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Abstract 
 
We demonstrate a novel variant calling strategy using barcode-stratified alignments on 25 
tumor and normal 10XGenomics scRNA-seq datasets (>200,000 cells). Our approach 
identified 24,528 exonic non-dbSNP single cell expressed (sce)SNVs, a third of which are 
shared across multiple samples. The novel sceSNVs include unreported somatic and germline 
variants, as well as RNA-originating variants; some are expressed in up to 17% of the cells, 
and many are found in known cancer genes. Our findings suggest that there is an 
unacknowledged repertoire of expressed genetic variants, possibly recurrent and common 
across samples, in the normal and cancer transcriptome. 
 
Key Words 
SNV, SNP, mutation, scRNA-seq, single cell, sceSNV, scExecute, somatic mutation, RNA-
editing, post-transcriptional modification 
 
 
 
 
 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.12.495797doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.12.495797
http://creativecommons.org/licenses/by/4.0/


 2 

Background 
 
To date, most genetic variation is studied in bulk sequencing datasets, where low (cellular) 
frequency variants are difficult to distinguish from sequencing errors and other artifacts. Low 
cellular frequency variants may indicate pre- or early-somatic clonality in cancer and normal 
tissues or cell-specific RNA post-transcriptional control [1,2]. Furthermore, the ability to 
detect variants at cell level and knowledge of natural cellular expressed variation are highly 
compatible with emerging cutting-edge technologies assessing cell-level gene and feature 
function (Perturb-Seq)[3], characterizing RNA-protein interactions (STAMP), or conducting 
targeted cell-level genome editing (RADARS) [3–5]. 
 

 
Results and Discussion 
 
Here, we apply a novel strategy that utilizes barcode-stratified alignments and variant calling 
on 25 tumor and normal publicly accessible scRNA-seq datasets including prostate cancer 
(pc), cholangiocarcinoma (chlg), neuroblastoma (nb), normal adrenal (na) and normal embryo 
(ne (>200,000 cells) generated using the 10XGenomics 3’UTR workflow [6–8]. We extracted 
single cell alignments using scExecute [9], on pooled scRNA-seq alignments generated by 
STARsolo [10] and on each single cell alignment called variants using GATK [11] and Strelka2 
[12] in parallel, retaining for downstream analysis only variants confidently identified by both 
callers. The pipeline is presented on Figure 1a. 
 
Using this approach, we identified 24,528 exonic non-dbSNP cell-specific expressed single 
nucleotide variants (sceSNV) from the 25 samples (Table1, and S_Table1), 7,824 of which 
were observed in more than one sample, and 384 of which are observed in more than half of 
the datasets (Figure 1b). Of these non-dbSNP sceSNVs, 1,539 (6.3%) are reported in the 
database of somatic mutations COSMIC [13] and the rest are novel. Some novel sceSNVs 
were expressed in up to 17% of the cells in a dataset, and many were positioned in known 
cancer related genes. Cancer genes with multiple novel non-synonymous sceSNVs in more 
than one sample included JUN, JAK1, NFKB1A, PIC3R1, RAC1 and RBX1. The genes with at 
least 15 novel non-synonymous sceSNVs in more than one sample were HSP90AA1, 
HSP90AB1, ELOB, GSTP and JUN. Novel sceSNVs had a higher proportion of missense and 
stop-codon involving substitutions, and a lower proportion of synonymous variants, as 
compared to the dbSNP sceSNVs in the same dataset (p<0.0001, chi-squared test, Figure 
1c). In addition, the novel sceSNVs had a higher proportion of A>G substitutions (17.7% vs 
14.4% in the DbSNP sceSNVs, S_Figure1). For 1272 of the novel sceSNVs loci, we observed 
changes of the reference nucleotide into two different alternative nucleotides in different cells 
and samples, and for 120 loci – changes into all three possible alternative nucleotides (See 
S_Table1). 
 
Next, we estimated the expressed Variant Allele Frequency (VAR_RNA, calculated as the 
proportion of sequencing reads carrying the alternative nucleotide over all the reads covering 
the locus) [14], and plotted it over the two-dimensional UMAP projection of the cells clustered 
and annotated based on gene expression [15,16] using scSNVis [17]. While many sceSNVs 
did not show a distinct cell-distribution pattern (Figure 1d), some were confined to particular 
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cell clusters and cell types despite the ubiquitous expression of their harboring gene (Figure 
1e).   

 
 
 
 
 
 
 
 

Figure 1. a. Processing pipeline. b. Distribution of the number of novel sceSNVs detected in one or more samples. c. Distribution of 
predicted functional annotations between the novel and the previously reported sceSNV; novel sceSNVs are enriched in missense 
and stop-codon involving substitutions. d. top: UMAP projections visualizing the cell distribution and the cellular expressed variant 
allele frequency (VAF_RNA) of the missense substitution at locus 14:102085303_G>A in the gene HSP90AA1 across 4 samples 
from the neuroblastoma dataset. The red color intensity shows the relative expression of the sceSNV in cells with at least 3 
sequencing reads covering the sceSNV locus, and the green color indicates that all the reads covering the SNV locus carried the 
reference nucleotide, consistent with non-zero gene expression. Cells in which the SNV locus is covered by less than 3 reads 
(corresponding to low or absent gene expression) are shown in grey. Bottom: cell types as classified by SingleR. e. top: UMAP 
projections visualizing the cell distribution of the missense substitution at locus 22:42086245_C>T in the gene NDUFA6 in the two 
prostate cancer samples; the expression of the sceSNV is confined to epithelial cells (bottom). 
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Table 1. SceSNVs in 2 and more cells across 25 tumor and normal samples 
 

 
 
 
Variant calling from individual scRNA-seq alignments is a new and unexplored approach; 
therefore, to minimize false positives among the novel sceSNVs, we performed stringent 
quality filtering and examination of the sceSNV confidence at several levels. First, we used 
for our analyses the intersection of the highest quality calls in at least two cells per dataset by 
two callers widely used for RNA variant detection, GATK and Strelka2 (S_Methods) [18]. In 
parallel, for all novel sceSNV positions we estimated the variant read counts across all cells in 
each dataset using a method for cell-level tabulation of the sequencing read counts bearing 
reference and variant alleles from barcoded scRNA-seq alignments. [14].  SCReadCounts was 
fully concordant with the variant call results, identifying variant reads in all cells where sceSNV 
was called. Third, for 500 arbitrarily selected sceSNVs, we visually reviewed the local 
alignment using the Integrated Genomics Viewer (IGV) [19]. This analysis showed that for up 
to 2% of the calls per sample the originally called variant participates in a more complex 
alteration, involving two or more consecutive nucleotides. These calls were removed across 
the entire dataset by assessment the presence of more than one call within any 25 
consecutive bases in the same cells. The remaining loci showed high quality alignment and 
confident variant presence (examples on S_Figure2, S_Figure3 and S_Figure4). Fourth, for 
the same set of 500 sceSNVs we examined the between-cell occurrence and distribution. 
Many sceSNVs show preferential presence in particular cell-clusters, suggesting a relationship 
between the sceSNV and cluster-specific gene expression (Figure 1e and S_Figure5) and the 

Total N exonic 
sceSNVs

N sceSNVs in 
COSMIC

SAMN16086830 pc1 v2 1455 3268 2147 159
SAMN16086829 pc2 v2 2019 3211 2096 148
SAMN13012145 chlg1 v2 3519 6269 4193 314
SAMN13012146 chlg2 v2 2453 1215 253 32
SAMN13012147 chlg3 v2 3579 4938 3823 299
SAMN13012148 chlg4 v2 3769 4438 4022 325
SAMN13012149 chlg5 v2 2738 5335 4888 316
SAMN13012150 chlg6 v2 4993 3262 1896 146
SAMN12799275 nb1 v2 4068 3331 2343 230
SAMN12799274 nb2 v2 5789 2822 1776 135
SAMN12799273 nb3 v2 6988 2810 2156 151
SAMN12799272 nb4 v2 2997 2876 2198 189
SAMN12799270 nb5 v2 6836 3721 3071 226
SAMN12799269 nb6 v2 6994 3277 2744 180
SAMN12799266 nb7 v2 12448 2591 1564 144
SAMN12799264 nb8 v2 16554 1970 1229 99
SAMN12799263 nb9 v2 4273 2314 1616 123
SAMN15453063 nb10 v3 12441 3613 490 49
SAMN15453064 nb11 v3 7582 3528 282 24
SAMN12799261 fa1 v2 9135 1151 385 27
SAMN12799259 fa2 v2 4910 1251 430 27
SAMN12799258 fa3 v2 26638 2944 2680 152
SAMN12799257 fa4 v2 22283 2619 2369 158
SAMN15453062 ne1 v3 19414 5801 962 59
SAMN15453069 ne2 v3 14192 3498 309 23
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related molecular context of cell-specific sceSNV. Fifth, we restricted our analysis to exonic 
regions, comprising the best-known reference variational context; we additionally filtered out 
difficult to assess repeated genomic regions and removed ribosomal genes due to their 
significant number of homologous genes and pseudogenes. We note that while these 
stringent measures are likely to increase false negatives, in this pilot approach we prioritize 
high-quality, high confidence sceSNV calls over a comprehensive search for sceSNVs.   
 
The identified novel sceSNVs include previously unreported somatic and germline variants, 
as well as RNA-originating variation. Without cell-level matched DNA, the origin of sceSNVs 
is difficult to assign. However, for some sceSNVs, likely origin can be inferred from their 
cellular allele expression (VAF_RNA) and distribution across cells and samples. For example, 
while the above-described filtering cannot completely exclude germline DNA variants, they 
are unlikely to constitute a large proportion of novel sceSNVs because they are not reported 
in DbSNP and are observed in only a modest proportion of the cells per sample. On the other 
hand, low cellular frequency sceSNVs are consistent with both somatic DNA sceSNVs and 
sceSNVs resulting from post-transcriptional RNA-modifications such as RNA-editing. Somatic 
sceSNVs observed in multiple samples are likely to be reported in COSMIC, suggesting that 
the non-COSMIC novel sceSNVs are enriched in post-transcriptional RNA-modifications. 
While our set of novel sceSNVs do not contain previously reported RNA-editing loci and we 
exclude repetitive genome regions, known to contain the highest frequency of editing events, 
low cellular frequency editing of exonic positions is possible [20,21].  Another possibility for 
some non-COSMIC somatic sceSNVs is that they exist only in the period between their 
incidence and cell death, for example, if they impair critical mechanisms for cell-survival or 
replication. Such a scenario would prevent replication of cells bearing the sceSNV and result 
in low cellular frequency, and consequently challenge detection by bulk sequencing 
techniques. In regard to VAF_RNA, RNA-editing sceSNVs are likely to have higher VAF_RNA 
variance and attain any value between 0 and 1, whereas for many somatic mutations in 
biallelically expressed genes VAF_RNA is expected to be closer to 0.5. Finally, sceSNVs 
resulting from random transcription errors are unlikely to have high prevalence among our 
set as they are expected to be seen in a single molecule (i.e., represented by only one read 
per cell), which calls are excluded by our stringent quality filtering. Of note, regardless of 
DNA- or RNA-origin, the sceSNVs represent part of the functional cellular transcriptome, can 
exert effects on the proteins sequence and function, and can increase molecular variation of 
the cell at the multi-omics level.   
 
Finally, to assess potential links between the novel sceSNVs and cell-specific gene 
expression, for a subset of sceSNVs we performed differential expression analysis between 
sceSNV-bearing cells and the rest of the cells in the dataset using Deseq2 [22]. Notably, for 
many sceSNV, we observed gene expression differences concordant across different 
samples, and consistent with current knowledge. For example, DE analysis of cells with and 
without the novel stop codon substitution 1:45511398_C>T in PRDX1 identified 5 and 7 
significantly deregulated genes in the two prostate cancer samples respectively (padj < 0.2), 
four of which are shared between the two samples and deregulated in the same direction 
(S_Table2). Three of these four genes – TAGLN, ACTA2 and MYL9 - participate in a well-
known network (S_Figure6). The observation of shared and concurrently deregulated genes 
in cells bearing the same sceSNVs provides additional evidence for these sceSNVs as true 
positives and suggests causative, mechanistic and functional implications. Possible scenarios 
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include sceSNVs regulating the expression of one or a set of genes, or RNA-modification 
events taking place in cells with similar gene expression, both potentially more frequent for 
sceSNVs co-clustered in cells of similar types.    
 
 

Conclusions 
 
Here, we explore for the first-time expressed genetic variation at cell-level. Our findings 
suggest that there is an unappreciated repertoire of cell-level expressed genetic variation, 
possibly recurrent and common across samples, that participates in transcriptome function 
and dynamics in both cancer and normal cells. While the DNA- or RNA-origin of these variants 
is currently difficult to confidently determine, their appearance and, for some, relationship to 
certain gene-sets and cell types, suggests novel mechanisms and function for expressed 
genetic variation. We also demonstrate an assessment strategy for cellular and functional 
context by studying deregulated genes in the cells bearing specific sceSNVs. Furthermore, 
correlation between their VAF_RNA and the expression of harboring or other genes using 
scReQTL [23] may also provide needed biological context. The analysis of sceSNVs from 
scRNA-seq data is crucial to support emerging methods that use cell-level introduction and 
tracking of RNA-variants for manipulating cellular behavior and temporal deconvolution of 
cellular events [3–5]. Interpretation of these new methods’ results will require prior knowledge 
of naturally occurring cell-level genetic and transcript variation, which we explore in this work. 
The study of expressed cell-specific variants in scRNA-seq data, as demonstrated here, has 
the potential to link expressed variation to tissue evolution and cell fate and has a role in the 
successful implementation of emerging single-cell biotechnologies. 
 
 

Methods 
 
The methods used to perform this study are described in detail in S_Methods. 
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