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Abstract 
Understanding the interplay between sensory input, endogenous neural dynamics, and behavioral output 
is key toward understanding the principles of neural computation. Hippocampal place cells are an ideal 
system to investigate this closed-loop interaction, as they are influenced by both self-motion (idiothetic) 
signals and by external sensory landmarks as an animal navigates its environment1–9. To continuously 
update a position signal on an internal “cognitive map”, the hippocampal system integrates self-motion 
signals over time10,11. In the absence of stable, external landmarks, however, these spatial correlates of 
neuronal activity can quickly accumulate error and cause the internal representation of position or 
direction to drift relative to the external environment1,5. We have previously demonstrated that, in 
addition to their known roles in preventing and/or correcting  path-integration error, external landmarks 
can be used as a putative teaching signal to recalibrate the gain of the path integration system6. However, 
it remains unclear whether idiothetic cues, such as optic flow, exert sufficient influence on the cognitive 
map to enable recalibration of path integration, or if instead an unambiguous allocentric frame of 
reference, anchored by polarizing landmark information, is essential for path integration recalibration. 
Here, we use principles of control theory12,13 to demonstrate systematic control of place fields by pure 
optic flow information in freely moving animals by using a neurally closed-loop virtual reality system that 
adjusts optic flow speed as a function of real-time decoding of the hippocampal spatial map. Using this 
“cognitive clamp”, we show that we can not only bring the updating of the map under control of the optic 
flow cues but we can also elicit recalibration of path integration. This finding demonstrates that the brain 
continuously rebalances the influence of conflicting idiothetic cues to fine-tune the neural dynamics of 
path integration, and that this recalibration process does not require a top-down, unambiguous position 
signal from landmarks. 
 

Main 

The spatial firing fields of hippocampal place cells are determined by allothetic inputs (such as visual 
landmarks and environmental boundaries) and path integration of idiothetic inputs (such as optic flow 
and vestibular signals)9.  Decades of research have provided detailed insight into how allothetic cues can 
exert prercise control over the firing of place cells3,6,7,14–17. However, much less is understood about the 
mechanisms by which idiothetic cues affect place cells because, in the absence of landmarks, the updating 
of the map is unstable—when only idiothetic cues are available, the internal representation drifts and 
rapidly becomes unbound to the world frame of reference1,2,11.  
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Control theory provides a basis for stabilizing unstable systems and thus provides a powerful experimental 
arsenal to disentangle the elements of neural computation12,13,18–22. Famously, the voltage clamp allowed 
Hodgkin and Huxley to stabilize the membrane potential at a constant reference in order to pinpoint the 
roles of individual ion channels23. More recently, a growing body of literature has garnered new insights 
into neural computation by using control engineering to close feedback loops on neural representations24–

27. Here, we extend the application of control theory to high order spatial representations; specifically, we 
introduce a “cognitive clamp” that maintains at a desired reference an essential cognitive variable for 
forming the hippocampal cognitive map, the gain of the path integrator. This gain relates self-motion 
information from idiothetic cues to an updating of position on the internal hippocampal representation. 

We used a unique, immersive planetarium-style virtual reality (VR) apparatus (the “Dome”28; Fig. 1a) to 
provide pure optic flow input to a running rat while recording hippocampal place cells. Our study consisted 
of two conditions. In open-loop experiments, the optic flow cues in the Dome were tied to the movement 
of the rat such that its velocity with respect to the cues could be directly controlled via a pre-determined 
profile, building on human and other animal behavioral29–36 and neurophysiological37–44 experiments. In 
novel closed-loop experiments, the rat’s velocity relative to the cues was modulated in relation to 
neurophysiological activity in its hippocampus. This neural feedback was able to stabilize and recalibrate 
the path integrator gain in the absence of an absolute spatial reference frame typically provided by 
allothetic landmarks. 

Open-loop stripe manipulation influences hippocampal gain 
Spatially alternating light and dark stripes were projected onto the inside of the Dome shell to provide a 
pure optic flow signal (Fig. 1b). There were no salient, polarizing landmarks in the Dome, and thus the rats 
were presumably forced to rely on idiothetic cues and path integration to maintain their sense of location 
as they ran laps.  Rats typically ran counterclockwise (CCW) an initial 15 laps when the stripes were 
stationary (Epoch 1; Fig. 1d).  After Epoch 1, we began rotating the visual stripes as a continuous, 
predetermined function of the rat’s movement through the environment.  The stripes were moved 
according to a gain 𝑆𝑆, which determines the ratio of a rat’s speed relative to stripes to the rat’s speed in 
the lab frame. The stripes only moved when the rat moved. When 𝑆𝑆 > 1, the stripes moved in the 
direction opposite to the rat’s movement; when 𝑆𝑆 < 1, the stripes moved in the same direction as the rat; 
and when 𝑆𝑆 = 1, the stripes did not move at all (Fig. 1c). For example, if a rat ran CCW, then with 𝑆𝑆 = 2, 
the stripes moved at the same speed as the rat, but CW; with 𝑆𝑆 = 0.5, the stripes moved at half the speed 
of the rat in the same CCW direction.  

A typical open-loop session (N = 5 rats, 41 sessions, mean 22 units/session meeting place-field inclusion 
criteria; see Methods) is shown in Figs. 1d-g.  For the first 15 laps, place fields drifted backward each lap. 
This drift is a consequence of the error that accumulates every lap when the animal must rely solely on 
path integration without any landmarks to prevent and/or correct drift. Importantly, this drift indicates 
that any landmarks in the environment (inside or outside the Dome) were insufficient for the rat to anchor 
its map.  On lap 16, we began to rotate the stripes by ramping the stripe gain 𝑆𝑆 up to a value of 1.461. The 
place fields drifted more swiftly, in the same direction as the stripe movement.  This indicates that optic 
flow alone can qualitatively influence place fields40, similar to previous work with thalamic head direction 
cells in rats39 and retrosplenial spatial cells in mice38. 
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Fig. 1. (a) VR Dome apparatus. Rats ran on a circular table surrounded by a hemispherical shell on which visual patterns were 
displayed by a projector, whose image reflected off a hemispherical mirror onto the inner surface of the shell. The rat ran 
within the bounds of an enclosure that was automatically moved to track the rat’s position as measured by an overhead 
camera. (b) Stripes projected within the dome. (c) The stripe gain, 𝑆𝑆, related the velocity of the rat with respect to the lab, 
𝑣𝑣, and its velocity with respect to the stripe frames of reference, i.e. 𝑆𝑆 × 𝑣𝑣. In Epoch 1, stripes were stationary (𝑆𝑆 = 1). In 
Epoch 2, stripes were moved in the same (𝑆𝑆 < 1) or opposite (𝑆𝑆 > 1) direction of the rat; specifically, the stripes were 
commanded to move at the difference (circle with +/-) between the rat’s velocity in the respective frames, namely 𝑣𝑣 −
𝑆𝑆 × 𝑣𝑣 = (1– 𝑆𝑆) × 𝑣𝑣. (d-g) Hippocampal gain decoding. The 𝑥𝑥 axis on all plots is the angular distance the rat ran on the table, 
in laps. (d) Stripe gain (𝑆𝑆; blue) and hippocampal gain (𝐻𝐻; yellow) during Epochs 1-2 in one session. 𝑆𝑆 = 1 in Epoch 1 and was 
ramped up to and held at S = 1.46 during Epoch 2. 𝐻𝐻 was decoded by our algorithm (see Supp. Fig 3). (e) Spikes from one 
unit (blue) plotted as a function of the rat’s angle θ (deg) on the table, relative to the laboratory frame of reference. Each 
gray or white vertical bar denotes 1 lap in the lab frame. The unit fired at the same location in the lab frame (𝐻𝐻 ≃ 1) for the 
first 2 laps but its place field began to drift backward on the track starting at lap 3 (𝐻𝐻  > 1). (f) Spatial spectrogram of firing 
rate of this unit computed with a 6-lap sliding window. The 𝑦𝑦 axis denotes spatial frequency and color denotes power at each 
frequency at each spatial location. The dotted line shows the dominant spatial frequency tracked by our algorithm (i.e., 𝐻𝐻). 
The second harmonic of 𝐻𝐻 is also evident. (g) Same spikes as (e) plotted in the hippocampal frame of reference (Y = ∫𝐻𝐻 𝑑𝑑θ , 
wrapped at 360°) with gray and white bars denoting laps in this frame of reference. Firing fields are aligned in the 
hippocampal frame of reference, indicating accurate decoding of 𝐻𝐻. (h) Spatial information scores in the hippocampal frame 
are significantly higher than those in laboratory and stripe frames for each rat (one session/rat with greatest number of units 
to avoid double counting, sessions with n= 43, 64, 51, 78, 28 units). Data are mean +/- s.e.m. with scores from individual 
units shown. 
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To quantify the drift of place fields over time, we estimated the gain of the hippocampus using an 
improved version of the population decoder in our prior study6. The hippocampal gain 𝐻𝐻 can be thought 
of as the relationship between the animals’ physical movement through the world and the updating of its 
cognitive map. When 𝐻𝐻 = 1, the firing pattern of a spatial cell repeats precisely once per lap; when 𝐻𝐻 <
1, in contrast, the pattern repeats less frequently than once per lap, i.e. the rat’s position on its 
hippocampal map updates more slowly than the rat’s actual movement on the track (and vice versa when 
𝐻𝐻 > 1). The decoder works by determining the spatial frequency of place cells’ repeated firing fields as 
the animal traverses multiple laps (Fig. 1f; see Methods, Extended Data Fig. 3a). We found that the 
responses of place cells recorded in any given session were largely coherent during the manipulations of 
optic flow (Extended Data Fig. 3d). By integrating the decoded value of 𝐻𝐻, we can compute the position 
of the rat in its own internal reference frame, which we term the hippocampal frame. The rate maps of 
place fields calculated in the hippocampal frame (Fig. 1g) had greater spatial information than rate maps 
calculated in either the laboratory frame or the moving-stripe frame, whereas information in laboratory 
and stripe frames were not significantly different from each other (Fig. 1h; paired t-tests on mean 
information across rats: hippocampus vs. laboratory, t(4) = 8.50, p = 0.0010; hippocampus vs. stripes, t(4) 
= 11.94, p = 0.00028; laboratory vs. stripes, t(4) = -2.19, p = 0.094). These results indicated that the 
decoding of  𝐻𝐻 was accurate and produced stable rate maps in the hippocampal frame of reference. 

Pure optic flow cues exerted demonstrable influence over the hippocampal representation in all 5 rats 
(Fig. 2).  Across sessions, we varied the stripe gain between 0.231 and 1.769 to produce a parametric 
description of how optic flow cues influenced the hippocampal spatial map. Fig. 2a shows a control session 
when 𝑆𝑆 was maintained at 1 (blue line) (i.e., the stripes were stationary).  The hippocampal gain 𝐻𝐻 started 
out at approximately 1.09 in the first laps of Epoch 1, and this value gradually increased over the course 
of the session.  Because 𝐻𝐻 > 1, the place fields drifted on the track throughout the session (5 place fields 
recorded simultaneously in Fig. 2b), and the rate of drift slightly increased (i.e., the slopes of each cell’s 
lap-by-lap field location became steeper with increasing laps). When plotted in the hippocampal frame 
(Fig. 2b, bottom), each cell’s place field was stable, demonstrating that the hippocampal map drifted as a 
coherent unit. Fig. 2c,d shows an example session where Sfinal = 1.462.  Here, 𝐻𝐻 settled to a relatively 
steady value of 𝐻𝐻baseline = 1.33 in Epoch 1, and then began to rise sharply in Epoch 2, paralleling the rapid 
increase in 𝑆𝑆.  When 𝑆𝑆 reached its final value (Epoch 3), 𝐻𝐻 also stabilized, albeit at a higher value (𝐻𝐻final =
1.80), maintaining approximately its initial baseline offset. Fig. 2e,f shows a final example session in which 
𝑆𝑆 was decreased below 1.  As was typical, 𝐻𝐻 was greater than 1 in Epoch 1; when 𝑆𝑆 was ramped down to 
0.231 in Epoch 2, 𝐻𝐻 decreased accordingly for the first ~10 laps of Epoch 2.  After that time, however, 𝐻𝐻 
appeared to reach a value of ~1.06 in Epoch 2a, and then further decreased to 𝐻𝐻final = 0.84 in Epoch 2b.  
Thus, the change in 𝐻𝐻 followed the direction of the change in 𝑆𝑆 but did not decrease below ~0.84, even 
though 𝑆𝑆final was a much lower value.   

Across animals and sessions, the hippocampal gain at the end of Epoch 2 (after baseline subtraction; i.e., 
𝐻𝐻final − 𝐻𝐻baseline,) was strongly related to the final stripe gain Sfinal in Epoch 2 (Fig. 2g).   However, as 
demonstrated in the examples in Figures 2a-f, the relationship was not linear.  For 𝑆𝑆final > 1, the 
relationship was approximately linear with a slope of 0.58 (𝑝𝑝 = 1.6 × 10−5,𝑛𝑛 = 16), showing that there 
was reliable, but incomplete, control of the hippocampal gain by optic flow cues.  However, for 𝑆𝑆final < 1, 
the slope was much less than for 𝑆𝑆final > 1. A power law, 𝐻𝐻final − 𝐻𝐻baseline = 𝑎𝑎 +  𝑏𝑏𝑆𝑆final

𝑚𝑚 , empirically 
provided a good fit to the data (Fig. 2g): (adjusted 𝑟𝑟2 = 0.88,𝑛𝑛 = 41,𝑑𝑑𝑑𝑑 = 38). This nonlinear 
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relationship indicates an important asymmetry in the affordance of optic flow over the hippocampal gain 
in upward versus downward directions and is consistent with an asymmetric influence of optic flow 
reported in associated regions36,38.  

Closed-loop cognitive clamp stabilizes path integration 
Despite the clear, bidirectional influence of optic flow on place cells, the precision of its control over the 
place fields was variable and offset by significant shifts of the baseline gain from session to session 

 

Fig. 2. Effect of stripe manipulation on hippocampal place cells. (a) Gain curves for a session with  𝑆𝑆 = 1 (stationary stripes; 
blue line). The hippocampal gain 𝐻𝐻 (yellow line) drifted slightly, remaining above 1. No value for 𝐻𝐻 is plotted for the first 6 
laps because 𝐻𝐻 is a 6-window average. (b) Spikes from five units (distinct colors) plotted in the laboratory frame (top) and 
hippocampal frame (bottom) for the session depicted in (a). All units are coherent with each other and drift at the same rate. 
They have stable firing fields (i.e., the fields are aligned horizontally) in the hippocampal frame. The alternating gray and 
white bars indicate laps in the respective frames of reference. (c) Gain curves for a session when 𝑆𝑆final > 1. 𝐻𝐻 initially 
increased and settled to a constant value towards the end of Epoch 1 with 𝑆𝑆 = 1, but was driven upward when 𝑆𝑆 was 
increased. (d) Same as (b), but for the session in (c). (e) Gain curves for a session when 𝑆𝑆final < 1. 𝐻𝐻 was driven downward 
when 𝑆𝑆 decreased, but not to the same extent as upward manipulation. (f) Same as (b), but for the session in (e). (g) The 
change of hippocampal gain from its Epoch 1 baseline value is a nonlinear function of the stripe manipulation, parameterized 
by the final stripe gain 𝑆𝑆final. The relationship is captured by a power law 𝐻𝐻final −𝐻𝐻baseline = 𝑎𝑎 +  𝑏𝑏𝑆𝑆final

𝑚𝑚  (fit 
parameters ± 95% CI: 𝑎𝑎 = −0.17 ± 0.07, 𝑏𝑏 = 0.20 ± 0.08,𝑚𝑚 = 2.12 ± 0.61; adjusted 𝑟𝑟2 = 0.88, n =  41, df = 38). 
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(Extended Data Fig. 4). This imprecision contrasts with the powerful control typically exerted by salient 
landmarks in the environment3,9,14, which was central to our prior demonstration that persistent conflicts 
with polarizing landmarks caused recalibration of the path integrator6. We investigated whether we could 
mimic the strong control by landmarks with pure optic flow information by using concepts from control 
theory to clamp the hippocampal gain to a desired value. Specifically, we created a neural feedback 
control loop in which CA1 place cell activity was used to adjust the experimental stripe gain, 𝑆𝑆, in real time 
to drive the hippocampal gain to an experimentally chosen desired value, 𝐻𝐻desired (Fig. 3a). 

This control scheme compares a real-time, neurally decoded estimate of the hippocampal gain, 𝐻𝐻�, with 
the desired hippocampal gain, 𝐻𝐻desired, and feeds their difference back through an integral control law 
that automatically adjusts the stripe gain: 

𝑆𝑆 =  𝐾𝐾𝐼𝐼 ��𝐻𝐻desired − 𝐻𝐻��𝑑𝑑𝑑𝑑 

Here, 𝑑𝑑 denotes the cumulative, unwrapped angular displacement of the rat (measured in units of laps). 
The value of 𝑆𝑆 was initialized to 1 at the beginning of Epoch 2. The controller constant 𝐾𝐾𝐼𝐼, known as the 
integral gain in control theory, was designed to create a stable closed-loop system based on a simplified 
model that takes into account the 6-lap windowing of our real-time hippocampal gain estimate (see 
Methods). Intuitively, an integral control law continuously increases or decreases the strength of the 
control signal (i.e., S) until the feedback error is extinguished. The integral control law also created smooth 
changes in the stripe gain; that is, a gradual “ramp” emerged that is qualitatively similar to the pre-
programmed stripe gain ramp presented in Epoch 2a of our open-loop experiments (see Fig. 2). This 
gradual ramp avoided sudden changes in optic flow velocity as might result from other control schemes 
(e.g., proportional or derivative controllers). 

Our controller modulated 𝑆𝑆 at 1-s intervals with 𝐾𝐾𝐼𝐼 = 0.2 (see Methods). The control law was 
implemented on four animals across a total of 25 closed-loop sessions (mean 32 units/session). Fig. 3b 
depicts an example session in which 𝐻𝐻 was initially greater than 1 (𝐻𝐻baseline = 1.253). The controller 
gradually reduced the stripe gain based on the integral control law, evidently causing a percept to the 
animal that it was moving progressively slower, until ultimately the hippocampal gain returned to unity 
(𝐻𝐻final = 1.037). In steady state, a population of simultaneously recorded place cells largely stabilized 
itself relative to the track (Fig. 3c), even in the absence of salient landmarks.  

Our controller was successful for a large fraction of sessions in which 𝐻𝐻desired > 1 (see Extended Data Fig. 
2). Fig. 3d depicts an example in which the hippocampal gain was gradually ramped up to a desired value 
of 1.769 via the integral controller and stabilized around that value for approximately 45 laps (𝐻𝐻final =
1.800). As can be seen in Fig. 3e, a population of simultaneously recorded neurons became relatively 
stable in an artificial reference frame that rotated according to the desired reference frame, 
demonstrating the effectiveness of the control law. The control law was generally not successful in 
completely stabilizing to 𝐻𝐻desired < 1, although there was often still an influence of the control law (Fig. 
3f,g). This result parallels the relatively modest effect for 𝑆𝑆 < 1 described earlier in open-loop 
experiments (see Fig. 2e). To assess the overall control law’s effectiveness, we correlated 𝐻𝐻final at the end 
of Epoch 2 with 𝐻𝐻desired, after subtracting baseline from both variables (Fig. 3h). There was a linear 
relationship close to unity between these values, demonstrating that our neurally closed-loop controller 
can was able to systematically command the rate of updating of the hippocampal map using purely optic 
flow cues (slope = 1.02, 𝑟𝑟2 = 0.61, p = 3.76 × 10−6).  
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Fig. 3. Cognitive clamp of hippocampal gain via optic flow.  (a) Schematic of closed-loop controller. The calculation of the 
stripe velocity was the same as in Fig. 1(c), except that during Epoch 2, the stripe gain 𝑆𝑆 was continually updated via an 
integral controller (see text); the controller was designed to clamp an estimate of the hippocampal gain 𝐻𝐻� (see Extended 
Data Fig. 3) to the desired value 𝐻𝐻desired. (b) Example of closed-loop control to 𝐻𝐻desired = 1.  The stripe gain 𝑆𝑆 (blue), real-
time hippocampal gain estimate 𝐻𝐻� (brown), offline hippocampal gain 𝐻𝐻 decoded after the experiment (yellow), and 
desired hippocampal gain 𝐻𝐻desired (dashed green line) are plotted as a function of cumulative angular displacement in laps 
relative to the laboratory frame of reference. 𝐻𝐻baseline denotes the time point used to measure the hippocampal gain prior 
to the onset of the closed-loop controller and 𝐻𝐻final denotes the final hippocampal gain at the end of Epoch 2.  In this 
session, the hippocampal gain in Epoch 1 (before lap 15) was ~1.2.  When the controller was activated, the stripe gain 
became increasingly lower, driving the hippocampal gain to 𝐻𝐻desired = 1 by around lap 40 and maintaining it there 
throughout the remainder of Epoch 2. (c) Raster plots for 5 place cells for the session in (b). The top, middle, and bottom 
graphs show the place fields in the lab, hippocampal, and desired reference frames, respectively. The desired reference 
frame was computed by integrating the desired, constant hippocampal gain: ∫𝐻𝐻desired 𝑑𝑑θ = 𝐻𝐻desired × θ (since 𝐻𝐻desired was 
constant). No points are shown for Epoch 1 in the desired frame as the controller was not activated until Epoch 2.  Because 
𝐻𝐻desired = 1, the top (lab frame) and bottom (desired frame) graphs are identical during Epoch 2. (d) Example of closed-
loop control successfully driving the hippocampal gain toward 𝐻𝐻desired = 1.77 in Epoch 2 and maintaining it at this level for 
the remainder of the Epoch.  (e) Raster plots for 5 place fields from experiment in (d). (f) Example of closed-loop control to 
𝐻𝐻desired = 0.85.  In this example, the gain in Epoch 1 was only slightly higher than 1 and rising.  When the controller was 
turned on, the rise in 𝐻𝐻 was reversed and gradually moved closer to 𝐻𝐻desired. Although the controller was unable to bring 𝐻𝐻 
to 𝐻𝐻desired by the end of the Epoch, 𝐻𝐻 was nonetheless driven below 1 and still decreasing at the end of Epoch 2. (g) Raster 
plots for 5 place fields from experiment in (f). (h) 𝐻𝐻final vs. 𝐻𝐻desired for all 4 rats in the closed-loop control experiment. 
𝐻𝐻baseline was subtracted from both 𝐻𝐻final and 𝐻𝐻desired.  The strong linear fit, close to the unity line (dashed diagonal), 
demonstrates that in most sessions (especially for 𝐻𝐻desired − 𝐻𝐻baseline > 0), we were able to control the hippocampal gain 
strongly by optic flow cues alone via the cognitive clamp. Circled points denote uncontrolled sessions, where the controller 
was unable to bring 𝐻𝐻 to 𝐻𝐻desired (see Supp. Fig. 2). Note that the linear fit is to all points. 
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Recalibration of path integration without landmarks 
Previously, we showed that imposing a sustained conflict between idiothetic path integration and 
movement relative to allothetic cues (i.e., landmarks) induced recalibration of the path integration gain6. 
Here, we leveraged our cognitive clamp to investigate whether such recalibration relied on polarizing 
landmark information, or if the hippocampal network would also recalibrate in the face of sustained 
conflicts between distinct idiothetic cues. Such an effect would demonstrate a previously unknown degree 
of plasticity in how various idiothetic sources either mutually calibrate each other or recalibrate a 
downstream circuit, to continuously fine-tune the path integrator without polarizing landmarks.   

As described above, we used our closed-loop controller to induce a conflict between optic flow and other 
idiothetic cues that were not manipulated (e.g., vestibular, motor copy, proprioception) (Epoch 2). To test 
for optic flow-based recalibration, we next extinguished the stripes (Epoch 3) and examined the 
hippocampal gain, 𝐻𝐻. We restricted our analysis to cases where the control law was successful in driving 
𝐻𝐻 to the desired value (see Methods and Supp Fig. 2; 10 strongly controlled and 8 modestly controlled 
sessions). One rat (#923) was eliminated from further analysis as no sessions for that animal were strongly 
controlled. Two example sessions (Fig. 4a, strong control and Fig. 4b, modest control) illustrate the effect 
of the recalibration, as there is a residual effect in Epoch 3 of the gain control manipulation carried out in 
Epoch 2.  This effect was observed across sessions for all three animals, as there was a strong, linear 
relationship between the desired hippocampal gain and the measured hippocampal gain after the stripes 
were extinguished (Fig. 4c); note that the statistical tests were performed after subtracting the baseline 
offset from each session, a measure that ensures that the experimentally prescribed change in gain 
(relative to baseline) was correlated with a change in the hippocampal gain after stripes were 
extinguished.  

 

Fig. 4. Recalibration of path integration gain via 
the cognitive clamp. (a) Example of recalibration 
to a gain 𝐻𝐻 > 1.  The closed-loop controller drove 
the hippocampal gain 𝐻𝐻 to 𝐻𝐻desired = 1.25.  When 
the stripes were turned off at lap 75, 𝐻𝐻 was 
reduced to ~1.09, which was higher than the 
baseline gain in Epoch 1 (𝐻𝐻baseline = 1.01).  (b) 
Example of recalibration when 𝐻𝐻desired < 1.  This 
example comes from the same animal as (a) on 
the previous day, in which 𝐻𝐻desired was set at 0.87.  
The hippocampal gain was maintained at 𝐻𝐻 = 1 
for 15 laps in the absence of landmarks, and the 
gain was reduced to slightly below 1 for ~20 laps 
when the controller was activated.  At lap 45, the 
hippocampal gain started to decrease further and 
continued to decrease toward 𝐻𝐻desired. When the 
stripes were turned off at lap 75, the hippocampal 
gain was maintained at this value.  (c) 
Hippocampal gain after recalibration (𝐻𝐻recal) as a 
function of the closed-loop controller desired gain 
(𝐻𝐻desired) for the sessions from 3 rats in which the 
stripes strongly controlled the hippocampal gain 
in Epoch 2. For all 3 rats, there was a strong, linear 

relationship between 𝐻𝐻recal and 𝐻𝐻desired (with 𝐻𝐻baseline subtracted from both variables). Modestly controlled sessions are circled 
in gray. For each rat, slopes = 0.41, 0.35, 0.34; 𝑟𝑟2 = 0.64, 0.94, 0.87; 𝑛𝑛 = 4, 4, 7. (d) Stability of 𝐻𝐻recal over laps. There was a 
strong relationship close to unity between the values of Hrecal measured 6 laps and 12 laps after the stripes were turned off 
(slope =  1.02, r2 = 0.99, p = 3.98 × 10−16, n = 18). 
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We examined whether the recalibration effect was persistent by tracking the hippocampal gain across 
Epoch 3 (stripes off). There was a near one-to-one correspondence between the hippocampal gain at laps 
6 and 12 in Epoch 3 (Fig. 4d, slope =  1.02, r2 = 0.99, p = 3.98 × 10−16, n = 18). This correspondence 
shows that the optic flow-based hippocampal gain manipulation induced a long-term recalibration of path 
integration with respect to the other idiothetic cues (e.g., vestibular cues, proprioceptive cues, or motor 
copy) that presumably drove the path integration process when the optic flow cues were severely 
diminished in Epoch 3. 

Discussion 
We used a virtual reality apparatus with a freely moving rat to demonstrate systematic control of place 
cells by optic flow, an idiothetic cue that is often hypothesized to be a major influence on place cells but 
that has not been studied extensively and parametrically in this regard. Under natural conditions, salient 
landmarks and boundaries anchor the internal reference frame of the hippocampus, making it difficult to 
study the influence of idiothetic cues in isolation and almost impossible to quantify how conflicting 
idiothetic cues interact in updating the path integration computation1,2,11. The robust control of place 
fields with optic flow achieved with our cognitive clamp is analogous to the well-documented control 
exerted by allothetic cues such as landmarks3,6,7,14–17. Our previous work showed that such allothetic 
information can provide a teaching signal to recalibrate the path integration system6. In that case, the 
teaching signal—the landmarks—provided an absolute positional signal in its frame of reference that 
anchored the internal, hippocampal frame of reference.  Idiothetic cues, in contrast, can only provide 
relative positional signals (i.e., updating a positional signal relative to the previous estimate of position). 
Does the path integration system require an absolute position teaching signal to calibrate its gain, or could 
relative signals from different idiothetic sources calibrate each other? A neurally closed-loop controller 
allowed us to establish that manipulation of optic flow can induce recalibration of the path integrator in 
a similar way to what we had previously shown by landmark manipulations. Indeed, in the subsequent 
absence of the controlling stripes, the hippocampal gain value was linearly related to the desired gain 
value to which the hippocampal reference frame was clamped. 

Robust internal dynamics are a hallmark of the hippocampal circuitry. Our research shows that the 
internal dynamics of the path-integration network are constantly being fine-tuned in relation to 
potentially conflicting streams of idiothetic information. Importantly, a global, top-down teaching signal 
that binds the hippocampal frame of reference to an absolute external frame of reference is not required 
for recalibration. Instead, the internal dynamics are the reference frame against which idiothetic inputs 
are compared, providing an externally ungrounded teaching signal. The algorithm for multimodal 
integration is reminiscent of clock synchronization and recalibration45. In the presence of a trusted master 
timekeeper (e.g., an atomic clock), drifting clocks are ‘latched’ onto it, and their rates of drift are 
corrected—much like visual landmarks anchor the spatial representation and induce path integrator 
recalibration. In the absence of this master clock, synchronization algorithms rely on a network of clocks 
synchronizing and calibrating each other—much like optic flow influencing (without anchoring) the spatial 
representation and nevertheless inducing recalibration.  

By stabilizing the hippocampal representation in the absence of allothetic landmarks, the neural closed-
loop controller we developed opens the door for studying idiothetic inputs to the hippocampus with a 
degree of control previously reserved for studies of allothetic inputs.  The present study used an online 
decoder and controller to calculate and manipulate the hippocampal gain, but future work will likely be 
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able to decode the hippocampal representation of the actual position of the animal in real time46,47 and 
control directly the location of the hippocampal “activity bump”48 based purely on idiothetic cues.  
Furthermore, the relative influence of different idiothetic inputs can be determined in ways analogous to 
classic voltage clamp studies.  That is, one idiothetic input (e.g., vestibular) can be manipulated 
systematically, and the other (e.g., optic flow) can be adjusted to counter the manipulation and clamp the 
hippocampal representation.  The magnitude of the controller input required to clamp the representation 
is a measure of the relative strength of the two cues’ influence on the updating of position on the 
hippocampal map, much like the current required to maintain the voltage clamp at a set value indicates 
the relative current flow through various ion channels23.  Such neurally closed-loop experiments that 
regulate or stabilize internal variables can generalize to other fields of cognitive neuroscience in which 
high-order neural representations (e.g., evidence accumulation, motor intentions, or attention) are 
influenced by, but not necessarily bound to, external sensory input but are instead dynamically modulated 
by internal variables. 

Methods 
Subjects 
Five Long–Evans rats (Envigo Harlan; 3 males [numbers 771, 791, and 883] and 2 females [numbers  913 
and 923]) were housed individually on a 12:12 h light:dark cycle. There were no obvious differences in 
results between male and female rats, and the data are reported by rat as appropriate in the results. All 
training and experiments were conducted during the dark portion of the cycle. The rats were 5–8 months 
old and weighed 300–450 g at the time of surgery. All animal care and housing procedures complied with 
National Institutes of Health guidelines and followed protocols approved by the Institutional Animal Care 
and Use Committee at Johns Hopkins University. 

Dome apparatus 
To present visual landmarks and optic flow cues to the rat, we used our custom planetarium-like virtual 
reality apparatus, the Dome (see 28, for details on the design and construction). Briefly, rats locomoted 
near the outer periphery of an annular table (152.4-cm outer diameter, 45.7-cm inner diameter) centred 
within the dome. The image from a projector (G7500UNL, Epson Inc., Nagano Japan) fitted with a long-
throw lens (ELPLM11, Epson Inc., Nagano Japan) was reflected off a plane mirror (152 mm × 152 mm × 
12.7 mm, First Surface Mirror LLC, OH, USA) and a hemispherical mirror (254 mm dia., 150 mm radius of 
curvature, 40/20 surface quality, 1/4-wave accuracy, protected aluminum coating, Cumberland Optical, 
MD, USA) mounted at the centre of the Dome. The resulting image covered the inside surface of the Dome 
shell, providing a projected view to the rat 360° in azimuth and almost 90° in elevation. A near-infrared 
camera (GS3-U3–41C6NIR-C, FLIR, OR, USA; 2048x2048 px, 45 fps) with a wide-field lens (NMV-6M1, 6mm, 
F1.8, Navitar, NY, USA) provided an overhead view of the experiment. The 3D position and orientation of 
the head of the rat were detected in real-time (45 fps) through single-camera tracking49 of a set of markers 
mounted on the rat’s neural recording implant. The central rotating pillar of the dome was mounted on 
bearings. An enclosure, attached to the central pillar via radial boom arms, covered a 45° region around 
the rat. The central pillar along with the enclosure were moved using a motor in response to the rat’s 
position, such that the rat was kept near the center of the enclosure. The enclosure was moved only when 
the rat moved forward (counterclockwise) and not when it went backwards (clockwise) – this encouraged 
continuous forward running during behavioural training. A micro-peristaltic pump (RP-Q1, Taskago 
Fluidics, Aichi Japan) on the central pillar dropped liquid reward (50% diluted Ensure®) through a feed 
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tube routed to the front of the enclosure. A plastic spreader and paper towels were attached to a third 
radial boom arm mounted to the central pillar opposite from the enclosure. This cleaning arm wiped up 
or spread out the scent of urine and uneaten food, as well as pushed feces off the table, reducing the 
salience and stability of local olfactory cues. All the non-projected visual cues available to the rat were 
either circularly symmetric (non-polarizing) or moved along with the rat. 

Projected visual cues 
During Epochs 1-2, a set of 80 equally spaced white stripes was projected into the dome to form the optic 
flow cue. The stripes were each 1.5° wide and 40° high, centered at 45° elevation. The spacing between 
the stripes was 360°/80 = 4.5°. The stripes were set to 50% brightness. Stripes were present in all except 
the last epoch in both open- and closed-loop experiments. A circular band (elevation: 65°, brightness 40%) 
was projected in all epochs to provide circularly symmetric illumination inside the dome. During the first 
15 laps, before Epoch 1, a set of stationary landmarks—identical to those used in 6—were superimposed 
over the stripes, and both stripes and landmarks were also stationary. Because this overlay of landmarks 
and stripes did not reliably provide strong cue control, likely because of the lack of visual salience of the 
landmarks against the striped background, this pre-Epoch-1 landmark condition was excluded from 
further analysis. 

Training 
Over 2–3 days, we familiarized the rats to human contact and trained to wear a body harness (Coulbourn 
Instruments). The rats were placed on a controlled feeding schedule to reduce their weights to 
approximately 80% of their ad libitum weight, whereupon they were trained to run for a food reward 
(50% diluted Ensure) on a training table in a different room from the experimental room. The training 
table had the same dimensions as the table inside the dome, but no enclosure or other automated 
systems. Reward droplets were manually placed at arbitrary locations on the track in the path of the 
running rat, and the experimenter attempted to lengthen the average interval between rewards to 
maintain behaviour while delaying satiation.  Training continued until the rats consistently ran 40 laps 
without intervention or encouragement from the experimenters. Training usually took 2–3 weeks. 

Electrode implantation and adjustment 
After training, rats underwent stereotactic surgery where they were implanted with hyperdrives 
containing 16 independently movable nichrome tetrodes, the tips of which were gold-plated to an 
impedance of ∼ 150 kΩ using a nanoZ electroplating system (White Matter LLC, Seattle WA USA). The 
hyperdrives were fabricated in the laboratory using an in-house design and used a 72-channel interface 
board (EIB-72-QC, Neuralynx, Bozeman MT USA). Following surgery, 30 mg of tetracycline and 0.15 ml of 
a 22.7% solution of the antibiotic enrofloxacin were administered orally to the rats each day. After at least 
four days of recovery, we began slowly advancing the tetrodes and resumed food restriction and training 
within seven days of surgery. Once the tetrodes were close to CA1, they were advanced less than 40 µm 
per day. The location of each tetrode relative to the CA1 pyramidal cell layer was judged using the polarity 
of sharp waves and intensity of ripples in the electroencephalogram (EEG) signal captured on one 
electrode of each tetrode, as per well-established procedures. Tetrodes were judged to be placed 
correctly when ripples were intense and multiple units were visible on the pairwise electrode projections 
of spike amplitudes.  
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Post-surgery training 
During days of electrode advancement, we simultaneously food-restricted the rats. On (typically) day 3 of 
food restriction, we placed them into the Dome while wearing the body harness. A magnetic pad attached 
to the harness was used to mount a 6.4-mm marker (Optitrack, Corvallis OR USA) to track the position of 
the rat and actuate the enclosure surrounding the rat in real time, so that the rat remained near the centre 
of the enclosure. To encourage movement in only one angular direction, the enclosure was never moved 
clockwise. Thus, as the rat approached the front (counterclockwise end) of the enclosure, it moved 
forward. When the rat approached the back (clockwise end) of the enclosure, it did not move, thereby 
blocking the path of the rat. A pump dropped liquid reward in front of the running rat, which prompted 
the rat to move forward and thus move the enclosure. Reward was dropped at a spatial interval picked 
from a uniform distribution around a mean interval that varied across days depending on the rat’s 
performance. Within a few days post-surgery, rats learned to run continuously and obtain food reward. 
The mean interval of reward was gradually increased to maintain running performance until the pre-
surgery performance criterion was reached once again (typically 7-10 days). 

Neural recording 
Once the tetrodes were judged to be in CA1 and the rat was again running at least 40 laps inside the dome, 
the experimental sessions began. During sessions, a unity-gain neural recording headstage (EIB-72-QC, 
Neuralynx, Bozeman MT USA) was attached to the implanted hyperdrive. The neural signals passed 
through the commutator and were filtered (600–6,000 Hz), digitized at 30 kHz, and recorded on a 
computer running the Neuralynx Cheetah 5 recording software. Simultaneously, EEG data from one 
channel of each tetrode was filtered (1–475 Hz), digitized at 30 kHz, and stored on the computer. Pulses 
sent from the experiment-control computer were time-stamped and recorded as events on the neural-
recording computer to enable the post hoc synchronization of the data streams recorded on the two 
computers. Procedures for synchronizing and associating signals to the behavioural data are detailed in 
(Madhav et al., 2021). For experimental sessions, instead of the single large marker attached to the body 
harness, a set of smaller (3mm, 4 mm) markers were placed in a rigid arrangement around the recording 
headstage. This allowed our custom algorithm to track the 3D position and orientation of the constellation 
of markers with higher accuracy and robustness49. Thus, the rat did not need to wear the harness during 
sessions. 

Experimental control 
Three computers were used to run the experiment. Their purposes were: (1) general experiment control, 
(2) neural recording, and (3) video tracking and neural recording. Multiple independent programs, called 
nodes, performed each of these tasks and communicated to a master node running on Computer #1 and 
to each other through a software framework called Robot Operating System (ROS)50. Details on the 
hardware and software integration and experimental control are available in 28. 

Real-time firing rate computation 
A python ROS node on the neural recording computer used the NetCom Application Programming 
Interface (API) to receive real-time neural data, and ROS APIs to receive tracked rat positions. Occupancy 
of the rat and spike counts from each tetrode were collected into 5° spatial bins covering a region 6 laps 
prior to the current angular position of the rat (6 × 360/5 = 432 bins). Rat velocities were computed at 
100 Hz, and a count was added to the current occupancy spatial bin if the velocity was above 5 deg/s (≈5 
cm/s). Spikes from each tetrode were tested for high, correlated amplitudes (indicating noise) and then 
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counted into their respective spatial bins if the current velocity was above threshold. Spike counts were 
divided by occupancy, and the resulting 432 firing rates (spikes/s) were made available at 1 Hz. These 
firing rates were used by the online spectral decoder described below, to decode hippocampal gain 
(Extended Data Fig. 3c) for each tetrode. Tetrodes that had no visible neurons or had noisy recordings 
were excluded by the experimenter using a manual interface, and the median of the gain estimates from 
the remaining tetrodes was termed the online hippocampal gain (𝐻𝐻�) and used to manipulate stripe gain 
𝑆𝑆 during Epoch 2 of closed-loop sessions. 

Spectral Decoding 
The algorithm for spectral decoding of hippocampal gain is detailed in Extended Data Fig. 3. The core 
algorithm remained the same as in our previous paper6, but updates (described below) were made to 
improve the robustness of gain estimates. Briefly, we used the spatial periodicity of firing rates of place 
fields on a circular track to compute the spatial frequency of the population representation. For a stable 
spatial representation in the laboratory frame, a typical CA1 place cell would exhibit one firing field that 
repeats every lap, hence the spatial frequency of firing is 1 cycle/lap. If a cell fired more (or less) than once 
per lap, its spatial frequency would be > 1 (or < 1) cycles/lap.  The spatial frequency of firing is termed the 
hippocampal gain of each place cell. 

In this version of the decoder, we improved the threshold mask used to enhance the signal-to-noise ratio 
of the spatial frequency content. The spatial spectrogram of the firing rate curve of each unit was first 
thresholded to the 80% percentile of its power in each spatial window. Contiguous regions above the 
percentile threshold were identified (MATLAB regionprops function). Noise regions tended to lack 
structure and agglomerated into punctate roundish blobs while the parts of the spectrogram denoting 
spatial frequency traces were larger in pixel count and more elongated. Given this, regions which were 
below a pixel area of 70000 and an aspect ratio of 17 were removed from the mask. This thresholding 
mask was then applied to the sharpened spectrogram.  

There were instances when the power in the fundamental trace failed to exceed the threshold described 
previously, causing the maximum-energy trajectory to follow a harmonic instead of the fundamental. An 
assumption was made that if the gain of a cluster at a particular spatial window is a harmonic of another 
cluster, the two clusters were likely from the same periodic signal. Harmonics were identified by taking 
the pairwise ratios between the gain estimates of all clusters at each spatial window. Ratios that were 
close to integer values indicated that the numerator is likely a harmonic of the denominator and were 
divided by this integer.  These harmonic-corrected gain estimates from the individual clusters were binned 
in the space of unwrapped angular position and spatial frequency to identify if the set of gain estimates 
had a coherent grouping (all cluster gain estimates fell within a 0.05 mean absolute error of each other) 
or if multiple subpopulations existed.  

Offline decoding: The spectral decoder was run with a spatial window on each sorted unit passing 
inclusion criteria (see Data Analysis, below). For each 5° spatial bin, the firing rate for each unit was 
calculated by dividing the number of spikes fired by that unit by the amount of time the rat spent in that 
bin when it was moving > 5°/s.   For each unit and for each bin, the hippocampal gain was the spatial 
frequency estimated by the spectral decoder on the 432 firing rates corresponding to the 6-lap window 
prior to that bin. The population hippocampal gain 𝐻𝐻 for each bin was computed as the median of these 
estimates across units. 
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Online decoding: During online decoding, the spectral decoder was run at 1 Hz on the 432 spatially binned 
firing rates for each tetrode corresponding to the 6 laps prior to the rat’s current angular location. Thus, 
every second, a hippocampal gain estimate was generated for each tetrode. The population online 
hippocampal gain estimate 𝐻𝐻� was the median of these estimates across the tetrodes chosen by the 
experimenter. 

Closed-loop controller design 
We hypothesized that we would be able to control the hippocampal gain 𝐻𝐻 to a desired value by 
manipulating the stripe gain 𝑆𝑆 during an experimental session, in response to an online decoded gain 𝐻𝐻�. 
Open-loop experiments demonstrated that changes in 𝑆𝑆 produced changes in hippocampal gain 𝐻𝐻, but 
that this change effect is nonlinear. From Fig. 2g, we observed that, to a reasonable approximation  

𝐻𝐻final − 𝐻𝐻baseline = 𝑎𝑎 +  𝑏𝑏𝑆𝑆final
𝑚𝑚  

Without stripe manipulation (𝑆𝑆final = 1), we do not expect 𝐻𝐻final to deviate significantly from 𝐻𝐻baseline. 
This is also supported by the data (Paired t-test, 𝐻𝐻final vs. 𝐻𝐻baseline in open-loop sessions where 𝑆𝑆final = 1: 
𝑡𝑡(6) = −0.90, 𝑝𝑝 = 0.40). Thus, for the purpose of developing a feedback controller, we make the 
simplifying assumption that 𝑎𝑎 =  −𝑏𝑏. We further assume a quadratic relationship (𝑚𝑚 = 2). These 
assertions are supported by curve fits across rats in Fig. 2g; (Paired t-test, 𝑎𝑎 vs. −𝑏𝑏: 𝑡𝑡(4) = 1.78,𝑝𝑝 = 0.15; 
𝑚𝑚 vs. 2: 𝑡𝑡(4) = 0.79,𝑝𝑝 = 0.048). (Our failure to reject the null hypotheses in these low-sample datasets 
is only used to furnish a simplified model that is sufficiently expressive for neurally closed-loop control 
design, not make definitive conclusions about the nature of the parameters.) Under these assumptions, 
we get the simplified model: 

𝐻𝐻final − 𝐻𝐻baseline =
𝜅𝜅
2

(𝑆𝑆final
2 − 1) 

Where 𝑏𝑏 = 𝜅𝜅
2
. This corresponds to the integral equation: 

� 𝑑𝑑𝐻𝐻
𝐻𝐻final

𝐻𝐻baseline

= 𝜅𝜅� 𝑆𝑆
𝑆𝑆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

1
𝑑𝑑𝑆𝑆 

Ignoring constants of integration, the model relating the change in stripe gain 𝑑𝑑𝑆𝑆 to the hippocampal gain 
𝑑𝑑𝐻𝐻 is thus 

𝑑𝑑𝐻𝐻 =  𝜅𝜅 𝑆𝑆 𝑑𝑑𝑆𝑆 

At the initial value of 𝑆𝑆 =  1, the linearized system dynamics is given by 𝑑𝑑𝐻𝐻 =  𝜅𝜅 𝑑𝑑𝑆𝑆. We designed a 
controller for this simplified system that reduces the error between the decoded gain 𝐻𝐻� and the desired 
value 𝐻𝐻desired. In scenarios where a control input (𝑆𝑆) is used to drive a system state (𝐻𝐻) to a desired state 
𝐻𝐻desired, a proportional controller can be used. For such a controller, the input is proportional to the error 
between 𝐻𝐻� and 𝐻𝐻desired.  

𝑆𝑆 = 𝐾𝐾𝑃𝑃�𝐻𝐻desired − 𝐻𝐻�� 

In our case, at a particular 𝐻𝐻� and 𝐻𝐻desired, the error would remain constant, thus 𝑆𝑆 will be constant. Thus, 
𝑑𝑑𝑆𝑆 = 0 which means that 𝑑𝑑𝐻𝐻 = 0 as well. Moreover, proportional control can require large gains to 
reduce the error, and large gains would lead to rapid changes in stripe movement such that the virtual 
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environment may no longer have appeared to be stable to the animal. Due to these reasons, we chose an 
integral controller, known to be able to eliminate steady-state errors under appropriate conditions: 

𝑆𝑆 = 𝐾𝐾𝐼𝐼 ��𝐻𝐻desired − 𝐻𝐻��𝑑𝑑θ 

Here, the integration is initiated at 𝑆𝑆0 (𝑆𝑆0 = 1 in our case, the value of the stripe gain at the beginning of 
Epoch 2). The term 𝐾𝐾𝐼𝐼 is the “integral gain” (terminology from control theory, not to be confused with 
other ‘gains’ in the manuscript), and 𝑑𝑑 is the angle of the rat on the table.  
 
The block diagram of the feedback system consisting of the rat and controller is shown in Extended Data 
Fig. 7. The feedback loop consists of the controlled “plant” 𝑃𝑃 (in this case, the hippocampal circuit), the 
integral controller 𝐶𝐶 and the feedback, which is our decoder, represented by a moving average over a 
window of 6 laps. We performed a Nyquist stability analysis to determine the range of integral gain 𝐾𝐾𝐼𝐼 
over which the controller would be stable. When the frequency of the input signal 𝑠𝑠 =  𝑗𝑗ω is swept from 
0 to ∞, if the loop gain 𝐿𝐿 intersects the real axis at a point less than -1, the system is unstable. To determine 
this point: 

𝐿𝐿 = 𝐶𝐶 𝑃𝑃
(1 − 𝑒𝑒−6𝑠𝑠)

6𝑠𝑠
 =  𝜅𝜅

𝐾𝐾𝐼𝐼
𝑠𝑠

(1 − 𝑒𝑒−6𝑠𝑠)
6𝑠𝑠

= −κ
𝐾𝐾𝐼𝐼

6ω2 (1 −  cos(6ω) + j sin(6ω)) 

Here, j = √−1. Setting Im[𝐿𝐿] = 0, the first point of intersection with the real axis is ω = π
12

. 

The intersection with the real axis is Re �L �ω = π
12
��  =  −24𝐾𝐾𝐼𝐼κ

π2
. 

To maintain stability, this value needs to be less than -1, thus it requires 𝐾𝐾𝐼𝐼 < π2

24κ
 

According to our fit in Fig. 2g, 𝑏𝑏 = 0.2, and thus 𝜅𝜅 = 0.4; hence the condition for stability is 𝐾𝐾𝐼𝐼 < 1.03. 
We used 𝐾𝐾𝐼𝐼 = 0.2 in our closed-loop sessions, staying well within this margin of stability. 

Stripe gain selection and ramp rates 
In open-loop sessions, rats ran 15 laps with stripes on and stationary (Epoch 1, Figs. 1-2). In Epoch 2, 𝑆𝑆 
was increased or decreased to 𝑆𝑆final. The values of 𝑆𝑆final were chosen to be of the form, 1 ± 𝑛𝑛/13 with 
𝑛𝑛 = 2, 6, 10, resulting in gains of 0.231, 0.539, 0.846, 1.154, 1.462 and 1.769. These values with a prime 
denominator were chosen to reduce ambiguity between frames and ensured that during Epoch 3 the 
position of the rat relative to the laboratory and stripe frames of reference aligned only once every 13 
laps. Gains were changed at a constant rate of 1/52 per lap, such that the length of Epoch 2 was 8, 24 and 
40 laps for n = 2, 6 and 10, respectively. The sessions were not randomized; the gain for each session was 
selected such that gains were rarely repeated in consecutive sessions, and the gain manipulation typically 
increased in magnitude over consecutive sessions for any given animal. The investigators were not blinded 
to allocation during experiments and outcome assessment. No statistical methods were used to 
predetermine sample size. 

In closed-loop sessions, Epoch 1 was identical to open-loop sessions. The hippocampal gain decoder was 
initialized and the gain estimate 𝐻𝐻� was monitored during Epoch 1, but not used for cue manipulation. 
𝐻𝐻desired was either specified before the session, in which case it was chosen from the aforementioned 
values of the form 1 ± 𝑛𝑛/13,  or it was set to be a constant offset of ±0.25 or ±0.5 from the estimated 
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value of 𝐻𝐻baseline. In either case, the 𝐻𝐻desired value was set and not modified once the controller was 
initialized at the beginning of Epoch 2.  

Data analysis 
Spike sorting. For each triggered spike waveform, features such as peak, valley and energy were used to 
sort spikes using a custom software program (WinClust; J.J.K.). Cluster boundaries were drawn manually 
on two-dimensional projections of these features from two different electrodes of a tetrode. We mostly 
used maximum peak and energy as features of choice; however, other features were used when they 
were required to isolate clusters from one another. Clusters were assigned isolation quality scores ranging 
from 1 (very well isolated) to 5 (poorly isolated), agnostic to their spatial-firing properties. Only clusters 
rated 1–4 were used for quantitative analyses including offline estimation of hippocampal gain.  

Inclusion criteria. To be included in the quantitative analyses, sessions were required to meet the 
following criteria: sessions with stripe manipulation must have been run all the way to completion, i.e. 
the rat finished the session (Epoch 1-3, and removed after stripes were extinguished), and there were no 
major behavioural issues or long manual interventions during the session, as per our experimental notes. 
Session inclusion was determined before performing any of the statistical analyses across sessions 
detailed in this manuscript. For the 66 sessions that met these criteria, spikes that occurred when the 
movement speed of the rat was less than 5°/s (about 5 cm/s) were removed. 

Closed-loop control categorization. Four authors (MM, RJ, JK, NC) categorized closed-loop control based 
on careful evaluation and discussion of each session’s hippocampal gain trajectories, blind to the 
outcome—recalibration or not—of the individual sessions. The sessions were placed in one of three 
categories: strong control, modest control, and uncontrolled (see Supp Fig. 2). Only strongly and modestly 
controlled sessions were included for recalibration analysis.  

Histology 
Once experimental sessions were complete, rats were transcardially perfused with 3.7% formalin. The 
brain was extracted and stored in 30% sucrose-formalin solution until fully submerged. For 4 rats, the 
brain was sectioned coronally at 40 µm intervals. The sections were mounted and stained with 0.1% Cresyl 
violet, and each section was photographed. These images were used to identify tetrode tracks, on the 
basis of the known tetrode bundle configuration. A depth reconstruction of the tetrode track was carried 
out for each recording session to identify the specific areas in which the units were recorded. For one rat, 
we optically cleared the whole brain using the AdipoClear+ protocol51. The cleared brain was imaged using 
a lightsheet microscope (Ultramicroscope, LaVision BioTec, Bielefeld Germany) and the tetrode tracks 
were visualized in the autofluorescence channel using Imaris software to identify areas where units were 
recorded. 

Statistics 
Parametric tests were used to determine statistical significance. Pearson product-moment correlations 
were used to test the linear relationship between variables. For non-linear relationships, data was fit using 
a nonlinear least-squares (MATLAB fit function) with specified model structures, and goodness-of-fit 
statistics (residual degrees of freedom, 𝑑𝑑𝑑𝑑 =  𝑛𝑛 − 𝑚𝑚, where 𝑛𝑛 is number of data points and 𝑚𝑚 is number 
of parameters, as well as 𝑑𝑑𝑑𝑑-adjusted coefficient of determination (𝑅𝑅2) are reported). Paired, two-sided 
t-tests were used to compare information scores in laboratory, stripe and hippocampal frames of 
reference, which assumes normality. To prevent sampling the same cells across days for this analysis, the 
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experimental session with the greatest number of units was chosen for each rat and for each tetrode. 
Mean and Standard Error of the Mean (s.e.m.) were used to plot information scores across units.  

Code availability 
Custom code was written to analyse the datasets used in this study, and to generate figures for this 
manuscript. This codebase is versioned, and uses several third-party packages, the license files for which 
are included with the respective code. Access to the codebase can be provided by the corresponding 
author. 

Reporting summary 
Further information on research design is available in the Nature Research Reporting Summary linked to 
this paper. 

Data availability  
The datasets used in this study are available from the corresponding author upon reasonable request. 
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Extended Data Fig. 1. Gain dynamics during all open-loop sessions. Each plot represents a single session (titled as “Rat-Day, 
Session”, 41 sessions across N=5 rats). X axis is number of laps the rat ran on the table and Y axis is gain. The black scale bar in 
each plot denotes 10 laps. Applied stripe gain (𝑆𝑆; blue) plotted with decoded hippocampal gain (H; yellow). Sessions are grouped 
by the final stripe gain: (a) Up sessions (Sfinal > 1), (b) Down sessions (Sfinal < 1), and (c) Unity sessions (Sfinal = 1). Dashed 
vertical lines indicate boundaries between Epochs 1, 2a, 2b and 3 for Up and Down sessions, and between Epochs 1 and 3 for 
Unity sessions. Blips in the 𝑆𝑆 curve in sessions 791-06, m1 and 883-07, m1 were the result of momentary software errors.   
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Extended Data Fig. 2. Gain dynamics during all closed-loop sessions. Each plot represents a single session (titled as “Rat-Day, 
Session”, 25 sessions across N=5 rats). X axis is laps the rat ran on the table and Y axis is gain. The black scale bar in each plot 
denotes 10 laps. Applied stripe gain (𝑆𝑆; blue) plotted with offline-decoded hippocampal gain (𝐻𝐻; yellow) and hippocampal gain 
estimated online using unsorted spikes (𝐻𝐻�; brown). This estimated value was driven to a constant desired value during the session 
(𝐻𝐻desired; green dashed line). Dashed vertical lines indicate boundaries between Epochs 1, 2 and 3. Data is sorted into three groups 
based on manual inspection of our success in achieving consistent closed-loop control, i.e., how closely did the yellow line (𝐻𝐻) 
match the dashed green line (𝐻𝐻desired)?: (a) strongly controlled sessions, (b) modestly controlled sessions, and (c) uncontrolled 
sessions. Note that 𝐻𝐻�  is a real-time estimate that depended on neural noise inherent in multi-unit electrophysiology and varied 
in quality day-to-day. 𝐻𝐻� was utilized only in Epoch 2 and even then, our slow-moving integral controller mitigated the effects of 
momentary noise in the estimate.  
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Extended Data Fig. 3. Hippocampal gain decoding. (a) If a spatially tuned cell has a characteristic spatial tuning that repeats once 
per physical lap, the firing rate of the cell exhibits a spatial frequency of H = 1 per lap. Illustration of the firing of a spatially tuned 
cell for three values of hippocampal gain, H. (b) Reproduction of Figure 1d,f. The spectrogram of one unit is shown at the bottom, 
with the color denoting the power at a given position and spatial frequency. A clear set of peaks in the spectrogram emerges at 
a fundamental frequency starting at ~1.1 and at its harmonics. We use a custom algorithm to trace these peaks (see ‘Spectral 
Decoding’ in Methods) and estimate the gain for each unit. The hippocampal gain, H, is estimated as the median spatial frequency 
across all isolated and mutually coherent units for a given session. (c) Real-time decoding flowchart. Neural data from each 
tetrode and rat position data from the camera are acquired (see 28, for hardware details). Incoming spike times, as detected by 
Neuralynx spike detection parameters, and positions are added to a temporal buffer. The following operations are performed 
every 1 s. The temporal buffer is transferred into a spatial queue buffer that accumulates spike times and positions from the 
previous 6 laps. Velocities are computed from positions, and spikes and positions with velocities < 5 cm/s are eliminated. The 
remaining spikes and positions are spatially binned (5° width). The spike bins are divided by position bins to create firing rate bins 
for each tetrode, which are then smoothed and sent to the spectral decoder to estimate H (details in Methods section and Fig. 1 
(d-g)). The spectral decoder is able to estimate spatial frequency from the cumulative spatial tuning of all simultaneously recorded 
cells on a tetrode, extending the success of decoding spatial frequency from cells with such diffuse spatial tuning like interneurons 
(described in 6). The spatial frequency was estimated from each tetrode independently before combining together into 𝐻𝐻�, to get 
independent measurements of the underlying gain and to be robust to noisy estimates on any particular tetrode.  (d) Coherence 
of population gain. 𝐻𝐻 was decoded from each unit. If a unit, 𝑖𝑖, were part of a coherent population, its gain 𝐻𝐻𝑖𝑖 should equal the 
population hippocampal gain 𝐻𝐻. For each 6-lap window we computed a coherence error |1–𝐻𝐻𝑖𝑖/𝐻𝐻| and computed the average 
of this value across the session to derive the coherence score for the unit (Data from 1059 units, 66 sessions). Most units have a 
score very close to zero and very few have values above 0.1 (18 units, range 0.13 – 0.49). (e) Comparison of offline unsorted 
decoding vs. online sorted decoding in Epoch 2 of the 25 closed-loop sessions. The mean absolute error between these gains 
remains close to 0, with a few sessions (3/25) showing deviations greater than 0.1. 
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Extended Data Fig. 4. Baseline shift across days. (a) Baseline shift for two rats. The 𝑦𝑦 axis is hippocampal gain, 𝐻𝐻, during Epoch 1 
(stripes stationary) for 9 consecutive sessions for the same rat. The 𝑥𝑥 axis denotes laps on the table. For Rat 923, the value of H 
at the end of the epoch, 𝐻𝐻baseline, steadily increased across sessions but was relatively stable within a session.  For Rat 913, 
𝐻𝐻baseline, decreased over sessions and was less stable within a session.   (b) Baseline shift across rats. Data from each rat is plotted 
in a different color. The 𝑥𝑥 axis is the session number of each rat and 𝑦𝑦 axis is 𝐻𝐻baseline for that session. Dots denote open-loop 
sessions and asterisks (*) denote closed-loop sessions. 4/5 rats show a significant positive drift of 𝐻𝐻baseline (Rat 771: slope=
0.032, 𝑟𝑟2 = 0.77,𝑝𝑝 = 0.004,𝑛𝑛 = 8; Rat 791: slope= 0.029, 𝑟𝑟2 = 0.93,𝑝𝑝 = 5 × 10−7,𝑛𝑛 = 12; Rat 883: slope= 0.029, 𝑟𝑟2 =
0.73, 𝑝𝑝 = 3 × 10−5,𝑛𝑛 = 16; Rat 923: slope= 0.045, 𝑟𝑟2 = 0.90, 𝑝𝑝 = 2 × 10−7,𝑛𝑛 = 14) whereas one rat shows a significant 
negative drift (Rat 913: slope= −0.006, 𝑟𝑟2 = 0.45,𝑝𝑝 = 0.005;𝑛𝑛 = 14). Because of these shifts, we subtracted 𝐻𝐻baseline from 
the dependent measures in our analyses of Figs. 2g, 3h, and 4c. (c) Effect of previous day’s manipulation on baseline shift. We 
analyzed the effect of the previous day’s manipulation on each session. For each pair of consecutive sessions 𝑛𝑛 and 𝑛𝑛 +  1, we 
plotted the gain change induced by stripes on day 𝑛𝑛, 𝐻𝐻final(𝑛𝑛) –𝐻𝐻baseline(𝑛𝑛), as the independent variable on the 𝑥𝑥 axis. The 𝑦𝑦 axis 
was the change in the baseline to the next day (𝑛𝑛 + 1), minus the linear trend from (b). There was no significant relationship 
between these variables (𝑟𝑟2 = 0.03, 𝑝𝑝 = 0.24,𝑛𝑛 = 49).  
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Extended Data Fig. 5. Open-loop control and recalibration. (a) Validity of quadratic fit. Fig. 2g showed the change in hippocampal 
gain against the final stripe gain and the fits to the relationship using a power law. Since the exponent parameters are close to 2 
(individual rat exponents: 1.56, 1.94, 3.31, 1.53, 3.20), here we show a linear fit of hippocampal gain change against 𝑆𝑆final

2  (𝑟𝑟2 =
0.89, 𝑝𝑝 = 3.09 × 10−20, 𝑛𝑛 = 41). (b) Open-loop recalibration. Although the open-loop manipulation did not result in an 𝐻𝐻 value 
that was stable over a number of laps, the manipulation did result in a modest recalibration of the hippocampal gain after the 
stripes were extinguished. Similar to Fig. 4d, the x axis shows 𝐻𝐻final and the y axis shows 𝐻𝐻recal (with 𝐻𝐻baseline subtracted from 
both). For 3/5 rats, the linear relationship is positive and significant (Rat 791, slope= 0.36, 𝑟𝑟2 = 0.83, 𝑝𝑝 = 0.002; Rat 913, slope=
0.26, 𝑟𝑟2 = 0.66,𝑝𝑝 = 0.026; Rat 923, slope= 0.77, 𝑟𝑟2 = 0.76, 𝑝𝑝 = 0.002). For the other 2 rats, there was a positive, but 
statistically nonsignificant, relationship (Rat 771, slope= 0.26, 𝑟𝑟2 = 0.24, 𝑝𝑝 = 0.23; Rat 883, slope= 0.12, 𝑟𝑟2 = 0.25, 𝑝𝑝 = 0.59). 
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Extended Data Fig. 6. Effect of manipulation time and distance run on hippocampal gain. Because we ramped 𝑆𝑆 by a constant 
rate across experiments, there was a correlation between 𝑆𝑆final and time and distance travelled in our experiments, introducing 
potential confounding variables. We thus examined the influences of distance run and time spent under stripe manipulation to 
the change in hippocampal gain, 𝐻𝐻 − 𝐻𝐻baseline, compared to our stripe gain manipulation 𝑆𝑆. These analyses were run for all open-
loop sessions where 𝑆𝑆 ≠ 1. (a) For these sessions, we computed the minimum distance rats ran in Epoch 1 and 2 (49 laps, the 
distance run in the 𝑆𝑆final = 1 ± 2/13 sessions) to equate distance across gain manipulations. At 49 laps after start of Epoch 1, the 
change in hippocampal gain 𝐻𝐻 − 𝐻𝐻baseline is plotted as a function of both time (top) and stripe gain 𝑆𝑆 (bottom) for all sessions. 
Each data point is from a session and colors denote different rats. We fit a power-law curve to both plots 
(𝐻𝐻 − 𝐻𝐻baseline = 𝑎𝑎 + 𝑏𝑏𝑥𝑥𝑚𝑚). There is no obvious relationship between 𝐻𝐻 − 𝐻𝐻baseline and time (adjusted 𝑟𝑟2 = −0.26,𝑑𝑑𝑑𝑑 = 31), 
whereas there is a power-law relationship to 𝑆𝑆 (adjusted 𝑟𝑟2 = 0.72,𝑑𝑑𝑑𝑑 = 31) similar to Fig. 2(g). (b) For these sessions, we 
computed the minimum time rats ran in Epochs 1 and 2. These values are variable; however, the minimum value across all 
sessions was 13.1 minutes, with the 5 rats ranging from 13.1 mins to 19.9 mins. At 17 mins after the start of Epoch 1, the change 
in hippocampal gain 𝐻𝐻 − 𝐻𝐻𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  is plotted as a function of both distance run (top) and stripe gain S (bottom). There is no strong 
relationship between 𝐻𝐻 − 𝐻𝐻baseline and distance (adjusted 𝑟𝑟2 = 0.35,𝑑𝑑𝑑𝑑 = 31) whereas there is a clear power-law relationship 
to 𝑆𝑆 (adjusted 𝑟𝑟2 = 0.78,𝑑𝑑𝑑𝑑 = 31), similar to Fig. 2(g).  From these plots, we conclude that the change in H in these experiments 
is related to S and not to the correlated variables, time and distance travelled. 
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Extended Data Fig. 7. Layout of the system in the Laplace domain. Here, 𝑠𝑠 is the Laplace complex frequency variable. 
Multiplication by 𝑠𝑠 denotes differentiation, whereas dividing by 𝑠𝑠 denotes integration. 𝐶𝐶 is the implementation of our neurally 
closed-loop controller, namely the transformation from the error �𝐻𝐻desired −𝐻𝐻�� to the stripe gain 𝑆𝑆. In control theoretic 
terminology, the controlled system (hippocampal circuit) is the “plant” 𝑃𝑃,  which transforms the stripe gain 𝑆𝑆 into the output 𝐻𝐻. 

The term (1−𝑏𝑏−6𝑠𝑠)
6𝑠𝑠

 in the feedback loop is the transfer function of a 6-lap moving average, capturing the lag introduced by our 

online gain decoder. The transfer function of the controller is 𝐶𝐶 = 𝐾𝐾𝐼𝐼
𝑠𝑠

 and that of the plant reduces to a constant gain, 𝑃𝑃 = 𝜅𝜅.  

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.06.12.495823doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.12.495823
http://creativecommons.org/licenses/by-nc/4.0/

	Closed-loop control and recalibration of place cells by optic flow
	Abstract
	Main
	Open-loop stripe manipulation influences hippocampal gain
	Closed-loop cognitive clamp stabilizes path integration
	Recalibration of path integration without landmarks
	Discussion
	Methods
	Subjects
	Dome apparatus
	Projected visual cues
	Training
	Electrode implantation and adjustment
	Post-surgery training
	Neural recording
	Experimental control
	Real-time firing rate computation
	Spectral Decoding
	Closed-loop controller design
	Stripe gain selection and ramp rates
	Data analysis
	Histology
	Statistics
	Code availability
	Reporting summary
	Data availability
	Acknowledgements
	Author Contributions


	References

