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Abstract—The field of tumor phylogenetics focuses on studying the differences within cancer cell populations and many efforts are
done within the scientific community to build cancer progression models trying to understand the heterogeneity of such diseases.
These models are highly dependent on the kind of data used for their construction and, as the experimental technologies evolve, it is of
major importance to exploit their peculiarities. In this work we describe a cancer progression model based on Single Cell DNA
Sequencing data. When constructing the model, we focus on tailoring the formalism on the specificity of the data, by defining a minimal
set of assumptions to reconstruct a flexible DAG structured model, capable of identifying progression beyond the limitation of the
infinite site assumption. We provide simulations and analytical results to show the features of our model, test it on real data, show how
it can be integrated with other approaches to cope with input noise. Moreover, our framework can be exploited to produce simulated
data that follows our theoretical assumptions. Finally, we provide an open source R implementation of our approach that is publicly
available on BioConductor.

Index Terms—Theory and Models, Modeling, Markov Processes, Cancer Progression.
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1 INTRODUCTION

Cancer, one of the primary causes of death in developed
countries, is a genetic disease where mutations change the
behavior of some body cells inducing an out of control
proliferation, with effects on the host comparable to those
of a parasitic entity. However, tumors are a complex class of
diseases varying both at the macroscopic level (e.g., tumor
location and size) and at the microscopic level (e.g., genetic
asset and gene expression). Current models represent such
genetic drift as an evolutionary process [1], albeit with
its own peculiarities. According to such a view, a tumor
originates from a single cell and progresses by acquiring
genetic variability, and therefore giving rise to several ge-
netically distinct and relatively unstable cell populations
called clones, competing (or possibly cooperating) for the
limited resources in their micro-environment. Several tumor
evolution models have been proposed to explain such intra-
tumor heterogeneity [2], and they aim to become powerful
tools for understanding cancer progression and helping
design effective treatments.

Exploiting this evolutionary perspective, several tu-
mor phylogenetic techniques and methods have been de-
veloped over the years, either by adapting computational
approaches used in biology to reconstruct species evolution
or by creating newer models, specifically crafted for this
context [3], [4]. Independently from the chosen strategy, it is
possible to define three main categories of cancer data [3]:
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• cross-sectional methods, that combine samples from
different tumors of different patients;

• regional bulk methods, where samples from different
tumor sites of a single patient are collected; and

• more recently, single-cell methods, which analyze ge-
nomic data sequenced from single cells originating
from a single tumor site [5].

Cross sectional methods have shown how tumors tend
to be quite diverse when considering primary site clas-
sification (see, e.g., [3] for an overview). To investigate
this heterogeneity, Single-Cell Sequencing (SCS) samples are
potentially the most useful because they allow the direct
observation of instances of clones subpopulations, but they
are also the hardest to collect, and the scarcest among the
currently available datasets. Nevertheless, as genomic se-
quencing becomes cheaper and more accurate, SCS datasets
are becoming easier to produce and collect, and suitable
computational methods are needed for their exploitation.

In this paper, we describe a method to extract prob-
abilistic models, which we call Cancer Progression Markov
Chains (CPMC), from DNA SCS datasets, which describe the
mutational history of the cells of a sampled tissue. CPMC
are a particular kind of Discrete Time Markov Chains (DTMC)
tailored to our use case, with useful mathematical proper-
ties. We first show that the kind of SCS datasets currently
available can be described by infinite source models (called
generators). Then, we introduce a realistic assumption on
the process underlying the mutational events, and we show
that, under such hypothesis, the solution to our inference
problem is unique. An algorithmic method to find such a
solution is described. When the uniqueness is not guaran-
teed we define an heuristic for inferring one of the possible
generators. Lastly, we propose a new tool, called CIMICE-R,
which implements the described methods, and we evaluate
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its results on both synthetic and real datasets. CIMICE-R has
been published as R package on Bioconductor [6].

Related work
One of the earliest computational models of oncogenesis [7]
represented the accumulation of mutations as an oncogenetic
tree of causal dependencies among alterations, in which
the root denotes the wildtype and each path in the tree
describes a sequence of causally related events. As in our
approach, the nodes in an oncogenetic tree correspond only
to observed genetic alterations, with no inferred genotypes.
Despite some similarities with our approach, there are two
fundamental differences between CPMC and oncogenetic
trees: first, CPMC are Directed Acyclic Graphs (DAGs), not
trees; second, and more importantly, the meaning attatched
to the edge probabilities is different: in oncogenetic trees,
the probability assigned to an edge is the probability of the
event “this edge exists”. In CPMC, they instead represent
the probabilities of transitioning from one state to the next.

One of the first computational methods to infer an evo-
lutionary mutation tree from SCS data was proposed in [8].
Rather than inferring a phylogenetic tree, their method di-
rectly describes temporal ordering relationships among mu-
tations sites by also taking into account sequencing errors.
The idea is to compute a “pairwise order relation”, which
is a partial temporal ordering on the observed genotypes,
represented by a genealogical tree, whose leaves are labeled
by the observed genotypes and whose internal nodes corre-
spond to putative common ancestors of the lineages of the
samples. Then, mutations are superimposed on the branches
of the tree, so that either a mutation temporally precedes
another, or two mutations are considered independent. In
other words, the ordering is determined by set inclusion:
when a genotype has a subset of mutations of another,
then the former must temporally precede the latter. For
instance, if 00 encodes the wildtype, and 01, 11 are two
other observed genotypes (with one and two mutations at
the considered sites, respectively) then the inferred temporal
ordering is 00 → 01 → 11. To deal with situations that are
inconsistent with the above rule, e.g., a triple 01, 10, and
11 of observed genotypes encoding a branching evolution
from the wildtype, a Bayesian approach is incorporated
into the method. A CPMC provides information similar to
the genealogical tree of [8], but since CPMCs are DAGs,
branching lineages of evolution can be trivially modeled in
the graph structure. The previous “inconsistent” example
would be modeled as a CPMC with four edges and a
diamond topology: 00→ 01, 00→ 10, 01→ 11, 10→ 11.

OncoNEM [9] is an automated method based on a nested
effects model for reconstructing clonal lineage trees from
noisy somatic SNV data of single cells. OncoNEM works by
clustering together cells with similar profiles; then, it infers
their genotypes and unobserved ancestral genotypes; finally,
it outputs the inferred tumor subclonal compositions, an
evolutionary tree describing the history of such subpop-
ulations, and posterior probabilities of the occurrence of
mutations. OncoNEM’s algorithm works by assigning a
probabilistic score to sets of mutations and by searching for
high-scoring models in the space of possible trees.

SCITE [10] is also a max-likelihood search algorithm that
infers the evolutionary history of a tumor from noisy and

incomplete SNV data, but, unlike OncoNEM, it focuses on
mutation trees. SCITE makes the infinite sites assumption,
hence it assumes that the input matrix describes a perfect
phylogeny.

An important limitation of both OncoNEM and SCITE
is that they work under the infinite sites assumption, i.e.,
under the hypothesis that each mutation may only occurs
once in the evolutionary tree. Evidence has been brought
forward to show that real SCS data violates that assumption,
and that finite-site models taking into account chromosomal
deletions, loss of heterozygosity and convergent evolution
lead to more accurate inference of tumor phylogenies [11],
[12], [13], [14]. Although our approach assumes that muta-
tions are never lost, we do allow for convergent evolution.

Classic phylogenetic approaches, such as UPGMA and
neighbour-joining [15], [16], [17], and other kinds of clus-
tering methods [18], have also been applied to SCS data.
Building correct phylogenies with such methods can be
done efficiently under the infinite sites assumption if the
data contains no errors and mutations persist generation
after generation [19]; under less restrictive hypotheses, how-
ever, they tend to be outperformed by the more focused
approaches described above.

To improve the accuracy of variants detection, single-cell
specific variant callers should be used. Monovar [20] and
SCcaller [21] were the first two callers developed specifically
for SCS data; SCIΦ [22] and SCAN-SNV [23] are two more
recent approaches to solve the same problem.

One limitation of our proposal is that it assumes that
subclonal reconstruction has already been performed and
clonal genotypes have been resolved. Rather than including
a specific inference method into our model, we rely on
tools such as SiCloneFit [13], Single Cell Genotyper [24] or
BEAM [25] to provide the required input.

Although the technology is continually improving, the
number and size of published SCS data sets are still limited.
A few tools exist that permit generating simulated SCS data
sets, and in some cases also inferring their phylogenies [26],
[27].

Another way to tackle the lack of high-quality high-
throughput SCS data is to develop statistical models
that combine such data with traditional bulk sequencing
data [28], [29], [30], [31], [32]. In this paper, however, we
consider only SCS data.

Finally, the literature on SCS and computational analysis
is too large to be summarized exhaustively. Several surveys
on various methods and tools for inferring tumor histories
from single-cell genomic data have been published to date,
including [2], [3], [4], [19], [33], [34], [35], [36], [37], [38], [39],
[40], [41].

RESULTS AND DISCUSSION

In this work, we consider a DAG model suggestebd by
the following general intuition. Phylogenetic trees put each
existent taxon (e.g., a cell from an SCS experiment) in a leaf,
and the internal nodes are their inferred extinct ancestors.
However, in a tumor ancestral clones coexist with more re-
cent ones, so a phylogenetic tree does not seem the best way
to capture the SCS data. DAG models allow to represent
more complex evolutionary trajectories and are especially
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suited for convergent evolutions. In fact, our method is not
based on the “infinite sites” assumption, and we do not
assume that a perfect phylogeny exists for a set of cells,
i.e., the set of cells having a given mutation m1 and the set
of cells having another mutation m2 may well be properly
overlapping.

We identify a minimal set of assumptions on tumor
evolution ensuring that DTMCs having DAGs as support
correctly model the disease progression. Intuitively, DTMCs
are probabilistic models in which the next state of a system
only depends on the current one. In our context the state of
the system is the genotype of a tumor cell. The tumor cell
will generate new cells whose genotypes will represent the
next state.

We assume that:

(∅) the evolution starts from “normal” cells, i.e., cells
which exhibit the same genotype of healthy cells of
the same patient;

(∪) mutations can only be acquired along the progres-
sion of the disease;

(MC) the probability that a cell will generate cells with new
mutations only depend on the genotype of the cell
itself;

(5/ ) a minimal number of mutations is acquired in each
new generation of cells.

DNA SCS data support hypothesis (∅) and (∪) since the
DNA sequence is not influenced by the cell’s life cycle and
all mutations can be detected independently from the gene
expression levels.

We are not pretending that these assumptions com-
pletely describe the high level of complexity of tumor
evolution. Instead, we are trying to reason on the smallest
possible set of hypotheses that allows us to rely on DTMCs
as modeling formalism and to infer the underlying chain
from a dataset. While hypothesis (MC) allows the use of
DTMCs, the other hypotheses guarantee that the model has
a simple topology, i.e.:

• it is acyclic thanks to (∪);
• it has a single source thanks to (∅);
• it has no “forward” edges allowing to jump interme-

diate states thanks to (5/ ).

Agreeing on the above assumptions, we propose a
method to infer a DTMC that models the mutational evo-
lution of a tumor from a dataset of genotypes collected
from cancer cells. In particular, our method takes in input a
Mutational Array containing the genotypes of a set of cells
taken from the tumor at a single time and output a DTMC
that satisfies the above hypothesis, which we call CPMC.
The dataset has to be representative of all the genotypes
present in the tumor, i.e., it has to reflect the genotype
distribution in the tumor. When in the dataset there are not
two possible explanations for a genotype (no convergences)
we formally prove that the CPMC that we output is the
only model that satisfy our hypothesis. When there are
convergences we output one of the possible CPMCs that
explains the data.

We do not aim at correcting errors in the input data
within our method. For this task we rely instead on other
tools capable of clustering and cleaning mutational matrices

based on known or predicted false positive, false negative
and missing value rates. As an example of such approach,
the CIMICE R package provides an easy to use interface to
SicloneFIT’s preprocessing algorithm.

To further reduce the dependency of the results from
random noise in the data we implemented a bootstrap
based approach that consists in the random resampling of
the input mutational matrix’s rows. This allows CIMICE
to produce many different CPMC models that are finally
merged, helping the user to identify nodes and edges that
might be generated only because of the noisy nature of SCS
data. The merging operation is done naturally by averaging
the weighted adjacency matrices of the CPMCs produced by
running CIMICE on the different sampled datasets.

To asses the performances of CIMICE, we test its usage
on both artificial datasets generated accordingly to our
model with different levels of noise and two real world case
studies.

As for the simulation, the datasets were generated from
the graph in Figure 1, setting the length of the generated
path k to 5 and simulating 100 cells. We repeated the
simulation 4 times for the following false positive FP and
false negative FN rates:

• FP = 0.01 and FN = 0.05
• FP = 0.01 and FN = 0.10
• FP = 0.01 and FN = 0.15
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A 1/3
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Fig. 1: The CPMC used to generate the example datasets.
Random paths of fixed length are simulated from the clonal
node to generate the genotype of a single cell.

In Figures 2 and 3, we test and compare results between
CIMICE and CIMICE copuled with SiCloneFit’s preprocess-
ing algorithm. To produce each result we resampled 100
cells from the generated dataset 1000 times. Other simu-
lations and a comparison with SCITE are reported in the
Supplementary Material.

Finally, we test our approach on real datasets, specifically
in two settings. In the first we considered a a dataset on
clear cell renal cell carcinoma from [17], and in the latter
metastatic colorectal cancer data from [42] (CRC1). We show
the results of our method coupled with SiCloneFit prepro-
cessing, using the False positive, negative and missing rates
reported in the literature (Figures 10 and 11). We set the
bootstrapping method to resample 100 datasets with the
same size of the original ones.
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(b) FP = 0.01 and FN = 0.15.

Fig. 2: Examples without SiCloneFit preprocessing. Dashed
components have a bootstrap probability less than 95%.

METHODS

Setting the Biological and Experimental Context
We represent the state of a cell as the set of mutations present
in it. A normal cell is considered to harbor no mutations.
Such absence of variants can be defined by exploiting either
an external reference or the the healthy cells of the patient.
The first method requires attention in mutation selection,
while the latter may hide genetic predisposition to tumor
development. A cell in any other state than the normal one
is possibly dangerous.

Formally, let G = {g1, . . . , gn} be a set of gene mutations.
A set S ⊆ G denotes the genotype over G for a cell in which
the mutations of S are present, while the mutations in G \S
are not. In particular, ∅ is the genotype of a normal cell. The
set of all possible genotypes over G is P(G), the powerset
of G.

We are interested in the reconstruction of a probabilistic
model representing the mutational history of a cell, i.e., the
temporal sequence of the genotypes of the cell’s ancestors.
To this aim, some assumptions on the mechanisms under-
lying the mutational events are needed. We formulate the
following Model’s Hypotheses:
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(a) FP = 0.01 and
FN = 0.05.
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(b) FP = 0.01 and
FN = 0.15.

Fig. 3: Examples with SiCloneFit preprocessing.

(∅) The normal cell ∅ is an ancestor of every cell.
(∪) Mutations can only be acquired, and multiple mu-

tations may be acquired from one cell generation to
the next.

(MC) The probability of a mutational event in a cell only
depends on its current genotype—that is, it does not
depend on how the cell reached a certain state.

(5/ ) An evolutionary history is anti-transitive and min-
imal, in the sense that it does not contain another
evolutionary history that can explain the same ob-
served genotypes, subject to the requirement that it
must account for every plausible trajectory—that is,
if X ⊂ Y are two genotypes then there must be a
path from X to Y .

The emptyset hypothesis (∅) states that each mutational
history always starts from a normal cell. This hypothesis
can be relaxed without significantly affecting the results in
this paper. For instance, if there are some mutations that are
present in all the cells of the system under analysis, the ∅
genotype can be replaced by a given genotype containing
the mutations acquired at birth by the patient. The union
hypothesis (∪) specifies that mutations are never lost, i.e.,
the genotype of an ancestor of the current genotype is a sub-
set of the current genotype. The homogeneous Markov chain
hypothesis (MC) states that the acquisition of mutations is
probabilistic and can be modeled through Markov chains,
since each genotype uniquely determines the probability
of transitioning to any other genotype. The anti-transitivity
hypothesis (5/ ) asserts that whenever it is possible to observe
a sequence of transitions from a genotype to another, it is
not possible to observe any of its subsequences. This is a
sort of parsimony assumption, because it implies that each
new mutated generation only acquires a minimal number of
mutations.

Example 1. Consider the set of mutations {A,B,C,D} and a
cell having genotype ABC . We are interested in inferring a prob-

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2022. ; https://doi.org/10.1101/2022.06.11.495730doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.11.495730


BIORXIV PREPRINT 5

abilistic model in which the genotypes of the ancestors of this cell
are represented. From the (∅) hypothesis the normal genotype is
an ancestor of the cell. The (∪) hypothesis rules out the possibility
that an ancestor of the cell has genotype ABCD. Without further
information, any other genotype (A, B, C , AB, AC , and BC)
may have potentially appeared in the mutational history of a cell
with genotype ABC (and different cells with the same genotype
may have followed different evolutionary trajectories), although
the true history of a specific cell with genotype ABC can involve
at most three different ancestor genotypes. If a history contains
three ancestor genotypes then either zero or one mutation was
acquired, starting from ∅, at each new generation (see below).

Let us further assume that we know the following:

1) normal cells can generate cells with genotype A, but
never generate cells with genotype B or C;

2) a cell with genotype A can generate cells with genotype
either AB or AC.

Item (1) does not explicitly forbid that a normal cell generate a
cell with genotype, say, AB. However, since a cell with genotype
A may be generated from ∅, the (5/ ) hypothesis excludes that
∅ directly gives rise to an AB cell. Similarly, item (2) together
with hypothesis (5/ ) implies that a cell with genotype A cannot
(directly) generate a cell with genotype ABC , because of possible
trajectories passing through AB or AC. Therefore, given the
additional knowledge the two possible mutational histories of the
cell are ∅ → A → AB → ABC and ∅ → A → AC → ABC .
Note that each arrow corresponds to a mutated new cell genera-
tion: but it is possible that the same genotype is maintained for
many generations. Finally, by hypothesis (MC), each arrow can
be labelled with a transition probability, giving rise to a graph
probabilistic model (Figure 4). Such probabilities are determined
from experimental data as detailed below.

∅

{A}
{A,B} {A,C}

{A,B,C}

p0,1

p1,2 p1,3

p2,4 p3,4

Fig. 4: A generic probabilistic model for Example 1

We focus on SCS data and in particular on DNAseq data,
as the DNA molecule offers chemical stability properties
that support our hypotheses. Moreover, the DNA sequence
is not influenced by the cell’s life cycle and all mutations can
be detected independently from the gene expression levels.

Aware of the limitations and errors of the current SCS
technologies, in this work we consider an ideal setting in
which all the relevant mutations are correctly detected and
a large number of cells from a tumor region is analysed.
As the technology improves, it is reasonable to assume
that larger datasets will become available and that the
rate of errors will decrease. Currently, to approximate this
ideal setting the data may be preprocessed with tools that
impute missing values and resolve clonal genotypes [13],

[24], [25]. A possibility to derive relatively large datasets is
to preprocess data from bulk sequencing experiments and
extract plausible single cell explanations [43].

As we will see, working on SCS data has the following
advantages with respect to bulk sequencing data:

- we can drastically simplify the model inference en-
gine, since the set of genotypes present in the tumor
are represented in the data and need not to be in-
ferred;

- we can formally prove that when each cell has a
unique possible set of ancestors, the produced model
is correct, i.e., no other information is needed;

- we propose models that can be used to generate
artificial data.

A SCS experiment consists in the sequencing of a set of
cells taken from either in vivo or in vitro samples. Hence,
the genotype of each analysed cell is known. Usually, the
results of such experiments are represented through Boolean
matrices, called Mutational Arrays [3], in which each row
represents a cell and each column represents a mutation. The
value in position (i, j) of a mutational array is 1 if and only
if the j-th mutation is present in the i-th cell. Mutational
arrays have a broad usage among many tools in the field of
tumor phylogenetics (see, e.g., [44], [45]).

As for the underlying models, we need some assump-
tions on the data as well. In particular our Data Hypotheses
are:

(ONE) All the analysed cells are taken at the same time from
a single site, i.e., they represent one snapshot of a
cancer tissue.

(POP) The analysed cells reflect the genotype distribution
of the population of all the cells in a given site.

Under these assumptions, given a mutational array it makes
sense to define a frequency distribution over the genotypes.

Definition 1 (Dataset Distribution). Let G be a set of gene mu-
tations. A dataset distribution D over G is a frequency distribu-
tion over the genotypes of G, i.e., a function D : P(G) −→ [0, 1],
with

∑
S∈P(G) D(S) = 1.

In what follows, we will omit the underlying mutational
arrays and refer to the corresponding dataset distributions,
called simply datasets hereafter. A dataset is typically de-
fined by its support: although the size of P(G) is exponen-
tial with respect to the size of G, usually only a limited
number of genotypes is observed, so the support usually
has a small size.

Example 2. Consider again the set of genes {A,B,C,D}. A
possible mutational array over ten cells, and its corresponding
dataset distribution, is shown below:

A B C D

c1 0 0 0 0
c2 1 0 0 0
c3 1 0 0 0
c4 1 1 0 0
c5 1 0 1 0
c6 1 0 1 0
c7 1 1 1 0
c8 1 0 0 0
c9 1 0 1 0
c10 1 1 1 0
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Dataset distribution:

D(∅) = 0.1 D({A}) = 0.3

D({A,C}) = 0.3 D({A,B}) = 0.1

D({A,B,C}) = 0.2

Our goal is to find a plausible probabilistic model of the
mutational histories of the cells in a given dataset, within
a certain class of Markov models based on the previously
stated assumptions. In general, such a problem does not
have a unique solution, even in an ideal generalized setting
in which an infinite sequence of datasets corresponding to
temporal snapshots of a sequenced tissue is available (see
Example 7). In order to overcome such difficulty, we will
(a) identify a few additional conditions guaranteeing the
uniqueness of the model reconstructed from a dataset, and
when uniqueness cannot be achieved, explicitly describe
what missing information prevents that; and (b) when such
additional information is not available, propose a reasonable
criterion for the reconstruction of an admissible model.

Basics on Discrete Time Markov Chains
Given our model’s hypotheses, it is reasonable to consider
DTMCs as the underlying mechanism generating the data.
The nodes of such chains correspond to the possible geno-
types of a cell, while the edges model the probability of
a genotype to mutate, i.e., to acquire new mutations. In
this section we briefly report some basic definitions and
introduce the notations we use on DTMCs. We refer the
reader to [46], [47] for a complete presentation on the topic.

Definition 2 (Discrete Time Markov Chain (DTMC)). A
Discrete Time Markov Chain (DTMC) is a pair M = (V, p),
where:

1) V is a finite set of vertices;
2) p : V × V −→ [0, 1];
3)

∑
v∈V p(u, v) = 1 for each u ∈ V .

Usually, when a DTMC is considered an initial probabil-
ity distribution on the states of the chain is also given. The
initial distribution specifies the probability of being in each
state of the chain at time 0. So, from the initial distribution
and the edges probabilities, one can compute the probability
distribution over the states of the chain at time t, i.e., after
crossing t edges. We anticipate here that in our context at
time 0 the normal genotype has probability 1 and given the
distribution at time k we try to infer the probabilities of the
edges.

A DTMC can be represented as a graph whose edges are
labeled with probabilities, where an edge is present only if
its probability is greater than 0. For each vertex of the graph
the sum of the probabilities over its outgoing edges is 1. We
adopt the following standard graph notation:

AdjM [u] = {v | p(u, v) > 0},
Adj−M [u] = Adj[u] \ {u},
P redM [u] = {w | p(w, u) > 0},
P red−M [u] = Pred[u] \ {u}.

The subscript M may be omitted when the chain is clear
from the context.

In DTMCs the quantity p(u, v) that labels the edge (u, v)
represents the probability that the chain is in v at time t+ 1,

given that it was in u at time t, i.e., p(u, v) = P [X(t + 1) =
v | X(t) = u]. Similarly, we can consider the probability
that the chain was in u at time t, given that it is in v at
time t+ 1, i.e., P [X(t) = u | X(t+ 1) = v]. Note that, while
P [X(t + 1) = v | X(t) = u] = p(u, v) does not depend on t
by definition of DTMCs, in general P [X(t) = u | X(t+1) =
v] does depend on t.

We say that a vertex u reaches a vertex v if there exists a
finite sequence u0, u1, . . . um, called a path, such that u0 = u,
um = v, and ui+1 ∈ Adj[ui] for each i ∈ [0,m − 1]. The
probability of the path is the product of the probabilities of
the edges along the path. The probability of reaching v from
u is the sum of the probabilities of the paths from u to v.
A cycle is a path from a vertex u to itself involving at least
another vertex different from u, i.e., we do not consider self-
loops as cycles. We say that a DTMC is acyclic if it has no
cycles (an acyclic DTMC may have self-loops).

As already mentioned, in a DTMC the probability p(u, v)
represents the probability of moving from u to v, when a
tick of the clock occurs, i.e., time moves from t to t + 1.
Hence, we are considering an underlying global time that
flows homogeneously with respect to the state of the system.
On the other hand, we could be interested in a model where
the clock ticks only when there is a change of state, i.e., the
ticks of the clock measure the number of jumps from one
state to another. In DTMC literature, this is known as the
jump version of a chain.1 The jump version of a chain can
be computed by assigning to each edge (u, v) with u 6= v
a probability proportional to p(u, v) in such a way that the
sum of the probabilities of the edges from u to V \ {u} is 1.
When Adj[u] = {u}, the self-loop is assigned probability 1.

Definition 3 (Jump DTMC associated to a DTMC). Let M =
(V, p) be a DTMC. The Jump DTMC associated to M is the
DTMC J(M) = (V, jp), where, for every u, v ∈ V , jp(u, v) is
defined as follows:

• if AdjM [u] = {u}, then jp(u, u) = 1 and jp(u, v) = 0
for every v 6= u;

• otherwise, jp(u, u) = 0 and

jp(u, v) =
p(u, v)∑

w∈V \{u} p(u,w)
=

p(u, v)

1− p(u, u)

for every v 6= u.

Cancer Progression Markov Chains
In our context we refer to a subset of DTMCs that we
call Cancer Progression Markov Chains (CPMCs). CPMCs
have additional properties which make them admissible as
models of cancer progression. Intuitively, the vertexes of
a CPMC represent the genotypes involved in the cancer
progression under analysis. The empty genotype is the
normal one that is at the origin of every mutational history.
Every other vertex is reachable from the empty genotype.
Since, under our hypotheses, mutations cannot be removed,
a vertex representing a genotype cannot reach another
vertex representing a genotype with less mutations. As a
consequence, CPMCs are always acyclic. Moreover, since
we are assuming that the evolutionary history is always the

1. In the case of Continuous Time Markov Chains this construction is
standard and the resulting DTMC is called embedded chain.
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Fig. 5: CPMCs over {∅, {A}, {B}, {C}, {A,B}, {B,C}}.

one involving less mutations, whenever there is a path of
length at least 2 from one vertex to another, there cannot
be an edge connecting the two vertices. This implies that
CPMCs are anti-transitive. The above observations lead to
the formulation of the following definition of CPMCs.

Definition 4 (Cancer Progression Markov Chain (CPMC)).
Consider a set of genes G = {g1, . . . , gn} and let S =
{S1, . . . , Sm} be a set of genotypes over G, with S1 = ∅. A
Cancer Progression Markov Chain C = (S, p) over S is a
DTMC such that:

1) S1 = ∅ reaches any other genotype of the chain;
2) for every i, j ∈ [1,m], p(Si, Sj) > 0 if and only if Si ⊆

Sj and there is no k 6= i, j such that Si ⊆ Sk ⊆ Sj .

The first condition of our definition of CPMC states that
the normal genotype ∅ is always present and it is the initial
state of any mutational evolution. In other terms, in CPMCs
we are always implicitly considering the initial distribution
that at time 0 gives probability 1 to ∅ and 0 to all the other
states.

In the second condition of the above definition we have
been more restrictive than stated in our hypotheses. In
particular, we have imposed that whenever a genotype Si

is one of the minimal explanations for a genotype Sj , the
probability of going from Si to Sj is greater than 0. This
restriction is not too demanding, since such probability can
be arbitrarily small. It allows us to uniquely define the
topology (i.e., the set of edges) of the chain for a given set of
genotypes. However, it is possible to drop such restriction
when further information on the topology is available.

Example 3. Let us consider the set of genes G = {A,B,C} and
the set of genotypes S = {∅, {A}, {B}, {C}, {A,B}, {B,C}}.
In Figure 5 we represent two possible CPMCs over S .

Since a CPMC is a DTMC, given a CPMC C we can build
the jump DTMC J(C) associated to C. The properties of C
ensure that also J(C) is acyclic, with a single source vertex,
and anti-transitive. In particular, J(C) is still a CPMC.

Lemma 1. Let C be a CPMC. Then C is acyclic, anti-transitive,
and J(C) is a CPMC.

Example 4. Let us consider the two CPMCs depicted in Figure 5.
Figure 6 represents their associated jump chains.

Cancer Progression Markov Chains and Datasets
Let us assume that we know that the evolution of a type
of cancer is regulated by a given CPMC C. We can use
C to generate simulations of the evolution of the cancer.
Moreover, we can use C to determine the probability that a
cell with a given genotype will degenerate into another one.

∅

{B}{A} {C}
{AB} {BC}

0.2 0.3 0.5

1
0.75 0.25

1

1 1

∅

{B}{A} {C}
{AB} {BC}

0.7 0.1 0.1

1 0.4 0.6 1

1 1

Fig. 6: Jump chains. The jump chains associated with the
CPMCs depicted in 5.

Notice that in CPMCs time evolves, i.e., edges are
crossed, when a cell cycle is completed. However, it makes
no difference in our context to replace single cell cycles with
their multiples, e.g., consider the new state after 100 cell
cycles, or even with periodic observations of the system. On
the other hand, we could have referred to Continuous Time
Markov models in which time can be expressed in days,
months, years (depending on the desired granularity). In
that case probabilities would have been replaced by tran-
sition rates. However, without more specific knowledge on
proliferation/death rates of different genotypes, continuous
time models would give us an equivalent view.

Interestingly CPMCs can be used as data generators
to validate other inference methods, provided that such
methods agree on our four Model Hypothesis. In particular,
we can randomly generate a CPMC C, use it to generate a
dataset Dk, where Dk(S) is the probability that C is in state
S at time k, i.e., Dk(S) = P [X(k) = S], apply the inference
method on Dk and check whether the inferred knowledge is
correct with respect to the underlying chain C . This process
can be repeated until we are able to either accept or reject
the inference method. The CPMCs can also be artificially
engineered in order to test the behavior of the method on
limit cases.

We recall that, since C = (S, p) is a Markov Chain and
we assume that at time 0 the process starts from the normal
genotype ∅, we have:

D0(T ) = P [X(0) = T ] = 0 if T 6= ∅

D0(∅) = P [X(0) = ∅] = 1

and

Dk(T ) = P [X(k) = T ] =
∑
S∈S

P [X(k − 1) = S] ∗ p(S, T )

for each k > 0

Example 5. Let us consider again the CPMC C depicted in
Figure 5 on the left. The dataset D0 generated by C at time
0 is D0(∅) = 1. The dataset D1 generated by C at time 1
is D1({A}) = 0.2, D1({B}) = 0.3, and D1({C}) = 0.5.
The dataset D2 generated by C at time 2 is D2({A}) = 0.22,
D2({B}) = 0.3 ∗ 0.2, D2({C}) = 0.5 ∗ 0.3, D2({A,B}) =
0.2 ∗ 0.8 + 0.3 ∗ 0.6, and D2({B,C}) = 0.3 ∗ 0.2 + 0.5 ∗ 0.7.
The dataset D3 generated by C at time 3 is D3({A}) = 0.008,
D3({B}) = 0.012, D3({C}) = 0.045, D3({A,B}) = 0.408,
and D3({B,C}) = 0.527.

A given dataset may be generated by different CPMCs
at different times (Example 6). Besides, different CPMCs
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can even generate the same (infinite) sequence of datasets
(Example 7).

Example 6. Let us consider the two CPMCs depicted in Figure
7. Let C1 be the chain on the left and C2 be the one on the right.
It is immediate to observe that the dataset D1

2 generated by C1

at time 2 is D1
2(∅) = 0.01 and D1

2({A}) = 0.99. Such dataset
coincides with the dataset D2

1 generated by C2 at time 1.

∅

{A}0.9

0.1

1

∅

{A}0.99

0.01

1

Fig. 7: Two CPMCs that generate the same datasets at
different time instants.

We will come back on this example in the next section. The
problem here lies in the inference of the probability of the self-loop
on ∅. As a matter of fact both C1 and C2 have the same jump chain
and we will prove that such jump chain can be inferred exactly.

When inferring a CPMC from a single dataset D, it may
not be possible to accurately estimate the time at which
the snapshot was taken. The example above shows that, in
general, D may be supported by different CPMCs, which
generate D at different times.

Unfortunately, in the worst case two different CPMCs
can generate the same datasets at each time instant (Ex-
ample 7). This is not a problem when CPMCs are used as
data generators because the CPMC is known, it for inference
it means that in general uniqueness of the model cannot
be guaranteed. In the next section we will prove that this
can happen only in presence of convergences, i.e., when
genotypes have many possible ancestors. In that case we
will provide a heuristic which allows us to infer one of the
possible underlying jump chains.

Example 7. Let us consider the two CPMCs depicted in Figure 8.
They generate the same datasets at each time instants. As a matter
of fact, the first 3 levels of the chains are equal with equiprobable
branching, while at the last level for each node the sum of the
probabilities of the incoming edges is the same in the two chains.
The dataset D3 at time 3 for both chains is D3({A,B,D}) =
0.3 ∗ 0.7, D3({A,C,D}) = 0.3 ∗ 1.1, and D3({B,C,D}) =
0.3 ∗ 1.2.

Properties of Cancer Progression Markov Chains

Let fi(S) be the event X(i) = S∧X(i−1) 6= S∧· · ·∧X(0) 6=
S, i.e., the chain is in state S at time i and has never been in
S before. Hence, P [fi(S)] is the probability of fi(S), i.e., the
probability of reaching for the first time the vertex S after i
steps. This is also known as the first passage probability. The
probability of being in state T ∈ Adj[S]− for the first time
after at most k steps, passing through the edge from S to T ,
can be expressed as

k∑
i=1

P [fi(T )] ∗ P [X(i− 1) = S | fi(T )]

∅

{B}{A} {C}

{A,D} {B,D} {C,D}

{A,B,D} {A,C,D} {B,C,D}

0.1

1 1 1

0.3 0.3 0.3

1 1 1

0.3 0.6
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1 1 1

0.3 0.3 0.3

1 1 1

0.2 0.7
0.5 0.30.50.8

Fig. 8: Two CPMCs that generate the same datasets at each
time instant.

Since C is acyclic this is equivalent to
k∑

i=1

P [X(i− 1) = S ∧X(i) = T ]

and can be computed on CPMCs as stated by the following
lemma.

Lemma 2. Let C = (S, p) be a CPMC and let S, T ∈ S be such
that S 6= T and p(S, T ) > 0. Then:

k∑
i=1

P [fi(T )] ∗ P [X(i− 1) = S | fi(T )] =

p(S, T ) ∗
k−1∑
j=0

P [X(j) = S]

(1)

Proof. Since S 6= T and p(S, T ) > 0, the edge (S, T ) is the
only path of length 1 from S to T . We have that:

k∑
i=1

P [fi(T )] ∗ P [X(i− 1) = S | fi(T )]

By the definition of conditional probability

=
k∑

i=1

P [X(i− 1) = S ∧ fi(T )]

By def. of fi(T ), since C is a DTMC and (S, T ) is the only
path from S to T

=
k∑

i=1

P [X(i− 1) = S ∧X(i) = T ]

By the definition of conditional probability

=
k∑

i=1

P [X(i) = T | X(i− 1) = S] ∗ P [X(i− 1) = S]

Since C is a DTMC

= p(S, T ) ∗
k∑

i=1

P [X(i− 1) = S]

By replacing i− 1 with j

= p(S, T ) ∗
k−1∑
j=0

P [X(j) = S]
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As a consequence we get an alternative method to
compute the probabilities on the jump chain J(C). Let
height(C) be the length of the longest path in C, without
crossing self-loops. Since C is acyclic and the normal geno-
type ∅ reaches any other genotype, height(C) is the length
of the longest path which does not uses self-loops from ∅ to
a leaf in C.

Theorem 1. Let C = (S, p) be a CPMC and k ≥ height(C).
Let J(C) = (S, jp) be the jump DTMC associated to C. Let
S, T ∈ S with S 6= T and p(S, T ) > 0.

jp(S, T ) =

k∑
i=1

P [fi(T )] ∗ P [X(i− 1) = S | fi(T )]

∑
W∈Adj−[S]

k∑
i=1

P [fi(W )] ∗ P [X(i− 1) = S | fi(W )]

(2)

Proof. The fact that k ≥ height(C) ensures that the fraction
on the right hand side is properly defined, i.e., its denomi-
nator is different from 0.

k∑
i=1

P [fi(T )] ∗ P [X(i− 1) = S | fi(T )]

∑
W∈Adj−[S]

k∑
i=1

P [fi(W )] ∗ P [X(i− 1) = S | fi(W )]

By Equation (1)

=

p(S, T ) ∗
k−1∑
j=0

P [X(j) = S]

∑
W∈Adj−[S]

p(S,W ) ∗
k−1∑
j=0

P [X(j) = S]

By simplifying

=
p(S, T )∑

W∈Adj−[S] p(S,W )

= jp(S, T )

Notice that in Equation (2) the denominator is just a
normalization factor which ensures that the sum of the
probabilities of the edges from S is 1.

The Inference Method
Let Dk be a dataset satisfying our data hypotheses, repre-
senting a snapshot of a tumor after k evolution steps. As
discussed before, the number of steps in our context models
the time elapsed from normality to the observed snapshot.
We will see that in our method we do not assume to know
the value of k. Assuming that Dk has been generated by a
CPMC (i.e., by a model satisfying our model hypotheses)
one may wonder whether it is possible to infer such a
CPMC, i.e., a CPMC such that Dk(S) = P [X(k) = S]
for each genotype S, where k is not known a priori. To
be more precise, since at this point of the construction,
we do not want to add information to the dataset, we

can say that we are interested in inferring the part of C
that is visible from the dataset, i.e., the genotypes of C
will be the normal genotype and the ones having positive
frequency in Dk. Formally this means that C = (S, p),
where S = {∅} ∪ {S | Dk(S) > 0}. If during the evolution
there had been genotypes that have disappeared and are
not represented in the dataset our method will not infer
such genotypes, since it is our aim to reconstruct a model
able to represent the current situation without introducing
unobserved knowledge.

Lemma 2 provides a way to compute p(S, T ), but only
when

∑k−1
j=0 P [X(j) = S] is known. Unfortunately, there

is no way to determine such a quantity from the dataset
alone. On the other hand, if we consider J(C) instead
of C then Theorem 1 can be used to compute the transition
probabilities—in some cases exactly, in general using some
heuristics.

By definition, the topology of J(C) is uniquely deter-
mined by the set of observed genotypes, as follows:

T ∈ Adj−[S]

if and only if

S ⊆ T ∧ ∀T ′ 6= S, T ′ 6= T. (S 6⊆ T ′ ∨ T ′ 6⊆ T )

According to Theorem 1, in order to infer jp(S, T ) the
following probabilities must be estimated:

a. for each T ∈ S \ {∅} and for each i ∈ [1, k], the
probability P [fi(T )];

b. for each S ∈ S , for each T ∈ Adj−[S], and for each
i ∈ [1, k], the probability P [X(i− 1) = S | fi(T )].

We say that there is a convergence in C whenever a geno-
type T has two different predecessors, that is, when there is
a genotype T such that |Pred−[T ]| > 1. We distinguish two
cases:

1) C (or equivalently, J(C)) has no convergences;
2) C (or equivalently, J(C)) has at least a convergence.

No Convergences
If C has no convergences, then for each S ∈ S , for each
T ∈ Adj−[S], and for each i ∈ [1, k] it holds that P [X(i −
1) = S | fi(T )] = 1. This is trivial since S is the only
predecessor of T . Hence, by Theorem 1 we get

jp(S, T ) =

∑k
i=1 P [fi(T )]∑

W∈Adj−[S]

∑k
i=1 P [fi[W ]]

Since the denominator is just a normalization factor, we
have to find a way to compute the numerator from Dk.

We can proceed by induction from the leaves to the root
of C :

• if T is a “leaf” of C, i.e., Adj−[T ] = ∅, then∑k
i=1 P [fi(T )] = Dk(T );

• otherwise
∑k

i=1 P [fi(T )] = Dk(T ) +∑
V ∈Adj−[T ]

∑k
i=1 P [fi[V ]].

As a consequence, we have proved the following corol-
lary.

Corollary 1. Let C = (S, p) be an unknown CPMC without
convergences and let Dk be a dataset generated from C at time k.
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The chain J(C) can be uniquely inferred from Dk, provided that
all the genotypes of C are represented in Dk.

In other terms, the fact that all the genotypes have to be
represented in Dk means that the time instant at which the
data are taken is neither too early, so that some genotypes
have not yet been discovered, nor too late, so that some
genotypes are no more present. Notice that we do not
assume to know the value of k.

Convergences

From the above discussion, it emerges that in the case with
convergences we have to find a way to estimate P [X(i −
1) = S | fi(T )], for each i ∈ [1, k]. This means that for any
i ∈ [1, k] we have to estimate the probability that since we
are for the first time in T at time i we were in S at time i−1.
As already stated in the previous sections, Markov Chains
are time homogeneous, but this is not in true in the general
case for their reverse. So it is possible that P [X(i− 1) = S |
fi(T )] 6= P [X(j − 1) = S | fj(T )], for some i, j ∈ [1, k].
However, without any additional knowledge, the best one
can do is approximate such values. In the following, we will
approximate all the values uniformly with a single quantity
denoted Split(S, T ). In this way, by Theorem 1 we get

jp(S, T ) ≈
Split(S, T ) ∗

k∑
i=1

P [fi(T )]

∑
W∈Adj−[S]

Split(S,W ) ∗
k∑

i=1

P [fi(W )]

(3)

Again, the denominator is a normalization factor, so we
focus on the numerator.

• Split(S, T ) is an approximation that we attribute to
all the possible values of P [X(i − 1) = S | fi(T )]
and has to be computed by exploiting only Dk.

•
∑k

i=1 P [fi(T )] has to be computed by induction
from the leaves to the root, but some more caution
will be necessary with respect to the case without
convergences.

We have already showed that no unique solution may exist
in the presence of convergences, i.e., the function Split(S, T )
is not uniquely determined in general (see Figure 8 and
Example 7). Our heuristic for Split(S, T ) is based on the
following simple considerations.

1) Since Split(S, T ) represents the probability of reach-
ing T through S,

∑
X∈Pred−[T ] Split(X,T ) = 1.

2) For S, S′ ∈ Pred−[T ], if S is more frequent than S′

in the dataset, then it is more likely that T is reached
from S than from S′.

3) To be more precise, in the previous item not only
the frequencies of S and S′ have to be taken into
account, but also those of their ancestors.

4) Also the number of outgoing edges from S and S′

must be taken into account. If S has many outgoing
edges, but S′ reaches only T , then, intuitively, even
if S and S′ have the same frequency, the probability
of reaching T from S should be lower compared to
the probability of reaching T from S′.

Based on the above, we elaborate the following iterative
definition for Split(S, T ), that will be then normalized to
obtain Split(S, T ):

Split(S, T ) =


Dk(∅)
|Adj−[∅]|

if S = ∅
1

|Adj−[S]|
∗ (Dk(S) +

∑
U∈Pred−[S] Split(U, S)

Intuitively, S is assigned a weight proportional to its fre-
quency in the dataset and, recursively, to the weight of its
ancestors; then, such weight is uniformly distributed over
S’s outgoing edges. In principle, such distribution should be
proportional to jp(S, T ), but since we are still in the process
of evaluating it we apply a uniform distribution.

Once all the Split(S, T ) have been computed we can
normalize them, thus obtaining the values for Split(S, T ).

In order to compute the values
∑k

i=1 P [fi(T )] we pro-
ceed iteratively from the leaves to the root. However, since
a node can have many parents, we cannot assign all its
probability to every parent. We use again the heuristic
Split to distribute such probability among all parents. In
particular, we have:

• if T is a “leaf” of C, i.e., Adj−[T ] = ∅, then∑k
i=1 P [fi(T )] = Dk(T );

• otherwise
∑k

i=1 P [fi(T )] = Dk(T ) +∑
V ∈Adj−[T ] Split(T, V ) ∗

∑k
i=1 P [fi[V ]].

Finally, we can exploit Equation (3) to get the probabili-
ties jp(S, T ).

If the above heuristic is applied to a topology with
no convergences, then all the Split(S, T ) are 1, hence the
heuristic computes the same jump probabilities that can be
obtained by applying the method described in the previous
section for the special case without convergences.

Example 8. By applying Equation (3) to the dataset D3 of
Example 7 we obtain the jump CPMC depicted in Figure 9. This
is the approximation we compute for the jump chains of the models
in Figure 8. We recall that both models in Figure 8 are plausible
generators for the dataset. Notice that despite the high symmetry
of the dataset over the first 7 genotypes, the chain we extract is
not completely symmetric. However, we are not inferring the self-
loops. It is possible to define a CPMC with self-loop whose jump
chain is that presented in Figure 9 and that generates the dataset
D3 by solving a system of equations whose unknowns are the
probabilities of the self-loops.

All Together
In order to prove the correctness of our method we de-
scribed it assuming that the dataset Dk has been generated
from a CPMC C. We demonstrated when and with which
accuracy we are able to infer J(C) from Dk. Summing up
we proved the following results.

1) When there are no convergences, we exactly infer
J(C).

2) When there are convergences, if the probability of
reaching T from S is time homogenous and has
been estimated, e.g., using further data and experts
knowledge, then we can exactly infer J(C). Notice
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Fig. 9: The jump CPMC inferred from the dataset D3 of
Example 7

that such further information is necessary only for
the nodes with convergences.

3) When there are convergences and no further in-
formation is available, we provided a heuristic for
inferring a plausible J(C).

CIMICE-R: (Markov) Chain Method to Infer Cancer Evo-
lution
The R package CIMICE-R implements the above described
methods. It takes in input a dataset in form of a mutational
matrix, i.e., a boolean matrix representing altered genes in a
collection of samples obtained with SCS DNA analysis.

CIMICE-R data processing and analysis can be divided
in four section: input management, preliminary analysis of
the dataset, graph topology reconstruction, chain weight
computation, output presentation.

The tool requires a boolean dataframe as input in which
each column represents a gene, each row represents a sam-
ple (or a genotype), and each 0/1 represents whether a given
gene is mutated in a given sample. It is possible to load
this information from a file. The default input format is the
“CAPRI/CAPRESE” TRONCO [48] format: the file is a tab
or space separated file; the first line starts with the string
“s/g” (or any other word) followed by the list of genes (or
loci) to be considered in the analysis. Each subsequent line
starts with a sample identifier string, followed by the bit
set representing its genotype. Another option is to define
directly the data frame in R. In the case of data composed
by samples with associated frequencies it is possible to
use an alternative format that we call CAPRIpop, where
the frequency column is mandatory and samples cannot be
repeated. Another option is to compute a mutational matrix
directly from a MAF file.

The tool includes simple functions to quickly analyze
the distributions of mutations among genes and samples.
Correlation plots are also available. In case of huge dataset,
it could be necessary to focus only on a subset of the input
samples or genes. CIMICE-R provides an easy way to do so

when the goal is to use the most (or least) mutated samples
and/or genes.

The subsequent stage goal is to obtain the topology
for the final Cancer Progression Markov Chain. Once the
topology has been computed, it can be plotted, e.g., using
igraph. Finally, the probabilities that labels the edge of
the jump chain are computed. The tool first computes the
Split(S, T )’s. These are called UP weights in the implemen-
tation. Then, these are normalized to obtain the Split(S, T )’s
(called normalized UP weights). From these the probabilities
can be derived (also called normalized DOWN weights).

In order to show the results of the analysis exploiting
different libraries three output methods are provided. These
libraries improve on the default igraph output visualization.

All the details and examples of usage are provided at [6].
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Fig. 10: Our method’s results on the dataset from [17]. The False positive, False Negative and Missing Value Rates are
2.67× 10−5, 0.1643, and 0.2117 respectively. Two different stages are clearly separated even if the scarcity and noisiness of
data does not allow our method to establish a preferred progression.
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Fig. 11: Our method’s results on the dataset from [42] (CRC1). The False positive, False Negative and Missing Value Rates
are 0.0152, 0.0789, and 0.0671 respectively. In this case our method reconstruct different progression trajectories, that are
mostly in agreement with the subdivision between genes present in metastatic and non metastatic gene assets given in the
original paper.
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