














bioRxiv preprint doi: https://doi.org/10.1101/2022.06.13.495712; this version posted August 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(=
O

a Stimulus

X—>nw
Shared \\§< -_T : i .
aln :

— LW (

o
[=2]

Shared Gain (r?)
o
D
cv r2

Neuron 1
.—J C— Iy Marmoset
Mouse
Neuron 2
.—J 0.0 T T T 1
Neuron N 0.0 0.2 0.4 0.6 0.8
Stimulus + Slow Drift (r?)
d e
g ¢ *
£ ¥ 1.2
3 081 y y o
kel 0 £3 1.0
= S o
S [~ 0.6 ] 2 08
> a - M Eac
5] g 2 armoset 235
Z @ o= 0.6
o ¢ Mouse 25
— [7) ﬁ‘-‘
a S0 041
>
Shared Gain gz 027 .
oc
© TZ 0.0
- 5 i02 4
Running speed S : o
® 9. 9
—— NC
50 Trials std. dev. (J) ’&O%%%
< O\y

Figure 4. Shared gain model accounts for fluctuations in both mouse and marmoset V1, and explains species differences. a)
Structure of shared modulator model. In addition to the effects of the stimulus (and slow drift in responsiveness, not rendered),
the model allows for a shared gain/multiplicative term (green). Each simultaneously-recorded neuron is fitted with a weight to
the latent gain term. b) The resulting model provides a better account of both mouse and marmoset V1 responses compared to a
simple model that only fits stimulus and slow drift terms. Points show variance explained () on test data for each session
under each of the two models, plotted against one another. c¢) Variance explained for individual units was significantly
improved in both species (marmoset: gain model [median *=0.2504] significantly higher than stim+drift [median 7> = 0.1220],
p=1:52 x 10782, stat=27174, Wilcoxon signed rank test; mouse: gain model [median r2=0.4420] significantly better than
stim+drift [median r2=0.1697], p=4:64 x 10~ '8! stat=25966, Wilcoxon signed rank test). d) Example of relationship between
neural responses (top raster, blue), the shared gain (green) and running speed (black trace). Visual inspection similar to that in
Figure 2 can be performed. e) Gain modulations span a larger range in mice than in marmosets. Orange, gain term from each
mouse session; blue, gain term from each marmoset session. Triangles indicate medians (mouse = 2.17 [2.11, 2.25], marmoset
=1.19[1.07, 1.27]). f) Shared gain term is larger during running for mouse data, but is slightly smaller during running for
marmoset data (difference is plotted on y-axis; mouse = 0.970 [0.761, 1.225], p=4:73 x 1079, stat 8.017, 1 sample t test;
marmoset = -0.125 [-0.203, -0.059], p=0.002, stat=-3.360, 1 sample t test).

Discussion

Our results support mechanistic insights into cross-species comparisons of V1 activity and running. The quantitative difference
in the magnitudes and signs of V1 gain modulations are consistent with known differences in neuromodulatory inputs related
to arousal in rodent and primate V12%-30, In primates, the locations of ACh receptors allow cholinergic inputs to increase the
activity of the majority of GABAergic neurons and hence suppress net activity via inhibition*!3?, but pharmacologically and
anatomically distinct cholinergic influences in rodent likely exert more complex effects on net activity, including disinhibition
which can increase net activity® %33, Our population-level analyses also forge connections to indirect and aggregate measures
of neural activity made in humans under related conditions*—3, as well as the typically small modulations seen in primate
visual cortices elicited by carefully-controlled attentional tasks, which are more clear when ensemble-scale modulations are
considered®’ .

In summary, our results demonstrate that both mouse and marmoset V1 exhibit population-level gain modulations, likely
reflecting modulatory inputs associated with behavioral state and arousal. Despite the commonality of mechanism, species (and
likely, order-level) differences exist in how these modulations are linked to running, resulting in quantitative differences that
are close to categorical. In mice, the large effects on V1 activity are likely to affect all subsequent stages of processing'>, but
in marmosets, the small effects are less likely to have pronounced downstream effects. That said, running effects may occur
at later stages of processing in primates, consistent with differences in where canonical computations occur across species
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with different numbers of visual areas'>*%#4!, Likewise, finer-grained parcellation of multiple effects correlated with running?,
and using cell-type-specific measures'-* %9 will support more detailed comparisons across species and behavioral protocols.
Of course, larger effects of behavioral state may still be found in primate V1: Other behaviors that better recruit active vision
may reveal stronger modulations, and further consideration of the differences in feedback connections across the visual field
representation*? are now strongly motivated by our findings in peripheral V1. Exploring such possibilities can now enrich the
cross-species connections we have drawn at the level of primate V1, as our identification of quantitative distinctions within
a common mechanism lays a framework for continued cross-species generalizations that transcend simpler observations of
empirical similarity or dissimilarity*4*.

Materials and Methods

We performed electrophysiological recordings in V1 of two common marmosets (1 male, “marmoset G”, and 1 female,
“marmoset B”, both aged 2 years). Both subjects had chronically implanted N-form arrays (Modular Bionics, Modular Bionics,
Berkeley CA) inserted into left V1. Implantations were performed with standard surgical procedures for chronically-implanted
arrays in primates. Additional recordings were also performed using Neuropixels 1.0 probes* acutely inserted into small
craniotomies (procedure described below). All experimental protocols were approved by The University of Texas Institutional
Animal Care and Use Committee and in accordance with National Institute of Health standards for care and use of laboratory
animals.

Subjects stood quadrupedally on a 12” diameter wheel while head-fixed facing a 24”” LCD (BenQ) monitor (resolution =
1920x1080 pixels, refresh rate = 120 Hz) corrected to have a linear gamma function, at a distance of 36 cm (pixels per degree =
26.03) in a dark room. Eye position was recorded via an Eyelink 1000 eye tracker (SR Research) sampling at 1 kHz. A syringe
pump-operated reward line was used to deliver liquid reward to the subject. Timing events were generated using a Datapixx
I/0 box (VPixx) for precise temporal registration. All of these systems were integrated in and controlled by MarmoView.
Stimuli were generated using MarmoView, custom code based on the PLDAPS*® system using Psychophysics Toolbox*’ in
MATLAB (Mathworks). For the electrophysiology data gathered from the N-Form arrays, neural responses were recorded
using two Intan C3324 headstages attached to the array connectors which sent output to an Open Ephys acquisition board and
GUI on a dedicated computer. In electrophysiology data gathered using Neuropixels probes, data was sent through Neuropixels
headstages to a Neuropixels PXIe acquisition card within a PXIe chassis (National Instruments). The PXIe chassis sent outputs
to a dedicated computer running Open Ephys with an Open Ephys acquisition board additionally attached to record timing
events sent from the Datapixx I/O box. Spike sorting on data acquired using N-Form arrays was performed using in-house code
to track and merge data from identified single units across multiple recording sessions*®. Spike sorting for data acquired using
Neuropixels probes was performed using Kilosort 2.5.

Chronic N-Form array recordings

Chronic array recordings were performed using 64-channel chronically-implanted 3D N-Form arrays consisting of 16 shanks
arrayed in a 4x4 grid with shanks evenly spaced 0.4 mm apart (Modular Bionics, Berkeley, CA, USA). Iridium oxide electrodes
are located at 1, 1.125, 1.25, and 1.5 mm (tip) along each shank, forming a 4x4x4 grid of electrodes. Arrays were chronically
inserted into the left dorsal V1 of marmosets G and B at 1.5 and 4 degrees eccentric in the visual field, respectively (confirmed
via post-hoc spatial RF mapping). Well-isolated single units were detectable on the arrays in excess of 6 months after the initial
implantation procedure.

Acute Neuropixels recordings

Acute Neuropixels recordings were performed using standard Neuropixels 1.0 electrodes (IMEC, Leuven, Belgium). Each
probe consists of 384 recording channels that can individually be configured to record signals from 960 selectable sites along a
10 mm long, 70 x 24 um cross-section straight shank. Probes were lowered into right dorsal V1 of marmoset G via one of 3
burr holes spaced irregularly along the AP axis 4-5 mm from the midline for a single session of experiments. Natural images
were played to provide visual stimulus as well as occupy the subject and keep them awake during insertion and probe settling.
The temporary seal on the burr hole was removed, the intact dura nicked with a thin needle and the burr hole filled with saline.
The probe was then lowered through the dural slit at 500 um/minute, allowing 5 minutes for settling every 1000 pm of total
insertion. The whole-probe LFP visualization was monitored during insertion for the characteristic banding of increased LFP
amplitude that characterizes cortical tissue. The probe was inserted until this banding was visible on the electrodes nearest the
tip of the probe, indicating that the probe tip itself had passed through the dorsal cortex and was within the white matter. The
probe was then advanced until a second band became visible on the electrodes nearest the tip, indicating the tip of the probe
had exited through the cortex of the calcarine sulcus. The probe was then advanced slightly until the entirety of the second LFP
band was visible to ensure that electrodes covered the full depth of the calcarine cortex and the tip of the probe was located
confidently within the CSF of the sulcus. The probe was then allowed to settle for 10 minutes. Active electrode sites on the
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probe were configured to subtend both dorsal and calcarine cortex simultaneously. Post-hoc receptive field recreation confirmed
that visually-driven, tuned, V1 neurons were recorded at both foveal and peripheral eccentricities.

Mouse dataset from Allen Institute
Mouse data were downloaded from the publicly-available Visual Coding database at https://portal.brain-map.org/explore/circuits/visual-
coding-neuropixels. We used the same analysis code to analyze these data and the marmoset data we collected.

General experimental procedure

Marmoset recording sessions began with eye tracking calibration. Once calibration was completed, the wheel was unlocked and
the subject was allowed to locomote freely, head-fixed, while free-viewing stimuli. Trials for all stimuli were 20 sec long with a
500 ms ITT and a 20 sec long natural image interleaved every fifth trial to keep the subject engaged. Stimuli were shown in
blocks of 10 minutes and a typical recording session consisted of 50 trials of calibration followed by 1 or 2 blocks of a drifting
grating stimulus and 1 block each of the two mapping stimuli. To elicit sufficiently reliable and frequent running behavior,
subjects were rewarded at set locomotion distance intervals unrelated to the stimulus or gaze behavior (typical rewards were
50-70 uL and distance required to achieve a reward usually varied between 20-75 cm; reward amounts and intervals were
adjusted daily to maximally motivate the subject.)

Eye tracking calibration

While the wheel was locked, subjects were allowed to free-view a sequence of patterns of marmoset faces. Marmosets naturally
direct their gaze towards the faces of other marmosets when allowed to free-view with little-to-no training, allowing for the
experimenter to adjust the calibration offset and gain manually between pattern presentations. Faces were 1.5 degrees in
diameter and were presented for 3 sec with a 2 sec ISI between patterns. A portion of presented patterns were asymmetrical
across both the X and Y axes of the screen to allow for disambiguation in the case of axis sign flips in the calibration. 50
trials were presented before each recording session to verify and refine the calibration. Calibration drift between sessions was
minimal, requiring minor (<1 deg) adjustments over the course of 1-2 months of recordings.

Drifting grating stimuli

The primary stimulus consisted of full-field drifting gratings. Gratings were optimized to drive marmoset V1 with 3 separate
spatial frequencies (1, 2, and 4 cycles per degree), two drift speeds (1 or 2 degrees per second) and 12 orientations (evenly-
spaced 30 degree intervals). Each trial consisted of multiple grating presentations, each with a randomized spatial frequency,
drift speed, and orientation. Gratings were displayed for 833 ms followed by a 249-415 ms randomly jittered inter-stimulus
interval. After each 20 second trial there was a longer 500 ms inter-trial interval. Every fifth trial was replaced with a natural
image to keep subjects engaged and allow for visual assessment of calibration stability on the experimenter’s display.

Mapping of receptive fields

A spatiotemporal receptive field mapping stimulus, consisting of sparse dot noise, was shown during each recording session.
One hundred 1 degree white and black dots were presented at 50% contrast at random points on the screen. Dots had a lifetime
of 2 frames (16.666 ms). Marmosets freely viewed the stimulus and we corrected for eye position offline to estimate the spatial
receptive fields using forward correlation®”.

Necessary differences between mouse and marmoset experiments

Although we sought to perform experiments in marmosets that were as similar as possible to mouse experiments, some
differences in their visual systems and behavior made for differences. Because the spatial frequency tunings of marmoset
and mouse V1 neurons are starkly different, we used stimuli with considerably higher spatial frequencies than in the mouse
experiments. Relatedly, marmoset V1 receptive fields are much smaller than in mouse. Because we used full-field stimuli (to
match mouse experiments), responses in marmoset V1 were likely affected by substantial amounts of surround suppression,
which would reduce overall responses. We also learned that, although the marmosets were comfortable perched on the wheel
treadmill, they did not naturally run enough for our experimental purposes. We therefore incorporated a reward scheme to
motivate the subjects to run more frequently. Finally, the mouse dataset we analyzed comprised a large number of mice with a
small number of sessions per mouse; as is required of work with nonhuman primates, we were limited to a smaller number of
subjects (N=2), and ran many experimental sessions with each animal.

Session and cell inclusion criteria

For the analyses shown in Figure 2, sessions were included if they contained more than 250 trials and a proportion of trials
running was not less than 10% or greater than 90%. For the mouse dataset, this yielded 25/32 sessions. For the marmoset
dataset, this yielded 27/34 sessions. For the unit-wise analyses in Figure 3, super-sessioned units were included for analysis if
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they had more than 300 trials of data and a mean firing rate of >1 spike / second. This yielded 1168/2015 units in mouse and
786/1837 units in marmoset.

For the analyses shown in Figure 4, sessions were included using the same trial and running criterion as in Figure 2. Only
units that were well fit by the stimulus + slow drift model (i.e., cross validated better than the null, see shared modulator
model’) were included and sessions were excluded if fewer than 10 units met this criterion. This resulted in 31/32 sessions for
mouse and 28/34 sessions for marmoset.

Analysis of tuning

We counted spikes between the 50ms after grating onset and 50ms after grating offset and divided by the interval to generate a
trial spike rate. To calculate orientation tuning curves, we computed the mean firing rate each orientation and spatial frequency.
Because we were limited by the animal’s behavior to determine the number of trials in each condition (i.e., running or not), we
computed orientation tuning as a weighted average across spatial frequencies with with weights set by the spatial frequency
tuning. We used these resulting curves for the all analyses of tuning. We confirmed that the results did not change qualitatively
if we either used only the best spatial frequency or marginalized across spatial frequency.

Orientation selectivity index was calculated using the following equation

V[T sin(20)]2 + [T cos(20)]2
x(r)

where 0 is the orientation and r is the baseline-subtracted vector of rates across orientations.

OSI =

Shared modulator model

To capture shared modulator signals in an unsupervised manner, we fit our neural populations with a latent variable mode
The goal of our latent variable model is to summarize population activity with low-dimensional shared signal that operates as a
gain on the stimulus processing (e.g.>>>%’). The general form of the model is that the response of an individual neuron, r; on
trial ¢ is decomposed into a stimulus response, gain modulator, and additive offsets:

149.

ri(t) = fi[s(t)] * gi(t) + b; ()

where f;[s(7)] is the tuning curve, g;(7) is a neuron-specific gain on the stimulus response, /;(¢) is an additive noise term for
the trial and b; is the baseline firing rate. To scale this to a shared population model, we enforced the gain, g, to be rank 1, such
that it can be decomposed into a trial-wise vector of gains and a neuron-wise vector of loadings that map the trial latent into
modulatory signal for each neuron. Similar models have been employed to describe the population response in V1 in several
species>*27,

To capture the stimulus tuning curves, we represented the stimulus on each trial an m—dimensional "one-hot" vector, where
m is the number of possible conditions (Orientation x Spatial Frequency) and on each trial all elements are zero, except for the
condition shown. Thus, f[s(¢)] is a linear projection of the stimulus on the tuning curves, As(¢), where W is an n x m matrix of
tuning weights. We decomposed the gain for each neuron on each trial into a rank 1 matrix that was rectified and offset by
one, g(t) = ReLU[1 +z4(t)w,], where w, is an n—dimensional vector of loadings that map the 1-dimensional trial latent to a
population-level signal, z,(f)w,. This signal is offset by 1 and rectified such that it is always positive and a loading weight of
zero equals a gain of 1.0.

Thus, the full model describes the population response as

r(t) = As(t)F[1 +g(t)w,] +b @)

Thus, the parameters of the model are the stimulus tuning parameters A, the shared gain, g, the gain loadings, w,, and
the offsets, b. To capture any unit-specific slow drifts in firing rate, we further parameterized b as a linear combination of 5
bO-splines evenly spaced across the experiment®”. Thus, the baseline firing rate for each neuron, i, was a linear combination of
5 "tent" basis functions spaced evenly across the experiment, b; =} b;¢ ().

We first fit a baseline model with only stimulus and baseline parameters

r(r) = As(r) +b 3)

Following Whiteway and Butts (2017), we initialized A and b the model using fits from a model without latent variables and
initialized the latent variables using an Autoencoder>'-32. We then fit the gain, loadings, and stimulus parameters using iterative
optimization with L-BFGS, by minimizing the mean squared error (MSE) between the observed spikes and the model rates.
The model parameters were regularized with a modest amount of L2-penalty and the amount was set using cross-validation on
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the training set. The latent variables were penalized with a small squared derivative penalty to impose some smoothness across
trials. This was set to be small and the same value across all sessions. We reverted the model to the autoencoder initialization if
the MSE on a validation set did not improve during fitting.

We cross-validated the model using a speckled holdout pattern®® whereby some fraction of neurons were withheld on each
trial with probability p=0.25. We further divided the withheld data into a validation set and a test set by randomly assigning
units to either group on each trial with probability 0.5. The validation loss was used to stop the optimization during the iterative
fitting and the test set was used to evaluate the models.
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