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Abstract: 

Resting state electromagnetic recordings have been analyzed in epilepsy patients aiding 

presurgical evaluation. However, it has been rarely explored how pathological networks can be 

separated and thus used for epileptogenic focus localization purpose. We proposed here a resting 

state EEG/MEG analysis framework, to disentangle brain functional networks represented by 

electrophysiological oscillations. Firstly, by using an Embedded Hidden Markov Model (EHMM), 

we constructed a state space for resting state recordings consisting of brain states with different 

spatiotemporal patterns. After that, functional connectivity analysis along with graph theory were 

applied on the extracted brain states to quantify the network features of the extracted brain states, 

and we determine the source location of pathological states based on these features. The EHMM 

model was rigorously evaluated using computer simulations. Our simulation results revealed the 

proposed framework can extract brain states with high accuracy regarding both spatial and 

temporal profiles. We than validated the entire framework as compared with clinical ground truth 

in 10 patients with drug-resistant focal epilepsy who underwent MEG recordings. We segmented 

the resting state MEG recordings into a few brain states with diverse connectivity patterns and 

extracted pathological brain states by applying graph theory on the constructed functional 

networks. We showed reasonable localization results using the extracted pathological brain states 

in 6/10 patients, as compared to the invasive clinical findings. The framework can serve as an 

objective tool in extracting brain functional networks from noninvasive resting state 

electromagnetic recordings. It promises to aid presurgical evaluation guiding intracranial EEG 

electrodes implantation.  
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Introduction  
Brain function and dysfunction are encoded in spatiotemporally distributed networks. 

Functional neuroimaging has evolved from activation imaging, such as functional MRI task-based 

activation imaging and EEG/MEG (E/MEG) source localization of focal activities, to distributed 

imaging of brain networks, such as resting state fMRI connectivity imaging (Boerwinkle et al., 

2017; Khoo et al., 2017; Lee et al., 2018), and resting state spontaneous mapping and imaging 

from electrophysiological measurements (Canuet et al., 2011; Case et al., 2018; Coito et al., 2016; 

Mantini et al., 2007). Recent studies suggest that network analysis of resting state intracranial 

EEG recordings can allow localization of seizure-onset-zone (SOZ) for up to 88% accuracy and 

predict seizure outcome (Jiang et al., 2022). A scientific question of importance to neuroimaging 

is: can we estimate brain activity and connectivity associated with tasks and behaviors from 

resting state electrophysiological recordings over the scalp? The answer to this question may 

have implications to broad neuroimaging of brain function and dysfunction. In particular, this may 

have a significant impact to identification and imaging of epileptic networks from brief resting state 

scalp E/MEG recordings. 

Epilepsy is a chronic neurological disorder affecting over 65 million people in the world 

and 3.5 million people in the United State alone (Moshé et al., 2015; Thijs et al., 2019). While 

antiseizure medication (ASMs) serve as the primary treatment, about 30% of the patients do not 

respond to any combination of multiple ASMs (Engel, 2008; Palmini et al., 1991). These patients 

may benefit from surgical intervention (Duncan et al., 2016; Rosenow and Lüders, 2001) or brain 

stimulation implants (Ben-Menachem, 2002; Vonck et al., 2002) targeting at the epileptogenic 

zone (EZ) (Rosenow and Lüders, 2001). Thus, accurate estimation of the epileptic network and 

localization of the EZ plays a critically important role in guiding the resection surgery and in 

directing electrode implants for brain stimulation. 

Clinically, the criteria for defining the EZ to cure the patients are far from being 

standardized (Jehi, 2018; Stefan et al., 1987). In practice, patients go through a comprehensive 

presurgical evaluation including multiple imaging modalities. Among all functional imaging 

approaches, the high temporal resolution of E/MEG allows the detection of the spatiotemporal 

dynamics more efficiently than other non-invasive imaging techniques (Agirre-Arrizubieta et al., 

2009; Cohen, 1968; Hara et al., 2007; Pizzo et al., 2019; Sekihara et al., 2001; Sohrabpour and 

He, 2021). To further improve the spatial resolution of E/MEG and enable exploration of cortical 

activities, electrophysiological source imaging (ESI) (Brodbeck et al., 2011; He et al., 2020, 2018; 

Michel and He, 2017) is adopted to localize and image the sources of scalp recorded E/MEG 

signals. The localization accuracy of ESI in presurgical evaluation has been demonstrated by 
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numerous studies and has emerged as a viable option for guiding surgical interventions 

(Brodbeck et al., 2011; Kaiboriboon et al., 2012).  

To better estimate the epileptic network, many studies with E/MEG recordings have 

utilized curated abnormal signals such as seizures or interictal epileptic discharges (IEDs) (Agirre-

Arrizubieta et al., 2009; Chowdhury et al., 2015; de Curtis et al., 2013; Ding and He, 2006; Gotman 

and Gloor, 1976; Gotman and Marciani, 1985; He et al., 1987; Heers et al., 2016, 2014; 

Sohrabpour et al., 2016, 2020; Yang et al., 2011; Ye et al., 2021) to localize the EZ. While the 

convenience of analyzing selected IEDs must be acknowledged, it is also widely known that the 

selection of IEDs is highly dependent on the readers’ expertise (Kural et al., 2020; Ye et al., 2021), 

not to mention the extensive human labor involved during this procedure. Co-existing of multiple 

types of IED also adds to the burden of visual inspection and identification. Seizures, while 

showing superior accuracy of localizing Seizure Onset Zone (SOZ) with advanced analysis 

techniques (Lu et al., 2012; Yang et al., 2011; Ye et al., 2021), remains challenging to capture in 

many clinical routine examinations. More approachable and data-driven methodologies that can 

be integrated into clinical decision-making are still in great need.  

Interests in utilizing the resting state have been emerging, whose major advantage is that 

they can be estimated without the need to wait for a seizure to occur or a concordant IED to be 

identified (Hsiao et al., 2015; Krishnan et al., 2015). Recent discoveries using fMRI suggested a 

limited number of large-scale distributed networks of temporally correlated spontaneous activity 

(Beckmann et al., 2005; Boerwinkle et al., 2017; Damoiseaux et al., 2006; Smith et al., 2013; 

Zhang et al., 2015), while the task-positive cerebral activities may be highly complicated. In 

E/MEG signal with high temporal resolution, similar networks have been extracted as transient 

activations and shown to have distinct band-limited oscillatory power (Baker et al., 2014; Vidaurre 

et al., 2016). Altered dynamics of these large-scale networks, on the other hand, has been 

associated with various neurological disorders such as Alzheimer’s disease (De Haan et al., 2008; 

Stam et al., 2005), Parkinson’s disease (Cao et al., 2015; Müller et al., 2001), chronic pain (Case 

et al., 2019)and schizophrenia (Kottaram et al., 2019; Lefebvre et al., 2016; Naim-Feil et al., 

2018). These types of large-scale network analysis are of greater interest for epilepsy patients 

due to the relationship between EZ localization and epileptic network estimation, where it is 

essential to identify and then remove or disconnect certain nodes of the epileptic network. In other 

words, disentanglement of pathological network for the purpose of source localization is of 

importance for focal epilepsy patients, and potentially for delineating brain normal function as well 

as various dysfunctions.  
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In this context, one natural direction is to consider the E/MEG resting state signal as a 

finite-state model that can be described in terms of intrinsic spatiotemporal dynamics (Khanna et 

al., 2015). The method of studying E/MEG resting state recordings, therefore, is by defining the 

state space based on variables of interest and describing changes in brain activity in terms of 

state characteristics, such as the duration or frequency of occurrence of specific states. One 

realization of the method is the so-called “microstates”, where four discrete states are defined by 

E/MEG topography and remains stable for 80-120 ms before rapidly transitioning to another 

((Lehmann et al., 1987; Michel and Koenig, 2018; Pascual-Marqui et al., 1995) Several studies 

following this framework have explored the differences between patients with neurological 

disorders and healthy controls, where significant differences were found in the occurrence of 

states or the transition matrix (Khanna et al., 2015; Piorecka et al., 2018). While such analysis 

confirmed the existence of underlying abnormal pattern with or without IED existing(Ahmadi et 

al., 2020; Khanna et al., 2015; Yuan et al., 2012), abundant spatiotemporal information is missed 

during the procedure since the signal is filtered into certain frequency bands (alpha, theta, etc.) 

before being fed into the framework (Lehmann et al., 1987; Michel and Koenig, 2018; Poulsen et 

al., 2018). Moreover, the brain state extraction is based on four topography templates, which 

makes it challenging to obtain foci-related localization information (Shaw et al., 2019).  

Hidden Markov Model (HMM) was adopted to address the issues and has shown 

comparable outcome if used in extracting the four aforementioned microstates (Eddy, 2004; Lee 

and Choi, 2003; Ossadtchi et al., 2005). In HMM, each state will be characterized with the 

transition to other states, instead of relying on the topographic templates, thus more refined 

classification of brain states is achievable (Rabiner and Juang, 1986). To further address the 

spatiotemporal information as missed by static state-space analysis, one way is to explicitly model 

the spatiotemporal correlation between channels in a time window, which was used in previous 

studies when a limited number of channels is involved (Quinn et al., 2018; Sohrabpour et al., 

2016). Alternatively, a computationally feasible solution is through space embedding (Vidaurre et 

al., 2016). Embedded Hidden Markov Model (EHMM) has been shown to effectively extract 

hidden brain states in source-space as applied in event related potential analysis or spontaneous 

activities in healthy subjects (Jebara et al., 2007; Quinn et al., 2018; Vidaurre et al., 2018). These 

extracted brain states were compared to functional brain networks from functional magnetic 

resonance imaging (fMRI) or PET studies, showing that spontaneous brain activities are not 

random but forming highly coherent functional networks, which can be separated with the EHMM 

framework (Vidaurre et al., 2016).  
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The existing evidence suggests that the transient neural activity of the brain has quasi-

stable properties and could be evaluated with a network view. To further quantify brain dynamics, 

network analyses from various structural and functional modalities have also emerged aiming at 

providing a better understanding of network characteristics of the epileptic brain, especially the 

changes in these characteristics related to surgery outcome. A network measurement, 

betweenness centrality, was found to correlate with the location of the resected cortical regions 

in patients who were seizure free after surgery (Wilke et al., 2011). Small-worldness was also 

found to be an important property where brain networks could be distinguished from random 

networks and was used to differentiate epilepsy patients from controls (Farahani et al., 2019; 

Lithari et al., 2012; Smit et al., 2008). Several other studies (Coito et al., 2016; Elisevich et al., 

2011) have showed disruptions in various network features, and achieved lateralization in 

temporal lobe epilepsy patients. In this regard, network measures provide a quantitative approach 

to characterize complex network dynamics and can lead to a better understanding of the epileptic 

network in addition to providing a valuable diagnostic tool.  

In this work, we aim to integrate the strength of brain state space approaches and network 

analysis based on connectivity, to better disentangle the pathological networks from resting state 

E/MEG signal, thus, to estimate the EZ. We firstly adopted EHMM as the brain state extraction 

algorithm and verified its accuracy with computer simulations. We then applied the framework to 

MEG recordings of focal epilepsy patients and analyzed the extracted states with commonly used 

connectivity metrics to identify the pathological states. By doing so, we observed concordant 

results between the estimated foci from the proposed framework and the seizure onset zone 

identified from clinical evaluations, especially in those patients who had abundant IEDs.  

 

Methods 
The general analysis framework can be summarized as a two-step strategy as shown in 

Figure 1. Firstly, we designed a brain state extraction framework by adapting an Embedded 

Hidden Markov Model and verified the model using Monte Carlo simulation. Next, the extracted 

brain states underwent a connectivity analysis to extract the connectivity features and related 

network attributes. A Graph Feature Index was designed based on the network features, to 

identify the pathological states among all extracted brain states. The extracted pathological states 

were compared to the clinical findings to evaluate the accuracy of the proposed framework. 
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Figure 1. The overall study pipeline. i) In step 1, a time window of the original E/MEG data were 
embedded to create the embedded E/MEG. Independent Component Analysis (ICA) was applied 
on the data to decompose the data into topographical components and their corresponding 
activation. The activations were then put through the Hidden Markov Model to obtain the brain 
states. The estimated states were multiplied by the IC again to transform back to the original 
E/MEG space to generate the spatiotemporal brain states. ii). In step 2, source imaging was 
applied on the extracted brain states to project sensor space activity to the source space activity. 
The connectivity features were extracted using Partial Directed Coherence (PDC) and were 
further used to identify the pathological states. The localization error of the identified pathological 
states was used to evaluate the accuracy of the proposed framework.  

 

 

Embedded Hidden Markov Model 
In the HMM, it is assumed that a time series can be described using a hidden sequence 

of a finite number of states and each state will be characterized with the transition to other states. 

To facilitate the process, we adapted a well-established Bayesian variational learning algorithm. 

Assuming state space dimension has the dimension of 𝐾, hidden state variables s = {𝑠!…𝑠"}, 

and the observed data is denoted by y = {𝑦!…𝑦"}  for the time points 𝑡!…𝑡". The initial state 

probability is denoted by π = {𝜋!…𝜋#}, where 𝜋$ = 𝑝(𝑠! = 𝑞$) where variable 𝑞$ represent the ith 

state for i=1,…,K. Set 𝑎% to be the transition probability where element 𝑎%,((,)) = 𝑝(𝑠%+! =	𝑞)|𝑠% =

	𝑞() describes the probability of transitioning from hidden state 𝑠$ to 𝑠, from time 𝑡 to (𝑡 + 1) . Let 

𝐴 = {𝐴!, … , 𝐴-}, where 𝐴. denote the transition probability matrix at time t.  

We then set the term 	𝑏((𝑦%) = 𝑝(𝑦%|𝑠% = 𝑞$	, 𝜃)  to demote the emission probability 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.13.495945doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.13.495945


 8 

distribution. In order to describe the multi-channel E/MEG data, we assume that the emission 

probability for hidden state as the multivariate Gaussian distribution described by  

𝑝(𝑦%|𝑠% = 𝑞$	, 𝜃)	~	𝒩(𝜇( , Σ()    (1) 

where 𝜃( = {𝜇( , Σ(}, 𝜇( being the mean vector, and Σ(being the covariance matrix.  We then denote 

the parameters as Θ = {𝜃!, … , 𝜃#}.  

With all the parameters, the joint distribution p(y, s|Θ, 𝐴, π) is then written as 

p(y, s|Θ, 𝐴, π) = 𝜋!𝑏!(𝑦!)∏ 	𝑎%	𝑏%(𝑦%)"
%/0    (2) 

In the basic HMM, the observation y should be the original E/MEG data. This model, on 

one hand, detects the instantaneous spatial changes and can trace state transitions, but on the 

other hand, discards rich information of the spectral interactions among the channels (e.g., 

oscillations leading to repeating patterns, propagation of the oscillations, etc.). EHMM can be 

applied to capture temporal dynamics of the signal. In this study, we adapted the framework of a 

time-delay embedded HMM (Vidaurre et al., 2018), where the E/MEG activities over a time 

window are described using a Gaussian distribution with zero means which is equivalent to using 

a standard HMM on an embedding transformation of the original data. Many methods can be 

applied to construct the embedding space of the original data (Jebara et al., 2007; Seide et al., 

2003; Vidaurre et al., 2016). Naturally, Independent Component Analysis (ICA) is one of the top 

choices, as the goal of ICA (making the outputs statistically independent being sensitive to higher-

order statistics) aligns with the features of data to be extracted, as shown by numerous previous 

studies (Chen et al., 2013; Hsu et al., 2018; Nam et al., 2002; Patel et al., 2008; Seide et al., 2003; 

Ye et al., 2021; Yuan et al., 2012).   

With ICA as an embedding tool, instead of feeding the entire embedded E/MEG into the 

HMM model, we firstly performed an ICA decomposition on the embedded E/MEG and the original 

signal can be written as:  

𝑆𝑖𝑔𝑛𝑎𝑙 = 	∑ 𝑌( 	× 	𝐼𝐶(1
(/!    (3) 

where	𝐼𝐶( is the independent components, and	𝑌( 	 being the activation for the components. Thus, 

we transformed the original signal from actual channel space (each value representing the 

activation amplitude in one E/MEG channel) into the component space (each value representing 

the activation amplitude for one independent component). Instead of the actual signal, 𝑌	 was 

used as the input to the Hidden Markov Model. After HMM inference, the hidden states are 

extracted and represented as 𝑆) 	 , which is a weighting with dimension of 𝑁  defined on the 

component space.  

We then multiply 𝑆) to the components as: 
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𝑆𝑡𝑎𝑡𝑒) =	∑ 𝑆),( 	× 	𝐼𝐶(1
(/!   (4) 

to reverse from component space to the actual data space. Eventually, we have the 

extracted states as transient E/MEG segments representing brain states inferred from the Hidden 

Markov Model.  

Variational Bayes (VB) were used to infer the model parameters, which assumes 

additional factorizations in the space of parameters and needs all prior distributions to be 

conjugate (Quinn et al., 2018; Vidaurre et al., 2018, 2016). By using the Expectation–

Maximization algorithm acting on one group of parameters at a time, variational Bayes inference 

minimizes the so-called free energy (Rezek and Roberts, 2005).  

The code regarding HMM was written in MATLAB 2019b and partial code regarding the 

free energy evaluation is based on the literatures and toolboxes provided (Quinn et al., 2018; 

Rezek and Roberts, 2005; Vidaurre et al., 2018, 2016). 

 

Simulation Protocol 
Monte Carlo simulation with synthesized MEG data was used to verify if the EHMM model 

can extract states accurately. Synthesized MEG data was generated based on the following 

assumptions: i) the brain states can be segmented into a few distinguished states; ii) the brain 

states can be characterized as the oscillation with different spectral features and different spatial 

activations. The procedure for generating simulated MEG signals is depicted in Figure 2.  

With the aforementioned assumption, we simulated each trial as a MEG segment with a 

few brain states, and each state was represented by an oscillation. For the spatial profile, Colin 

Brain template in Brainstorm toolbox was used as the head model (Tadel et al., 2011), and the 

cortical surface was segmented into 15,002 cortical vertices. For each brain state, we randomly 

selected one cortical point as the source location. In the cases of multiple sources, the distance 

between any two sources was set to be larger than 5 cm. For the temporal profile of each state, 

a frequency value was picked from 2-20 Hz to generate the temporal activations.  
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Figure 2. Simulation protocol overview. The chain of brain states was generated based on the 

state transition matrix and the state spatiotemporal profile. The chain of activation went through 

forward modeling to generate the synthesized MEG. Different levels of noise were added to the 

synthesized MEG. The MEG recordings were then put into the EHMM framework. The results 

were compared to the simulation parameters to verify the accuracy of EHMM model.  

 

We first calculated the source level activations. The source level activation was simulated 

as multiple events where each event is one brain state activated for a certain length of time. To 

mimic a realistic case where the brain states are transitioning to each other, a Markov Model 

(Hidden Markov Model with Emission probability as an identity matrix) was used to simulate the 

time course. A transition matrix was then randomly generated as the probability of one state 

transitioning to the other one. The initial event was randomly drawn from all states and the 

following states were generated based on the transition matrix. Note that when one brain state is 

activated, i.e., when one region on the cortex is activated, the other regions remain silent. For 

each event, the activation time is randomly selected from 20-200 ms to represent the transient 

brain activities (Vidaurre et al., 2018). For a given length, the activation time course (oscillatory 

activity) was multiplied by a tapering Tukey window to mimic the state transition edge effect.  

After obtaining the source level activation, we performed forward modeling to generate the 

synthesized E/MEG signal. While this technique is applicable on both EEG and MEG, we used a 

102 channel Elekta MEG montage with magnetometers as the sensor configuration. A one-layer 

boundary element method head model was used to calculate the scalp MEG using the 
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OpenMEEG toolbox (Gramfort et al., 2010) and the leadfield matrix was generated. Note that both 

three-layer BEM model (scalp, skull, and brain) and one-layer BEM model (brain only) are widely 

used in practice (Gramfort et al., 2010; Hallez et al., 2007; Tanaka and Stufflebeam, 2014). In this 

study, we adapted one-layer model since the neuromagnetic signals are minimally affected by 

the tissue conductivity (Hamalainen and Sarvas, 1989). A 2-min source activation was multiplied 

by the leadfield matrix to generate a 2-min MEG signal.  

Different scenarios were simulated to evaluate the proposed framework. We varied the 

number of states from 4 to 7, with 4 being the most commonly used number for many state-space 

model as mentioned before. Also, Gaussian white noise was added to the generated signal to 

reach signal-to-noise ratio of 0 dB, 5 dB, and 10 dB to simulate the noise-contaminated MEG 

signals.  

For each condition, 100 trials were simulated. The synthesized MEG recordings were fed 

into the EHMM framework. To be consistent with the literatures, a 100 ms embedding window 

was adapted and 50 initializations were used to obtain stable solution through empirical testing. 

Two types of result were then obtained from the EHMM framework: the spatiotemporal brain 

states profile represented by brief segments of MEG recordings, and the posterior probability for 

each of the states. The posterior probability was then put through the Viterbi algorithm (Eddy, 

2004; Pulford, 2006) to get the most probable state activation.  

 

 
Simulation Evaluation 

The result states were firstly compared to the simulated brain states to create 1-on-1 

match by ranking the differences between all the pairs. To be more specific, all result brain states 

were compared to all simulated brain states, and the pair with smallest absolute difference was 

firstly selected, and the two matched states were removed from the pool. The next pair was then 

selected from the remaining values until each of the result states was matched to a simulated 

state.  After doing so, for each trial, three evaluation metrics were obtained by comparing 

estimated states to its matching simulated brain state:  

i) The result states were projected onto the source space using a Linearly Constrained Minimum 

Variance (LCMV) vector beamformer (Van Veen and Buckley, 1988; Woolrich et al., 2011). The 

Localization Errors (LEs) were calculated as the Euclidian distance from maximum of cortical 

source activation to the matching simulated brain state source location. LEs were averaged for 

all the brain states within each trial. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.13.495945doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.13.495945


 12 

ii) A fast Fourier transform (FFT) was performed on each extracted state. The frequency with the 

highest power were extracted for each brain state to represent the temporal profile. The value 

was then compared to the simulated oscillation frequency for each state and the absolute 

difference was calculated. The absolute differences between all result states and simulated states 

were averaged. 

iii) The correlation between result transition matrix and the simulated transition matrix in the 2-min 

MEG segments were calculated. For any timepoint 𝑡, if the current classified state 𝑠% = 𝑞( was 

different from the state 𝑠.+! =	𝑞) , a transition from state 𝑞$ to 𝑞, was counted. We use 𝑁$→, to 

denote the number of transitions from state 𝑞$ to 𝑞,, the transition probability matrix �̅� is calculated 

as 𝑎O(,) =	
1!→#

∑ 1!→$%
&'(

.  

In this case, we were neglecting the self-transition phenomenon where the brain state 

remains the same for two consecutive events. A smoothing procedure was introduced to detect 

the events with long durations and to break these events into smaller events. Note that the 

simulation transition matrix used to generate the MEG segment is slightly different from the actual 

simulated transition matrix, since the latter is a realization of the former based on Bayesian model, 

which could be different from trial to trial. In this simulation, we were comparing the result transition 

matrix to the latter, and the correlation coefficient (between 0 and 1) was obtained.  

 

Patient Data Acquisition and Preprocessing 
The patients included in this study underwent MEG and intracranial EEG (iEEG) 

monitoring at the University of Pittsburgh Medical Center (UPMC) as a clinical routine. The data 

analysis study was approved by and performed in accordance with the regulations of the 

Institutional Review Boards (IRB) of Carnegie Mellon University and University of Pittsburgh.  

A total of 10 focal drug-resistant epilepsy patients were included in this study. The patients 

were selected based on the following criteria: 1) Patients who underwent pre-surgical evaluation, 

including MEG recordings and MRI; 2) patients who underwent iEEG monitoring and the identified 

SOZ electrodes were located on the cortical regions (rather than subcortical locations such as 

amygdala or hippocampus); 3) patients who underwent resective surgery and had a postoperative 

follow-up of at least 12 months; 4) patients who had Engel I surgical outcome as rated by 

clinicians.  

Each patient underwent a 306 channel recording using the Elekta MEG system (Elekta 

Neuromag, Helsinki, Finland) with 102 magnetometers and 204 planar gradiometers; a 10-minute 

run with magnetometers only (102 channels) was used in this study. The recorded MEG was 
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band-pass filtered between 1-50 Hz. For each patient, an individual cortex surface model, a 

Desikan-Killiany (DK) atlas (Desikan et al., 2006), and a one-layer boundary element method 

(BEM) model were constructed from the pre-operational MRI. The sensors were co-registered 

using anatomical landmarks including Nasion, left pre-auricular point (LPA), right pre-auricular 

point (RPA), and digitized head points. The lead-field matrix was then calculated using the 

OpenMEEG (Gramfort et al., 2010) software in MATLAB. The preprocessing steps were all 

conducted with the Brainstorm software (Tadel et al., 2011).  

 

Brain State Extraction and Source Imaging 
For each patient, the resting state data were visually inspected for removal of bad 

segments and bad channels. EOG and ECG channel was extracted from the original recording to 

remove EOG and ECG artifact. After that, the 10-min data were segmented into 2-min epochs 

and fed into the EHMM model to obtain the estimated brain states. For each epoch, two 

parameters, the 100 ms embedding window and 50 randomized initializations, were adapted from 

simulation.  

After obtaining the states from the EHMM model, the brain states (sensor data) were 

projected onto the source space using a LCMV vector beamformer carried out separately on each 

state.  

 

Network Construction and Feature Index  
Partial directed coherence (PDC) was used to estimate the directed functional interactions 

for each brain states. PDC is based on the concept of Granger-causality (Baccalá and 

Sameshima, 2001; He et al., 2019) and is computed using multivariate autoregressive (MVAR) 

models which simultaneously models multiple time series. To reduce the dimension for MVAR 

calculation and reduce spatial leakage, after obtaining the LCMV solution, we mapped each 

individual cortex to the 68-ROI DK brain atlas as described before and averaged the source 

activation for each region. Thus, we computed PDC using the source activity of the 68 regions. 

For each state, the connectivity matrix (ROIs × ROIs) represented the flow from one ROI to 

another, averaged over the frequency range (1-50Hz). 

 

Graph Feature Index for Brain States  
With the PDC connectivity pattern constructed, we selected 20% largest values which 

corresponding to the major information flow in the network and obtained a weighted undirected 

network 𝐺 = (𝑉, 𝐸) consisting of a set of vertices 𝑉 and a set of edges 𝐸 between them. An edge 
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𝑐 connects vertex 𝑣( with vertex 𝑣). In this study, two metrics were used to describe global network 

properties, namely the average clustering coefficient and the betweenness centrality difference.  

Clustering coefficient (CC) is a characteristic parameter to describe local clustering 

features of a network. The clustering coefficient for a vertex is then given by a proportion of the 

number of links between the vertices within its neighborhood divided by the number of links that 

could possibly exist between them. For each node, a high CC value indicate tight connections to 

the neighboring nodes thus forming a local hub. In a small world network, i.e., the physiological 

brain network such as resting state networks where most of the nodes connected to their nearest 

neighbors, but a few of them can spread over a long range, average CC are relatively high. In the 

pathological network, or the epileptic network, one would assume that only a few nodes occupying 

the most outflow where most of the other nodes are “muted”, which would lead to a low averaged 

CC value.  

Betweenness centrality (BC), on the other route, is a key metric that is used to identify 

important actors in a network. It is a popular graph analysis technique based on shortest path 

enumeration. This metric is widely used to identify the key nodes in the brain networks (Wilke et 

al., 2011). We averaged BC value in the left hemisphere and the right hemisphere, and the 

difference is used to represent the lateralization of the network. Higher difference between the 

two hemispheres indicates a more lateralized network while a lower difference value indicates a 

more balanced network. We also observed that betweenness centrality value differences follow 

a normal distribution, which further verified our assumption.  

The two metrics are meant to evaluate the properties of individual brain states. From 

previous studies as well as experiences, a pathological state is usually corresponding to the 

abnormal strong cortical activations where one node is driving the other parts of the brain. With 

this assumption, the qualified pathological state should be corresponding to a smaller averaged 

clustering coefficient (ACC) value and a larger betweenness centrality difference (BCD) value, 

which corresponds to a more centralized hub as well as a lateralized driving spot. After empirical 

investigations, we designed the Graph Feature Index (GFI) as:  

GFI = (1-ACC) * BCD  (5) 

where a higher GFI represents higher probability to be a pathological state. The network analysis 

was performed using NetworkX toolbox implemented Python (Hagberg et al., 2008). 

 

Evaluation Metrics 
 Seizure onset electrodes identified from iEEG were extracted and marked by experienced 

epileptologists for each patient. Localization error was defined as the minimum distance between 
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the source location with the maximum activation from the LCMV solution to the closest SOZ 

electrode, for each extracted state. 

For each patient, five 2-min segments were analyzed, and all extracted brain states 

underwent a hierarchical clustering based on the connectivity patterns. The localization error was 

averaged within the cluster and the GFI is calculated for each of the grouped states based on the 

averaged connectivity pattern. The state with the highest GFI was identified as the pathological 

state for each patient. 

 

Interictal Epileptiform Discharges Analysis 
Interictal Epileptiform Discharges were also analyzed to provide a baseline. For each 

patient, the MEG waveform was visually inspected to identify the IEDs. Two researchers must 

agree on the identified IEDs, for an identified event to be listed as an IED. While multiple types of 

IED were found in these patients, only IEDs showed concordant source localization results with 

the identified SOZ region were included for further analysis, as the purpose of this IED analysis 

was to provide a benchmark instead of investigating the diversity of IEDs.  The IEDs identified 

were averaged and then fed into source imaging algorithm (LCMV) to obtain the source solution. 

The localization error was also calculated as the minimum distance between the source location 

with the maximum activation from the LCMV solution to the closest SOZ electrode.  

 

Results  
 

Simulation Results  
As shown in Figure 3B, under various SNRs (0, 5, 10 dB) and various number of states 

(N = 4, 5, 6, 7), the EHMM provided robust estimates of source location overall. The localization 

error increases as the SNR decreases. This indicates that in the simulation setting, SNR could 

influence the EHMM’s performance largely, but the results remain reasonably stable even in 

extreme scenario where the signal-to-noise ratio is 0 dB. Additionally, the localization errors 

increase as the number of simulated brain states increases, but generally the localization error is 

less than or around 10 mm. 
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Figure 3. Simulation results. A) Example of one trial with 4 simulated states, represented by four 

different colors. The simulated MEG is overlaid with colors to represent the current simulated 

brain states. The EHMM framework successfully extracted the states, represented by the topo 

maps in sensor space. This trial is with 0 dB noise. B) Quantitative evaluations. Left panel: 

Localization error (in mm). The extracted states were projected to the cortex and the source region 

with maximum activation was compared to the simulated source (dipole model). For each trial, 

the average localization error was calculated for all the matched state pairs. The black bar 

indicates standard error. Right top panel:  Frequency Difference (in Hz). The maximum frequency 

for each state was extracted and compared to the simulated frequency. Right bottom panel: 

transition matrix correlation. The correlation between simulated transition matrix and the result 

transition matrix was calculated for each trial. 

 

From Figure 3B, it can also be seen that the frequency differences are small. The 

frequency differences represent the differences between the simulated oscillation and the 

obtained brain state temporal profile. The difference of approximately 1Hz indicates that the 

EHMM framework not only captured the spatial information but also the intrinsic oscillatory power 

of the brain states. Moreover, one of the features of HMM model over other clustering methods is 
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the ability to accurately capture state transition, and this can be observed from the correlation 

between simulated transition matrix and the obtained transition matrix.  

 

Patient State Feature Extraction 
One patient example is shown in Figure 4, where a right temporal SOZ was identified. The 

patient underwent left temporal lobectomy and was seizure-free at 1-year follow up. A segment 

of MEG time course is shown in Figure 4B where two extracted states were shown by the pale 

green boxes. The left-side state is showing a more balanced and spread-out connectivity, while 

the right-side state is showing a centralized activation from the right posterior temporal region. 

The representative topo map for the example patient can be found in Figure 4C, which shows a 

clear right lateral temporal dipole pattern. 

 
Figure 4. Patient Example. A) Example of one patient with right temporal epilepsy. Green color 

shows the resection and each dot represent one intracranial EEG electrode. The red color shows 

the seizure onset zone. The yellow color shows the seizure spread. B) A segment of MEG data 

and two example brain states. In each of the brain network figure, each grey dot represents the 

center of one ROI in the DK atlas. The red color edges represent the strongest connection 

between the ROIs (maximum PDC value). The orange color edges represent the strongest 5 

connections. The yellow edges connecting dots represent the strongest 20 connections. The first 

one lasted longer and showed bilateral, spread-out network with local hubs. The latter one 
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showed lateralized, centralized activation. The connectivity patterns were thresholded differently 

to better represent the network features. C) The topo map of the identified pathological state. The 

time point with highest global field potential is selected as the localization error is calculated in 

this time point.  

 

In 10 patients studied, we extracted on average 6 different brain states (as shown in Figure 

5A). We then calculated the Averaged Clustering Coefficient and the Betweenness Centrality 

Difference to get the Graph Feature Index for each state. The range of GFI varies from 0 to 0.03 

as shown in Figure 5B. By contrasting the GFI value with the localization error for each state, the 

distribution of GFI can be classified into a spread-out points cluster in the left side, which is 

corresponding to a higher ACC with lower BCD states, or more likely the normal physiological 

brain networks. On the other side, points with GFI larger than 0.025 forms another cluster which 

coincidently related to an obvious smaller localization error.  

 
Figure 5. Pathological state analysis results. A) The number of extracted brain states for all 

patients. Majority of the patients had 6-7 brain states extracted; B) The Graph Feature Index for 
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all the patients. Each color represents one patient. C) Resting state analysis comparing to the 

IED analysis, in 6 patients with concordant IED cluster. Red lines indicate worse results while 

green lines indicate better LE. D) Localization error for individual patient, by using the state with 

highest GFI to represent the pathological state. The colors are corresponding to the colors in B).  

 

 

Extracted Pathological States vs IED Analysis  
If we select the state with largest GFI as the most pathological state, the individual patient 

outcome was then represented by this selected pathological state. For each state, we selected 

the time point with the highest energy to extract the source imaging results and compared to the 

iEEG-SOZ.  

As shown in Figure 5D, 6/10 patients showed localization errors around 20 mm. These 

selected states are also well-captured in the right bottom corner of the Figure 5B. It is noteworthy 

that the maximum GFI for some patients are relatively small (the orange color, corresponding to 

patient #5).  

In 6/10 patients, we extracted good amount of IEDs (> 5) and conducted the source 

localization on the averaged extracted IED. In these 6 patients, we compared the results from the 

extracted pathological state to the IED analysis results and showed comparable results in 5/6 

patients as shown in Figure 5C. In one patient where no consensus can be reached using IED 

analysis, the resting state analysis still gave a 13.82 mm result (as shown in Figure 5D, patient 

#6, dark red point).  

 

 

 

Discussion  
In this study, we have developed a framework to analyze the resting state E/MEG 

recordings for the purpose of identifying and stratifying the underlying brain processes. Our 

framework includes a two-step strategy. We firstly segmented the E/MEG signal into a few 

transient spatiotemporal brain states using an embedded Hidden Markov Model. After that, a 

graph-feature-index combining betweenness centrality difference and the average clustering 

coefficients was generated to evaluate the likelihood of a brain state to be considered as 

pathological state or not. The proposed framework was evaluated and verified in computer 

simulations. In 10 focal epilepsy patients who are seizure-free after resective surgery, we then 
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applied the proposed framework on a 10-min MEG recording for each patient. The identified 

pathological state source localization results were compared to the SOZ identified from 

intracranial EEG recordings. In 6/10 patients, we obtained concordant results with the SOZ and 

obtained average localization error of 15.23 mm. In the subgroup of patients where interictal 

epileptiform discharges are abundant, the concordance rate is particularly high. It is noteworthy 

that while the validation was performed on epilepsy patients with MEG recordings, the 

methodology is applicable to both MEG and EEG.  

Resting states analysis has been pursued from various angles. Several MEG or EEG 

analysis methods have been considered in epilepsy studies (Antonakakis et al., 2016; Rotondi et 

al., 2016), focusing on connectivity measures such as coherence analysis (Elisevich et al., 2011) 

and phase lag index analysis (Nissen et al., 2017, 2016) on coarsely-parcellated brain models. 

Topographical microstate analysis, as described before, is another emerging field, where a few 

typical patterns in raw EEG/MEG are extracted and compared to healthy subjects to identify 

patients from healthy controls (Khanna et al., 2015; Yuan et al., 2012). Although good accuracy 

can be obtained, especially combined with machine-learning methods (Ahmadi et al., 2020; V et 

al., 2018), the extracted states as well as their transitions are more representative in a group level 

instead of individual level. While some studies showed good accuracy in identifying epilepsy 

patients from healthy controls or lateralization in TLE patients (Coito et al., 2016; Nissen et al., 

2017; Vollmar et al., 2018), the findings heavily rely on the patient groups and the control groups. 

Moreover, an epileptic seizure onset zone, as needed in the clinical diagnosis for further surgery 

planning, is still challenging to obtain through the aforementioned studies. The strength of our 

proposed framework, in this context, is that we can extract the brain states and identify the 

pathological state for individual patient without the requirement of a control group as the baseline. 

More specifically, the majority of the physiological states in MEG recording would be the normal 

“baseline” activity of the brain while the abnormal activations would stand out and be detected 

through our proposed framework, thus potentially indicating where the epileptic source is.  

Due to the complex nature of the brain networks especially in epileptic brain, the 

physiological or the normal brain states and the pathological or the epileptic brain states could be 

mixed. Our solution to this problem was two-fold. We first followed the state-space model and 

adapted the EHMM where we make the most use of the high temporal resolution of E/MEG 

recordings to capture transient spatio-temporal dynamics and verified with simulation. In real 

patient analysis, even with disentangled brain states, the feature of a so-called “pathological state” 

is not yet fully understood or fully investigated. The underlying pathology of seizure generation 

most likely involves both abnormal brain structures and aberrant connections among these 
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regions, leading to skewed large-scale network phenomena (Engel et al., 2013). In this work, we 

did not exclude the interictal epileptiform discharges from the original recording to create the so-

called “spike-free” resting state recording (Grouiller et al., 2011). In practice, interrater reliability 

is still a challenging issue for correct identification of IEDs (Bagheri et al., 2017; Jing et al., 2020), 

and multiple types of IEDs co-existing in the interictal data also contribute to the complexity (Ye 

et al., 2021). Excluding IEDs, on one hand, may demonstrate the power of such analysis, while 

on the other hand, could be biased towards the IEDs selected to remove. Moreover, since the 

essence of HMM is dependent on the state transition (Eddy, 2004), removal of an important 

component from the recording could potentially jeopardize the integrity of the algorithm itself. By 

including entire segments of data, we treat the IED-related network as a part of the brain states 

and relies on the EHMM to separate the states from others. The abnormality of the IED networks 

as studied previously (Costa et al., 2021; Erem et al., 2015) could then contribute to identify such 

abnormality from the normal resting state network.  

We then focused on application of graph theory, which provides a mathematical 

framework to characterize different topological properties of a network's organization, and has 

been applied on various data format to aid the presurgical evaluation (Case et al., 2019; Wilke et 

al., 2011). In this work, we looked at two fundamental concepts in graph theory, segregation (i.e., 

local connectivity) and integration (i.e., global network functioning). Centrality is a key measure of 

integration. We calculated the averaged clustering coefficient to reflect overall properties of the 

network. A higher ACC is related to a more connected network with tight local connection, which 

is often seen in many of the large-scale physiological whole-brain networks. Betweenness 

centrality is a measurement of segregation. BC is computed based on the fraction of all shortest 

paths in the network that contain a given node. In other words, BC reflects the number of shortest 

paths from all nodes to all others that have to pass through a specific node. As such, a higher 

value of BC reflects the hubness of a node as an important, highly integrated influencer in the 

network. We used BC to determine the lateralization of the source, where differences of BC value 

between the left and right hemisphere were calculated to represent how lateralized the network 

connection is. It was observed in our data that majority of the extracted brain states show a high 

ACC value, and the BCD value follows a normal distribution, which aligns with prior whole-brain 

network studies conducted on healthy patients or epilepsy patients (Baker et al., 2014; Farahani 

et al., 2019; García-Prieto et al., 2017). An epileptiform-related state, by comparing the 

topography to the IED, showed a low ACC value and high BCD value (García-Prieto et al., 2017; 

Smit et al., 2008). One possible explanation is that a pathological state tends to have the focused 

energy around the seizure onset zone to facilitate the emission of IED or seizures (Bagheri et al., 
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2017; Costa et al., 2021). The connectivity is likely to increase in the SOZ and potentially in 

regions far from the SOZ, but to decrease for SOZ neighbors, leading to a global reduction of 

strength, leading to a decreased ACC. Thus, centralized regions tend to strengthen their 

connections with other hub regions but not so with the rest of the brain, leading to an increased 

BCD. One thing to note here is that while in some cases, brain networks extracted can be 

correlated with the healthy brain networks, we do not tend to build the one-on-one bonds, since 

the epileptic brain could be very different from the normal ones even if we performed a solid 

segmentation. 

With the proposed resting state analysis framework, we were able to achieve a 60% 

accurate extraction of pathological states with a 15 mm localization error, while in some patients 

the GFI is not giving us the best results. It was also observed that in those patients with inaccurate 

results, even though we used the state with the highest GFI to represent the putative pathological 

results, the highest GFI is still much smaller than that in the other patients. Combined with the 

fact that we were not able to find a concordant IED cluster with a good amount of IEDs in 4/10 

patients, this might indicate that the data is not long enough for the proposed framework to 

separate a valid abnormal pattern, or the pathological states were potentially blurred by the noise 

due to the non-invasive recordings. While such a caveat is inevitable in data-driven framework, it 

should be noted that such cases would be challenging for clinicians as well. Moreover, in one 

patient where standard IED extraction failed to lead to any conclusive results, we extracted a 

pathological state with high accuracy. In a word, the analysis was performed on a 10-min MEG 

recording and the pathological states were extracted in a data-driven manner, which could provide 

an overview of the data for clinical diagnosis and as a potential pre-filtering process to identify 

states/intervals of interest for the clinical team. The value of the proposed framework is particularly 

high when longer recordings are available, where manual search is not possible or practical.  

Nonetheless, this approach also suffers from various technical limitations. While the PDC 

connectivity and the network features are both widely used in many other literatures, much more 

potential parameters could be tested to improve the framework (Malinowska et al., 2014; Mantini 

et al., 2011; Molen, 2016; Niso et al., 2015). Several studies have adapted more advanced 

machine learning algorithms to test for the best combination of parameters (Jin and Chung, 2017; 

V et al., 2018; Wu et al., 2020), which should be considered for future studies. We included only 

patients who had a good surgical outcome or in whom the focus was confidently localized with 

source imaging on IEDs. Future studies could explore the prediction of different degrees of non–

seizure freedom. Along these lines, future studies should also contemplate the changes that occur 

in different segments of the data, which has been clustered by hierarchical clustering method in 
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this framework due to the short duration of the MEG recording (10 minutes). In longer recordings 

where the distribution and the involvement of brain networks could vary and the occurrence of the 

pathological state could vary (Karoly et al., 2016), a more curated framework with sliding windows 

could be more informative in evaluating the different stages of the resting state data. Transition 

matrix, as an important feature of the Hidden Markov Model, was not fully investigated due to the 

short duration of the data and the relatively small patient population. Future studies could look 

into mechanisms of the pathological states and interactions with the other brain networks for a 

further understanding of the epileptogenesis. Despite all these impediments, our results promise 

an alternative way to identifying and stratifying epileptic networks from resting-state recordings.  

To summarize, in this study, we have proposed a framework to extract pathological state 

from resting state electromagnetic recordings and achieved reasonable accuracy. Our results 

indicate that the brain networks can be disentangled from the resting-state electromagnetic 

recording and could be identified based on the connectivity features. The data-drive framework 

requires minimal human intervention and could potentially guide the surgical intervention for focal 

epilepsy patients undergoing presurgical planning. Given the generalizability of state space brain 

network model and increasing studies working on network features of other neurological disorders 

or even healthy brains, the proposed framework may have applications to study other brain 

diseases or healthy brains.  
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