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Abstract
A challenge in the design and construction of synthetic genetic circuits is that they will

operate within biological systems that have noisy and changing parameter regimes that are
largely unmeasurable.  The outcome is that these circuits do not operate within design
specifications or have a narrow operational envelope in which they can function.  This behavior
is often observed as a lack of reproducibility in function from day to day or lab to lab. Moreover,
this narrow range of operating conditions does not promote reproducible circuit function in
deployments where environmental conditions for the chassis are changing, as environmental
changes can affect the parameter space in which the circuit is operating.  Here we describe a
computational method for assessing the robustness of circuit function across broad parameter
regions.  Previously designed circuits are assessed by this computational method and then circuit
performance is measured across multiple growth conditions in budding yeast. The computational
predictions are correlated with experimental findings, suggesting that the approach has predictive
value for assessing the robustness of a circuit design.
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Introduction
Synthetic biologists often seek to construct synthetic genetic circuits that accept an input

signal(s) and, in response, produce some output signal.  An example would be biosensors with
environmental or medical applications [1-3].  Synthetic genetic circuits have been constructed
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with network engineering principles that incorporate non-linear interactions within the circuit.
Non-linearities are inherent in genetic circuits at multiple levels including, for example,
cooperativity in protein/DNA binding and protein-protein interactions.

Although network function can be modeled by a system of differential equations, it is
largely intractable to measure the parameters that determine circuit behavior within a cell.
Moreover, those parameters are likely to be noisy and will certainly change as the cell states
change due to normal growth and division or as cells encounter changing environmental
conditions (e.g. temperature, nutrient availability). Parameters might also be affected by genetic
differences between species or between distinct strains of the same species. Thus, circuit
performance might not be reproducible unless genetics and growth and environmental conditions
are tightly maintained. Not surprisingly, the quest for reproducibility has relied heavily on
methods for precisely defining and controlling experimental conditions across laboratories [4]. In
some cases, even the best efforts to control experimental conditions do not yield reproducible
results [5].

The difficulty in maintaining experimental conditions within a laboratory highlights a
fundamental challenge for synthetic biology - if reproducible results cannot be easily achieved in
laboratory conditions, how will circuits perform when deployed into the environment or within
the changing environments of an organism?

An alternative to achieving reproducibility by controlling experimental conditions is to
design circuits that perform the desired functions across a broad range of parameter regimes. The
function of such circuits should be robust to noisy or changing parameters, and in turn, to
environmental changes that might be encountered during a deployment. The basis for this
approach is the realization that robustness should have a positive effect on reproducibility.  The
challenge of this approach is to design robust circuits without substantial information about the
parameter regimes in which they will operate. Approaches have been developed to establish
input/output (dose/response) relationships for particular interactions within circuits[6].These
measurements can be expensive and time consuming. At the same time, these relationships only
hold for the experimental conditions in which they were interrogated, so they are not
generalizable to other conditions. New design approaches that combine parts-level approaches
with circuit scoring methods appear to increase robustness in designs [7].

Here we describe an alternative approach for generating robust circuits that will perform
reproducibly across growth conditions.  The approach enables synthetic biologists to
computationally assess the function of a particular circuit design broadly across parameter space.
We first make computational predictions about the function of previously designed circuits [8]
across parameter space, and then test circuit functions across multiple growth conditions to
assess the accuracy of the computational predictions.

Results

Predictions of the performance of various synthetic logic circuits were made using the
Python 3 package Dynamic Signatures Generated by Regulatory Networks (DSGRN) [8, 9]. This
tool allows the comprehensive modeling of the dynamical behavior of a network topology over
parameter space in a computationally scalable manner. Network topology means the interaction
structure of anonymous gene products; specific builds of a network are not explicitly modeled,
although implicitly they are assumed to correspond to some parameterization of the network
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topology. The dynamical behavior being modeled includes, but is not limited to, truth tables of
logic functions, which is the dynamical behavior considered in this work. The ability of DSGRN
to comprehensively predict behavior over all of parameter space permits the assignment of a
robustness score as a percentage of parameters at which the desired logical behavior is observed.
The robustness score provides a relative measure of the ability of a network topology to
reproduce a specific observed behavior among a collection of networks.

Recently, a set of functional synthetic two-input logic circuits (AND, OR, NAND, NOR,
XOR, XNOR) built in the yeast S. cerevisiae were published [10]. These logic circuits were built
out of more primitive parts: CRISPR-constructed NOR gates where the regulatory molecule is a
short segment of RNA called a guide RNA (gRNA). NOR logic was chosen because every
logical expression can be constructed from an arrangement of NOR and NOT gates. The
inclusion of CRISPR reduced transcriptional leakage under repression. Each logic function was
composed of four strains, one for each Boolean input state (00, 01, 10, 11), where the expression
of the input gRNA was controlled by the presence or absence of the associated promoter. Various
combinations of the CRISPR NOR gates were constructed for each logic circuit. It was found
that certain builds of each logic function exhibited clean and reproducible performance; however,
there was variation across the builds in functional performance within each logic function. In the
context of the study, the terms functional and performance refer to a circuit's ability to express
fluorescence (ON) or not (OFF) as intended by the circuit's logic, or truth table, given a Boolean
input state.

Circuit NOR OR AND NAND XOR XNOR

DSGRN
Robustness
Score

0.077 0.067 0.059 0.053 0.034 0.026

Table 1. DSGRN predictions for relative ordering of synthetic logic circuits.

Table 1 shows DSGRN predictions of the relative performance of these six circuit
topologies across experimental condition space conditioned on the fact that the cells grow.
Theoretically, the robustness score can vary between 0 and 1, see [11] or the computation and
[12] for a similar method. In reality, it is extremely unlikely if not impossible for a robustness
score of 1 to be attained, but complex circuits can attain robustness scores of 0.5 or higher. It is
important that these numbers are not interpreted as probabilities; only the rank order of the
circuits is meaningful. DSGRN predicts that NOR should be the highest performing circuit
across media conditions, followed by OR. Next, AND is expected to perform a little better than
NAND, and lastly XOR is expected to perform a little better than XNOR. From previous
experience it is known that these scores are small in absolute value compared to what is seen for
more complex networks, and therefore these rankings are not well-separated. This lack of
separation in scores is due to the simplicity of the circuits that do not have functionally redundant
motifs. An evaluation of these circuit predictions in comparison to data follows.

As published previously in [13], a number of experiments were performed on the
CRISPR circuits [10] under various growth conditions. Only one build of each of the six logic
functions was studied for performance across media conditions in the set of experiments
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analyzed here. Each circuit's ON state results in the expression of green fluorescent protein
(GFP) so circuit output can be assessed by the fluorescent intensity of a cell. Both plate reader
and flow cytometry data were collected over five experimental rounds. Growth conditions,
representing rich media, minimal media, high osmolarity, poor carbon sources, and high
temperature were varied by using four different media respectively (YEP 2% Dextrose, Synthetic
Complete, Synthetic Complete containing 1% Sorbitol, and Synthetic Complete containing 2%
Glycerol and 2% Ethanol) and two temperatures (300C and 370C). As these growth conditions
can slow the rate at which yeast grow, a time-series protocol was employed to account for
variable growth rates across conditions. Two of the five rounds did not exhibit sufficient cell
density for reliable analysis or comparison to predictions and were excluded from the analysis
below. Sufficient cell density was taken as a proxy for cell growth and was set at a threshold of
1,000,000 cells/mL. In addition, the Ethanol media condition frequently did not exhibit sufficient
cell density and was excluded from much, though not all, of the analyses below.

Figure 1. Data from Round 3 [13] for each of the 6 circuits. The Ethanol media
condition is not included due to generally poor growth. The x-axis shows the expected state to be
achieved by the circuit. Intended output 1 corresponds to ON, or high fluorescence, and intended
output 0 corresponds to OFF, or low fluorescence. The colors appear consistently in the same
order, so, for example, in the top middle panel for AND where the colors are not visible, the 11
input condition is associated with intended output 1 and the three other inputs are associated with
intended output 0.

Flow cytometry data in arbitrary units are aggregated over these experiments and shown
in Figure 1. The plots show the distribution of geometric means of flow cytometry samples per
strain excluding the Ethanol media condition. The x-axis and legend colors together describe the
truth table for each circuit. Considering NAND in the lower left for example, the input states 00,
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10, and 01 are all intended to be ON and 11 is intended to be OFF. The figure shows that in
general, NAND performs as intended since the geometric means of the flow cytometry
distributions are higher in the intended ON state compared to the intended OFF state. Some
circuits do not have a good separation in geometric mean between strains intended to be ON and
those intended to be OFF, e.g. AND and XNOR, but there are two clear examples of unexpected
output. One is the NOR 11 strain, which expresses fluorescence when it should not, and OR 10,
which does not express fluorescence when it should. Using several complementary analysis
techniques with various strengths, we quantify these qualitative observations.

Figure 2. Circuit performance across media conditions. The mean and standard
deviation (using Python’s numpy.std) of the Wasserstein cut score (see Methods) for each
synthetic logic circuit across all three rounds, including the Ethanol media condition. Lower
ranks indicate better performance. This figure is very similar to Figure 6 in [13], but is generated
from raw log10-transformed data instead of ETL processed data.

Figure 2 shows the quantification of circuit performance over three rounds based on flow
cytometry data, this time including the Ethanol media condition. The technique used to
quantitate circuit performance is called Wasserstein cut scoring (see Methods), which ranks
between 1 and 9 the similarity of the data to each of the sixteen logical truth tables that are
possible with two inputs. This is done by taking pairwise distances between the flow cytometry
histograms and using the control histograms plus a graph-based method to provide a numerical
score to each possible logical truth table. These scores are not very meaningful on their own, so
we choose to use rank as a better indicator of relative circuit performance. The top-ranked truth
table for each set of histograms associated with input conditions 00, 01, 10, and 11 for a circuit
and an experimental condition is considered to be the best fit to the data.

The mean and standard deviation of the rank of the expected truth table is shown for each circuit
in Figure 2, so that lower values indicate better performance. For example, the data of the AND
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circuit most closely represented the AND truth table by ranking in first or second place on
average, resulting in the best score over all circuits. On the other hand, the OR circuit data
matched the OR truth table only at rank 5 on average. In general, the data for the OR circuit
resembled other logical truth tables, resulting in the worst score over all circuits. The analysis in
Figure 2 does not show significant differences between circuits. However, the averages indicate
worse performance by OR and NOR compared to the other four circuits. On average, OR and
NOR had the correct truth table ranked 4-5 out of 9 places, despite being predicted to be the top
performers by DSGRN.

The scores shown in Figure 2 are computed by aggregating information from all four
strains that compose a circuit for an experimental condition and time point. The circuit strains
showed varying growth and density across experimental conditions and time points, and not
every circuit had all four strains with sufficient cell density and event sampling to be confident of
analysis in every condition at every time point. Therefore, the variance in Figure 2 is generated
from differing numbers of experimental conditions and time points that vary across circuits,
which is summarized in Table 2. The proportion of experimental conditions score (PEC) is the
proportion of experimental conditions used to compute the scores shown in Figure 2 out of the
total number of experimental conditions per circuit in which at least one strain of the circuit had
sufficient cell density. The PEC score varies between 0 and 1 and is a different measure of
robustness of circuit performance. For example, AND has a better Wasserstein cut score than
XOR in Figure 2, but XOR was scored across a larger number of conditions, which may explain
its higher variance.

Data Scores NOR OR AND NAND XOR XNOR

PEC 0.88 0.83 0.71 0.78 0.91 0.78
Table 2: Proportion of experimental conditions with sufficient cell density (PEC)

for Wasserstein cut score analysis. 

We examined the circuit performance scores across different media conditions to ask
whether any particular growth condition was biasing the scores (Figure 3). Results are shown
only for the round with the highest growth rates and cell densities, so there are even fewer data
points per bar than in Figure 2. No single growth condition appears to bias results across
different truth tables.
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Figure 3: Circuit performance separated across media and time. The mean and
standard deviation of the Wasserstein cut score for each synthetic logic circuit. When error bars
are absent, this indicates a standard deviation of zero. The categories on the x-axis are media and
time point (hr) and the temperature is fixed at 300 C. Notice that the performance of each circuit
is over a slightly different set of conditions. The missing conditions are those in which there was
insufficient cell density to have confident results. The data shown are from Round 3 [13] that
exhibited high cell densities consistently.

The Wasserstein cut score does not account for fold change in fluorescence between ON
and OFF circuit states. In particular, the histograms of ON and OFF states may even have a fold
change near 1. Having a high fold change with a low variance is a proxy for a confidence level in
the Wasserstein cut score. Results from two analyses that examine fold change in fluorescence
are shown in Figure 4. The top panel shows a boxplot for each circuit, where each bar
summarizes the distribution of the geometric mean for flow cytometry data. The orange bars
correspond to the strains that should produce GFP and the blue bars correspond to those that
should not. For example, the NOR circuit shown in the top row has three strains associated with
the blue bar, corresponding to logical input states 01, 10, and 11, while the orange bar is
associated with samples of the single strain NOR 00. This panel shows that while the NOR
strains have a good separation in median between ON and OFF states, there is substantial overlap
in their distributions. The OR strains, another poor performer according to the Wasserstein cut
score, have the second greatest overlap. XNOR and AND (the best performer according to
Wasserstein cut scoring) have the least overlap between ON and OFF distributions; however,
their medians are not well-separated.
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Figure 4: Circuit performance using the Performance Metrics (top) and Data
Diagnosis (bottom) analysis packages [11, 13-15] on flow cytometry data. The strain labeled
UWBF_6390 in the bottom panel corresponds to the NOR 00 strain. The bottom panel is very
similar to Figure 7 in [13] but is generated from data in arbitrary units instead of ETL processed
data.

The bottom panel of Figure 4 shows the fold change expressed as ON median/OFF
median ratio for each of the four strains per circuit independently. High ratios are indicative of a
high fold change. The top row contains the strain with the best fold change in median, which is
NOR 10, and the bottom row shows the worst, which is NOR 11. Each of these two strains is not
supposed to produce GFP, so the medians of their flow cytometry histograms form the
denominator in the ON/OFF ratio. The numerator is the median of the strain of the NOR circuit
that is supposed to produce GFP, i.e. NOR 00 (labeled UWBF_6390 in the figure). It is seen that
NOR 11 and OR 01 are particularly poor performers, since their fold change is near 1 with low
variance, indicating that it is difficult to distinguish the expected ON and OFF flow cytometry
histograms.

Two hypotheses for the underperformance of OR and NOR are possible. 1) DSGRN
predictions are incorrect and the gates lack any kind of robustness or 2) the strains are not
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representative of OR and NOR gates due to incorrect build, human error, or circuit malfunction.
With further examination, it was observed that the provenance of the OR strains is not clear, and
that there may have been an error in the labeling or construction of one or more OR strains. This
is backed by inconsistencies between the reported strain sequence, the sequence uploaded to
SynBioHub [11], DNAseq [16], and small RNAseq experiments.

Paired-end small RNAseq was performed to enable investigation of failure mechanisms
of yeast gate circuits at the transcriptional level. Upon searching the raw sequencing data for the
presence or absence of all gRNAs used to build the various circuits, disagreements were
uncovered between the expected circuity and the observed circuity. Specific to the OR circuit
strains, there were strains both missing expected gRNAs and containing unexpected gRNAs.
When these results were compared to DNAseq results and to annotations of the OR gate from the
original publication [10] and in SynBioHub, disagreements were found between all four sources
of information; see Figure 5 for the example of the OR 11 strain. This observation supports the
hypothesis that either an unexpected build or mislabeling issue is responsible for the poor
performance of the OR circuit. The NOR gate was not investigated.

Figure 5. Expected and unexpected gRNAs for the yeast OR gate with an input state of 11
from various resources. Red “X” indicates the gRNA is missing from the resource.

Discussion

In the absence of correct builds for OR and possibly NOR, DSGRN predicts the highest
performing circuit to be AND with a close second to NAND (Table 1). It is seen in Figure 1 that
the AND circuit has both the lowest mean and lowest standard deviation of the six circuits. AND
performs slightly better than NAND, and both perform better than XOR and XNOR. Although
this is not statistically significant, the trend is suggestive of predictive accuracy, particularly
given the small numerical separation of the predictions. On the other hand, the predictions
indicating that XOR should perform better than XNOR are not obtained. XNOR performs better
than expected.
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The discerning reader will have noticed that the DSGRN predictions in Table 1 follow in order of
complexity, with the simplest circuit, NOR, ranked highest, and XNOR ranked lowest; see [10]
for the full set of circuit topologies. It is not in general the case that DSGRN predictions track
circuit complexity. The observation that more complex circuits may have greater robustness due
to increased redundancy or other topological motifs that may increase robustness is also reported
in [7, 17]. Thus, in the context of synthetic circuits there may be a natural tension between
robustness and ease of circuit construction.

The experiments have shown that OR and NOR are performing poorly for reasons that are
probably not due to a “natural” lack of circuit robustness. Ideally these circuits should be rebuilt
and retested in the future, but the findings do indicate that circuit performance predictions might
help identify strains where circuits do not reflect the expected design specifications. Moreover,
the observation that DSGRN can predict the robustness of a particular circuit across multiple
growth conditions suggests that this tool may be used to assess circuit robustness and
performance at the design phase, before construction begins.  The ability to computationally
evaluate robustness in a highly scalable manner before circuit construction will likely provide a
time and cost savings over evaluating circuit functions only after construction.  Towards this end,
we have implemented the DSGRN Design Interface, a user-friendly interface built around
DSGRN that transforms DSGRN from a predictive tool to a design tool for 2-input feed-forward
logic circuits. This tool has been used to assess the trade-off between circuit complexity and
robustness [11].

Our findings indicate the utility of DSGRN to computationally evaluate the robustness of
synthetic genetic circuit topologies, even before their construction.  The results indicate that
while the different parts utilized to construct these circuits likely influence the parameters that
guide circuit performance, the topology itself is an important contributor to robust function.  The
ability to construct circuits that are robust across growth conditions has important practical
benefits as any field deployment of a genetic circuit will likely encounter a broad range of
changing growth conditions.  Thus, reproducibility in circuit function can be improved by circuit
design rather focusing only on maintaining tight control over experimental and growth
conditions.

Methods

DSGRN
Dynamic Signatures Generated by Regulatory Networks (DSGRN)  [8, 9, 18] is both a
theoretical framework and software package for characterizing the long-term dynamical behavior
of regulatory networks. It operates by assuming one parameter per node controlling decay and
three parameters per edge controlling regulation. This high-dimensional parameter space is then
rationally partitioned into a finite number of regions, where the partition is determined by
identifying conserved dynamics. Any real-valued set of parameters in that region exhibits the
same long-term behavior, such as oscillations and fixed points. A collection of 2 n fixed points
can represent a logical truth table for n inputs; we investigate dynamical behaviors that represent
logic with two inputs in this work. The decomposition of parameter space enables the
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comprehensive and rapid computation of all possible behaviors of a regulatory network, making
it the ideal tool for predictions of robust behavior.

Wasserstein cut score
The scores in Figure 2 are derived from the earth mover's distance, or Wasserstein distance [19],
between flow cytometry histograms. The pairwise distances between the histograms for each of
the four input states (00, 01, 10, 11) lead to a graph-based score that permits a rank-ordering of
the 16 possible truth tables for a two-input logical system. The 16 truth tables include the
common AND, NAND, NOR, OR, XOR, and XNOR discussed in this manuscript, the constant
truth tables ID and NOT ID, and also the less-used logic that is composed of the eight forms of
IMPLY and NIMPLY. The code base is publicly available [20].

Let , , , and be the flow cytometry histograms for each of the four input states andℎ
00

ℎ
01

ℎ
10

ℎ
11

let and be the histograms for the negative and positive controls respectively. Allℎ
𝑛𝑒𝑔

ℎ
𝑝𝑜𝑠

possible combinations of the four histograms across technical and biological replicates for a
single circuit, a single experimental condition, and a single time point are scored as described
below. Let represent the Wasserstein distance. Define the normalized Wasserstein distance as𝑑 𝑤

𝑤(𝑎, 𝑏) =  
𝑑(ℎ

𝑎
, ℎ

𝑏
)

𝑑(ℎ
𝑝𝑜𝑠

, ℎ
𝑛𝑒𝑔

)

The normalized Wasserstein distance is a measure of how far apart two histograms are given the
distance between the controls. It is used as a weight on the edges of the complete graph of four
nodes representing the input states 00, 01, 10, and 11, see Figure 6.

Figure 6: The Wasserstein cut scoring technique. The edges of the graph are weighted by the
Wasserstein distance normalized by the distance between positive and negative controls.

We use the idea of a graph cut [21] to produce a score to rank-order the fit of truth tables to the
data , , , and . We partition the nodes of the edge-weighted graph in Figure 6 to eachℎ

00
ℎ

01
ℎ

10
ℎ

11
of the seven possible two-partitions of the input states 00, 01, 10, and 11 (e.g. [00] and
[01,10,11]; [00,11] and [01,10]; etc.). We then look at every cut-set (the set of edges joining
nodes in one partition directly to nodes in the other partition) and take the average weight of the
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cut-set. A large average indicates that the histograms in the two partitions are far apart from each
other. The largest such average cut score identifies the best partition of nodes for a truth table.
That partition corresponds to two truth tables, T and NOT T. For example, the partition [00] and
[01,10,11] means that one set has an expected output value of 1 (ON) and the other has the
expected value 0 (OFF). If 1 is assigned to the partition [00], then we have the NOR circuit,
where fluorescence should be produced only if both inputs are absent. Likewise, if the partition
[00} is assigned the state of 0, we have the OR circuit.

To decide between T and not T, the average is taken over the medians of the histograms in each
partition. The input states associated with the higher average median are assigned 1, and the
input states of the other partition are assigned 0. This truth table T is assigned the computed
average cut score and the negation NOT T is given a score of infinity.

This results in a list of fourteen scored truth tables. The last two truth tables, the constant ones,
are scored by a heuristic method that requires a hyperparameter (see code)[20] .  One constant
truth table is given a finite score and the other an infinite score. The absolute values of the scores
themselves are somewhat fragile, so we choose to look at rank only, where the finite scores
provide us with eight ranked truth tables and we assign rank 9 to every infinite negation. The top
ranking truth table is considered to be the best fit to the flow cytometry data in terms of Boolean
logic.

See [7] for another way of using the Wasserstein distance as a circuit robustness score.

Flow cytometry data
See [13].

gRNA quantification for yeast gate circuits from small RNAseq
FASTQ files from paired-end small RNAseq were searched for the presence or absence of gRNA
sequences, specifically the sequence of the gRNA containing the target and handle sequences.
Quality control was first performed on the small RNAseq data where quality scores were
assessed using a sliding window of 4 nucleotides in length. Reads were dropped if the average
quality score of a window was less than 15. This resulted in only ~30% of both forward and
reverse reads surviving quality control, ~55% of only forward surviving and ~2% of only reverse
surviving. Therefore, only the forward reads were used to search for gRNA sequences.
Additionally, gRNA abundances could only be compared within a sample, and not across
samples as a normalization method was needed to make this possible. Small RNAseq reference
beads were included in the experiments from Ginkgo, however, due to quality issues, the
reference beads were not usable to normalize gRNA abundances. After quality control, the
Levenshtein distance metric was used to identify reads in the fastq files that contained an 80%
match to gRNA sequences used in the yeast gate circuits. The Levenshtein distance is a metric to
measure how different two sequences of words are and was chosen to account for potential
inaccuracies in sequencing.

Data availability
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Processed data and scripts used in the generation of figures in this manuscript are available in a
public repository. The code packages cited in the manuscript are all open source.
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