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Abstract 6 

Objective: Closed-loop prosthesis interfaces, combining electromyography (EMG)-based control with non-7 

invasive supplementary feedback, represent a promising direction to develop the next generation of user 8 

prosthesis interfaces. However, we still lack an understanding of how users make use of these interfaces, and 9 

how to evaluate competing interfaces. In this study we use the framework of speed accuracy trade-off functions 10 

(SAF) to understand, evaluate and compare the performance afforded by two closed-loop user-prosthesis 11 

interfaces. 12 

Approach: Ten able-bodied participants and one amputee performed a force matching task in a functional 13 

box-and-blocks setup at 3 different speeds. All participants were subject to both interfaces in a crossover 14 

fashion with a one-week washout period. Importantly, both interfaces used (identical) direct proportional 15 

control but differed in the feedback provided to the participant – EMG feedback vs force feedback. We thereby 16 

estimated the SAFs afforded by the two interfaces, and additionally sought to understand how participants 17 

planned and executed the task in the various conditions. 18 

Main results: We found that execution speed significantly influenced the performance, and that EMG 19 

feedback afforded better performance overall. Notably, we found that there was a difference in SAF between 20 

the two interfaces, with EMG feedback enabling participants to attain higher accuracies faster than Force 21 

feedback. Further, both interfaces enabled participants to develop flexible control policies, while EMG 22 

feedback also afforded participants to generate smoother more repeatable EMG commands. 23 

Significance: Overall, the results indicate that closed-loop prosthesis interfaces afford subjects to exhibit a 24 

wide range of performance, which is affected both by the interface and the execution speed. Thereby, we argue 25 

that it is important to consider the speed accuracy trade-offs to rigorously evaluate and compare (closed-loop) 26 

user-prosthesis interfaces.  27 

Keywords: Speed-accuracy trade-off, Myoelectric Prosthesis Control, EMG Biofeedback, Force Feedback, 28 

Motor Skill, Closed-loop Interfaces 29 
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Introduction 31 

Myoelectric interfaces that leverage electromyographic (EMG) signals recorded non-invasively from the 32 

residual muscles of amputees enable control of advanced upper limb prosthetic devices. These interfaces have 33 

been combined with supplementary feedback using non-invasive vibrotactile or electrotactile stimulation and 34 

principles of sensory substitution, to provide users with useful information regarding the state of the prosthesis. 35 

Together, these approaches promise to address a key challenge of closing the user-prosthesis loop to create the 36 

next generation of non-invasive interfaces aimed at improving the reliability and intuitiveness of controlling 37 

prostheses [1], [2].  38 

A key limitation in the development of such closed-loop interfaces is a lack of more basic understanding of 39 

the role of supplementary feedback in the user-prosthesis interaction [3]. Researchers in the field have used 40 

tools and concepts from human motor learning and control to better understand how subjects integrate 41 

supplementary feedback to plan and control their devices. Consequently, supplementary feedback has been 42 

shown to aid learning internal models of the prosthesis [4], [5], improve state estimation [6] and psychosocial 43 

aspects of subjective experience [7], [8]. This knowledge was successfully applied to design better interfaces 44 

and to evaluate existing interfaces [9]. Despite these promising recent developments, the understanding of 45 

motor control in the context of prosthesis use is still in its infancy.  46 

In a recent study, we showed how subjects could take advantage of supplementary feedback to develop flexible 47 

prosthesis control policies and exhibit a speed-accuracy trade-off [10]. Speed-accuracy trade-off is a ubiquitous 48 

behavioral phenomenon, observed in several species and across several tasks from foraging to tool use [11]. 49 

The speed-accuracy trade-off function (SAF) has been used as an instrument to understand both perceptual 50 

and motor ability and has a wide reception in the field of human-machine interfaces, building on seminal work 51 

by Fitts [12]. A variety of tasks inspired by this experimental paradigm have been applied in the context of 52 

myoelectric control [13]–[20]. In classical Fitts’ style pointing tasks, participants are required to move a cursor 53 

to a target location, specified by a target width and distance, and their movement time is recorded. Thereby, 54 

these experiments determine speed (movement time) as a function of task difficulty, while accuracy in such 55 

tasks is a given and correspond to “asymptotic” performance. Alternatively, one could hold task difficulty 56 

constant, and measure how the accuracy changes when the same task is performed at different speeds, a 57 

framework that has been successfully used in understanding motor skill [21]–[23].   58 

A SAF so measured can be characterized by its intercept, rate, and asymptote, without making any assumptions 59 

on the functional form of the trade-off, barring monotonicity [24] (see Figure 1). The intercept characterizes 60 

the minimum time required to have any chance of success, the rate provides information about how rapidly the 61 

trade-off between speed and accuracy can be achieved, and the asymptote characterizes a performance ceiling 62 

when one performs a task slowly and carefully. Therefore, SAF has been proposed as a preferred metric to 63 
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measure and understand a participant’s overall performance and motor ability [22], [24]. However, no current 64 

user-prosthesis interface has been analyzed using this methodology.  65 

A common practice in the field to evaluate (the effectiveness of) interfaces involves measuring performance 66 

in a given task at a ‘comfortable pace’. We argue that such an evaluation, which corresponds to sampling the 67 

SAF at a single point, is an insufficient indicator of the range of performance afforded by the (closed-loop) 68 

interfaces. Moreover, a comparison of competing interfaces is compromised when the comparison is based on 69 

a single point on the SAF. Such a comparison is limited in scope (a single point vs. a full SAF) and it could 70 

even entail comparing different points while assuming they are the same (a ‘comfortable pace’ might differ 71 

across subjects, tasks, and interfaces). Determining the SAF, on the other hand, allows a comprehensive 72 

characterization of performance and can provide unique insights that can be used to make informed choices. 73 

For example, consider two hypothetical interfaces shown in Figure 1. Sampling the two interfaces at different 74 

points of their respective SAFs leads to different conclusions about which interface affords better performance. 75 

Moreover, a user who emphasizes speed may be better off with interface A, but relaxing this requirement 76 

suggests interface B is a better bet, information which is only available through the SAF. Such a comprehensive 77 

assessment becomes even more pressing as there are several promising user-prosthesis interfaces that use 78 

different (combinations of) control (e.g., direct proportional, pattern recognition, regression etc. [25]) and 79 

feedback interfaces (e.g., force, aperture, proprioceptive feedback using different modalities [26]). Narrowing 80 

down the focus to closed-loop control  of grasping force, arguably the critical function of hand prostheses, 81 

several (feedback) interfaces have been proposed in the literature [3], [26], [27]. However, comparisons of 82 

 

Figure 1: Speed-Accuracy Trade-off. A cartoon depicting the concept of speed-accuracy trade-offs as 

characterized by (1) intercept, (2) rate and (3) asymptotic performance, for two different interfaces.  
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these interfaces are difficult since the performance is sampled at a single, and possibly different, point along 83 

the SAF. 84 

In this experiment, we empirically study the SAF in closed-loop myoelectric control, using the prosthesis 85 

force-matching paradigm in a functional task – the box and blocks test – to (1) show how SAF can be used to 86 

evaluate (closed-loop) prosthesis interfaces and (2) thereby understand how they affect users’ ability to control 87 

the prosthesis. Specifically, we compare two interfaces which both use direct proportional control to modulate 88 

prosthesis velocity but differ in the feedback they provide to the subject – EMG feedback [28]–[30] vs force 89 

feedback (see Table A1 in [3]). We use a prosthesis force-matching paradigm to understand how well the two 90 

interfaces enable participants to achieve the same target force at three different speeds, ordinally defined as 91 

fast, medium, and slow (see Methods: Experimental Design). Since the difficulty of the task itself and control 92 

interface are fixed, the performance differences that arise from this experiment are a consequence of the 93 

feedback interfaces. Having sampled the SAF at the three distinct speed requirements, we investigate how the 94 

SAF differ for the two interfaces and analyze how the participants’ control policies change both across 95 

interfaces and speeds. Finally, we investigated if the results extend to amputees, using a case study of a single 96 

amputee.  97 

 98 

Methods  99 

Participants 100 

Ten healthy, able-bodied participants (7 male and 3 females with a mean age of 28 ± 2 years) and one 101 

transradial amputee (female, 49 years old, 10 years since traumatic amputation of non-dominant hand, limited 102 

daily use of a single DoF myoelectric prosthesis) were recruited. All participants signed an informed consent 103 

form before the start of the experiment. The experimental protocol was approved by the Research Ethics 104 

Committee of the Nordjylland Region (approval number N-20190036). 105 

Experimental Setup 106 

The experimental setup is shown in Figure 2A. Able-bodied participants donned an orthotic wrist 107 

immobilization splint, to produce near-isometric wrist flexion and extension, and the prosthetic device 108 

(Michelangelo hand, OttoBock, DE) was attached to the splint, with the arm placed in a neutral position. A 109 

custom-fit socket was made for the amputee. Two dry EMG electrodes with embedded amplifiers (13E200, 110 

Otto Bock, DE) were placed over the wrist flexors and extensors of the right forearm, located by palpating, 111 

and visually observing muscle contractions. Five vibrotactors (C-2, Engineering Acoustics Inc.) were 112 

positioned equidistantly around a cross-section of the upper arm and an elastic band was used to keep them in 113 

place. A standard Box and Blocks setup was used for the experimental task. The task instructions were shown 114 
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on a computer screen placed at a comfortable viewing angle and distance. The prosthesis was connected to a 115 

standard laptop PC through a Bluetooth link, while the vibrotactors were connected through a USB port. The 116 

control loop for the experiment was implemented in MATLAB Simulink using a toolbox for testing human-117 

in-the-loop control systems [31] and operated on the host PC in real time at 100Hz through the Simulink 118 

Desktop Real Time toolbox.  119 

EMG Control 120 

Participants used near-isometric wrist flexion and proportional control to generate velocity commands to close 121 

the prosthesis. Opening the prosthesis was triggered by a strong contraction (see below) of the wrist extensors, 122 

instead of proportional control, since fine control of the opening was not relevant for the study. Two electrodes, 123 

placed on the flexors and extensors as explained above, were used to record the root mean square of the 124 

windowed (100 ms) EMG signal at 100Hz through the embedded prosthesis controller. The signals were 125 

 

Figure 2: Experimental setup and protocol. (A) Sketch of the experimental setup showing 1. Two dry 

EMG electrodes placed on the forearm, 2. Vibrotactor array for delivering feedback placed on the upper 

arm and 3. The Michelangelo prothesis. (B) Vibrotactor array arrangement and coding scheme used for the 

feedback interfaces. Bars indicate how the normalized EMG and Force range was discretized to provide 

feedback. (C) Experimental protocol indicating the design (AB-BA crossover), trial structure and force and 

speed targets. 
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subsequently filtered digitally using a second order Butterworth low-pass filter with a 0.5 Hz cutoff. The EMG 126 

envelope from each of the electrodes was normalized to 50% of the maximum voluntary contraction (MVC). 127 

For the flexor EMG, this corresponded to the maximum closing velocity of the prosthesis. A piecewise linear 128 

mapping between EMG amplitude and closing velocity was used to design the proportional controller, to 129 

compensate for the higher variability in the EMG signal at higher amplitudes (stronger contractions). The 130 

breakpoints for the mapping were defined as follows: EMG = {0.01, 0.1, 0.27, 0.47, 0.69, 0.95, 1}, velocity = 131 

{0, 0.25, 0.42, 0.59, 0.76, 0.9, 1}. For the extensor however, participants simply needed to reach 0.4 on the 132 

normalized range (corresponding to 20% MVC) to trigger hand opening.  133 

Vibrotactile Feedback Interfaces 134 

In this study, we compared two feedback interfaces – EMG feedback and Force feedback. Both interfaces were 135 

identical in terms of the hardware and encoding (described below) and differed only in the variable which was 136 

provided as feedback – participants’ own EMG command vs prosthesis force. Five vibrotactors were placed 137 

circumferentially and equidistantly on the upper arm around a cross section containing the biceps. An elastic 138 

band was used to keep the tactors in place. A spatial encoding scheme consisting of six discrete levels of the 139 

feedback variable (EMG command or grasping force) was used for both interfaces. The first five levels were 140 

indicated by activating one of the tactors from the array while the sixth level was conveyed by activating all 141 

the tactors simultaneously (Figure 2B). If the vibrotactors evoked an unpleasant or poorly localized sensation, 142 

their position was adjusted until the participants could easily distinguish all six stimulation patterns (levels). 143 

The vibration frequency for all tactors was set to 200 Hz, and the stimulation pattern was updated at 50 Hz. 144 

EMG Feedback 145 

In this interface, the participants were provided feedback about the EMG signal that they generated using their 146 

flexor muscles to control the closing velocity of the prosthesis. The six discrete levels were defined using the 147 

breakpoints of the piece-wise linear mapping described in section “Methods: EMG Control.” Therefore, as 148 

soon as the participants started contracting their wrist flexors, they received feedback about the EMG level (1-149 

6) they were generating, thereby enabling them to predictively modulate to the target level. The breakpoints 150 

of the piecewise mapping were designed in such a way that if the participants reached a particular level of 151 

EMG (with the object contact established and stable), they will have applied the same level of force on the 152 

object. For instance, if a participant would generate and maintain EMG level 2, the prosthesis would close 153 

around the object and exert the level 2 of the grasping force (level boundaries defined in the next section). 154 

Force Feedback 155 

The force applied on the blocks was measured by a sensor embedded within the prosthesis. The measured 156 

force, sampled at 100Hz by the embedded controller, was normalized and divided into six discrete ranges 157 

(levels) with boundaries at {0.05, 0.31, 0.45, 0.58, 0.73, 0.9 and 1} on the normalized scale. With this feedback 158 
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interface, the participants received feedback on the level of force (1-6) applied on the object. Contrary to EMG 159 

feedback, where vibrotactile stimulation was delivered as soon as the myoelectric signal crossed the threshold 160 

of the dead-zone (e.g., when the prosthesis started closing), in the case of force feedback, the stimulation was 161 

delivered only after contact was established with the object. 162 

Experimental Design 163 

The experiment was designed as an AB-BA crossover trial over two sessions with a one-week washout period 164 

between the sessions (Figure 2C). Half of the participants started with EMG feedback interface in Session 1 165 

and switched to Force feedback in Session 2, while the other half of the participants did the opposite. A 166 

crossover design has been selected to control inter-group variability. In each session, the participants were 167 

instructed to perform the box and blocks test with two additional constraints, i.e., in each trial, they were 168 

required to (1) apply a specified level of force on the object (two levels of force were chosen as target forces 169 

– levels 4 and 5, see [10]), and (2) reach the target force within a specific time window. Thereby, we determined 170 

the speed-accuracy trade-off in a prosthesis force-matching task. 171 

To adequately sample the SAF, participants were required to perform the task in three speed conditions – slow, 172 

medium, and fast, where each condition specified the time window for task completion. During the Slow 173 

condition, trials had to be completed within 4 – 8s, while for the Medium and Fast conditions the speed/time 174 

requirements were 2 – 4s and 1 – 2s, respectively. The time windows have been defined to capture the relevant 175 

domains of the SAF curve. Previous studies suggest that participants in a fast routine grasping task spend 176 

around 2s to achieve required force while they attain close to 100% accuracy at around the 6s mark [10]. In 177 

effect, we used a time-band methodology to derive the SAF [24]. While there exist several methodologies to 178 

obtain the SAF [11], [24], we believe that this approach  reduced inter-subject variability in learning feedback 179 

control. This would not have been the case in, e.g., a deadlines-based methodology, where participants may 180 

have no incentive to perform the task at a slower speed if they were satisfied with their accuracy while using 181 

faster speeds. 182 

The amputee subject followed the same protocol as the able-bodied participants, starting with Force feedback 183 

in Session 1 but returned 3 weeks later (as opposed to one week) to perform the task with EMG feedback. 184 

Experimental Protocol 185 

Initially, all equipment (EMG electrodes, vibrotactors, wrist immobilization splint and the prosthesis) were 186 

placed on the participant. Then a brief calibration and familiarization followed in both sessions. During the 187 

EMG calibration phase, three 5-second-long maximum voluntary contractions (MVC) for both the flexors and 188 

extensors were recorded to calibrate the control interface. The MVC measurements were recorded in the same 189 

posture that the participants would use to perform the box and blocks task (similar to [32]), to address the 190 

effect of arm posture and prosthesis weight on the recorded EMG. Next, the participants were familiarized 191 
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with the interface and were guided to explore how their flexor EMG signal affected the prosthesis closing 192 

velocity and how their extensor EMG signal triggered hand opening. Finally, they were familiarized with the 193 

vibrotactile feedback (common across both feedback interfaces) by performing a spatial discrimination task 194 

where they were presented with two sets of 18 stimulation patterns (3 repetitions x 6 levels, Figure 2B) and 195 

asked to identify the patterns. The experiment proceeded after ensuring that the participants achieved at least 196 

95% success in the discrimination task, which normally took less than 5 mins. 197 

After familiarization with the control and feedback, the participants performed 30 trials (10 per speed 198 

condition) of the modified box and blocks test to practice the time-constrained force-matching task. Each trial 199 

began by displaying the force and speed targets. The participants then had to modulate their muscle contraction 200 

and use the feedback interface to successfully complete the trial. Once the participant felt they successfully 201 

reached (or overshot) the target, they were instructed to extend their wrist to trigger hand opening. Immediately 202 

after the trial ended, the participants received knowledge of performance, which indicated if they achieved, 203 

overshot, or undershot the target force and target speed. During the practice trials, the participants were 204 

explained how to modulate their muscle contraction to control the closing velocity of the prosthesis. They were 205 

also clearly instructed to avoid eccentric behavior, e.g., in the slow condition they were instructed against 206 

holding their contraction at a low level until 4 s and then quickly correcting upwards, hence inadvertently 207 

making a fast/medium condition trial.  208 

After the initial practice trials, the participants performed 90 training and 90 test trials with a break after every 209 

30 trials. In each such block of 30 trials, the target speeds (slow, medium, and fast) remained the same for 10 210 

trials, while the target forces (4, 5) were presented 5 times each in a random order. In addition, during the first 211 

60 training trials, the speed targets were presented in a specific order – slow, medium, and fast – while during 212 

the remaining trials, this was also randomized. 213 

Outcome Measures 214 

During each trial, the EMG commands and force measurements were recorded and processed to obtain the 215 

primary outcome measures – reach time and trial success. from when the participant started generating the 216 

EMG input (above the dead-zone) to the time point where the maximum force was reached during the trial. A 217 

successful trial was therefore one where the reach time satisfied the speed requirement (1 – 2s for fast, 2 – 4s 218 

for medium and 4 – 8s for the slow speed), and the reached force was within the corresponding force interval 219 

(target level). The trials were aggregated per speed condition to obtain percent success rates (S). Subsequently, 220 

we computed the rate of trade-off in success rate (ΔS per second) during fast-to-medium and medium-to-slow 221 

conditions to evaluate how quickly the participants traded speed for accuracy. For each participant, we 222 

computed the rate of trade-off as the difference in success rates (ΔS) between successive speed conditions 223 

divided by the difference in the corresponding reach times. For example, the rate of trade-off for participant p 224 
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for fast-to-medium transition was computed as (𝑆𝑆𝑝𝑝|𝑚𝑚𝑚𝑚𝑚𝑚– 𝑆𝑆𝑝𝑝|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)/( 𝑇𝑇𝑝𝑝|𝑚𝑚𝑚𝑚𝑚𝑚  – 𝑇𝑇𝑝𝑝|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), where 𝑆𝑆𝑝𝑝|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is success 225 

rate and 𝑇𝑇𝑝𝑝|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the average reach time in the condition cond.  226 

Further, to understand how the participants planned and executed the task in the different speed and feedback 227 

conditions we computed three behavioral metrics. Firstly, we calculated the number of force corrections in 228 

each trial that the participants made, by counting the number of distinct plateaus (longer than 250ms) in the 229 

force trajectory [10]. For example, during the slow condition with EMG feedback the amputee subject made 4 230 

force corrections in the trial shown in Figure 3. Then, we analyzed the generated EMG commands, to 231 

understand if one feedback type could enable the participants to generate (1) smoother and (2) more repeatable 232 

EMG commands. To evaluate smoothness, we calculated the integrated squared jerk of each trajectory, 233 

normalized to the reach time. To measure the repeatability, we computed the trial-by-trial variability of the 234 

generated EMG commands. We first normalized all EMG trajectories to 200 time points between the start of 235 

 

Figure 3: Representative Trials. Six representative trials (EMG commands in solid black, prosthesis force 

in dark gray) as performed by the amputee subject using the two different interfaces, at the three required 

speeds for target force Level 5. Faint dotted vertical and horizontal lines indicate time restrictions and force 

target bounds respectively. Green area depicts how trial success is determined as a combination of reaching 

the target force during the required time (speed). 
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the trial and reach time, then measured the standard deviation at each of the 200 time points. As the final 236 

measure of variability, we computed the median of the standard deviations across the time points since the 237 

distribution of the standard deviations was found to be often skewed. 238 

Statistical Analysis 239 

Statistical analysis was performed on outcomes obtained during the 90 test trials. 3-factor mixed ANOVAs 240 

were fitted each for success rate, rate of trade-off and the behavioral metrics as the outcome, with two within-241 

subjects factors – feedback interface and speed condition – and one between-subjects factor “order”, which 242 

denotes the order in which the participants were exposed to the feedback interfaces. We interpreted the main 243 

effect of order as an interaction between feedback interface and session, while the interaction effect between 244 

order and feedback interface was interpreted as the main effect of session, as is common in cross-over designs 245 

[33]. The assumptions of Normality, homogeneity of variance and sphericity were verified using Shapiro-246 

Wilk’s, Levene’s and Mauchly’s tests, respectively.  247 

Post-hoc analyses for differences in success rates between the two feedback interfaces at a given speed 248 

condition and between speeds for a given feedback interface were performed by using pairwise t-tests, adjusted 249 

using the Holm-Bonferroni method. The threshold for statistical significance was set at p < 0.05. Mean ± 250 

standard deviation of outcomes per group of interest are reported throughout the paper, unless noted otherwise.  251 

 252 

Results 253 

Representative Trials 254 

Figure 3 shows representative trials of the amputee subject in all target speeds, with level 5 as the force target. 255 

Firstly, we can notice that both feedback types allowed the subject to flexibly control the prosthesis at different 256 

speeds and still succeed in the task, i.e., reaching the target grasping force within the given time window. Then, 257 

we can notice that the subject was slightly faster when using Force feedback than EMG feedback (especially 258 

noticeable in the slow trials), a feature that also holds across participants (see Figure 4A). Secondly, we can 259 

observe a difference in the “quality” of the generated EMG commands across the feedback conditions. While 260 

the EMG commands produced during the fast condition is largely similar between the feedback types, the 261 

EMG signal generated during both medium and slow trials is smoother during EMG feedback as opposed to 262 

Force feedback, where the EMG commands exhibit distinct “jumps”.   263 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.06.13.495789doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.13.495789
http://creativecommons.org/licenses/by-nc-nd/4.0/


Speed-Accuracy Trade-offs  264 

The participants’ speed-accuracy trade-off curves showed a general tendency to be monotonic (14 out of 22, 265 

Figure 4A), and when they were not monotonic, they were only off due to a few trials (1 – 3 trials), while the 266 

mean SAF across participants were monotonic. This was true for both feedback interfaces. Next, we fit a 3-267 

factor ANOVA by treating the speed condition as categorical to analyze the effect of feedback interface and 268 

speed condition on success rate. We observed a significant effect of feedback interface (p=0.006), and speed 269 

condition (p=2.3x10-6) on success rate as well as a significant effect of session (feedback interface x feedback 270 

order interaction effect, p=0.003). 271 

We then analyzed if feedback interface affected performance at each of the speed conditions. In the Fast 272 

condition, we did not observe a significant effect of feedback interface (EMG: 75.8 ± 9.4%, Force: 71.1 ± 273 

7.4% see Figure 4B), while in the Medium condition, we observed that participants performed significantly 274 

better using EMG feedback than Force feedback (EMG: 86.3 ± 8%, Force: 74.6 ± 12.2%, p-adj=0.022). In the 275 

Slow condition (asymptotic performance), as expected, we observed that the interface had no significant effect 276 

on performance (EMG: 89.2 ± 4.8%, Force 88 ± 10.2%). Taken together, we see that while the feedback 277 

interface had a significant effect on success rate overall, it was in the Medium speed condition that this 278 

difference originated from. Further, EMG feedback enabled participants to reach asymptotic performance 279 

sooner, with participants significantly improving their performance between Fast and Medium conditions (p-280 

 

Figure 4: Speed-Accuracy trade-offs in prosthesis force control. (A) Individual speed-accuracy trade-

off curves are plotted for each participant (faint lines), group means (bold lines) and the amputee subject 

(dashed lines and stars). Bold diamond indicates the time (X-intercept) when success is zero. (B) Same as 

A, but box plots show success rates of all participants during each of the ordinal target speeds (left). Box 

plots showing rate of trade-off (% per s) across the target speed transitions. Colored stars represent results 

of the amputee subject. 
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adj=0.03) but not between Medium and Slow conditions. On the contrary, participants exhibited significant 281 

improvement between Medium and Slow conditions (p-adj=0.004) while using Force feedback. The two 282 

feedback types are therefore characterized by SAFs that are qualitatively different, while still allowing similar 283 

asymptotic performance.  284 

Therefore, we analyzed if the observed rate of trade-off in success rate (% per s) for the Fast to Medium, and 285 

Medium to Slow transitions were significantly different between EMG and Force feedback (see Figure 4B, 286 

right). Visually, there appears to be a difference in both cases, with the higher rate of trade-off for EMG 287 

feedback during Fast to Medium (6.6 ± 6.3% vs 2.7 ± 6.1% per second) and opposite for Medium to Slow 288 

transition (1.3 ± 2.8% vs 5.1 ± 3.5% per second). However, the difference was not statistically significant.  289 

Performance of the amputee subject followed the trends of the able-bodied participants (Figure 4, stars). While 290 

the asymptotic performance was nearly identical (EMG: 76.6%, Force: 73.3%), the amputee participant 291 

reached higher success rates with EMG feedback in both Fast and Medium conditions, with the largest 292 

difference in the latter (Medium condition: EMG: 76.6%, Force: 53.3%).   293 

Behavioral Analyses  294 

We sought to understand the behavioral differences between the feedback types, i.e., how the different 295 

interfaces allowed participants to plan and execute movements (Figure 5). First, we investigated if participants 296 

developed different strategies during the different speed targets. We found that both feedback interface 297 

 

Figure 5: Behavioral metrics for both interfaces, across participants. (A) Average number of force 

corrections (distinct force plateaus) per trial. (B) Smoothness of EMG trajectories (commands) generated 

by the participants, computed as integrated squared jerk of the normalized EMG amplitude. (C) Trial-by-

trial variability of EMG commands generated by the participants. Stars represent results of the amputee 

subject. 
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(p=0.005) and speed condition (p<1e-15) had a significant effect on the number of corrections made by the 298 

participants (Figure 5A), and the feedback and session exhibited significant interaction (p=0.02). Therefore, 299 

the participants were able to flexibly modify their control policies by using the available feedback, especially 300 

during the Medium (2.2 ± 0.3, 1.8 ± 0.5 corrections per trial) and Slow conditions (3 ± 0.4, 2.8 ± 0.3 corr. 301 

p/trial) compared to the Fast condition (0.5 ± 0.3, 0.2 ± 0.2 corr. p/trial).  302 

Next, we analyzed the generated EMG commands by measuring the smoothness and trial-by-trial variability 303 

(Figure 5B, C). We found that the feedback interface had a significant effect on both metrics (p=0.03 for 304 

smoothness, p=0.002 for trial-by-trial variability). That is, EMG feedback enabled the participants to make 305 

smoother and more repeatable commands compared to Force feedback. Additionally, the speed condition had 306 

a significant effect on both metrics (p=0.01 for smoothness, p=0.0006 for variability), while the session 307 

significantly influenced trial-by-trial variability (p=0.001).  308 

The behavior of the amputee subject followed the results of able-bodied participants. However, the smoothness 309 

of EMG commands with EMG feedback was worse than with Force feedback in the Slow condition. 310 

 311 

Discussion 312 

Speed and accuracy are critical factors in the context of human-machine interfaces. Investigating speed-313 

accuracy trade-off functions provides a thorough understanding of task performance and motor ability but has 314 

not been applied to study user-prosthesis interfaces. Here, we empirically derived the SAF using a prosthesis 315 

force-matching paradigm in a functional box-and-blocks task for two different closed-loop interfaces, which 316 

only differed in the feedback provided to the participants – EMG feedback vs Force feedback. Expectedly, the 317 

speed at which participants performed the force-matching task imposed a trade-off with accuracy regardless 318 

of the feedback type. However, the SAF was different for the two interfaces, as EMG feedback substantially 319 

outperformed Force feedback in the Medium speed condition and thereby enabled participants to reach 320 

asymptotic performance sooner. In addition, we found that EMG feedback enabled smoother and more 321 

repeatable EMG commands. Therefore, the results demonstrate that the SAF methodology can provide crucial 322 

insights regarding both evaluating and understanding of closed-loop interfaces for prostheses control even in 323 

functionally relevant task settings. 324 

SAF to Evaluate Closed-Loop Interfaces 325 

Evaluation and comparison of user-prosthesis interfaces is challenging and multi-faceted. Despite rapid 326 

development of promising control and feedback interfaces [25], [26], their comparison has received less 327 

attention, barring a few exceptions [29], [34]. While it is a difficult undertaking due to various reasons such as 328 

incomparable experimental setups and tasks, here we showed that it is additionally compounded by measuring 329 
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the performance only at a single speed (sampling at a single point on the SAF). For example, if we had only 330 

measured performance in the Fast condition in this study, we would infer that both interfaces enable similar 331 

performance, while they are in fact significantly different when used at the Medium speed. We argue therefore, 332 

that it is valuable to compare interfaces at more than a single point on the SAF especially since the shape of 333 

the SAF afforded by different interfaces is unknown. 334 

Here, we used the SAF framework to rigorously compare two closed-loop interfaces in a functional force-335 

matching task. By enforcing task execution at different speeds, we elicited a range of success rates that were 336 

significantly affected by the feedback interface used. We expected that EMG feedback would enable better 337 

success rates during the Fast condition, since it promotes predictive control [28], [29], but that was not the 338 

case. We believe that this is likely due to two reasons. First, Fast condition might have been too restrictive, 339 

with a short 2 s window, for the participants to exploit the EMG feedback effectively for online adjustment of 340 

control commands. Second, the task included only 2 force levels and the participants received training before 341 

performing the test trials. The training might have enabled participants to acquire a reliable internal model and 342 

achieve a good performance when using Force feedback despite the short time window (which basically 343 

precluded the use of force feedback to drive the corrections). However, we noticed a large difference in success 344 

rates between the two interfaces in the Medium condition. Therefore, the results demonstrate that the expected 345 

advantage of EMG feedback over Force feedback occurs in this range of movement speeds, where the former 346 

allows users to predictively modulate their contractions to reach the target level as opposed to ‘reactively’ 347 

jump between levels. Finally, the feedback interfaces resulted in similarly high performance in the Slow 348 

condition, as the participants had enough time to reach the goal by focusing on either of the two feedback 349 

signals. The present study therefore demonstrates that SAF allows identifying the time interval in which 350 

feedback (Force or EMG) becomes an important factor for the effectiveness of the control loop.  351 

Taken together, we found that the asymptotic performance for both interfaces was similar, while EMG 352 

feedback allowed participants to approach the asymptotic performance sooner. Note that this important 353 

characterization of the two feedback types is derived from the trade-off itself and could not be obtained if the 354 

performance was assessed in a single point. More generally, SAF provides a way to estimate the expected 355 

completion time to guarantee a given (e.g., 90%) performance in a task, and therefore can be a relevant 356 

instrument for meta-analytic comparison of interfaces across studies. Moreover, we believe that determining 357 

SAF will be advantageous for person-based approaches to designing prosthesis interfaces [35], by e.g., 358 

determining the appropriate user-prosthesis interface for the amputee based on their inherent speed preferences 359 

(see Figure 1). Thereby, in the present study, we provided a holistic comparison of the performance afforded 360 

by two established interfaces in a functional task and added to a pool of methods that have been recently 361 

developed to assess the performance as well as behavior of the users of closed loop prostheses [15], [36].  362 
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SAF to Understand Closed-Loop Interfaces 363 

Closed-loop user-prosthesis interfaces are a promising technology likely to translate into clinical applications, 364 

but currently still facing several conceptual and implementational barriers [1], [27], [37]. A key prerequisite 365 

for designing better closed-loop interfaces is to understand the complex interplay between feedforward and 366 

feedback control processes of the users, and how different interfaces facilitate it [3], [6], [10]. We believe that 367 

studying the SAF, as described here, is an effective instrument to approach this point as it enables us to 368 

understand how users interact and exploit different interfaces to achieve specific (time bound) goals.  369 

Here, in addition to measuring performance, we used SAF to understand how participants planned and 370 

executed movements in a functional prosthesis task. We found that both closed-loop interfaces enabled users 371 

to develop flexible control policies. That is, participants were able to incorporate feedback to varying extents 372 

to guide their behavior during the different speed conditions, as reflected in the number of force corrections 373 

they made. Then, we found that EMG commands generated when participants used EMG feedback were 374 

smoother than when they used Force feedback. Interestingly, this suggests that even though participants 375 

received discretized feedback, they could exploit EMG feedback to predictively guide their contractions to 376 

generate an overall smooth control input. Combined with the low trial-by-trial variability across speed 377 

conditions, EMG feedback effectively reduced the uncertainty in generating prosthesis commands, a central 378 

aim of implementing supplementary feedback [6], [35]. Our results therefore add to a body of evidence which 379 

underscores the promise of some form of predictive feedback, about users’ own intention [5], [28], [29].  380 

Together, the flexibility, smoothness and repeatability measures which are hallmarks of skilled behavior, help 381 

us understand how participants incorporate supplementary feedback in their control policies. And investigating 382 

the SAF provides a suitable framework for such an analysis. Finally, we also found that all outcome measures 383 

had similar trends in the amputee experiment. We believe that this is an encouraging result, albeit expected 384 

since motor planning and execution should remain comparable across able-bodied participants and amputees, 385 

especially when using a simple command interface (direct proportional control).  386 

Limitations and Outlook 387 

A limitation of the current study is that we always required participants to make ‘strong’ contractions (30-45% 388 

MVC) to reach the target forces. However, the trade-offs (SAF) may be influenced by the force users want to 389 

generate. Another limitation is that while we performed a single session study to establish the conceptual 390 

framework of SAF, the shape of the SAF may change across days, in which case the SAF for both interfaces 391 

may become identical after practice, but this remains to be investigated. 392 

Measuring the SAF can be an instrument for assessment of prosthesis control with rather general applicability. 393 

Future studies should be therefore conducted to investigate how the control interface (direct control, pattern 394 

recognition etc.) of the user-prosthesis loop affects the SAF, relative to the effects of feedback interface as 395 
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explored here. In addition, this approach could be used to compare feedback interfaces which differ only in 396 

their encoding schemes (e.g., discrete vs continuous), while the feedback variable remains the same. The 397 

intercept (see Figure 1), which characterizes the minimum time required to have any chance of success, did 398 

not play a role in our current setup since the control interface was always the same (direct proportional control). 399 

However, in case one wishes to compare interfaces that allow different maximum velocities (e.g., due to 400 

different sensitivities for the proportional controller), or when one is required to change grips by co-401 

contractions, it becomes crucial to understand the intercept as well. Finally, this framework can be extended 402 

to multi-dimensional task spaces, for example to characterize the trade-offs in prehension (posture matching 403 

with prostheses) combined with force-matching, to create better interfaces for current state-of-the-art 404 

commercial prostheses. 405 

 406 

Conclusion 407 

In this study, we empirically derived SAF in prosthesis force control using a functional box-and-blocks task. 408 

We demonstrated that two closed-loop myoelectric interfaces which differed only in the variable provided as 409 

feedback to the participants – EMG feedback vs Force feedback – exhibited different SAFs. EMG feedback 410 

afforded better performance throughout, but especially at medium speeds, and enabled participants to develop 411 

stronger feedback control. We argue that the methodological advancement provided here is a valuable step 412 

forward in evaluating and understanding (closed-loop) user-prosthesis interfaces. 413 
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