation Datasets

Due to the limited availability of annotated volumes, we present two train-
ing and evaluation strategies described in Section 3.2. The corresponding
trained versions of NISNet3D obtained using the two strategies are denoted as
“NISNet3D-slim” and “NISNet3D-synth”. Both of the versions are evaluated
on four different microscopy volumes denoted as V1-V4, which are fluorescent-
labeled (Hoechst 33342 stain) nuclei collected from rat kidneys, rat livers, and
mouse intestines using confocal microscopy. The manually annotated ground
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truth subvolumes for each type of the evaluation volumes were obtained using
ITK-SNAP [8]. In addition, we also trained NISNet3D-slim on a publicly avail-
able electron microscopy volume of a zebrafish brain. This volume is known as
NucMM[46] and will be denoted as V5 in our evaluation datasets. The detailed
information of all five datasets used in our evaluation is shown in Table 1.

𝓥𝟏 𝓥𝟐 𝓥𝟑 𝓥𝟒

Fig. 10 Synthetic microscopy images (third row) used for training. The synthetic nuclei
segmentation masks (second row) are based on the actual microscopy images (first row)

3.2 Experimental Settings

The parameters for generating Ibi are shown in Table 2 where (amin, amax)
is the range of ellipsoids semi-axes a. to is the maximum allowed overlapping
voxels between two nuclei and N is the total number of nuclei in a synthetic
volume. These parameters are based on visual inspection of nuclei characteris-
tics in the actual microscopy volumes. The synthetic microscopy volumes were
verified by a biologist (one of the co-authors). The SpCycleGAN was trained
on unpaired Ibi and Iorig and the trained model was used to generate syn-
thetic microscopy volumes. The weight coefficient of the loss function are set
to λ1 = λ2 = 10 based on the experiments described in [7].

Both the SpCycleGAN and NISNet3D are implemented using PyTorch. We
used 9-block ResNet for generators G,F and the segmentor S (see Figure 3).
The discriminators D1 and D2 (Figure 3) are implemented with the “Patch-
GAN” classifier [47]. The SpCycleGAN was trained with Adam optimizer [48]
for 200 epochs with initial learning rate 0.0002 that linearly decays to 0
after the first 100 epochs. Figure 10 shows the generated synthetic nuclei
segmentation masks and corresponding synthetic microscopy images.

For NISNet3D-slim, we trained 5 versions denoted as M1-M5 correspond-
ing to V1-V5 (See Table 2). We used three training methods for NISNet3D-slim:
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(1) train only on corresponding synthetic microscopy data (M1, M2, M3),
(2) transfer the weights from M3 of NISNet3D-slim and continue training on
a limited number of actual microscopy subvolumes (M4), (3) directly train on
only actual subvolumes (for M5).

After training, two different evaluation schemes are used for NISNet3D-
slim: (1) directly test on all subvolumes of original volume (for M1, M2, M4,
M5), (2) use 3-fold cross-validation: split ground truth subvolumes randomly
into 3 equal sets and iteratively update the model on one of the set and test on
other two sets (for M3). We use cross-validation in our experiments to show
the effectiveness of our method when the evaluation data is limited. Note that
for lightly retraining, we update all parameters of NISNet3D while continue
training on actual microscopy volumes. The training and evaluation scheme
for each model is shown in Table 2.

In addition, we also trained NISNet3D-synth. This is trained on 800 syn-
thetic microscopy volumes including synthetic V1-V4 without updating using
any actual microscopy volumes. NISNet3D-synth is designed for the scenario
where no ground truth annotations are available. NISNet3D-slim is used for
the case where limited ground truth annotated volumes are available. In this
case synthetic volumes are used for training and the small amount of ground
truth data is for used light retraining.

Table 3 Parameters used for NISNet3D nuclei instance segmentation

NISNet3D-slim NISNet3D-synth
Parameters V1 V2 V3 V4 V5 V1 V2 V3 V4

Tm 5 5 1 1 0 0 0 4 0
Tc 700 3000 2000 2000 2000 2000 2000 2000 2000
Tf 200 500 700 300 200 200 200 500 200

Both NISNet3D-slim and NISNet3D-synth were trained for 100 epochs
using the Adam optimizer [48] with constant learning rate 0.001. The weight
coefficients of the loss function are set to λ3 = 1, λ4 = 10, λ5 = 10. The
hyper-parameters β, γ of LFL are set to 0.8 and 2, and the hyper-parameters
α1, α2 in LTL are set to 0.3 and 0.7 [43, 49]. The nuclei instance segmentation
parameters used in our experiments are shown in Table 3.

3.3 Comparison Methods

We compared the NISNet3D with both deep learning image segmentation
methods including VNet [27], 3D U-Net [26], Cellpose [3], DeepSynth [6], and
StarDist3D [15]. In addition, we also compare NISNet3D with several com-
monly used biomedical image processing tools including 3D Watershed [45],
Squassh [50], CellProfiler [51], and VTEA [52].

VNet [27] and 3D U-Net [26] are two popular 3D encoder-decoder networks
with shortcut concatenations designed for biomedical image segmentation.
Cellpose [3] uses a modified 2D U-Net for estimating image segmentation and
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Table 5 Comparison of object-based evaluation results for microscopy dataset V5

Methods
Microscopy V5

mP mR mF1 AP.50 AP.75 mAP AJI
StarDist3D[15] 73.44 74.24 73.84 88.59 9.78 61.20 68.56
DeepSynth[6] 81.63 76.04 78.72 71.47 50.88 63.74 75.54

Cellpose[3] 96.15 94.47 95.30 94.90 83.82 91.21 81.31
NISNet3D-slim 96.89 96.24 96.56 95.98 88.84 93.62 83.90

spatial flows, and uses a dynamic system to cluster the pixels and further sepa-
rate touching nuclei. When segmenting 3D volumes, Cellpose works from three
different directions slice by slice and reconstruct the 2D segmentation results to
a 3D segmentation volume [3]. DeepSynth uses a modified 3D U-Net to segment
a 3D microscopy volume and uses watershed to separate touching nuclei [6].
StarDist3D uses a modified 3D U-Net to estimate the star-convex polyhedra
to represent the nuclei [15]. 3D Watershed [45] uses the watershed transforma-
tion [44] and conditional erosion [45] for nuclei instance segmentation. Squassh
is a ImageJ plugin for both 2D and 3D microscopy image segmentation based
on the the use active contours [50]. CellProfiler is a image processing toolbox
and provides customized image processing and analysis modules [51]. VTEA is
an ImageJ plugin that combines Otsu’s thresholding and watershed to segment
2D nuclei slice by slice and reconstruct the results to a 3D volume [52].

We trained and evaluated the comparison methods using the same dataset
as used for NISNet3D. We also used the same training and evaluation strategies
as NISNet3D described in Section 3.2. This is discussed in Section 3.6. Note
that 3D Watershed, Squassh, CellProfiler, and VTEA do not need to be trained
because they use more traditional image analysis for these techniques which
we describe in Section 3.6.

3.4 Evaluation Metrics

We use object-based metrics to evaluate nuclei instance segmentation accuracy.
We define N t

TP as the number of True Positive detection where the Intersection-
over-Union (IoU) between a detected nucleus and a ground truth nucleus is
greater than t voxels. Similarly, N t

FP is the number of False Positives, and N t
FN

is the number of False Negatives [53, 54]. N t
TP measures how many nuclei in a

volume are correctly detected. The higher N t
TP the more accurate the detection

method. N t
FP represents the detected nuclei are not actually nuclei which are

false detections. N t
FN represents the number of nuclei that did not detected. A

precise detection method should have high N t
TP but low N t

FP and N t
FN.

We then construct metrics based N t
TP, N t

FP, N t
FN. To reduce the

bias [55], we use the mean Precision (mP = 1
|TIoUs|

∑
t∈TIoUs

Nt
TP

Nt
TP+Nt

FP
),

mean Recall (mR = 1
|TIoUs|

∑
t∈TIoUs

Nt
TP

Nt
TP+Nt

FN
) and mean F1 score (mF1 =

1
|TIoUs|

∑
t∈TIoUs

2Nt
TP

2Nt
TP+Nt

FP+Nt
FN

) on using multiple IoU thresholds TIoUs. We

set TIoUs = {0.25, 0.3, ..., 0.45} for datasets V1-V4, and set TIoUs =
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{0.5, 0.55, ..., 0.75} for datset V5. The selection of the TIoUs is described in more
detail below.

We observed that the nuclei in datasets V1-V4 are more challenging to
segment than the nuclei in V5. If we use the same IoU thresholds for evaluating
all the datasets, the evaluation accuracy for V1-V4 will be much lower than the
evaluation accuracy for V5. Thus, we chose two different sets of IoU thresholds
for V1-V4, and V5, respectively.

We also examined commonly used object detection metrics: Average Preci-
sion (AP) [56, 57] by estimating the area under the Precision-Recall Curve [58]
using the same thresholds for TIoUs as described in the previous paragraph.
For example, AP.25 is the average precision with IoU threshold 0.25. The mean
Average Precision (mAP) is obtained as mAP = 1

|TIoUs|
∑

t∈TIoUs
APt.

In addition, we use the Aggregated Jaccard Index (AJI) [59] to integrate
object and voxel errors. The AJI is defined as:

AJI =

∑N
i=1 |Gi ∪ Si

m|∑N
i=1 |Gi ∩ Si

m| +
∑

j∈U |Sj |
(12)

where Gi denotes the ith nucleus in ground truth volume with total number
of N nuclei. Si

m is the mth connected component in the segmentation mask
which has the largest Jaccard Index with Gi, and U is the segmented nuclei
without corresponding ground truth. Note that each segmented nucleus with
index m cannot be used more than once.
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Fig. 11 Evaluation results using Average Precision (AP) for multiple Intersection-over-
Unions (IoUs) thresholds, TIoUs, for datasets V1-V4, and box plots of Aggregated Jaccard
Index (AJI) of each subvolume in dataset V2

All methods are optimized to achieve the best visual results by parameter
tuning. This is further discussed in Section 3.6. The quantitative evaluation
metrics for each microscopy datasets are shown in Table 4 and Table 5. Figure
11 shows the AP scores using multiple IoU thresholds and the box plot of AJI
on each subvolume of dataset V2. The orthogonal views (XY focal planes and
XZ focal planes) of the segmentation masks that are overlaid on the original
microscopy subvolume for each method on V1-V5 are shown in Figure 12 and
Figure 13. Note the colors correspond to different nuclei.
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Fig. 12 Visualization of segmentation results for XY and XZ focal planes
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Fig. 13 Visual comparison of the segmentations on the entire volume for datasets V2, V3,
V4, and V5

3.5 Visualizing Errors and Differences

Entire microscopy volumes contain many regions with varying spatial charac-
teristics. In order to see how the segmentation methods perform on various
regions, we propose three methods for visualizing the errors and differences
between a “test segmented volume” and a “reference segmented volume”. We
use the NISNet3D segmented volume as the reference segmented volume. We
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visualize the segmentation errors between VTEA and NISNet3D and we also
visualize the errors between DeepSynth and NISNet3D on entire volumes. We
describe how to generate an Overlay Volume and three types of Error Volumes
using the three methods which we will call Visualization Method A, B, and
C. Note that Visualization Method A does not need a “reference segmented
volume” whereas Visualization Method B and C need a “reference segmented
volume”.

Next we describe how to generate an Overlay Volume. Using the notation
shown in Figure 4, we denote Iorig as the original microscopy volume and m
as the maximum intensity of Iorig. We will use Iorig for overlaying the segmen-
tation errors from the “test segmented volume” to construct the visualization.
For a “reference segmented volume”, we denote Imask as the binary segmen-
tation masks of Iorig, and denote Iseg as the color-coded segmentation of Iorig

with RGB channels IsegR , IsegG , IsegB . Similarly, for a “test segmented volume”,
we denote Cbi as the binary segmentation masks of Iorig, and denote C as the
color-coded segmentation of Iorig with RGB channels CR, CG, CB.

We then denote the Overlay Volume as L with RGB channels LR, LG, LB.
As shown in Equation 13, the Overlay Volume for a “test segmented volume”
is generated by adding the original microscopy volume to each of the RGB
channels of the color-coded segmented volume.

LR = Iorig + CR, LG = Iorig + CG, LB = Iorig + CB (13)

We then define the notation we used for generating the three types of Error
Volumes. To represent the segmented nuclei in a “test segmented volume”, let
S3D = {s3D1 , s3D2 , . . . s3Dn } be the set of all 3D segmented nuclei in C, where
s3Di is a volume with same size of C but only contains the ith segmented 3D
nucleus, and let S2D = {s2D1 , s2D2 , . . . s2Dk } be the set of all 2D objects in C
from each XY focal planes, where s2Di is a volume with same size of C but
only contains the ith segmented 2D nucleus.

Similarly, to represent the segmented nuclei in a “reference segmented
volume”, we denote Iseg as the 3D segmentation volume from NISNet3D,
which will be used as the “reference segmented volume”. Let O3D =
{o3D1 , o3D2 , . . . o3Ds } be the set of all 3D objects in Iseg, and let O2D =
{o2D1 , o2D2 , . . . o2Dj } be the set of all 2D objects in Iseg from each slice. Next,
we describe how to generate the three types of Error Volume using the
Visualization Methods A, B, and C.

3.5.1 Visualization Method A

The Error Volume generated by Visualization Method A shows voxels in the
original microscopy volume that are not segmented by either test or refer-
ence methods. The input to Visualization Method A is the original microscopy
volume and a segmented volume (“test segmented volume” or “reference seg-
mented volume”). Using VTEA as an example: the VTEA segmented volume
is subtracted from the original microscopy volume. This is shown in Equation
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Fig. 14 Error Volume for Visualization Method A (first row), Visualization Method B
(second row), and Visualization Method C (third row) for VTEA (a)(d)(f), DeepSynth
(b)(e)(g), and NISNet3D (c) on microscopy volume V3

14.

IA = max(Iorig −m ∗ Cbi, 0) (14)

The Error Volume IA shows the voxels in the original microscopy image that
are not segmented. We can replace Cbi in Equation 14 with Imask to obtain
the Error Volume for the “reference segmented volume” NISNet3D. Figure 14
((a), (b), (c)) shows the Error Volumes generated by Method A for VTEA,
DeepSynth, and NISNet3D on dataset V3.

3.5.2 Visualization Method B

The Error Volume generated by Visualization Method B shows the under-
segmentation regions where multiple nuclei in the “reference segmented
volume” are detected as a single nucleus in the “test segmented volume”. Here
we use NISNet3D as “reference segmented volume” and use VTEA or Deep-
Synth as “test segmented volume”. The input to Visualization Method B is
the VTEA (or DeepSynth) segmented volume and the NISNet3D segmented
volume.
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Using VTEA as an example: if two or more nuclei in the NISNet3D
segmented volume intersect with the same single nucleus in the VTEA seg-
mented volume, then we show the single nucleus segmented by VTEA in the
Visualization Method B Error Volume. This is shown in the Equation 15.

IB =
⋃

{s2D ∈ S2D :∃o2Dp ∈ O2D, o2Dq ∈ O2D, o2Dp ̸= o2Dq

s2D ∩ o2Dp ̸= ∅, s2D ∩ o2Dq ̸= ∅} (15)

Then the result volume IB is overlaid on the original microscopy volume
using Equation 13. Figure 14 ((d), (e)) shows the Error Volumes generated by
Visualization Method B for VTEA and DeepSynth on dataset V3.

3.5.3 Visualization Method C

The Error Volume generated by Visualization Method C shows nuclei seg-
mented by a “reference segmented volume” but are completely missed by a
“test segmented volume”. The input to Visualization Method C is the VTEA
(or DeepSynth) segmented volume and the NISNet3D segmented volume.
Using VTEA as an example: if the voxels of a nucleus in NISNet3D segmented
volume do not intersect with any voxel of any segmented nucleus from the
VTEA segmented volume, then the Visualization Method C Error Volume will
show this nucleus from NISNet3D. This is shown in the Equation 16:

IC =
⋃

{o3D ∈ O2D : ¬∃s2D ∈ S2D, s2D ∩ s3D ̸= ∅} (16)

Note: Since we are using the NISNet3D segmented volume as the “reference
segmented volume”, we do not provide Error Volume for Visualization Meth-
ods B or C on the NISNet3D segmented volumes. The Error Volumes for
Visualization Method A, B, and C is shown in Figure 14.

3.6 Discussion

Due to the limited availability of annotated volumes, we use synthetic
microscopy subvolumes for training NISNet3D. It should emphasized that NIS-
Net3D can be trained on annotated volumes if available or one could use a
combination of synthetic volumes and actual annotated volumes. In order to
examine the performance of NISNet3D, we tested NISNet3D on four fluo-
rescence microscopy datasets from multiple rat organs and tissue regions. In
addition, we also tested electron microscopy data from a zebrafish brain from
the NucMM Challenge [46].

We compared NISNet3D with VNet [27], 3D U-Net [26], Cellpose [3], Deep-
Synth [6], StarDist3D [15], 3D Watershed [45], Squassh [50], CellProfiler [51],
and VTEA [52].

For 3D Watershed, we used 3D Gaussian filter to preprocess the image
and used Otsu’s method to segment the objects from background structure.
Then the 3D conditional erosion described in Section 2.3.2 was used to obtain
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the markers, and the marker-controlled 3D watershed implemented by Python
scikit-image library was used to separate touching nuclei.

For CellProfiler [51], customized image processing modules including inho-
mogeneity correction, median filtering, and morphological erosion were used to
preprocess the image, and default “IdentifyPrimaryObject” module was used
to obtain 2D segmentation masks on each slice. Then the 2D segmentations are
merged to a 3D segmentation using the blob-slice method described in [52, 60].
For Squassh [50], we used the “Background subtraction” with tuned “rolling
ball window size” parameter. The rest of the parameters are set to default. We
see that Squassh did fairly well on data V2 but totally failed on data V4 due to
the densely clustered nuclei. For VTEA [52], Gaussian filter and background
subtraction were used to preprocess the image. The object building method
is set as “Connect 3D”, and segmentation threshold is determined automati-
cally. We tuned the parameters “Centroid offset”, “Min vol”, and “Max vol”
to obtain the best visual segmentation results. Finally, the watershed is chosen
for instance segmentation. Since VTEA and Cellprofier’s “IdentifyPrimaryOb-
ject” module only works on 2D images, we see that their segmentation results
shown in Figure 12 suffer from over-segmentation errors on XZ planes.

For VNet [27], 3D U-Net [26] and DeepSynth [6] methods, we improved the
segmentation results by using our 3D conditional erosion described in Section
2.3.2 followed by 3D marker-controlled watershed to split the touch nuclei.
For Cellpose, we use the “nuclei” style and since the training of Cellpose is
only limited on 2D images, we trained Cellpose on every XY focal planes
of our subvolumes follow the training schemes in Table 2. We observe that

XY YZ

XZ

𝒱!

𝒱"

Cellpose VTEA NISNet3D

Cellpose VTEA NISNet3D

Fig. 15 Visualization of segmentation results of Cellpose and VTEA compared with NIS-
Net3D. The red boxes show the segmentation errors.

Cellpose has trouble capturing some very large or small nuclei in an input
subvolume and performs worse on “thinner” subvolumes containing more non-
ellipsoidal nuclei. Figure 15 shows the 2D to 3D reconstruction error from
Cellpose and VTEA compared with NISNet3D. For StarDist, we observed that
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it has difficulty segmenting non-star-convex objects in V3 and achieves better
performance on regular ellipsoidal nuclei in V4 (See Figure 12).

Figure 12 and Figure 13 are the color coded instance segmentation vol-
umes for compared methods. NISNet3D can accurately identify each individual
nucleus and segment the nuclei out from the background structure. Note that
NISNet3D does not need any prior information about nuclei size or shape, and
does not resize or interpolate the input volume. Using our inference scheme
shown in Figure 8, NISNet3D can run on a large volume with any given size
without losing accuracy from interpolation. We used object-based evaluation
metrics to quantitatively evaluate the performance of NISNet3D and other
methods. The summary of evaluation results shown in Table 4 and Table 5
indicate that NISNet3D achieved highest mAP and mF1 on all of our test
datasets. As shown in Figure 11, in order to quantify how well the segmented
nuclei matches the ground truth nuclei, we use the Average Precision (AP)
under different IoU thresholds criteria and Aggregated Jaccard Index (AJI) to
evaluate both segmentation and detection accuracy. Figure 12 and Figure 13
show the color coded instance segmentation results. Our method can better
separate the touching nuclei as well as maintaining the nuclei shape.

4 CONCLUSION

In this paper, we described a true 3D Nuclei Instance Segmentation Net-
work, known as NISNet3D, for fluorescence microscopy images analysis. Our
approach directly works on 3D volumes by making use of a modified 3D U-
Net and a nuclei instance segmentation system for separating touching nuclei
based on a 3D vector field volume and a 3D gradient volume. NISNet3D can
be trained on both actual microscopy volumes and synthetic microscopy vol-
umes generated using SpCycleGAN or a combination of both. We demonstrate
that NISNet3D performs well when compared to other methods on a vari-
ety of microscopy data both visually and quantitatively. In addition, we also
present three error/difference visualization methods for visualizing segmenta-
tion errors in large 3D microscopy volumes without the need of ground truth
annotations.
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