
Distinguishing biophysical stochasticity from technical noise in

single-cell RNA sequencing using Monod

Gennady Gorin1 and Lior Pachter2,*

1Division of Chemistry and Chemical Engineering, California Institute of Technology,
Pasadena, CA, 91125

2Division of Biology and Biological Engineering; Department of Computing and
Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125

*lpachter@caltech.edu

April 17, 2023

Abstract

We present the Python package Monod for the analysis of single-cell RNA sequencing count data
through biophysical modeling. Monod naturally “integrates” unspliced and spliced count matrices,
and provides a route to identifying and studying differential expression patterns that do not cause
changes in average gene expression. The Monod framework is open-source and modular, and may
be extended to more sophisticated models of variation and further experimental observables.

The Monod package can be installed from the command line using pip install monod. The
source code is available and maintained at https://github.com/pachterlab/monod. A separate
repository, which contains sample data and Python notebooks for analysis with Monod, is accessible
at https://github.com/pachterlab/monod_examples/. Structured documentation and tutorials
are hosted at https://monod-examples.readthedocs.io/.

1

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2023. ; https://doi.org/10.1101/2022.06.11.495771doi: bioRxiv preprint 

https://github.com/pachterlab/monod
https://github.com/pachterlab/monod_examples/
https://monod-examples.readthedocs.io/
https://doi.org/10.1101/2022.06.11.495771
http://creativecommons.org/licenses/by/4.0/


1 Introduction

The interpretation of single-cell transcriptomics data depends on the ability to distinguish between
variation in gene expression due to technical noise arising from experimental artifact, and variability
reflecting underlying biology. Thus, analysis of single-cell RNA sequencing (scRNA-seq) data begins
with “depth normalization,” a procedure whose purpose is to account for technical variation in the
number of reads sequenced per cell due to the stochastic sampling of reads from cDNA libraries.
Additionally, variance-stabilization transformations are applied to account for associations between
variance and magnitude of gene expression. These transformations are also premised on technical
artifact stemming from stochastic sampling of reads from cDNA libraries. Essentially all scRNA-
seq analyses begin with these two steps. Other subsequent transformations and procedures to
remove technical noise are also commonplace, e.g., dimensionality reduction by principal component
analysis [1] and batch correction [2] being two examples.

Despite the omnipresence of normalization as a first step in single-cell RNA sequencing analysis,
and extensive studies of its effectiveness in achieving variance-stabilization and uniformity in read
depth per cell [3, 4], the question of whether normalization can inadvertently remove biological
signal has not been thoroughly explored. This is a cause for concern, because investigation of
technical noise removal in the context of batch correction [5] has shown that biological signal
can be inadvertently removed in an attempt to account for technical artifact. Figure 1 shows that
normalization can be similarly problematic. Using differences between cell types to bound biological
variation, we find that not only normalization, but all the commonly applied transformations to
single-cell RNA sequencing data remove biological signal, especially from highly expressed genes.
The UMAP embedding step is particularly egregious; it adds large amounts of non-biological noise
at the end of a process intended to remove it.

The removal of biological signal by transformations currently applied to single-cell RNA se-
quencing data is perhaps not surprising; current workflows are the culmination of experiments with
heuristics, and the methods are not grounded in biophysical models. However, there is no reason
that scRNA-seq analysis cannot be grounded in rigorous systems biology [6–8]. We propose the
use of models of transcription with which technical and biological variation can be distinguished on
the basis of mechanism. Our approach, via modeling with a chemical master equation (CME) [9],
conforms with mechanistic approaches to quantitative biology that originated in the latter half of
the twentieth century [10–13], and that substantially expanded over the past two decades [14–16],
providing biophysical rationale for the biological component of variation observed in gene expression
measurements.

In addition to relying on methods that provides an avenue to rationally thinking about biolog-
ical stochasticity versus technical variation, our approach also addresses another vexing problem
in single-cell RNA sequencing data analysis. Recently, interest in “RNA velocity,” the inference
of trajectory directions using the relative abundances of unspliced and spliced mRNA [17], has
led to recognition that in addition to the standard count matrices produced in single-cell RNA
sequencing pre-processing [18], reads aligned to non-coding sequences may also be informative [19].
Several software packages have been developed to quantify both “unspliced” and “spliced” modal-
ities [17, 20, 21], but despite their widespread use for RNA velocity [22], a natural question they
raise has not been addressed: how should spliced and unspliced count matrices be “integrated,” or
analyzed simultaneously, to obtain insights into gene expression beyond the context of trajectory
inference? We show that mechanistic modeling also provides an answer to this question.
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Figure 1: Normalization and dimensionality reduction distort and underestimate biological variation, especially in
high-expression genes.
a. A proposed baseline for the analysis of residual variation after data transformation: the fraction of biological
variability can be bounded by a theoretical baseline, which is computed from the variation in average subpopulation
expression. If this baseline is violated, the data transformation has discarded some biophysically meaningful variation.
b. High-expression genes have high variance (gray points: genes below the 95th percentile by mature RNA expression;
red points: genes above the 95th percentile by mean mature RNA expression, red line: percentile threshold).
c. Proportional fitting size normalization (PF), log-transformation (log), and principal component analysis (PCA)
globally deflate the squared coefficient of variation (CV2), whereas Uniform Manifold Approximation and Projection
(UMAP) globally inflates it (gray and red points: as in b).
d.-g. All four of the steps substantially deflate high-expression genes’ CV2 relative to raw data, implicitly attributing
their variability to nuisance technical effects (gray and red points: as in b).
h.-k. The deflation of variability results in the violation of the theoretical lower bound computed from cell subpop-
ulation differences, particularly for high-expression genes (gray and red points: as in b; curved teal line: identity
baseline, below which biological variability is removed; horizontal teal line: threshold, above which variability is
inflated relative to raw data).
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2 Results

2.1 Model definition

We focus on a class of bursty transcriptional models of mRNA expression:

∅ k−→ B ×XN
β−→ XM

γ−→ ∅. (1)

This reaction schema encodes a continuous-time Markov chain on a bivariate discrete space of
molecule counts for each gene, where XN is a nascent mRNA species and XM is a mature mRNA
species. We identify the former with unspliced and the latter with spliced transcripts (Section 2.6
of [23]).The rate k is the characteristic burst frequency, such that the number of transcription events
in any time interval of length τ is Poisson(kτ). B is the number of unspliced mRNA produced per
transcriptional event, which is a generally a random variable. β is the splicing rate, such that a
given molecule of XN will become a molecule of XM after an exponentially-distributed delay with
rate β. Analogously, γ is the degradation rate, such that a given molecule of XM will be eliminated
after an exponentially-distributed delay with rate γ. At steady state, we fit the rate parameters in
units of k, which is equivalent to imposing k = 1.

Typical fluorescence transcriptomics analyses use a model of random promoter switching [11]
to define B as geometrically-distributed with mean b [15], inducing negative binomial-like [24]
distributions of XN and XM [15, 25–31]. This model describes the dynamics at a promoter that
randomly switches between a transcriptionally inactive, long-lived state and a highly active, short-
lived state (Section S2.1.1); B is the number of molecules generated in the active state.

The chemistry of the process [32] suggests that a given mRNA molecule may be captured again
after being reverse transcribed into cDNA once. Therefore, we assume that cDNA molecules are
generated according to a Poisson birth process over unity time, such that:

X ′
N

λN−−→ X ′
N + XN ,

X ′
M

λM−−→ X ′
M + XM ,

(2)

where λN and λM are the Poisson process rates for each species, X ′
N and X ′

M are unobserved in vivo
molecules with dynamics following Equation 1, and XN and XM are UMIs observed after capture,
amplification, sequencing, and alignment. We further assume λN := CNL for a constant CN and
variable gene length L: the dependence on L coarsely models the possibility of multiple priming at
internal poly(A) stretches [33].

We use the bursty/Poisson model of biology and sequencing throughout our analysis. However,
to facilitate comparisons with alternative descriptions of biological variation, we characterize and
implement various other models of biology, with optional technical noise components, outlined in
Section S2.
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2.2 Probabilistic investigation of normalization and dimensionality reduction

Due to the scale of scRNA-seq data, standard analyses heavily use data transformation and dimen-
sionality reduction to produce a version of the data more amenable to statistics [18]. For example,
a typical analysis of cell type heterogeneity may apply size normalization (e.g, proportional fitting
or PF, which treats RNA counts as compositional quantities [34]), log-transformation, principal
component analysis (PCA), and Uniform Manifold Approximation and Projection (UMAP). Each
of these steps has a specific purpose; for the four steps above, the purposes are, in turn, to remove
variability due to technical heterogeneity, to obtain easily tractable normal-like log-abundance dis-
tributions, to select the latent data dimensions that contain the most variability, and to visualize
the cell type structure [18]. These transformations rely on implicit assumptions about the structure
of the data; these assumptions may be mutually contradictory, and their violation may produce
results that range from suboptimal to catastrophically incorrect.

These limitations and failure modes have previously been investigated. Size normalization
privileges relative, rather than absolute RNA species abundance; occasionally, this approach pro-
duces inconsistent results across the genome [35] and retains apparently technical variation [34,36].
Log-transformation is optimal for homogeneous, high-expression, approximately negative binomial
data [4, 18, 34], and relies on an arbitrary genome-wide “pseudocount” hyperparameter that can
distort the distributions [4, 34, 35, 37]. PCA is optimal for multivariate normal data, and can be
misled by the large zero fractions observed in single-cell data [37]. Finally, UMAP appears to be
optimal for data with uniform, low-noise coverage of a latent manifold, with risk of distortions
due to violated assumptions and stochastic initialization [22, 38, 39]. A comprehensive treatment
of the distortions induced or ameliorated by each step appears, however, to be out of reach, as the
transformations’ results are heavily data-dependent and elude theoretical analysis.

In Figure 1a, we propose a procedure for the quantitative benchmarking of data transformations
relative to an internal baseline. Each step transforms the data distribution, purportedly retaining
relevant biological variability – such as cell type differences – and removing incidental or technical
variability, quantified by the squared coefficient of variation (CV2). Therefore, by removing some
fraction of variability, a data transformation implies this component is immaterial to analysis,
whereas the residual fraction of variation – the CV2 ratio for the distribution after and prior to
transformation, denoted by η̃2/η2 – is attributed to biology. However, this residual fraction should
not vary arbitrarily; under mild assumptions, we can bound the biological fraction of CV2 from
below by the variability in cell subpopulation averages (Section 5.1.1).

To compare the results of the transformation procedures to this baseline, we analyzed a mouse
glutamatergic neuron dataset [40], using pre-annotated subtypes to produce a lower bound. The
details of the analysis are given in Section 5.1. We considered a set of 2,951 genes, emphasizing
the top 5% by dataset-wide average; these high-variability genes are typically of most interest in
single-cell analyses (Figure 1b). The iterative application of transformations up to PCA typically
deflated the gene-specific CV2 values, particularly for the high-expression genes and in the log-
transformation step. However, the application of UMAP inflated CV2 throughout. We found that
the high-expression genes’ variability was typically deflated relative to the raw data, suggesting
that the data transformations attribute overdispersion to nuisance technical effects (Figure 1d-g).

Log-transformation, PCA, and UMAP violated the baseline computed from inter-subtype vari-
ation, particularly for the high-expression genes. In addition, a considerable fraction of genes
demonstrated variability exceeding that of the original data after PF and UMAP. As shown in
Figure S8, after computing the UMAP, more than a third of the genes in the dataset had, at some
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point in the analysis, gone below the lower bound. This result suggests that ubiquitous trans-
formations efface meaningful biological signal. Despite the claim in [4] that the log-transform is
“best,” our analysis shows that it may be even better not to apply a transform which is agnostic
to technical versus biological stochasticity. UMAP attempts to recover variance by inflating cell
type differences; however, since this inflation is genome-wide, it does not restore the quantitative
information lost in previous steps, and may generate false findings.

We propose that a mechanistic approach provides a more reliable avenue for the analysis of
sequencing data. In this worldview, all assumptions about the noise behaviors are explicit rather
than implicit; count data are not to be denoised, but fit to a first-principles model that includes
biological and technical noise terms. Once a satisfactory parametric fit is available, the fractions
of biological and technical variability follow immediately (Section 5.1.3). This approach is outlined
schematically in Figure 2a: given annotations, we can separately fit cell subtypes, obtain their
biophysical parameters, and aggregate them to obtain the fraction of biological variability.

The fit, implemented in Monod, attributes overdispersion in high-expression genes to biological
variability (Figure 2b), in striking contrast to the non-parametric transformations (Figure S9). As
a consequence, the inferred fraction of biological variability coheres with the baseline (Figure 2c).
Interestingly, this agreement is not merely a consequence of independently fitting cell subtypes
and aggregating the variance. By applying Monod to the entire glutamatergic dataset, introducing
some error due to the neglect of subtype heterogeneity, we obtain similar results, with a single
violation of the bound (Figure S10). This control suggests that the mechanistic procedure largely
explains biological variability by transcriptional bursting, rather than subtype differences.
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Figure 2: The Monod mechanistic analysis of biological and technical variability produces coherent
results.
a. The baseline introduced in Figure 1a may be compared to point estimates of the biological
variability fractions, which follow immediately from a fit to a parametric model of transcription
and sequencing.
b. The Monod fits explicitly attribute the variability in high-expression genes to biological phe-
nomena (gray and red points: as in Figure 1b).
c. The Monod results lie entirely within the admissible region (gray and red points: as in b; curved
teal line: identity baseline, below which inferred biological variability is lower than inter-cell popu-
lation variability; horizontal teal line: threshold, above which inferred biological variability exceeds
that of raw data).
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2.3 Principled integration of single-cell and single-nucleus data

In parallel with single-cell RNA sequencing [41], recent years have seen the rapid adoption of single-
nucleus RNA sequencing (snRNA-seq) technologies [42,43]. As illustrated in Figure 3a, snRNA-seq
releases and isolates the nuclei, whereas scRNA-seq requires tissue dissociation into individual cells.
As discussed in [44], in spite of the loss of cytoplasmic signal, which limits the ability to detect
certain relevant genes [45], single-nucleus sequencing provides technical advantages. Single-nucleus
protocols require considerably simpler tissue handling; for example, they can be applied to frozen
cell samples [46–48].

The interest in single-nucleus sequencing, as well as the recognition of systematic differences
in the findings from the two technologies [45, 49–51], has motivated the analysis of these differ-
ences [52] and the development of more or less ad hoc data integration methods [50, 53]. Several
recent reports [52–54] have found that the nuclear datasets exhibit a strong length bias, with
longer genes being overrepresented in nuclei. This discrepancies, in turn, appears to stem from a
fundamental methodological difference: single-cell analyses typically only use exonic reads, whereas
single-nucleus combine intronic and exonic reads [42, 51]. Although the exonic molecule counts do
not appear to exhibit a length bias, intronic ones do [33], likely due to internal priming in poly(A)-
rich intronic regions [17]. Furthermore, even if all reads are included in the analysis of a single-cell
dataset, the length bias may be attenuated due to the abundance of fully processed molecules.
However, the appropriate way to correct for this effect is obscure. Previous reports have sug-
gested [53, 54] or eschewed [55] normalizing by gene length; this scaling, if applied, prevents the
application of discrete models.

We propose that scRNA-seq and snRNA-seq may be more analyzed in a more principled way
through a mechanistic lens. This strategy treats nascent (intron-containing) and mature (exonic)
molecules as distinct, in the spirit of [52, 54], and takes the distinction to its logical conclusion
by defining a model with nuclear export (Section 5.2.1). Under a particular set of assumptions,
this model reduces to the form in Section 2.1, with nuclear export taking the role of cytoplasmic
degradation as the mechanism of mature RNA efflux. However, the nascent RNA dynamics – i.e.,
transcription and splicing – should be identical for the two technologies, as they are confined to
the nucleus.

This axiom provides a foundation for the joint analysis of the technologies. We fully outline
the approach in Section 5.2. For example, Figure 3b-c compares the average counts for 2,000
genes in scRNA-seq and snRNA-seq datasets generated from a single mouse brain tissue sample
by 10x Genomics [56, 57]. Surprisingly, in spite of the depletion of cytoplasmic RNA, the mature
count averages were visually similar, whereas the nuclear count averages were approximately half
an order of magnitude higher in the single-nucleus dataset. Quantitatively, 83% of the mature and
over 99% of the nascent averages were higher in the snRNA-seq sample. To explain this difference,
we adopt the usual “marker gene” paradigm, i.e., that closely related cell types typically differ in
the expression of a small number of genes [18], whereas the other genes have similar distributions.
This assumption implies that incidental enrichment of certain cell subpopulations cannot explain
the striking, widespread discrepancy, and immediately leads us to conclude that the difference
is purely technical; due to the details of the nuclear sequencing protocol, the procedure retains
considerably more RNA of both types. This assumption appears to be supported by Figure 3d-e:
both species exhibited an overall decrease in the noise levels (66% of the mature and 98% of the
nascent CV2 values), which is consistent with decreased molecule loss. The difference in mature
RNA amounts should, then, be explained by the combination of two competing effects: the depletion
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of cytoplasmic RNA, as well as more effective capture of remaining molecules, in the single-nucleus
protocol.

To quantify the efflux rates, we fit the datasets using Monod and inferred the technical noise
parameters for the single-cell dataset. Next, we identified the set of single-nucleus technical noise
parameters (Figure S6) that provided the best match to the burst size and splicing rate parameters
(Figure 3f-g); the discovered set of technical noise parameters had higher (more effective) sampling
rates. The inferred efflux rates at this set were considerably higher for the single-nucleus dataset,
both visually (Figure 3h) and statistically: the t-test {t, p} values were {−2.7, 7.3 × 10−3} for the
burst size, {1.6, 0.11} for the splicing rate, and {−11, 2.1× 10−27} for the efflux rate.

The procedure we have outlined has significant limitations: for example, we have neglected
nuclear efflux in the single-cell data and cell type heterogeneity, both of which are physiologi-
cally important [40, 58] likely contributors to deviations in Figure 3f-g. In addition, single-nucleus
sequencing may harbor as of yet poorly-understood technical noise phenomena particular to the
technology. Nevertheless, the model formulation provides a foundation for the incorporation of
more sophisticated nuclear retention delays [44, 59, 60] jointly with technical noise. In addition,
the strategy provides a principled solution to the dilemma of incorporating intronic reads: all
the available data should be used, with species differences encoded in a multivariate mechanistic
model. If its assumptions are explicitly formulated, the model can be fit, or extended to account
for violations, based on experimental data.
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Figure 3: Single-cell and single-nucleus data can be conceptually “integrated” by defining distinct stochastic models
that account for differences in mature RNA processing and technical noise, while maintaining the nascent RNA. a.
Single-cell RNA sequencing protocols dissociate and isolate of individual cells, whereas single-nucleus RNA sequencing
isolate nuclei and discard cytoplasmic molecules; however, the downstream sequencing steps may be identical.
b. Counterintuitively, representative paired mouse brain single-cell and single-nucleus datasets exhibit similar mature
RNA levels (gray points: genes; dashed black line: line of identity; green line: the approximate average offset observed
for single-nucleus data).
c. The single-nucleus dataset consistently has considerably higher nascent RNA counts, which suggests the presence
of a technical effect between the two technologies (conventions as in b).
d. The single-nucleus dataset demonstrates slightly lower noise levels for mature count data (gray points: genes;
dashed black line: line of identity).
e. The single-nucleus dataset demonstrates considerably lower noise levels for nascent count data (conventions as in
d).
f.-g. By fitting mechanistic models to both datasets, we can identify technical noise parameters that produce
consistent burst and splicing parameters between the technologies (points: maximum likelihood estimates for burst
sizes and splicing rates; error bars: conditional 99% confidence intervals for inferred parameters; dashed black line:
line of identity).
h. At the discovered technical noise parameters, the mature RNA efflux or turnover is considerably higher for
the single-nucleus dataset, consistent with this parameter’s interpretation as the rapid export from the nucleus
(conventions as in f -g).
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2.4 Mechanistic basis for differential expression analysis

In typical transcriptomics workflows, the determination of differences between cell types or con-
ditions often reduces to the determination of differentially expressed (DE) genes, which exhibit
statistically significant differences in their average copy numbers. However, the identification of
DE genes requires careful accounting for technical covariates [18]. In addition, the data may ex-
hibit compensating mechanistic effects that change the distribution while keeping the averages
constant, which would not be identifiable by standard statistical methods [33,61–63].

We propose that differential expression testing should be generalized to the identification of
modulated parameters. We use the notation “DE-θ” to denote criteria using θ – which may be
a data moment or an inferred biophysical parameter – as a test statistic. In particular, we stress
the potential of multivariate data, which provides more statistical power [7] and enables the iden-
tification of parameter modulation patterns which would not otherwise be identifiable (Section
5.3.1).

For illustration, we revisit and extend an analysis performed in [33]: we used Monod to fit
counts from pre-clustered glutamatergic and GABAergic cell types in four mouse brain datasets [40],
then selected genes that appeared to be DE-θ for the burst size, splicing rate, or degradation rate.
We further filtered for genes which were not DE-µM , i.e., had a low average difference in mature
RNA expression between the cell types. The full analysis procedure is given in Section 5.3.2.

Based on the pervasive co-variation of splicing and degradation rate differences (Figure S39
of [33]), as well as physical considerations (Section 5.3.1), we suggest that this co-variation should
properly be ascribed to burst frequency modulation, even though this parameter was not explicitly
fit. Therefore, we summarized the findings further (Figure 4a) in terms of burst size and frequency
differences, in the spirit of [26, 64]. The discovered genes are indicated according to the cell type
differences’ effect on noise: genes highlighted in red exhibit more overdispersion in the glutamatergic
population, whereas genes highlighted in light teal exhibit more overdispersion in the GABAergic
population. These genes exhibit only minor differences in average expression, and fall fairly close
to the line of expression identity (solid diagonal line in Figure 4a), where an increase in burst
size is precisely compensated by a decrease in the burst frequency. The differences in parameters
are reflected in the data distributions and the model fits. For example, Nin and Bach2, which are
involved in neuronal development, visually exhibit higher noise in the glutamatergic and GABAergic
populations, respectively (Figure 4b). The mature count averages are, on the other hand, fairly
close (Nin Glu: 1.7, GABA: 0.98; Bach2 Glu: 0.87, GABA: 1.4).

In addition to identifying distributional differences in a small number of markers, the mecha-
nistic approach also enables the summary of more far-reaching perturbations that move beyond the
usual marker gene paradigm. For example, recent studies found that the introduction of a modified
nucleotide (IdU) to a culture medium enhances transcriptional noise, but keeps average expression
constant, hinting at a genome-wide mechanism for compensation [63,65].

Although the model required to fully recapitulate the dynamics of DNA damage repair involved
in this process is sophisticated, we found that we could characterize the effects of IdU using a
simple bursty model. The analysis procedure is fully described in Section 5.3.3. In brief, we fit
the nascent and mature data from control and IdU datasets using Monod. As in [33], the technical
noise parameters were not readily identifiable from the 10x v2 sequencing data. We assumed the
parameters were in a region we previously discovered for this technology (Figure 3e of [33]), and
analyzed biophysical parameters under that assumption (Figure S7).

We found that the IdU-perturbed cell culture exhibited striking noise amplification, with very
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limited differences in mean expression (Figure 4c). This result strongly contrasts, e.g., Figure 4a and
Section S7.10.4 of [33], which show fairly symmetric noise amplification and reduction between cell
types. The asymmetry in the findings are consistent with the authors’ conclusions and orthogonal
validation, which likewise found that burst size increases and burst frequency decreases in the IdU
condition [65].

We selected a set of well-fit genes that exhibited particularly high modulation and had average
expression greater than 1 in at least one of the conditions for further analysis, identifying Stx7,
Washc5, Apod, Eif2ak2, Ubr2, Cnnm2, Dram2, Zfp110, Cul4a, Ddx19b, and Yap1 (red points in
Figure 4c). Interestingly, two of these genes are directly related to the DNA damage activity of IdU:
Dram2 is involved in the autophagic response to DNA damage repair, whereas Cul4a is involved in
the turnover of DNA repair proteins. Several other genes more generally mediate the cellular stress
response: Zfp110, Eif2ak2, and Yap1 regulate apoptosis, whereas Ddx19b may be active in stress
granules. The role of the remaining genes is obscure: Stx7 and Washc5 are related to vesicular
function, Apod is involved in lipid metabolism, Ubr2 controls ubiquitination, and Cnnm2 appears
to be involved in ion transport [66].

We were able to partially compare our results for Sox2, Nanog, and Mtpap, whose transcrip-
tional parameters were computed from fluorescence data in [63, 65]. We did not observe Sox2
expression in either dataset. Nanog was rejected by our goodness-of-fit procedure. This is, in prin-
ciple, consistent with the results in Table S2 of [63], which report gene on fractions near 30-55%;
this regime violates the assumptions of the bursty model (gene on fraction tending to zero). The
inferred signs for Mtpap parameter modulation agreed with Figure S4 of [65], although we obtained
rather different magnitudes (log2 fold changes of ≈ −0.3 by smFISH vs. ≈ −1.5 by Monod for burst
frequency; ≈ 2 by smFISH vs. ≈ 1.3 by Monod for burst size). Therefore, although the genome-
wide trends broadly recapitulate the mechanistic explanations provided by the authors, and some of
the high-noise genes appear to be implicated in DNA repair and stress, the quantitative comparison
of fluorescence and sequencing data requires further analytical work.
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Figure 4: The inference of mechanistic parameters with Monod allows us to generalize differential
expression testing to the identification of genes with distributional differences, without requiring
substantial changes in average expression.
a. The differences between mouse glutamatergic and GABAergic cell types, computed from four
independent replicates, include genes with substantial noise enhancement but little to no change
in average expression, which may reflect biophysically important compensation mechanisms (light
red points: genes with significantly higher noise in glutamatergic cells; light teal points: genes
with significantly higher noise in GABAergic cells; gray points: all other genes; solid diagonal
line: parameter combinations where burst size and frequency differences compensate to maintain
a constant average expression; dashed diagonal lines: ±1 log2 expression fold change region about
the constant-average expression line; vertical and horizontal lines: parameter combinations where
burst size and frequency, respectively, do not change; fits originally performed in [33]).
b. Differences in inferred noise behaviors reflect differences in distribution shapes (light red: glu-
tamatergic cell type; light teal: GABAergic cell type; histograms: raw counts; lines: Monod fits;
top row: mature RNA marginal; bottom row: nascent RNA marginal).
c. Perturbation by IdU, which triggers DNA damage and repair, rarely changes expression levels,
but induces genome-wide noise enhancement [65] detectable by Monod (lines and gray points: as in
a; red points and labels: well-fit, moderate-expression genes identified as highly noise-enhanced).
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3 Discussion

Our Python software Monod facilitates mechanistic inference from multimodal scRNA-seq data.
At this time, it is restricted to a narrow set of transcriptional models (tractable by quadrature),
technical noise models (catalysis or drop-out), modalities (nascent and mature RNA), correlation
structure (no inter-gene relationships), and heterogeneity structures (a single homogeneous cell
type). While some of these assumptions may be simplistic, the current approach to single-cell RNA
sequencing analysis corresponds to an even more unrealistic model, which makes contradictory
implicit assumptions and violates fundamental constraints. With even a basic mechanistic model
for integrating nascent and mature RNA counts, we have demonstrated the possibility for interesting
discovery. Technical noise may be described in a self-consistent fashion; single-nucleus and single-
cell sequencing data can be described in a common framework; subtle distributional differences
between pre-annotated cell types can be identified and ascribed to biophysical phenomena. We
anticipate that Monod can be extended to utilize multimodal data to parametrize more complex
mechanistic models.
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5 Methods

5.1 Normalization and dimensionality reduction

We would like to characterize the performance of typical data processing and dimensionality reduc-
tion techniques. To do so, we need a meaningful baseline for “good” performance. For the purposes
of illustration, we focus on the methods’ effects on cell type differences, whose characterization is a
commonplace application of single-cell analyses [18]. In this section, we seek to outline and apply
a framework for investigating these methods’ implicit assumptions and distortive effects.

We essentially have three options for constructing a baseline for studying heterogeneity, which
have different trade-offs. First, we can define a stochastic model under a particular set of hypotheses,
simulate from it, and compare the algorithm performance to the underlying ground truth. However,
this approach may be overly simplistic, as the simulation may not accurately represent all features
of the underlying data-generating process. Second, we can obtain datasets collected from distinct
tissues, concatenate them, and treat them as a single dataset. However, this approach is somewhat
artificial and divorced from typical use cases, which treat a single tissue. In addition, there may
be hard-to-characterize technical batch effects between datasets. Third, we can obtain a pre-
annotated dataset from a single tissue, and perform the analysis conditional on the assumption
that the annotations are sufficiently accurate for our purposes. Although this approach necessarily
represents a compromise, we use it for simplicity.

5.1.1 Variance decomposition baseline

Given a generic set of cell populations, indexed by κ, we can construct an estimate for the amount of
biological variation. Under mild assumptions about technical noise, the overall biological variation
is bounded from below by the inter-cell population variability. Quantitatively, this property holds
for the squared coefficient of variation (CV2), which we denote by η2 in our derivations.

First, we construct a categorical distribution π that contains the fractional cell type abundances
πκ. From the laws of total expectation and variance [70], we obtain the sample-wide mean µ̃ and
variance σ̃2 of a particular gene’s counts, prior to corruption by technical noise:

µ̃ = Eπ[µ̃κ] =
∑
κ

πκµ̃κ

σ̃2 =
∑
κ

πκσ̃
2
κ +

∑
κ

πκ(µ̃κ − µ̃)2,
(3)

where µ̃κ is the mean and σ̃2κ is the variance of each discrete cell population.
The observed statistics contain contributions from technical noise:

µκ = ξκµ̃κ

σ2κ = Ξκσ̃
2
κ.

(4)

To relate the observations to the biological processes, we make two assumptions about the
form of the technical noise. First, we assume that the sequencing process uniformly samples cells
from the underlying population. In other words, we suppose that the observed cell type proportions
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match the biological proportions. This allows us to write down an analogous decomposition:

µ =
∑
κ

πκµκ =
∑
κ

πκξκµ̃κ,

σ2 =
∑
κ

πκσ
2
κ +

∑
κ

πκ(µκ − µ)2

=
∑
κ

πκΞκσ̃
2
κ +

∑
κ

πκ(ξκµ̃κ − µ)2.

(5)

Second, we assume that ξκ = ξ for all κ. In other words, we suppose that, for a particular
gene and on average, all cell types are chemically and statistically identical with respect to the
sequencing process. We find that the lower moments of the observed distributions can be rewritten
in terms of the lower moments of the biological distributions:

µ = ξ
∑
κ

πκµ̃κ = ξµ̃,

σ2 =
∑
κ

πκΞκσ̃
2
κ +

∑
κ

πκ(ξµ̃κ − ξµ̃)2

=
∑
κ

πκΞκσ̃
2
κ + ξ2

∑
κ

πκ(µ̃κ − µ̃)2.

(6)

Under this set of assumptions, we find that the ratio of variances with and without technical
noise takes the following form:

σ̃2

σ2
=

∑
κ πκσ̃

2
κ +

∑
κ πκ(µ̃κ − µ̃)2∑

κ πκΞκσ̃2κ + ξ2
∑

κ πκ(µ̃κ − µ̃)2
, (7)

which cannot be easily manipulated or constrained in the absence of ground truth statistics. How-
ever, if we instead use the ratio of coefficients of variation, we find:

η̃2

η2
=
µ2

µ̃2
σ̃2

σ2
=
ξ2µ̃2

µ̃2
σ̃2

σ2
= ξ2

σ̃2

σ2
=
ξ2

∑
κ πκσ̃

2
κ + ξ2

∑
κ πκ(µ̃κ − µ̃)2∑

κ πκΞκσ̃2κ + ξ2
∑

κ πκ(µ̃κ − µ̃)2

≥
ξ2

∑
κ πκ(µ̃κ − µ̃)2∑

κ πκΞκσ̃2κ + ξ2
∑

κ πκ(µ̃κ − µ̃)2
,

(8)

i.e., the fraction of biological variability (as quantified by the CV2) is at least as high as the fraction
of variability attributable to the inter-population mean differences.

5.1.2 Non-mechanistic model definition

Intuitively, we should hope that transformations commonly applied to “denoise” scRNA-seq data
retain the biological variability of interest. For example, if we would like to preserve the quantitative
relationships between cell types, we seek to keep the per-gene noise post-transformation above the
lower bound derived in Section 5.1.1; if this lower bound is violated, some cell type differences have
been degraded.

Transformations are iteratively applied to an entire data matrix Z, with entries Zij indexing
over cells i = 1, . . . , c and genes j = 1, . . . , g. We conceptualize a transformation as some function
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Φℓ(Z), such that Φℓ = ϕℓ ◦ · · · ◦ ϕ1. Thus, for example, “proportional fitting” count normalization
followed by log-transformation (log1pPF [34]) would be represented by a composition of ℓ = 2
transformations, with

CZ =
1

c

∑
i

∑
j

Zij

 being the size factor,

ϕ1(Z)ij =
Zij∑
j Zij

× CZ , and

ϕ2(Z)ij = log(1 + Zij).

(9)

This formulation assumes that each ϕ is a function that maps a c× g matrix to another c× g
matrix. However, some transformations, such as principal component analysis (PCA), accomplish
dimensionality reduction, and map a c×g matrix to a c×g′ matrix, with g′ ≤ g. Such a projection ψ
places the data onto a lower-dimensional manifold within g. We can characterize how much variance
is retained by such a projection by applying an inverse transformation, such that a dimensionality-
reducing step’s ϕ = ψ−1 ◦ ψ. This inverse transformation is typically not unique, and may not be
deterministic. However, if the cell populations largely lie along the low-dimensional manifold, we
should expect the “denoising” steps to have a minimal effect on the variance thus removed.

5.1.3 Mechanistic model definition

The approach outlined in Section 5.1.1 makes fairly mild assumptions about the distributions
to obtain a limit on the fraction of biological variability. By making stronger assumptions, we
can obtain point, rather than region estimates, at the cost of potential model misspecification or
inaccuracy in estimated parameters.

For example, if we are interested in the CV2 values for mature RNA with and without technical
noise, we can immediately exploit the analytical statistics reported in Section S2.4:

µ̃κ =
b

γ
,

σ̃2κ = µ̃κ

(
1 +

bβ

β + γ

)
,

µκ = µ̃κλ,

σ2κ = µκ

[
1 + λ

(
1 +

bβ

β + γ

)]
,

η̃2 =
Eπ[σ̃

2
κ] + Varπ(µ̃κ)

Eπ[µ̃κ]2
,

η2 =
Eπ[σ

2
κ] + Varπ(µκ)

Eπ[µκ]2
.

(10)

To lighten the notation, we elide the population-specific subscripts κ on the parameters b, β,
γ, and λ. Therefore, the fraction of biological variability under this model can be computed by
separately fitting the cell types, then substituting in the maximum likelihood estimates to obtain
η̃2/η2.
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5.1.4 Data processing

To investigate the effect of common data transformations and compare them to the bound from
Section 5.1.1, we used the glutamatergic cell subtypes reported for the mouse sample B08, originally
generated by the Allen Institute for Brain Science [40].

Preprocessing. We used kallisto | bustools 0.26.0 to pre-process data. We downloaded a pre-built
M. musculus genome from https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest (mm10, 2020-A version). To build intronic and exonic references,
we used the kb ref function with the --lamanno option. We obtained the raw FASTQ files for
the dataset B08 [40,71], which was generated using the 10x v3 single-cell chemistry. Next, we used
the kb count function with the --lamanno option, as well as the -x 10xv3 whitelist option to
quantify the datasets, producing unspliced (intron-containing) and spliced (non-intron-containing)
RNA count matrices [72,73].

Filtering. We filtered the dataset to remove “low-quality” cells or empty droplets. First, we
removed all barcodes that did not pass the default kallisto | bustools filter. Next, we removed all
cell barcodes that were associated with fewer than 104 molecular barcodes, computed over all genes,
corresponding to standard knee plot filtering procedures (Figure S2).

Next, we split the dataset by cell type and subtype annotations [40]. We extracted seven
classes: six glutamatergic subtypes (L2/3 IT, L5 IT, L6 IT, L5/6 NP, L6 CT, and L6b) and their
union (“glutamatergic”). We omitted low-abundance cell types (L6 IT Car3 and L5 ET, with fewer
than ten barcodes) from analysis and inclusion in the “glutamatergic” category.

Next, we used Monod 0.2.6.0 to extract genes with moderate to high expression. We removed
two sets of genes: those with very low observed average and maximum expression (XN ≤ 0.01,
XM ≤ 0.01, maxXN ≤ 3, maxXM ≤ 3), and those with excessively high observed maximum
expression, which are too computationally intensive to fit (maxXN ≥ 400, maxXM ≥ 400). We
use the notation Xz to denote the observed distribution of species Xz (nascent or mature) for a
particular gene; Xz is the observed mean and maxXz is the observed maximum. This procedure
produced a set of 2,951 genes that met the thresholds in all of the cell populations.

As high-expression, high-variability genes are typically of most interest in single-cell analyses,
we further selected the top 5% of genes by expression, and colored them orange in all visualizations.
These genes tended to have the highest variance in the dataset. This selection procedure is shown
in Figure 1b.

Baseline computation. To calculate the baseline introduced in Section 5.1.1 for each gene, we
used a plug-in estimate for the lower bound in Equation 8, using only the mature RNA data.
Specifically, the bound affords the consistent estimator

fbaseline =
1

S2

∑
κ

cκ
c

(
(XM )κ −XM

)2
, (11)

where S2 is the sample variance over all glutamatergic cells, (XM )κ is the average expression in
cell subtype κ, and cκ is the number of cells in that subtype. We used the existing annotations to
extract the κ-indexed variables.
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To represent the admissible region, wherein the retained fraction CV2 after transformation
is no lower than the fraction of CV2 attributable to cell type differences, we plotted it as a teal
line. In addition, we plotted the location at which the CV2 after transformation exceeds that of
the original dataset. Violations of this upper bound are not necessarily a cause for concern. For
example, a transformation may, in principle, effectively inflate differences between cell types to
make them more distinguishable.

Computation of variability retained by transformation. We considered the effects of four
transformations of the glutamatergic mature RNA count matrix: proportional fitting normalization,
log-transformation, principal component analysis (PCA), and Uniform Manifold Approximation
and Projection (UMAP) [74]. These transformations take place in sequence: log-transformation is
applied to normalized data; PCA is applied to log-transformed data; UMAP is applied to PCA-
transformed data. This series of transformations is associated with four ϕ and Φ functions, as well
as five c× g Z matrices:

Z, the raw mature count matrix,

Z1 = Φ1(Z) = ϕ1(Z), the normalized mature count matrix,

Z2 = Φ2(Z) = ϕ2(Z1), the log1pPF transformed mature count matrix,

Z3 = Φ3(Z) = ϕ3(Z2), its reconstructed PCA projection, and

Z4 = Φ4(Z) = ϕ4(Z3), its reconstructed UMAP projection.

(12)

The first two transformations, ϕ1 and ϕ2, corresponding to normalization and log-transformation,
are reported in Equation 9.

The reconstructed PCA projection is given by ψ−1
3 ◦ ψ3, where ψ3 is implemented through the

Scikit-learn 1.0.1 function transform and ψ−1
3 is implemented through the function inverse_transform,

both associated with a sklearn.decomposition.PCA object [75]. We used 50 components to com-
pute the PCA projection.

The reconstructed UMAP projection is given by ψ−1
3 ◦ ψ−1

4 ◦ ψ4 ◦ ψ3, where ψ4 is implemented
through the umap-learn 0.5.1 function transform and ψ−1

4 is implemented through the function
inverse_transform, both associated with a umap.UMAP object [74]. We used the 50-dimensional
PCA projection and default parameters to compute the UMAP projection.

To compute the amount of retained CV2 for each gene j and each step indexed by l, we
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computed the ratio of coefficients of variation prior to and after transformation:

Zj =
1

c

∑
i

Zij

S2
j =

1

c

∑
i

(Zij −Zj)
2

η2j =
S2
j

Z2
j

(Z l)j =
1

c

∑
i

(Zl)ij

(Sl)
2
j =

1

c

∑
i

((Zl)ij − (Z l)j)
2

(ηl)
2
j =

(Sl)
2
j

(Z l)j

fj,l,ret =
(ηl)

2
j

η2j
.

(13)

To characterize the overall effect of the cumulative application of transformations, we plotted
the distributions of (ηl)

2
j – i.e., the transformed data CV2 – after each transformation. This analysis

is shown in Figure 1c.
To characterize the relationship between the average expression and the fraction of variation

attributed to biological variability of interest, we plotted fj,l,ret against the mean Zj for each
gene. The normalization and dimensionality reduction procedures attempt to eliminate noise while
maintaining biological “signal,” and this visualization reveals whether an increase in variability is
implicitly attributed to the former or the latter. This analysis is shown in Figure 1d-g.

To understand the transformations’ effect on distributions, we plotted the fj,l,ret value for each
step l against the baseline value fj,baseline, computed using Equation 11 separately for each gene
j. To easily compare the results to the threshold, we plotted the admissible region. The lower
bound represents the reduction of inter-cell type variability, whereas the upper bounds represents
the inflation of overall variability above its original value. This analysis is shown in Figure 1h-k.
In addition, we computed the fraction of genes violating the bound at each step: 0%, 8.2%, 35.2%,
and 7.6% after proportional fitting, log-transformation, PCA, and UMAP respectively.

As the transformations are applied cumulatively, the distribution at step l may fall within the
admissible region, but still be quantitatively degraded because it fell outside it at some step l′ < l.
To characterize the loss of quantitative information about cell type relationships, we plotted the
same data points as above, and colored them according to the history of the analysis. If a gene has
ever violated the lower bound, we plotted it in a violet color. This analysis is shown in Figure S8.
In addition, we computed the fraction of genes identified after each step. We found that 0%, 8.2%,
35.2%, and 35.4% of the genes had at some point violated the bound after proportional fitting,
log-transformation, PCA, and UMAP respectively.

Computation of biological variability under a mechanistic model. To fit a mechanistic
model, we used Monod 0.2.6.0. We set up a 20 × 21 grid over the {log10CN , log10 λM} domain
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listed in Table S7. These bounds were chosen according to the results previously obtained for mouse
brain datasets, as reported in Figure S24 of [33].

At each grid point, we iterated over the 2,951 genes, using gradient descent to identify the
conditional maximum likelihood estimate of {log10 b, log10 β, log10 γ}, where the rates β and γ are
defined in units of burst frequency k (Section S4.3.2 of [33]). We used the conditional method of
moments estimate (Table S6, “Bursty”) as the starting point and performed 15 steps of gradient de-
scent. The procedure was parallelized over up to sixty processors (Intel Xeon Gold 6152, 2.10GHz).
Runtimes varied between 33 minutes for the smallest dataset and 2.7 hours for the largest.

To identify the optimal sampling parameters, we identified the grid point with the lowest total
Kullback-Leibler divergence, computed over all genes. To ensure we obtained the true optima under
the bursty model, we performed four rounds of fixed-point iteration. First, we rejected a subset of
genes if they were detected by the chi-squared test with p = 0.001 with a Bonferroni correction,
and their Hellinger distance from the data distribution exceeded 0.05. Next, we recalculated the
optimum based on the remaining data (Section S4.3.5 of [33]), and repeated the procedure. This
procedure did not change the optimum for any of the datasets. Further, we investigated the stability
of the optima under gene subsampling, and found them to be stable and consistent (Section S4.3.5
of [33]).

Although the optima discovered for the cell subtypes were fairly close, they were not identical,
with smaller datasets showing striking deviations (Figure S5). From physical considerations, we
assumed the subtypes, which originate from a single technical sample, have the same set of sampling
parameters. For simplicity, we assumed the parameter set inferred from the entire glutamatergic
dataset provided a sufficiently accurate estimate for all of its constituent subtypes, and analyzed
the data under that set of {log10CN , log10 λM}.

To compute the fraction of biological variability, we used the identities in Equation 10 using
the parameters inferred for each gene j:

fj,bio =
η̃2j
η2j
. (14)

To characterize the relationship between the average expression and the fraction of variation
attributed to biological variability of interest, we plotted fj,bio against the mean Zj for each gene.
This visualization reveals whether an increase in variability is attributed to biological or technical
effects. This analysis is shown in Figure 2b.

To understand the fits’ sensibility, we plotted the fj,bio value against the baseline value fj,baseline,
computed using Equation 11 separately for each gene j. To easily compare the results to the
threshold, we plotted the admissible region. This analysis is shown in Figure 2c.

If the fit is sufficiently good, Equation 10 naturally enforces the bound in Equation 11. To
understand whether a mechanistic analysis provides actionable information, or merely exploits
external information about cell types, we used the fit to the entire dataset to repeat the analysis.
This approach introduces some error, as we neglect intra-cell type differences altogether, and do
not use goodness-of-fit testing to omit genes that show subtype heterogeneity. If the trends look
substantially similar, the results suggest that the Monod procedure attributes the vast majority of
CV2 to intrinsic and bursting noise, with only a minor fraction ascribed to inter-subtype differences.
In other words, if we do not use π at all, but still obtain similar results, the agreement with the
bound is not an incidental consequence of the expectation over π in the last two lines of Equation
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10. To compute η̃2/η2 in this scenario, we used the mean and variance identities in the first four
lines of Equation 10. These results are shown in Figure S10a-b.

Comparisons between transformation and the mechanistic model. To compare the attri-
butions implicit in the transformation procedures and the mechanistic fit, we plotted them against
each other. If the two methods agree, they should lie on the line of identity. The results are shown
in Figure S9 for the Monod subtype analysis and Figure S10c-f for the analysis of the entire dataset.
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5.2 Nuclear data integration

We would like to coherently integrate single-cell and single-nucleus RNA sequencing data. To do so,
we need to specify the relationship between the two modalities. We can establish such a relationship
from first principles by making assumptions regarding the underlying biophysical processes. For
example, by proposing that nascent RNA are restricted to the nucleus, we can reasonably assume
that the nascent RNA dynamics should be identical between the two modalities. On the other
hand, the mature RNA distributions and dynamics may have substantial differences, as nuclei are
depleted in this species relative to the entire cell. In this section, we propose a possible foundation
for the integration of these modalities.

5.2.1 Mechanistic model definition

To describe the stochastic dynamics and sampling in a single-cell dataset, we use the formulation
given in Section 2.1 and outlined in more detail in [33]. To connect this model to nuclear data, we
note that formally, it can arise from the following model:

∅ k−→ B ×XN
β−→ XM,nuc

γe−→ XM,cyt
γc−→ ∅. (15)

where XM,nuc and XM,cyt are nuclear and cytoplasmic mature RNA species, respectively. The rate
γe describes the efflux of nuclear RNA, whereas the rate γc describes the degradation of cytoplasmic
RNA.

In the limit γc ≪ γe or γc ≫ γe, the model in Section 2.1 approximately holds for cytoplasmic
data: if one of these stages is considerably longer-lived, the two-stage processing of mature RNA can
be effectively described by a one-stage model. In this case, γ can be interpreted as the lower rate.
We typically assume that the first limit is most relevant, although orthogonal data suggest that the
details are highly gene- and tissue-dependent [58]. We note that it is, in principle, straightforward
[59] implement a model that explicitly incorporates both parameters; however, for computational
facility, we use the simpler reduced model and discard genes that fail to fit it. On the other hand,
for nuclear data, the model holds for γ = γe.

5.2.2 Data processing

To compare the distributions of single-cell and single-nucleus datasets and explain them using a
mechanistic argument, we used mouse neuron datasets generated by 10x Genomics.

Preprocessing. We used kallisto | bustools 0.26.0 to pre-process data. We downloaded a pre-built
M. musculus genome from https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest (mm10, 2020-A version). To build intronic and exonic references,
we used the kb ref function with the --lamanno option. We obtained the raw FASTQ files for the
“Brain 4” and “Brain Nuclei 4” datasets from two multiplexing experiments, both generated using
the 10x v3 chemistry. We selected these datasets because they had the highest average molecule
counts per cell in both technologies. Next, we used the kb count function with the --lamanno

option, as well as the -x 10xv3 whitelist option to quantify the datasets, producing unspliced
(intron-containing) and spliced (non-intron-containing) RNA count matrices [72,73].
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Filtering. We filtered the dataset to remove “low-quality” cells or empty droplets. First, we
removed all barcodes that did not pass the default kallisto | bustools filter. Next, we removed all
cell barcodes that were associated with fewer than T molecular barcodes (T = 3 × 103 for sc and
6× 103 for sn), computed over all genes, corresponding to standard knee plot filtering procedures
(Figure S3). In addition, we removed cells with more than 105 barcodes, as they may reflect obscure
technical noise sources unique to single-nucleus data.

Next, we used Monod 0.2.6.0 to extract genes with moderate to high expression. We removed
two sets of genes: those with very low observed average and maximum expression (XN ≤ 0.01,
XM ≤ 0.01, maxXN ≤ 3, maxXM ≤ 3), and those with excessively high observed maximum
expression, which are too computationally intensive to fit (maxXN ≥ 400, maxXM ≥ 400). This
procedure produced a set of 5,690 genes that met the thresholds in all of the cell populations. We
randomly selected 2,000 genes for further analysis.

Inference and analysis of biophysical parameters. To fit a mechanistic model, we used
Monod 0.2.6.0. We set up a 20× 21 grid over the {log10CN , log10 λM} domain listed in Table S7.

At each grid point, we iterated over the 2,000 genes, using gradient descent to identify the
conditional maximum likelihood estimate of {log10 b, log10 β, log10 γ}, where the rates β and γ are
defined in units of burst frequency k. We used the conditional method of moments estimate as the
starting point and performed 15 steps of gradient descent. The procedure was parallelized over up
to fifteen processors (Intel Xeon Gold 6152, 2.10GHz). Runtimes varied between 2.2 hours for the
whole-cell dataset and 3.8 hours for the nuclear dataset.

To identify the optimal sampling parameters, we identified the grid point with the lowest total
Kullback-Leibler divergence, computed over all genes. To ensure we obtained the true optima under
the bursty model, we performed four rounds of fixed-point iteration. First, we rejected a subset
of genes if they were detected by the chi-squared test with p = 0.01 with a Bonferroni correction,
and their Hellinger distance from the data distribution exceeded 0.05. Next, we recalculated the
optimum based on the remaining data, and repeated the procedure. This procedure did not change
the optimum for any of the datasets. Further, we investigated the stability of the optima under
gene subsampling, and found them to be stable and consistent.

The optimum discovered for the single-nucleus dataset demonstrated noticeably higher molecule
observation probabilities (orange points, Figure S6). This observation was supported by basic ob-
servations of the dataset statistics: despite the depletion of cytoplasmic RNA, the single-nucleus
dataset had as much mature RNA as the single-cell dataset, and approximately half an order of
magnitude more nascent RNA (Figure 2b-c). To illustrate these trends, we computed the offset
from the ratio of the dataset-wide means. In addition, the single-nucleus dataset appeared to ex-
hibit lower noise levels (Figure 2d-e). To obtain a quantitative understanding of the average and
noise behaviors, we computed the fraction of genes that lay above the line of identity.

From physical considerations, the two independent experiments, performed using different
technologies, should not necessarily have the same sampling parameters. However, as the samples
were taken from the same tissue, they should have the same physics of transcription and splicing.
Therefore, we somewhat arbitrarily assumed that the single-cell optimum was sufficiently accurate,
and chose a set of single-nucleus sampling parameters that provided the lowest squared errors
for the log10 b and log10 β parameters. As shown by the blue points in Figure S6, the optimum so
discovered lay approximately half an order of magnitude above the optimum for the single-cell data,
and within the top 5th percentile for the sampling parameter likelihood landscape (hatched region).
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We analyzed the single-nucleus data under that set of parameters, recomputing the goodness-of-fit
statistics accordingly.

To illustrate the differences between the datasets, we plotted the inferred parameters and
the identity line. To quantify uncertainty in the parameters, we exploited the Fisher information
matrix as described in Section S4.3.4 of [33]; we visualized the error bars, which represent the 99%
confidence intervals for the biological parameters, conditional on the sampling parameter values.
Finally, we applied a t-test, implemented through scipy.stats.ttest_ind [68], to the pairs of
single-cell and single-nucleus parameter estimates. We omitted genes rejected by goodness-of-fit
procedures from these computations and visualizations.
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5.3 Mechanistic differential expression

We seek to move beyond averages and explain the differences between single-cell samples and cell
types in terms of biophysical distribution parameters, in the spirit of [76]. In this section, we
propose and apply an approach for the identification of cell type differences which would be poorly
detectable using standard average-based procedures, and demonstrate its performance using an
experiment studying transcriptional noise amplification.

5.3.1 Signatures of frequency modulation

We fit the rate parameters log10 β and log10 γ, setting the burst frequency k to unity. This is
formally equivalent to fitting log10

β
k and log10

γ
k : at steady state, the system is characterized by

three independent parameters, which cannot be distinguished based on a single dataset.
The models we present are not natively adapted to detect changes in k: to unambiguously

distinguish between modulation of upstream and downstream processes, time-resolved data are
mandatory. However, the high correlation between the magnitudes of changes in log10

β
k and log10

γ
k

(e.g., as shown in Section S7.10.3 of [33]) highly suggestive of the hypothesized frequency modula-
tion.

We propose that the modulation of k can be motivated by biological argument. β and γ, the
rates of splicing and degradation, use a one-step, first-order, memoryless reaction as a highly simpli-
fied representation of a series of chemical transformations effected in tandem with a spliceosome or
a ribonuclease (RNase) complex respectively. However, spliceosomes and RNases are promiscuous,
whereas transcription is highly regulated. Therefore, we hypothesize that targeted modulation of
the burst frequency upstream at the gene locus is more mechanistically plausible than the synchro-
nized and targeted modulation of the downstream processes.

If we assume β and γ are constant between conditions or cell types, we can compute an estimate
of k modulation between population 1 and population 2:

∆ log10
β

k
= log10

β2
k2

− log10
β1
k1
,

∆ log10
γ

k
= log10

γ2
k2

− log10
γ1
k1
,

∆ log10 k ≈ −∆ log10
β

k
= log10 k2 − log10 k1

≈ −∆ log10
γ

k
= log10 k2 − log10 k1.

(16)

Therefore, if the approximate equality ∆ log10
β
k ≈ ∆ log10

γ
k holds, we can propose that ∆ log10 k

has a similar magnitude, but the opposite sign. We average the two to estimate the burst frequency
modulation:

∆ log10 k ≈ −1

2

(
∆ log10

β

k
+∆ log10

γ

k

)
(17)

5.3.2 Data processing: mouse neurons

To illustrate the approach, we compared the parameters for glutamatergic and GABAergic cell
types from four mouse datasets (B08, C01, F08, and H12) generated by the Allen Institute for Brain
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Science [40, 71]. We previously performed the fits and identified genes that suggested substantial
parameter modulation [33]. Here, we revisit the fits and summarize the key findings.

First, we used the fits to identify the differentially expressed genes for each parameter (Sec-
tion S4.6.2 of [33]). We use the notation DE-θ to indicate that the log-parameter θ exhibited a
Bonferroni-corrected p-value lower than 0.1 and mean log2 fold change higher than 1. The log2
fold changes were defined as the difference between the parameter values in the GABAergic and
glutamatergic cell types. We omitted data points that were discarded by goodness-of-fit testing.
With this procedure, we identified a set of DE-b, DE-β, and DE-γ genes, separated according to
the sign of the log2 fold change.

We computed the mean log2 fold difference in mature RNA averages between the cell types,
and selected the set of identified DE-θ genes with a magnitude lower than 1. In other words, these
genes have detectably large differences in biophysical parameters, but do not, on average, exhibit
large differences in mature RNA averages µN .

Next, we averaged the mean log2 fold changes in β and γ to obtain an estimate of the log2 fold
change in the burst frequency, as in Equation 17. We plotted the resulting aggregated fold changes
in burst size and burst frequency against each other, highlighting genes that were DE-θ for some
biological θ, but not DE-µN .

We colored these genes by the effect on noise. It is elementary to show that, if the mean
remains constant, a decrease in b compensated by an increase in k – equivalently, decrease in β/k
and γ/k – leads the joint distribution of nascent and mature RNA to become bivariate Poisson.
For example, if a gene was found to exhibit significantly higher b, β, or γ in GABAergic cells, we
assigned it to the GABAergic set, as it suggests relative noise amplification in this cell type. This
analysis is shown in Figure 4a.

The structure of this plot bears further discussion, as it provides a convenient summary of
useful statistical properties. The solid diagonal line denotes the set of b and k combinations that
yield a constant mean (all other parameters held equal). The dashed diagonal lines are offset by
unity, and show the range of parameters that give averages with a lower than twofold change in the
mean. The dashed vertical and horizontal lines correspond to no change in b and k, respectively.
Qualitatively, moving toward the top right corresponds to increasing the mean; moving toward
the bottom left corresponds to decreasing the mean; moving toward the top left corresponds to
decreasing the noise to the Poisson limit; moving to the bottom right corresponds to increasing the
noise.

To demonstrate the qualitative impact of noise modulation, we visualized the distributions,
as well as the fits, in both cell types, based on data from the B08 dataset. We selected the genes
Nin and Bach2, which are associated with neuronal development, as discussed in [33]. In addition,
we computed these genes’ mature count averages in each cell type. This demonstration is given in
Figure 4b.

5.3.3 Data processing: mouse embryonic stem cells

To demonstrate the potential of this approach for detecting broad trends in transcriptional mod-
ulation without replicates, we considered the transcriptomes of mouse embryonic stem cells with
and without 5’-iodo-2’-deoxyuridine (IdU) perturbations. This dataset was generated by Desai et
al. [63,65] to investigate the effect of IdU incorporation on transcriptional bursting properties; the
authors found that the perturbation appeared to increase the noise genome-wide, but did not affect
averages.
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Preprocessing. We used kallisto | bustools 0.26.0 to pre-process data. We downloaded a pre-built
M. musculus genome from https://support.10xgenomics.com/single-cell-gene-expression/

software/downloads/latest (mm10, 2020-A version). To build intronic and exonic references,
we used the kb ref function with the --lamanno option. We obtained the raw FASTQ files for
the DMSO (control) and IdU datasets, both of which were generated using the 10x v2 chemistry.
Next, we used the kb count function with the --lamanno option, as well as the -x 10xv2 whitelist
option to quantify the datasets, producing unspliced (intron-containing) and spliced (non-intron-
containing) RNA count matrices [72,73].

Filtering. We filtered the dataset to remove “low-quality” cells or empty droplets. First, we
removed all barcodes that did not pass the default kallisto | bustools filter. Next, we removed all
cell barcodes that were associated with fewer than 4 × 103 molecular barcodes, computed over all
genes, corresponding to standard knee plot filtering procedures (Figure S4).

Next, we used Monod 0.2.6.0 to extract genes with moderate to high expression. We removed
two sets of genes: those with very low observed average and maximum expression (XN ≤ 0.01,
XM ≤ 0.01, maxXN ≤ 3, maxXM ≤ 3), and those with excessively high observed maximum
expression, which are too computationally intensive to fit (maxXN ≥ 400, maxXM ≥ 400). This
procedure produced a set of 4,373 genes that met the thresholds in both cell populations. We
randomly selected 2,000 genes for further analysis, ensuring that the genes analyzed in the previous
publications (Nanog, Sox2, Pou5f1, Klf4, Wdr83, Stx7, Hif1an, Mtpap, Farsa, Wipi2, and Snd1 )
were included.

Inference and analysis of biophysical parameters. To fit a mechanistic model, we used
Monod 0.2.6.0. We set up a 20× 21 grid over the {log10CN , log10 λM} domain listed in Table S7.

At each grid point, we iterated over the 2,000 genes, using gradient descent to identify the
conditional maximum likelihood estimate of {log10 b, log10 β, log10 γ}, where the rates β and γ are
defined in units of burst frequency k. We used the conditional method of moments estimate as
the starting point and performed 15 steps of gradient descent. The procedure was parallelized over
up to eighty processors (Intel Xeon Gold 6152, 2.10GHz). Runtimes varied between sixteen and
seventeen minutes.

To identify the optimal sampling parameters, we identified the grid point with the lowest total
Kullback-Leibler divergence, computed over all genes. To ensure we obtained the true optima under
the bursty model, we performed four rounds of fixed-point iteration. First, we rejected a subset
of genes if they were detected by the chi-squared test with p = 0.01 with a Bonferroni correction,
and their Hellinger distance from the data distribution exceeded 0.05. Next, we recalculated the
optimum based on the remaining data, and repeated the procedure. This procedure did not change
the optimum for any of the datasets. Further, we investigated the stability of the optima under
gene subsampling, and found them to be stable and consistent.

The discovered optima were not consistent between datasets (orange points, Figure S6), and the
likelihood landscapes were rugged and inconclusive (hatched region, Figure S6). This observation
accords with our previous analyses of 10x v2 datasets (e.g., panels a. of figures in Section S7.6
of [33]): the older v2 technology does not appear to provide enough information to identify the
technical noise parameters. Therefore, we somewhat arbitrarily used the grid point closest to
log10CN = −6.5, log10 λM = −1.2, near the optimum discovered for a mouse neuron dataset
in Figure 3e of [33]. We analyzed the datasets under that set of parameters, recomputing the
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goodness-of-fit statistics accordingly.
We computed the mean log2 fold change in burst size and burst frequency (Equation 17), and

plotted them against each other, using the conventions in Figure 4. We omitted data points that
were discarded by goodness-of-fit testing. Finally, we identified all genes with log2 change higher
than 1.5 in b as well as k, which demonstrated significant noise amplification. To focus on genes
with biologically interesting effects, we selected only those which had a mature RNA mean greater
than unity in at least one of the conditions, and reported them.

29

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 17, 2023. ; https://doi.org/10.1101/2022.06.11.495771doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.11.495771
http://creativecommons.org/licenses/by/4.0/


References

[1] Florian Wagner, Dalia Barkley, and Itai Yanai. Accurate denoising of single-cell rna-seq data
using unbiased principal component analysis. BioRxiv, page 655365, 2019.

[2] Hoa Thi Nhu Tran, Kok Siong Ang, Marion Chevrier, Xiaomeng Zhang, Nicole Yee Shin
Lee, Michelle Goh, and Jinmiao Chen. A benchmark of batch-effect correction methods for
single-cell rna sequencing data. Genome biology, 21:1–32, 2020.
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