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 3 

Summary  4 

 Heterogeneity in gene trees, morphological characters, and composition has been 5 

associated with several major clades across the plant tree of life. Here, we examine 6 

heterogeneity in composition across a large transcriptomic dataset of plants in order to 7 

better understand whether locations of shifts in composition are shared across gene 8 

regions and whether directions of shifts within clades are shared across gene regions.  9 

 We estimate mixed models of composition for both DNA and amino acids across a 10 

recent large scale transcriptomic dataset for plants.  11 

 We find shifts in composition across both DNA and amino acid datasets, with more shifts 12 

detected in DNA. We find that Chlorophytes and lineages within experience the most 13 

shifts. However, many shifts occur at the origins of land, vascular, and seed plants. 14 

While genes in these clades do not typically share the same composition, they tend to 15 

shift in the same direction. We discuss potential causes of these patterns. 16 

 Compositional heterogeneity has been highlighted as a potential problem for 17 

phylogenetic analysis, but the variation presented here highlights the need to further 18 

investigate these patterns for the signal of biological processes.  19 

 20 

Plain language summary 21 

We demonstrate that many nucleotide and amino acid compositional shifts in plants occur at the 22 

origins of major clades and while individual genes do not share the same composition they often 23 

shift in the same direction. We suggest that these patterns warrant further exploration as the 24 

signal of important biological processes during the evolution of plants. 25 
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 27 

Introduction 28 

Heterogeneity in the patterns and processes of molecular evolution is common through time and 29 

between lineages. For example, topological conflict between different gene regions has been 30 

demonstrated to be common across the tree of life, reflecting, in part, population processes 31 

including introgression and incomplete lineage sorting (Maddison, 1997; Rokas et al., 2003; 32 

Smith et al., 2015). High rates of morphological change has also been associated with conflict at 33 

several major clades across the plant tree of life (Parins-Fukuchi et al. 2021; Stull et al. 2021). 34 

An additional widely recognized form of heterogeneity is in composition: changes in the 35 

proportion of different states, such as nucleotide bases or Amino Acids (AAs), between lineages 36 

and through time, which emerges from the interplay between mutation, gene conversion, drift 37 

and selection (Eyre-Walker & Hurst, 2001; Lynch, 2007). Compositional differences are also 38 

expressed at the site-level with different protein sites preferring different AAs (Lartillot & 39 

Philippe, 2004; Wang et al., 2008; Le et al., 2008), and genome-wide with different composition 40 

between different regions within the same genome (Lynch, 2007). Different lineages are also 41 

known to favor different synonymous codons, leading to compositional bias at the codon level 42 

(Chen et al., 2004; Plotkin & Kudla, 2011). These differences are tree-heterogeneous and 43 

interactive, so that different sites and loci might experience different compositions in different 44 

lineages at different times. 45 

Research intersecting composition and phylogenetics has typically focused on the 46 

impact of heterogeneous composition on error in phylogenetic inference, identifying how clade-47 

specific biases in nucleotide base composition can produce false groupings of evolutionarily 48 

distant but compositionally similar taxa (Foster, 2004; Cox et al. 2014; Cox, 2018; Sousa et al., 49 

2020). Another less well-explored avenue is the ability for heterogeneity in composition to 50 

provide a window into the molecular and population processes impacting the genome. A 51 

separate body of research has addressed the role and influence of these processes on 52 
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genomes in multiple clades (Duret & Galtier, 2009; Glemin et al., 2014; Weber et al., 2014; 53 

Clément et al., 2015; Clément et al., 2017). Mutation pressure is thought to explain some 54 

genomic patterns (Lynch, 2007), such that changes in composition might reflect important shifts 55 

between the balance of mutation and drift, and hence effective population size. GC-Biased 56 

Gene Conversion (gBGC), where GC alleles act as the donor more often than expected during 57 

recombination-associated gene conversion events, also influences genome-wide GC content. 58 

Furthermore, due to gBGC, changes in recombination rate might therefore change compositions 59 

across the tree (Marais et al., 2004; Duret & Galtier, 2009; Muyle et al., 2011; Weber et al., 60 

2014).  Changes in effective population size might drive changes in composition via an increase 61 

in the efficacy of gBGC (Weber et al., 2014). Because gBGC occurs during meiosis, increases 62 

or decreases in generation time could change composition both by changing mutation rate and 63 

changing the number of meiotic, and hence the number of gBGC, events (Romiguier et al., 64 

2010; Weber et al., 2014).  65 

While demographic processes may influence molecular composition, several  non-66 

demographic processes also potentially contribute to compositional change (Clément et al., 67 

2017; Hershberg & Petrov, 2008). Selection on codon usage for translational accuracy and 68 

efficiency could explain compositional changes (Hershberg & Petrov, 2008; Qiu et al., 2011). 69 

Compositional bias itself may  impact codon usage and eventually AA preference (Foster et al. 70 

1997, Singer and Hickey 2000, Knight et al., 2001; Qiu et al., 2011). Bias in the selection for 71 

particular AAs can influence composition (Błażej et al., 2017). Compositionally mediated 72 

changes in codon usage might also influence gene expression (Zhou et al., 2016). In addition to 73 

these microgenomic processes, macrogenomic changes, such as Whole-Genome Duplication 74 

(WGD) and biased retention or loss, could also create dramatic changes in composition 75 

(McGrath et al., 2014; Veleba et al., 2014).  76 

In plants, empirical patterns in various clades, such as the GC-richness of Commelinid 77 

monocots, have been described and explained by mutation, selection, and gBGC (Qiu et al., 78 
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2011; Serres-Giardi et al., 2012; Glemin et al., 2014; Clément et al., 2015; Clément et al., 2017).  79 

Because shifts in base composition bias can be linked with such crucial evolutionary parameters 80 

as generation time and population size, they may also shed light on major evolutionary 81 

transitions in the plant tree of life. 82 

Models of molecular evolution typically consist of two components: relative transition 83 

rates between states, and the composition of those states. State compositions of nucleotides or 84 

AAs are typically modeled at equilibrium, assuming a process that does not vary between sites 85 

or across time (Yang, 2014). These assumptions can be relaxed in several ways including 86 

partitioned models (Lanfear et al., 2012), models that allow the equilibrium composition to vary 87 

across sites (Lartillot & Philippe, 2004; Le et al., 2008), models that vary across the tree (Galtier 88 

& Gouy, 1998; Foster, 2004), or methods that vary substitution models and compositions across 89 

branches (Jayaswal et al., 2011; Zou et al., 2012; Jayaswal et al., 2014). Phylogenetic inference 90 

can be sensitive to composition biases across clades, with conflicting resolutions drawn from 91 

homogeneous vs heterogeneous models. As a result, methods relaxing these assumptions 92 

have been a major focus for phylogenetic inference of ancient nodes across the tree of life 93 

(Sousa et al., 2020; Redmond & McLysaght, 2021; Li et al., 2021).  However, if molecular and 94 

population processes are driving the patterns accounted for by heterogeneous phylogenetic 95 

models, these models could be used to detect the signal of changing evolutionary processes 96 

across the tree. 97 

Instead of focusing on the resolution of relationships within plants, we concentrate on 98 

examining the extent to which there are compositional shifts across nodes and gene regions. 99 

One shortcoming to the application of phylogenetic methods to the detection of compositional 100 

shifts is that tree-heterogeneous methods typically require the branches of interest to be 101 

specified a priori. Consequently, several efforts have been made to relax this restriction, such as 102 

testing all branches in the tree, or by investigating summary statistics of the substitution 103 

process, or other methods (Blanquart & Lartillot, 2006, 2008; Dutheil et al., 2012). Alternatively, 104 
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Bayesian MCMC jump methods have been developed that allow for uncertainty in the number 105 

and placement of shifts in composition (Foster, 2004; Gowri-Shankar & Rattray, 2007). 106 

However, computational methods that allow for integrating over the uncertainty of their 107 

placement are too burdensome for large genomic datasets with hundreds of taxa and hundreds 108 

of gene regions. In parallel, research has focused on detecting shifts in the rate of diversification 109 

or phenotypic evolution across the tree (Alfaro et al., 2009; Uyeda & Harmon, 2014; Mitov et al., 110 

2019). One such class of method uses stepwise model selection with information criteria to 111 

automatically partition the tree into different regimes (Alfaro et al., 2009; Mitov et al., 2019), but  112 

such approaches are not commonly applied to molecular data (but see Dutheil et al., 2012). 113 

Here, we extend methods that allow composition to vary across the tree by implementing 114 

an algorithm that detects compositional shifts by comparing models of different dimensions 115 

using information criteria. We apply our method to a large collection of orthologs of coding 116 

regions from across the Viridiplantae clade (Leebens-Mack et al., 2019) and, instead of 117 

targeting the impacts of composition on topological resolution, we focus on identifying 118 

compositional shifts on individual gene regions.  119 

Methods 120 

Dataset 121 

We analyzed the nucleotide and AA data from the 1KP transcriptome project data release 122 

available at https://github.com/smirarab/1kp (Leebens-Mack et al., 2019) to identify patterns in 123 

compositional heterogeneity across plants. For nucleotide data, we used the “unmasked and 124 

FNA2AA” data and filtered for columns containing at least 10% of data using pxclsq from phyx (-125 

p 0.1, Brown et al., 2017). We chose these alignments instead of those for which trees were 126 

already inferred in order to include third codon positions for composition analyses. We ran an 127 

analysis to detect compositional shifts in both the nucleotide (the cleaned alignments of all three 128 

codon positions and our inferred trees) and AA data (using the available alignments and trees). 129 

For these alignments, we conducted phylogenetic analyses using IQ-TREE v1.6.6 (Nguyen et 130 
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al., 2015) under the GTR+G model of evolution. For AAs, we used the “masked FAA'' data and 131 

the corresponding trees inferred as part of the original study. We analyzed the AA using the JTT 132 

model of evolution.  We used a GTR+G model and so there could be phylogenetic error 133 

introduced from violations of homogeneous composition bias. While this may impact some 134 

edges, we have also demonstrated that our method for identifying model shifts is robust to this 135 

(see Supp. Fig. 2). 136 

Because of the non-homogeneity of the compositional model, our analysis required 137 

rooted trees. Perfect rooting was not required and would have been prohibitive considering the 138 

variation and non-monophyly of many taxonomic groups in each gene tree (see Supp. Fig. 1). In 139 

order to accommodate this, we rooted using pxrr from phyx, applying the ranked option (-r) with 140 

the following taxa in order (taxon codes from 141 

https://github.com/smirarab/1kp/blob/master/misc/annotations.csv): UNBZ, TZJQ, JGGD, HFIK, 142 

YRMA, FOMH, RWXW, FIKG, VYER, LDRY, VRGZ, ULXR, ASZK, JCXF, QLMZ, FSQE, 143 

DBYD, VKVG, BOGT, JQFK, EBWI, FIDQ, QDTV, OGZM, SRSQ, RAPY, LLEN, RFAD, NMAK, 144 

VJED, LXRN, APTP, BAJW, IAYV, IRZA, MJMQ, ROZZ, BAKF. The ranked option searches 145 

through the list of taxa and roots on the first one present. 146 

Detection of compositional heterogeneity 147 

We developed an algorithm to detect locations of shifts in stationary frequencies in state 148 

composition that we describe below (see Figure 1). The method is generalized to any state 149 

model, and so proceeds in the same way for nucleotides or AAs. It requires a rooted tree and 150 

matching alignment as input. First, the method estimates a maximum likelihood root 151 

composition for the entire dataset. Next, the tree is traversed in a postorder fashion (from the 152 

tips to the root), and a maximum likelihood composition is estimated for the subtree subtending 153 

each node, if that subtree contains more than a user-specified minimum number of tips. In this 154 

work, we considered any subtree containing at least 10 tips. Using this composition for the focal 155 

node and subtree, and the root composition for the remainder of the tree, we calculate a 156 
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likelihood and the Bayesian Information Criterion (BIC: Schwarz, 1978). Once a model for every 157 

eligible subtree has been estimated, we order subtrees by their BIC (i.e., by their relative 158 

improvement in fit over the base model), add them to the model configuration, calculate a new 159 

likelihood and BIC for the whole tree and add the sub-model if the new BIC is lower (i.e., the 160 

model provides a better fit). To improve computational efficiency, we discard models if their BIC 161 

score is greater than the current model by an arbitrary cutoff (we assigned a cutoff of 35). Our 162 

method has been implemented in both Golang (for flexibility) and C (for speed), and the source 163 

code is available at https://git.sr.ht/~hms/janus and https://git.sr.ht/~hms/hringhorni, 164 

respectively. A diagram is presented in Figure 1 and an empirical example is presented in Supp. 165 

Fig. 3. 166 

Accommodating model uncertainty 167 

One common challenge in information criterion (IC) based approaches to model comparison is 168 

their tendency to overfit, sometimes favoring models of higher complexity than the generating 169 

model. Our solution to this tendency was to assess statistical uncertainty in each model shift by 170 

estimating the relative support for the model that includes the shift vs the model without the 171 

shift. We performed these tests using BIC weights (wBIC), comparing, for each putative shift, 172 

the BIC of the full model containing all inferred shifts to one dropping each individual model 173 

shift. The strength of support for each inferred shift was thus calculated by calculating the 174 

relative BIC of each candidate model i (in this case, shift vs no shift): 175 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑟𝑟�𝐵𝐵𝐵𝐵𝐶𝐶𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖−𝐵𝐵𝐵𝐵𝐶𝐶𝑛𝑛𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖�×0.5 176 

And assessing support for the shift as the ratio of the ratio of that model over the sum of all i 177 

candidate models: 178 

𝑤𝑤𝑟𝑟𝑟𝑟𝐶𝐶 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑛𝑛𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖

�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑛𝑛𝑛𝑛𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖�
 179 

This calculation yields an index between 0 and 1, where values closer to 0 indicate weaker 180 

support for the shift, and values closer to 1 indicate stronger support. Using the reasoning that 181 
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spurious shifts will likely typically be poorly supported, we removed shifts with wBIC support 182 

values below 0.95.  183 

 184 

Figure 1. A demonstration of the procedure introduced here used on each gene tree. A) shows 185 

a tree and the sequences to the right represented as their composition of DNA. B) is the same 186 

tree with node colors corresponding to the IC values sorted with red being the highest and 187 

yellow being the lowest. C) identifies two clades as having potential shifts with only one 188 

supported after uncertainty analyses (the blue clade in D). 189 

Simulations 190 

We conducted several simulations to validate the performance of our algorithm in detecting 191 

model heterogeneity. Phylogenies were simulated under a birth-death model with phyx using 192 

the pxbdsim command with defaults, except varying the size of the tree between 100 and 250 193 

tips, and root height set to 0.75 with pxtscale (-r 0.75) from phyx. Nucleotide and AA alignments 194 

were simulated using a simulator STONE (https://git.sr.ht/~hms/stone) that allows for shifts in 195 

composition across the tree. For nucleotides, we conducted two simulations: one under JC+G 196 

and another GTR+G (both with α = 1 for rate heterogeneity). For AAs we conducted one 197 

simulation under JTT with no rate variation. Each of these simulations had a single randomly 198 
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positioned compositional shift per tree. Phylogenies were then reconstructed with IQ-TREE 199 

under the GTR+G model of evolution for nucleotide alignments and the JTT+G model for AA 200 

alignments. For each simulation set, we simulated 100 replicates.  Alignment lengths were 1000 201 

for nucleotides and 300 and 1000 for Aas. 202 

Summarizing compositional heterogeneity 203 

We summarized the results from the empirical analyses in several ways. Directly comparing 204 

model shifts across genes was complicated by extensive gene tree conflict. We compared the 205 

distribution of model shifts by pairwise comparison of tips on the species tree inferred in the 206 

original paper (Leebens-Mack et al., 2019), recording the number of times that two tips were 207 

descended from a node with a shared model, and plotted this in a heatmap on the species tree 208 

(Supp. Fig 4). Secondly, we defined major clades in the species tree, and recorded to which 209 

groups each tip descending a model shift in each gene tree belonged. We counted the number 210 

of tips from each taxonomic group, and further counted the number of tips within those 211 

taxonomic groups which were not included in the model shift (i.e., either the model shift 212 

occurred nested within that group, or those tips were placed polyphyletically in the tree due to 213 

conflict). We manually assessed these mismatches and the position of the model shift on the 214 

gene tree and assigned the shift on the species tree to occur either i) at the node defining a 215 

major clade (assuming mismatching tips are errors), which we summarize as occurring at the 216 

origin of the clade or ii) descending a node defining a major clade, which we summarize as 217 

occurring within the clade. For individual genes, we plotted model shifts on the tree and 218 

changes in parameter estimates between models. To characterize the direction and size of 219 

parameter shifts, we used a Principal Components Analysis where each row was a single 220 

sequence and each column was the frequency of one state for that sequence (i.e., 4 columns 221 

for nucleotides and 20 for Aas). We projected every gene tree onto the same set of axes for the 222 

first two PCs and colored each point (representing a single tip), by the model from which it was 223 

descended. We characterised shift direction and size by projecting fitted model parameters onto 224 
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the same PC space, and calculating the vector direction and magnitude between the two sets of 225 

coordinates representing the parent and descendant model. 226 

Results 227 

Simulations 228 

Our simulations demonstrate that, given sufficient data (i.e., alignments of sufficient length), our 229 

method has acceptable false positive and negative rates (Table 1). False positive rates were 230 

negligible after removing shifts that were poorly supported by BIC. In general, we consider the 231 

false positive rates to be of more concern than false negatives rates, but the latter were also 232 

negligible in our simulations. The highest rates of false positives were observed in short (300 233 

site) AA alignments, which were diminished but not entirely alleviated by taking uncertainty into 234 

account. False positive rates were generally elevated when tree reconstruction error existed in 235 

the simulated data. Our simulations also demonstrate that phylogenetic reconstruction error, as 236 

measured by average RF between the simulated and reconstructed trees, occurred under each 237 

condition, including with 0 shifts. The RF distance of phylogenies that have one shift with 100 238 

tips and zero shifts with 100 shifts are not significantly different. Therefore, instead of 239 

corresponding to the number of shifts or the presence of compositional bias, these errors seem 240 

to correspond to tree size. We also demonstrate that shifts can be identified correctly even 241 

when the phylogeny was reconstructed incorrectly (see Supp. Fig 2). 242 

Table 1. Results of simulations for both nucleotide (JC/GTR) and amino acid data. Shown are 243 

false positive (False +) with and without considering uncertainty (unc). We also show results 244 

considering the correct tree and the tree based on reconstructions (rec). Finally, we present the 245 

average RF distance between the reconstructed trees and the true tree. 246 

# sh # tips N/A Len False + False + 
unc 

False 
+(rec) 

False 
+(rec) 
unc 

False - False 
– unc 

False – 
(rec) 

Fals
e – 
(rec) 
unc 

Avg. RF 

0 100 N 1000 0/0.02 0/0 0/0.01 0/0 - - - - 9.96/10.88 
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1 100 N 1000 0/0.04 0/0 0/0.04 0/0.01 0/0 0/0 0/0 0/0 8.76/10.16 

2 150 N 1000 0.14/0.13 0.03/0.01 0.09/0.
14 

0/0.04 0/0.04 0.02/0.
04 

0/0.0
5 

0.02
/0.0
5 

15.0/16.84 

2 250 N 1000 0.1/0.14 0.01/0.01 0.1/0.1
2 

0.02/0.
03 

0.01/0.04 0.03/0.
05 

0.04/
0.06 

0.07
/0.0
8 

24.8/26.34 

0 100 A 300 0 0 0 0 0 0 0 0 14.32 

1 100 A 300 0.02 0.01 0.11 0.07 0 0 0.02 0.02 15.9 

2 150 A 300 0.03 0 0.18 0.07 0.01 0.01 0.01 0.01 21.34 

2 250 A 300 0.02 0 0.19 0.10 0.02 0.03 0.03 0.01 35.6 

0 100 A 1000 0 0 0 0 0 0 0 0 4.84 

1 100 A 1000 0.01 0 0.03 0.01 0 0 0 0 4.76 

2 150 A 1000 0.18 0 0.19 0 0 0 0.01 0.01 6.82 

2 250 A 1000 0.22 0 0.22 0.01 0 0 0 0 12.0 

 247 

Phylogenetic patterns of compositional shifts 248 

We applied our method to a large dataset of orthologs derived from genomes and 249 

transcriptomes across Archaeplastida. As noted in the original study (Leebens-Mack et al., 250 

2019), the inferred gene trees contained high levels of conflict. For example, 38% of nucleotide 251 

and 32% of AA gene trees contained non-monophyletic seed plants. We searched for 252 

compositional shifts in inferred gene trees from nucleotide and AA data. We detected multiple 253 

shifts in both datasets, with many more shifts detected for nucleotide data (Figure 2). The 254 

phylogenetic location of these shifts differed between different trees, and we observed a great 255 

deal of gene tree conflict between the individual orthologs and the species tree, complicating the 256 

localization of shifts. Nevertheless, general patterns did emerge when comparing shift locations 257 

to the species tree (Figure 2). Many nucleotide shifts were detected at the Embryophyta node, 258 

corresponding to the origin of land plants, at the Tracheophyta node corresponding to the 259 

evolution of vascularity, at the node uniting ferns and the rest of Spermatophyta, at ferns, at the 260 

Spermatophyta node corresponding to the evolution of seeds, and at the Angiosperm node 261 
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corresponding to the evolution of flowers. Many nucleotide shifts were also detected at the base 262 

of and within Chlorophytes. By contrast, AA shifts were enriched at the Spermatophyta and 263 

Angiosperm nodes and were similarly common at and within Chlorophytes. Several shifts were 264 

identified within the named clades, such as at or within Eudicots, could not be explored further 265 

because our sampling or the conflict in the gene tree precluded further localization. 266 

Direction of compositional shifts 267 

The direction of compositional shifts (i.e., which state frequencies increased or decreased 268 

between a parent and child model) differed both within and between genes. While specific 269 

compositional values may not be shared by many genes, we noticed a tendency for shifts at 270 

comparable nodes to occur in similar directions (Figure 4). The root nodes of angiosperms, 271 

chlorophytes, and embryophytes each displayed many nucleotide composition shifts that were, 272 

for angiosperms and embryophytes, heavily directionally biased towards higher AT (Figure 2). 273 

Several nodes displayed similarly biased amino acid compositional shifts. These biased shifts 274 

were highly evident at the origin of Tracheophyta, angiosperms, Zygnematophyceae, 275 

Spermatophyta, Embryophyta, and chlorophytes (Supp. Figs. 5-6).  276 

To determine whether patterns in the direction of nucleotide compositional shifts were 277 

related to codon usage bias, we examined codon usage for each model within each gene. We 278 

noted several patterns. Firstly, codon usage was strongly biased within each residue, and there 279 

is a tendency for land plants to feature more AT-rich codons. Additionally, clades nested within 280 

land plants (e.g., Embryophyta, Tracheophyta) tend to be more AT-rich than other clades (e.g., 281 

Bryophytes). Gymnosperms showed the highest degree of codon usage bias, favoring AT-rich 282 

codons. 283 
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 284 

Figure 2. Summarized results for AA and DNA. Inset plots denote vectors of composition shifts 285 

for both AA (left) and DNA (right) for Angiosperms, Embryophyta, and Chlorophytes. For the 286 

complete set, see Supp Figs. 5 and 6. The black lines in each plot represents a single shift 287 

within a single gene. The direction shows the composition shift (e.g., most of the shifts in 288 

Embryophyta DNA plots shift to more A and T) and the length of the line shows the strength of 289 

the shift. The phylogeny on the right shows shifts detected by clade. There are four boxes at 290 

each major clade that correspond to, starting from top left to bottom right, shifts in AA data at 291 

that node, shifts in AA data within that node (e.g.,  because the clade was not monophyletic or 292 
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because the shift is missing one or more taxa within the clade), shifts in DNA data at that node, 293 

and shifts in DNA data within that node. Colors correspond to the number of shifts. For example, 294 

at Embryophyta, there are 196 DNA shifts at that node and 113 shifts that occur within that node 295 

(missing one or more Embryophyta but not so many as to be considered Tracheophyta or 296 

Bryophytes).  297 

 298 

 299 
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 300 

Figure 3. Ortholog 5936 results from both AA and DNA datasets. Colors are meant to identify 301 

shifts within the dataset (shared colors between AA and DNA datasets  do not denote shared 302 

models between AA and DNA results). Base composition model results are presented in radar 303 
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graphs where lines represent the proportion of the composition in each amino acid or base. For 304 

example, in comparing Tracheophytes and Embryophytes to the base model for DNA, there is 305 

an increase in As and Ts.  306 

 307 

 308 

309 

Figure 4. Principal component analyses of four DNA datasets (A) and four AA datasets (B) with 310 

each point representing one taxon and colors denote shared shifts within the dataset. PC 311 

loadings are based on the entire DNA and AA datasets respectively to allow for easier 312 

interpretation. For 5949, vascular plants and embryophytes have more AT bias than tips sharing 313 

the  base model. The same pattern is seen for 6068 for spermatophytes and embryophytes, 314 

angiosperms and spermatophytes in 6227, and embryophytes in 7241. While each is shifting to 315 

more AT, given that these are plotted with the same PC loadings, they are also not converging 316 

on the same space. 317 

 318 

Discussion 319 
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The results of the analyses of the direction of the compositional shifts and the phylogenetic 320 

position of the shifts suggest a common or related causes for these biases for major clades of 321 

land plants. The most notable pattern in this dataset is the tendency for compositional shifts of 322 

Embryophytes, Tracheophytes, and Spermatophytes to be shift to be more AT enriched. Many 323 

of these compositional shifts occur at the origins of these major named clades. The primary 324 

goals of this study are to demonstrate notable patterns of compositional shifts across vascular 325 

plants across gene trees, where previously research has focused on the accuracy of 326 

phylogenetic reconstructions using heterogeneous composition. We discuss potential causes of 327 

this heterogeneity and where certain causes seem plausible based on the analyses here as well 328 

as previous studies. However, additional lines of evidence will be necessary to further narrow 329 

these causes.  Nevertheless, the patterns presented here are substantial enough to warrant 330 

further investigation. 331 

Life history. In our analyses, Chlorophytes tend to have shifts in compositional vectors that vary 332 

widely, some shifts toward elevated GC and some toward elevated AT (Figure 2). In contrast, 333 

land plants, vascular plants, seed plants, and flowering plants, tend to show, when there are 334 

shifts in composition, a tendency towards stronger AT bias. Furthermore, while these genes 335 

show trends towards more AT, there is not a clear lineage specific optimal AT. In other words, 336 

each gene increases in AT but not to the same AT across genes,  which reflects documented 337 

intragenomic variation in base compositions (Clement et al., 2017; Glemin et al., 2014). There 338 

may be many potential causes for these patterns, however, one notable difference between 339 

those lineages with shifting AT bias are dramatic changes to life history. Life history has been 340 

demonstrated to have an impact on genome composition. For example, biased gene conversion 341 

can favor the proliferation of GC alleles during meiotic recombination, such that short generation 342 

time could lead to increased GC-richness (Duret & Galtier, 2009; Weber et al., 2014). On the 343 

other hand, mutation tends to be AT biased  and lineages with longer generation times are 344 

expected to have higher mutation rates due to more cell divisions and accumulated DNA 345 
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damage (Lynch, 2007, Bergeron et al. 2023). Population size also plays a compounding role. 346 

Large effective population sizes tend to make natural selection more effective, and in the case 347 

of composition bias this may translate into composition reflecting advantageous selection more 348 

than bias. On the other hand, smaller effective population sizes increase the probability that 349 

mutations will be fixed by drift. Large population sizes and increased generation times are 350 

associated with higher equilibrium GC and faster increases of GC content (Romiguier et al., 351 

2010), suggesting that reductions in equilibrium GC might reflect shrinking effective population 352 

sizes or increased generation times. Our demographic model suggests that changes at land 353 

plants, vascular plants, seed plants, and angiosperms moved lineages closer to mutation-drift 354 

equilibrium and away from strong natural selection and BGC (Clement et al. 2017). For 355 

Chlorophytes with short generation times and larger population sizes, this may reflect the 356 

variable gene composition. Of note, are the gymnosperms which tend to have higher 357 

composition bias but fewer phylogenetic shifts. Our failure to detect shifts, however, may be due 358 

to lower taxon sampling of the gymnosperms. Alternatively, the slower generation time of 359 

gymnosperms may also play a role, which may have prevented them from reaching 360 

compositional consistency between lineages (Lanfear et al., 2013). This would yield weaker 361 

signals for our methods to detect shifts.  362 

 363 

Our expectations under a model of mutation bias is that populations with slower generation time 364 

and smaller effective population sizes will have lower GC-richness and higher AT-richness at 365 

equilibrium because of AT-biased mutations and a lower rate and a lower efficiency of gBGC. 366 

Our results are consistent with many major changes in traits and life history across the 367 

Viridiplantae being associated with longer generation times and/or reductions in effective 368 

population size. This pattern seems likely to be true of gymnosperms, which are large, long-369 

lived trees with slow generation times (De La Torre et al. 2017) and our results suggest that it is 370 

true of angiosperms and other lineages.  371 
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 372 

Selection. In contrast to the demographic explanation above, selection might also drive the 373 

evolution of base composition (Clement et al., 2017; Qiu et al., 2011). Selection on codon usage 374 

could lead to preferred codons for given amino acids which are more GC- or AT-rich, leading to 375 

genome-wide patterns (Hershberg & Petrov, 2008). Because of the bias in codon composition 376 

for certain amino acids, shifts in amino acid preference at particular sites could also produce a 377 

compositional impact (Jobson & Qiu, 2011, but see Wang et al., 2004). In an analysis of extant 378 

plant genomes, Clement et al. (2017) found that the role of selection on codon usage in driving 379 

composition was small relative to BGC. However, we cannot rule out that selection played a role 380 

in generating the patterns we observe here. Moreover, these two explanations are not mutually 381 

exclusive. Selection is expected to be more efficacious in larger populations, so the possible 382 

demographic changes we suggest might interact with selection to produce changes in 383 

equilibrium composition. Further population genetic analysis of extant populations will be 384 

necessary to inform the degree to which these processes interact to shape natural variation in 385 

base composition, including in response to changing population size, generation times, or major 386 

modes of life history (Qiu et al., 2011b). Due to the necessarily coarse nature of our 387 

investigation, it is difficult to comment on how different processes might contribute to the 388 

patterns we observe. Such a distinction is a goal of further modeling efforts (Kostka et al., 389 

2012), and will undoubtedly be important in more focused studies of single organisms or loci. 390 

 391 

Population processes, base composition, and gene tree discordance. Base compositional 392 

biases have been hypothesized to be linked to numerous explicit population processes, 393 

including those outlined above. We suggest that the patterns in base composition shifts that 394 

occur at key nodes in plant phylogeny are likely the result of some combination or subset of 395 

these, and perhaps other, population processes. For example, while we expect life history shifts, 396 

such as lengthening of generation time, to correspond to increases in AT-content, it is important 397 
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to note that this pattern may also be consistent with myriad other lower-level processes. 398 

Empirically demonstrating a robust link between such broad-scale patterns as those explored 399 

here to specific population processes is notoriously challenging in macroevolutionary studies. In 400 

this study, we were focused on harnessing our new approach on pattern discovery first, while 401 

also considering some possible explanations for these patterns at the population level. Future 402 

work will be needed to more explicitly distinguish between these candidate processes and 403 

understand how each maps to broadly-observable phylogenetic patterns, such as those 404 

reconstructed here. For now, we lack a rigorous understanding of how specific population 405 

processes scale up to phylogenetic patterns and so the first step is to consider as many 406 

candidate processes as possible. A first step may be to identify whether life history shifts are 407 

statistically linked with differential patterns in AT-richness. Moving forward, it will become 408 

important to better understand how and whether population processes can be statistically 409 

identified from one another from phylogenetic patterns. Nevertheless, the timing of base 410 

composition shifts that we identify here suggests that major plant clades are reflective of 411 

fundamental biological revolutions, with effects spanning organismal scales from the genome, 412 

through life history, and morphology (Donoghue 2005). 413 

 414 

One increasingly common avenue through which to explore population dynamics such as 415 

incomplete lineage sorting (ILS) and introgression is to explore patterns in gene-tree conflict 416 

(Smith et al. 2015; Smith et al. 2020). We observed substantial topological discordance between 417 

the gene trees analyzed. It has been previously suggested that biases in base composition may 418 

drive error in species tree reconstruction (Cox 2018, Foster 2004). In principle, it is possible that 419 

some proportion of the extensive topological conflict we found in the present dataset was 420 

caused by differential base composition bias across the loci. However, Robinson-Foulds 421 

distances between each gene tree and the species tree were primarily correlated with tree size 422 

with a weak correlation to the number of inferred composition shifts in nucleotides, but a weak 423 
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negative relationship for AAs, and a great deal of variance unexplained (Table 1 and Supp Figs. 424 

6-7). Here, at most of the major nodes we explored, we found base composition evolution to be 425 

highly biased in its direction, with most loci shifting in a similar direction. As a result, any 426 

reconstruction error caused by base composition issues would likely affect reconstruction at 427 

these nodes roughly uniformly. While we tended to observe a distribution of alternative tree 428 

topologies at each node, previous analyses have found that some of these patterns follow 429 

expectations under population processes such as ILS and introgression (Smith et al. 2020). This 430 

suggests that gene-tree discordance in this dataset is likely caused by a combination of 431 

population processes, such as ILS, and systematic error, perhaps including erroneous ortholog 432 

identification, assembly, and/or contamination. Additionally, we would expect that 433 

compositionally-driven discordance would manifest by uniting clades with disparate 434 

compositions, which our method would then tend to infer as a single, unidirectional shift, as 435 

opposed to the multiple separate shifts we observe here. Therefore, if compositionally-driven 436 

discordance is a major factor in our dataset, it should tend to make our findings conservative by 437 

reconstructing fewer shifts. 438 

 439 

Phylogenetic resolution. The simulations conducted here demonstrated that our method can 440 

correctly identify the location of phylogenetic shifts even in the face of reconstruction error. 441 

Nevertheless, the impact of compositional bias on phylogenetic reconstruction has been well 442 

demonstrated. The phylogenetic resolution of several deep nodes differs between genes in the 443 

DNA and amino acid datasets, and some shifts associated with deep nodes are associated with 444 

those alternative resolutions of major clades. For example, in many genes, the Bryophytes are 445 

non-monophyletic and shifts are associated with the nodes surrounding this conflicting 446 

relationship. This has been found previously by Cox et al. (2014). In gene region 6401, the 447 

Bryophytes form a grade with a shift shared by a clade of liverworts and the rest of vascular 448 

plants. The amino acid phylogeny of the same gene has no significant shift in the molecular 449 
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composition. Other examples include lycopods sister to ferns versus ferns sister to seed plants–450 

the latter is associated with shifts in molecular evolution 29 times in amino acids and 68 times in 451 

nucleotides. While the analyses presented here are not focused on the phylogenetic resolution 452 

of these major clades, other studies have demonstrated that heterogeneity can alter 453 

phylogenetic reconstruction (CITATIONS). The analyses here underscore the importance of that 454 

consideration in future studies. 455 

 456 

Data quality. The datasets we used here present several challenges that may stem from quality-457 

control issues that are common among large and complex genomic datasets. We note this 458 

problem primarily because as many new genomic and transcriptomic datasets become 459 

available, as in this study, researchers will be tempted to address large scale questions taking 460 

advantage of these enormous datasets. However, caution should continue to be exercised, 461 

because errors in homology or contamination are likely still prevalent, despite researchers’ best 462 

efforts. For example, 38% of the nucleotide gene trees and 32% of amino acid gene trees have 463 

non-monophyletic seed plants. This presents several challenges, but primarily, in summarizing 464 

the phylogenetic placement results, we had to accept that there may be outlying taxa that make 465 

strict monophyly difficult to enforce. This conflict, alongside biased per gene taxon sampling, is 466 

probably responsible for our difficulty in recovering some documented patterns of compositional 467 

evolution within angiosperms, such as increases in GC content in Poaceae (Serres-Giardi et al., 468 

2012). Alternatively, the loci which most strongly express this and analogous patterns may not 469 

have been sampled in this dataset. 470 

 We highlight this problem not to single out these data or the original analyses as we 471 

recognize that many large-scale datasets inevitably face challenges when cleaning data. 472 

Instead, we want to underscore the importance of homology and orthology analyses in the 473 

construction of single gene alignments and gene trees. While errors like this may not greatly 474 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 10, 2023. ; https://doi.org/10.1101/2022.06.13.495913doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.13.495913


23 

impact species-tree analyses, especially if they are mostly random between gene trees, they 475 

can dramatically limit the utility of these data for other analyses.  476 
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