bioRxiv preprint doi: https://doi.org/10.1101/2022.06.13.496019; this version posted June 15, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 A distal enhancer is required for <i>TNF</i> gene transcr	ription	in
---	---------	----

2 human macrophages in response to TLR3 stimulation

- 3 Junfeng Gao¹, Yapeng Li¹, Dianzheng Zhao¹, Xiaoyu Guan¹, Hong Wei Chu², Hua
- 4 Huang^{1,3*}
- ¹Department of Immunology and Genomic Medicine, National Jewish Health, Denver,
- 6 CO 80206, USA.
- ⁷ ²Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
- ³Department of Immunology and Microbiology, University of Colorado Anschutz
- 9 Medical Campus, Aurora, CO 80045, USA.
- 10
- 11 * Correspondence should be addressed to H.H. (email: <u>huangh@njhealth.org</u>).
- 12
- 13 Key words: Macrophage, Poly(I:C), TLR3, *TNF* gene enhancers, E-16.0
- 14
- 15 Grant support:
- 16 Supported by grants from the National Institutes of Health R01AI107022 and
- 17 R01AI083986 (H.H.).

18 Abstract

19	Macrophages	play a critica	l role in in	nflammatory re	sponses during	infections.

- 20 Activated macrophages by infections through stimulation of TLRs expressed their cell
- 21 surface produce pro-inflammatory cytokines, including TNF. However, distal
- 22 enhancers that regulate *TNF* gene transcription in human macrophages have not been
- 23 investigated. In this study, we identified the five putative TNF enhancers using
- 24 H3K27ac ChIP-seq and ATAC-seq. We showed proximal enhancer (PE), E-16.0, and
- 25 E-6.5 possessed enhancer activity in a reporter gene assay. Deletion of the distal
- 26 *TNF* E-16.0 enhancer resulted in 73% reduction in *TNF* gene transcription in human
- 27 macrophage cell line THP-1 in response to ploy(I:C) stimulation. Our study identifies
- a novel distal enhancer that regulates *TNF* gene transcription in human macrophages.

29 Introduction

30	Macrophages are among the first immune cells to encounter pathogens (1,2). These
31	cells play a critical role in inflammatory responses during infections. Macrophages
32	sense infections via pattern-recognition receptors, including Toll-like receptors (TLRs)
33	(3,4). Toll-like receptors (TLRs) play a major role in the activations of macrophages
34	(5). TLRs bind to viral and bacterial productions derived from many bacteria and
35	viruses at some point of their replication cycle (6,7). TLR4 binds to bacterial product
36	lipopolysaccharide (LPS) (8). TLR7 and TLR8 detect single stranded RNA, while
37	TLR3 recognizes double-stranded RNA (dsRNA) (6,9,10) which can be mimicked by
38	synthetic dsRNA poly(I:C). Activated macrophages by infections through stimulation
39	of TLRs expressed their cell surface produce pro-inflammatory cytokines such as
40	tumor necrosis factor alpha (TNF- α), interleukin 1 beta (IL-1 β), interleukin 6 (IL-6),
41	interleukin 8 (IL-8), chemokines (chemokine (CC motif) ligand 5 (CCL-5);
42	chemokine (CXC motif) ligand 10 (CXCL10)) (11,12). Overproduction of pro-
43	inflammatory cytokines and chemokines, such as IL-1 β , IL-6, and IL-8, CCL2 and
44	CXCL10, can lead to fatal outcomes during severe infections (13,14) and severe toxic
45	side effects in cancer immune therapies (15). However, transcriptional codes, which
46	consist of combinatorial transcription factor (TF) binding sites and interacting TFs
47	and cofactors, detecting the numerous signal inputs triggered by TRL stimulations and
48	infected epithelial cells is still poorly understood.
49	Enhancers play a critical role in regulating gene expression. Enhancers are
50	segments of DNA located in the non-coding regions of genes (16). Decoding
51	enhancers has been a longstanding goal in the field of gene transcription
52	(17). cis regulatory elements, such as enhancers, work from a distance in animals.

Transcriptional codes hidden in the distal regions are often required for full
transcription. Locating critical enhancers can be a significant challenge because
critical enhancers can be located up to 100kb from the transcription start sites in noncoding regions that make up 99% of a genome (18). In this study, we focus on
enhancer regulation of one of the most potent pro-inflammatory cytokine *TNF* gene in
human lung macrophages.

59 The *TNF* gene locus lies in mouse chromosome 17 and human chromosome 6 60 and is comprised by the *TNF* gene and the genes encoding lymphotoxin-a and 61 lymphotoxin-b (*LTA* and *LTB*) (19). However, how the *TNF* gene is regulated by 62 distal enhancers in macrophages are not completely understood. A distal enhancer 63 element 9 kb upstream of the mouse *Tnf* mRNA cap site (HHS-9) can bind NFATp 64 and participate in intrachromosomal interactions with the *Tnf* promoter in mouse T 65 cells upon activation (20). Additionally, A distal hypersensitive site ~8 kb upstream of 66 the human TNF TSS (human hypersensitive site -8kb, hHS-8) is required for and 67 mediates IFN- γ -stimulated augmentation of LPS-induced *TNF* gene expression via 68 binding of IRF1 to a cognate hHS-8 site in human monocytes/macrophages (21). 69 hHS-8 is also coordinately regulated with TNF and LTA gene expression in activated 70 human T cells via a discrete and highly conserved NFAT binding site (22). However, 71 distal enhancers that regulate TNF gene transcription in human macrophages is 72 incompletely understood. 73 In this study, we identified the five putative *TNF* enhancers using H3K27ac

possessed enhancer activity in reporter gene assay. Deletion of the distal *TNF* E-16.0

ChIP-seq and ATAC-seq. We showed proximal enhancer (PE), E-16.0, and E-6.5

74

enhancer resulted in 73% reduction in *TNF* gene transcription in human macrophage

cell line THP-1 in response to ploy(I:C) stimulation. Deletion of the PE enhancer

- resulted in 52% reduction in *TNF* gene transcription. Our study identifies a novel
- 79 distal enhancer that regulates *TNF* gene transcription in human macrophages.

Results 80

81	Identification of putative TNF enhancers that respond to poly(I:C) stimulation
82	To determine the time course for TNF mRNA expression in human alveolar
83	macrophages (AMs) in response to poly(I:C) stimulation, we treated primary human
84	AMs from 7 donors without or with poly(I:C) for 4, 8, or 24 hours. We observed that
85	TNF mRNA started to increase 4 hours after stimulation and reached the highest
86	levels at 8 hours after stimulation (104.8-fold compared with the TNF mRNA in
87	resting human primary AMs) and remained 15.6-fold higher than that in resting cells
88	at 24 hours after stimulation (Fig. 1).
89	To identify potential enhancers, we treated AMs without or with poly(I:C) for
90	four hours to detect early changes in permissive histone modification and chromatin
91	accessibility. We performed H3K27ac ChIP-seq and Omni-ATAC-seq to identify
92	non-coding DNA regions associated with increased H3K27ac modification and
93	chromatin accessibility. We showed that there were four potential enhancer regions
94	that were associated with increased chromatin accessibility and H3K27ac
95	modification within 28.1 kb of the human TNF gene, which covers the intergenic
96	regions between the LTA and LTB genes (Fig. 2). We named these potential enhancers
97	proximal enhancer (PE), E-16.0, E-6.5, E+5.6 and E+6.3 based on the distances of the
98	putative enhancers to the transcription start site (TSS) of the TNF gene.
99	
100	The TNF E-16.0 and PE enhancers possess enhancer activity
101	Not all non-coding regions associated with H3K27ac modification and increased
102	chromatin accessibility possess enhancer activity. To access the enhancer activity of
103	the potential enhancers, we cloned the potential enhancers into the LentiMPRA vector
104	containing a minimal promoter and barcoded Gfp reporter gene (23) (Fig. 3A). We

105	used a non-coding DNA fragment that was not associated with H3K27ac or chromatin
106	accessibility as non-enhancer (NE) control (Fig. 2). We transduced human lung
107	macrophage cell line THP-1 cells with the recombinant lentivirus containing
108	enhancers. Because THP-1 cells expressed low levels of pro-inflammatory cytokine
109	genes, we matured THP-1 cells with phorbol 12-myristate 13-acetate (PMA) for three
110	days and found that matured THP-1 transcribed high levels of TNF mRNA in
111	response to poly(I:C) stimulation (unmatured, 8.3-fold of induction after poly(I:C)
112	treatment; matured, 91.6-fold of induction after poly(I:C) treatment, Supplemental Fig.
113	1), consistent with previous studies (24,25). Three days later, we treated the
114	enhancers-transduced-THP-1 cells with poly(I:C) for four hours. We measured the
115	number of RNA and DNA barcodes in RNA and DNA samples prepared from the
116	enhancers-transduced-THP-1 cells. Barcodes in the RNA and DNA samples prepared
117	from transduced cells were sequenced to determine the number of RNA barcode
118	transcripts and DNA inserts. The log2 ratios of barcode RNA transcripts to barcode
119	DNA inserts (as input controls) were used to determine enhancer activity. We found
120	that the TNF PE, E-16.0, and E-6.5 showed significant enhancer activity (Fig. 3B). To
121	determine which of TNF PE, E-16.0, and E-6.5 can respond to poly(I:C) stimulation
122	with increased enhancer activity, we treated enhancers-transduced-THP-1 cells with
123	poly(I:C) for four hours and measured barcodes in RNA and DNA barcodes by qPCR.
124	Our results showed that TNF PE and TNF E-16.0 enhancers showed significant
125	increase enhancer activity in response to poly(I:C) treatment (Fig. 3C).
126	
127	The TNF E-16.0 enhancer is essential in TNF gene transcription in response to

127 The *TNF* E-16.0 enhancer is essential in *TNF* gene transcription in response to 128 poly(I:C) stimulation

129	Not all enhancers identified using reporter gene assay are required for gene
130	transcription in the context of naïve chromatin. To determine whether TNF E-16.0 and
131	PE enhancers are required or contribute to TNF gene transcription in response to
132	poly(I:C) stimulation, we deleted these enhancers and NE using CRISPR/Cas9. The
133	current CRISPR deletion method using two sgRNA guides often resulted in deletions
134	occurring in one chromosome, creating heterozygous deletion that does not have a
135	phenotype. To overcome this technical challenge, we targeted each enhancer with
136	four sgRNA guides, each contained within a bicistronic gene co-encoding for a
137	different fluorescence protein GFP, RFP, BFP, or Thy1.1 molecule (Fig. 4A). We
138	found that 9.4 % of THP-1 cells transduced with lentivirus containing the four sgRNA
139	guides expressing BFP, GFP, RFP, and Thy1.1 (Fig. 4B). FACS-sorted cells positive
140	for BFP, GFP, RFP, and Thy1.1 achieved complete homozygous deletion of WT TNF
141	NE, E-16.0, and PE enhancers in bulk using this newly improved method (Fig. 4C).
142	Deletion of the TNF E-16.0 enhancer resulted in 72.5 % reduction in TNF mRNA
143	expression and deletion of the TNF PE enhancer led to 51.9 % reduction in
144	TNF mRNA expression. In contrast, deletion of the TNF E-16.0 or the TNF PE did
145	not affect LTA and LTB mRNA expression (Fig. 4 E and F). These data demonstrate
146	that TNF E-16.0 is critical in TNF gene transcription in response to poly(I:C)
147	stimulation.

149 **Discussion**

Distal enhancers regulating *TNF* gene transcription in human macrophages have not
been determined. In this study, we demonstrated that a distal *TNF* E-16.0 is critical in *TNF* gene transcription in human macrophages in response to TLR ligand poly(I:C)
stimulation.

154 Distal enhancers are critical in the assembly of TF-TF and TF-coF interactions 155 with core promoters through a looping mechanism (26,27). Locating critical 156 enhancers can be a great challenge because critical enhancers can be located up to 157 100kb from the transcription start sites in non-coding regions that make up 99% of a 158 genome. The bioinformatics approach often assigns enhancers to the nearest genes 159 (18). The bioinformatics approach thus is limited in finding distal enhancers. Thus, it 160 is necessary to use CRISPR method to delete enhancer candidates. The CRISPR 161 deletion method that uses two sgRNA guides often results in heterozygous deletion 162 that does not have a phenotype. We targeted one enhancer with four sgRNA guides, 163 each contained within a bicistronic gene encoding for a different fluorescence protein 164 GFP, BFP, RFP, or Thy1.1 molecule. By coupling this with fluorescence activated 165 cell sorting to select for cells that express all four marker genes, we achieved around 166 complete enhancer deletion at two chromosomes without single-cell cloning. This 167 technical improvement has allowed us to analyze TNF gene transcription in the 168 context of naïve chromatin.

Previous studies reported that a distal hypersensitive site ~8 kb upstream of the human *TNF* TSS (human hypersensitive site -8kb, hHS-8) is required for LPSinduced *TNF* and *LTA* gene expression in macrophages and T cells (21,22). Although our results showed that deletion of the *TNF* E-16.0 did not affect *LTA* or *LTB* gene

- transcription in human macrophages, we should take caution in interpreting this
- 174 finding because human macrophages do not transcribe *LTA* and *LTB* genes at levels
- 175 comparable to T cells (28,29). Our finding discovers a novel enhancer in human
- 176 macrophages *TNF* E-16.0 and advance knowledge of *TNF* gene transcription in
- 177 human macrophages.

Methods and Materials

179 Human alveolar macrophages

180	Human lung was obtained from de-identified organ donors whose lungs were not
181	suitable for transplant and were donated for medical research. We obtained the donor
182	lungs through the International Institute for the Advancement of Medicine (Edison,
183	NJ) and the National Disease Research Interchange (Philadelphia, PA). Research on
184	these human lungs has been deemed as nonhuman subject research and is given IRB
185	exemption because the donors are deceased and de-identified. Alveolar macrophages
186	(AMs) were isolated from lavage of the lung before the instillation of elastase, as
187	described previously (30). The purity of the AMs was 92.6 \pm 2.8% as measured by
188	immunostaining of cytocentrifuge preparations. AMs were frozen. Previous studies
189	have compared freshly isolated and frozen AMs and did not find noticeable
190	differences (30). AMs were cultured in DMEM (CAT # SH3024301) plus 10% FBS,
191	100 units/mL penicillin, 100 μ g/mL streptomycin, 2.5 μ g/mL amphotericin B in the
192	presence of 50 ng/ml GM-CSF (PeproTech, 300-03) in a humidified 37°C, 5% CO2
193	incubator.

194

195 Chromatin Immunoprecipitation and ChIP-seq

Human macrophages (5×10^6) were not treated or treated with 1 µg/mL Poly(I:C) for

197 four hours were fixed with 1% formaldehyde (PI28908, Thermo Fisher Scientific),

sonicated by using the Covaris S220 Focused-ultrasonicator in the SDS lysis buffer (1%

199 SDS, 10 mM EDTA, 50mM Tris.HCl pH8) and precleared with Protein A Beads at

200 4 °C for 1h according to established protocols. The samples were incubated with 10

201 μg of following antibodies (1:100 dilution): anti-H3K27ac antibody (ab4729, Abcam,

202	Abcam, Cambridge, MA) at 4°C overnight and then with protein A agarose/salmon
203	sperm DNA slurry (Millipore, Cat# 16-157) at 4°C for 1h. The beads were washed
204	and eluted as described. The crosslinking of eluted immunocomplexes was reversed
205	and the recovered DNA was recovered using a QIAGEN QIAquick PCR purification
206	kit (Qiagen, Valencia, CA). ChIP-seq library was prepared using TruSeq ChIP
207	Library Preparation Kit (IP-202-1024, Illumina, San Diego, CA) according to the
208	manufacturer's instructions. Briefly, 10 ng of ChIPed DNA was converted into blunt-
209	ended fragments. A single adenosine nucleotide was added to the 3' ends of the blunt-
210	ended fragments before ligation of indexing adapters to the adenylated 3' ends. The
211	ligated products were purified, size-selected and PCR amplified according to the
212	manufacturer's instructions. The quality and quantity of the DNA library were
213	assessed on 4150 TapeStation System (Agilent, CA). Paired-ended sequencing was
214	performed on an Illumina NovaSEQ6000 platform.

215

216 Omni-ATAC-seq

217 Omni-ATAC-seq was performed according to the published method (31). Briefly, 218 50,000 AMs that were untreated, treated with Poly(I:C) for four hours were spun 219 down and washed once with cold PBS. The cells were resuspended in 50 µl cold 220 ATAC-RSB-lysis buffer and incubated for 3 minutes. The ATAC-RSB-lysis buffer 221 was immediately washed out with 1 mL ATAC-RSB buffer. The cell pellet was 222 resuspended in 50 µl transposition mix and incubated for 30 minutes at 37 °C. The 223 reaction was stopped by adding 2.5 µl pH 8 0.5 M EDTA. The Qiagen MiniElute PCR 224 purification kit (Qiagen) was used to purify the transposed DNA. Purified DNA was 225 amplified using the following condition: 72°C for 5 min, 98 °C for 30 s, and 13 cycles:

	226	98 °C for	· 10s, 63	°C for 30 s	$,72 ^{\circ}\mathrm{C}$ for	1min. The a	amplified libraries	were purified.
--	-----	-----------	-----------	-------------	------------------------------	-------------	---------------------	----------------

- size-selected, and the quality and quantity of libraries were assessed on 4150
- 228 TapeStation System (Agilent, CA). The pair-ended sequencing of DNA libraries was
- 229 performed on an Illumina NovaSEQ6000 platform.
- 230

231 ChIP-seq and Omni-ATAC-seq data analysis

Raw sequencing reads (average 40-80 million reads, 2 biological replicates for each

treatment) were aligned to the hg38 reference genome using Bowtie2 with very-

- sensitive and -x 2000 parameters. The read alignments were filtered using SAMtools
- to remove mitochondrial genome and PCR duplicates. Peaks were identified by
- 236 MACS2 with the q-value cut-off of 0.05 and the sequencing data was displayed using
- 237 IGV.
- 238

239 Lentiviral MPRA barcoded enhancer and CRISPR plasmids constructions

The lentiviral MPRA vector pLS-SceI (Addgene, Plasmid #137725) containing a
minimal promoter and barcoded *Gfp* reporter gene was used for reporter assay. The
candidate enhancers were cloned into the lentiMPRA pLS-SceI vector through the
AgeI and Sbf□ restriction sites. Polymerases, restriction and modification enzymes
were obtained from New England Biolabs (Beverly, MA). All plasmids were verified
by sequencing.

- The bicistronic sgRNA guides targeting *TNF* enhancers were designed using
 the online CRISPick tool from Broad Institute
- 248 (https://portals.broadinstitute.org/gppx/crispick/public). Each of four sgRNA

249 sequences targeting the same enhancer was cloned into LentiCRISPRv2GFP

250 (Addgene, Plasmid # 82416), LentiCRISPRv2-mCherry (Addgene, Plasmid #99154),

LentiCRISPRv2-BFP, or LentiCRISPRv2-THY1.1 vectors via the BsmBI cloning site.

252 LentiCRISPRv2-THY1.1 vector was modified by replacing GFP gene in

LentiCRISPRv2-GFP with the gene encoding THY1.1 using the SacII and BamHI

254 restriction sites.

255

256 Lentivirus production and transduction

The 10cm dishes were coated with 4mL 10 μ g/mL poly D lysine (Sigma, P0899) for 5 minutes at room temperature in H₂O. Plate cells at 2-3 x 10⁶ HEK293T cells/dish in DMEM (10% FBS, but no antibiotics). Twenty-four hours later, HEK293T cells were transfected with 10 μ g of pLS-SceI-BE plasmid or four color bicistronic sgRNA guides LentiCRISPRv2 plasmids, 9 μ g P Δ 8.9 and 1 μ g VSV-G using CaCl₂. Seventytwo hours after transfection, the supernatants were collected and filtered with a 0.45 μ m filter.

264 THP-1 cells were cultured in RPMI 1640 medium plus 10% FBS, 100 265 units/mL penicillin, 100 µg/mL streptomycin and 2mM beta-mercaptoethanol in a humidified 37°C, 5% CO₂ incubator. The 1×10^{6} THP-1 cells were seeded into one 266 267 well of a 6-well plate with 10 mL lentivirus medium. The polybrene was added to 268 each plate at the final concentration of 8 µg/mL and the HEPES was added to each 269 plate at final concentration of 25 mM. Lentivirus supernatants were added to each 270 plate. The plates were wrapped with parafilm and centrifuged at 2,500 rpm for 90 271 minutes at room temperature. The supernatant was removed by aspiration and 2 mL 272 fresh medium per well was added. The spin infection step was repeated at the next

	273	day and the da	y after for a total of	of three spin infections.	Two days after the last spin
--	-----	----------------	------------------------	---------------------------	------------------------------

infection, the cells for four color sgRNA guides deletion that expressed BFP, GFP,

275 RFP, and Thy1.1 were FACS-sorted. For the reporter assay, the transduced THP-1

cells can be used for further analysis.

277

278 PMA maturation and Poly(I:C) stimulation

- 279 THP-1 cells express low levels of pro-inflammatory cytokines upon Poly(I:C)
- stimulation. These cells can be matured to become robust pro-inflammatory cytokine-
- producing cells by Phorbol 12-Myristate 13-Acetate (PMA, Sigma-Aldrich).
- 282 Transduced-THP-1 cells were incubated with PMA (200 ng/mL) for three days. The
- 283 matured THP-1 cells were not treated or treated with 20 µg/mL Poly(I:C) (4287, R&D
- 284 Systems, Minneapolis, MN) for four additional hours before the cells were collected
- 285 for analysis.

286

287 Sequencing RNA barcode transcripts and DNA barcode inserts and

- 288 bioinformatics analysis
- 289 The untreated or Poly(I:C)-stimulated cells were washed with PBS three times, and
- 290 genomic DNA and total RNA were extracted using a DNA/RNA mini kit (Qiagen)
- 291 according to the manufacturer's instructions. LentiMPRA barcoded RNA-seq and
- 292 DNA-seq libraries were constructed according to the published method (23).
- Barcodes were associated with enhancer sequences and the number of barcodes in the
- 294 RNA and DNA samples was counted using software MPRAflow as described in the
- 295 published bioinformatics workflows (23). Briefly, the genomic DNA was treated with
- 296 RNase to remove contaminating RNA and the total RNA was treated with DNase to

297	remove contaminating DNA. For the enhancer-barcode association, a P5 flowcell
298	sequence, the sample index sequence and a P7 flowcell sequence were added to the
299	LentiMPRA barcoded libraries. For the RNA and DNA barcode counts, cDNA was
300	synthesized by reverse transcription using construct-specific primers that contain P7
301	flowcell sequences and unique molecular identifiers (UMIs), to preserve the true
302	counts of molecules through the amplification process. DNA or cDNA was amplified
303	with the primers that contain the P5 flowcell sequence, sample index sequence, 16-bp
304	UMI and P7 flowcell sequence. The pair-ended sequencing of DNA libraries was
305	performed on an Illumina NovaSEQ6000 platform.
306	We analyzed the NGS sequencing data on Linux. The codes was downloaded
307	from https://docs.conda.io/en/latest/miniconda.html and the MPRAflow was
308	downloaded from https://github.com/shendurelab/MPRAflow.git. For the barcode
309	association, the code is "nextflow run association.nffastq-insert "R1_001.fastq.gz" -
310	-fastq-insertPE "R3_001.fastq.gz"design "ordered_candidate_sequences.fa"fastq-
311	bc "R2_001.fastq.gz"". For the barcode counting, the code is "nextflow run count.nf -
312	-dir "bulk_FASTQ_directory"e "experiment.csv" -design
313	"ordered_candidate_sequences.fa" -association
314	"dictionary_of_candidate_sequences_to_barcodes.p"".
315	

316 **qPCR analysis**

- 317 The untreated or Poly(I:C)-stimulated THP-1 cells were collected, genomic DNA and
- total RNA were extracted using a DNA/RNA mini kit (Qiagen) according to the
- 319 manufacturer's instructions. Quantitative PCR was performed in a QuantStudio 7 Flex
- 320 Real-Time PCR System (ThermoFisher, MA). The sequences of qPCR primers are

- 321 listed in Supplemental Table □. Relative mRNA amounts were calculated as follows:
- 322 Relative mRNA or DNA amount = $2^{[Ct(Sample)-Ct(HPRT)]}$. The barcode reporter activity
- 323 was measured as the ratio of RNA and DNA.

- 325 Statistical analysis
- 326 The nonparametric Mann-Whitney U test or two-tailed student's *t*-test was used to
- 327 determine significant differences between the two samples.

328 Acknowledgement

329	We thank laboratory	members	for thoughtful	discussions	We are gratefu	1 to Kirby
525	we mank habbiatory	members	ioi moughtiui	uiscussions.	we are grateru	I to Knoy

- 330 Motsinger and Marlene Gallegos Sanchez for technical assistance. We are grateful to
- 331 Dr. Bifeng Gao and the staff of the Genomics Shared Resource Facility at the
- 332 University of Colorado Cancer Center for Next-Generation Sequencing.

333

- **Funding:** Supported by grants from the National Institutes of Health R01AI107022
- 335 and R01AI083986 (H.H.).

- 337 **Conflict of Interest:** The authors declare that they have no conflicts of interest
- 338 with the contents of this article.

339 **References**

340 1. Hussell, T., and Bell, T. J. (2014) Alveolar macrophages: plasticity in a tissue-341 specific context. Nature reviews. Immunology 14, 81-93 342 2. Martin, W. J., 2nd, Wu, M., and Pasula, R. (2005) A novel approach to restore lung immunity during systemic immunosuppression. Trans Am Clin Climatol Assoc 116, 343 344 221-226; discussion 226-227 345 3. Beutler, B. A. (2009) TLRs and innate immunity. Blood 113, 1399-1407 346 4. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nature reviews. 347 Immunology 4, 499-511 348 5. McCoy, C. E., and O'Neill, L. A. (2008) The role of toll-like receptors in 349 macrophages. Front Biosci 13, 62-70 Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition 350 6. 351 of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 352 **413**, 732-738 353 Fitzgerald, K. A., and Kagan, J. C. (2020) Toll-like Receptors and the Control of 7. 354 Immunity. Cell 180, 1044-1066 355 8. Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, 356 357 B., and Beutler, B. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr 358 mice: mutations in Tlr4 gene. Science 282, 2085-2088 359 9. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., 360 Iwasaki, A., and Flavell, R. A. (2004) Recognition of single-stranded RNA viruses by 361 Toll-like receptor 7. Proceedings of the National Academy of Sciences of the United 362 States of America 101, 5598-5603 363 10. Vollmer, J., Tluk, S., Schmitz, C., Hamm, S., Jurk, M., Forsbach, A., Akira, S., Kelly, 364 K. M., Reeves, W. H., Bauer, S., and Krieg, A. M. (2005) Immune stimulation 365 mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like 366 receptors 7 and 8. The Journal of experimental medicine 202, 1575-1585 367 11. Takeuchi, O., and Akira, S. (2009) Innate immunity to virus infection. Immunol Rev 368 **227**, 75-86 369 12. Ren, X., Wen, W., Fan, X., Hou, W., Su, B., Cai, P., Li, J., Liu, Y., Tang, F., Zhang, 370 F., Yang, Y., He, J., Ma, W., He, J., Wang, P., Cao, Q., Chen, F., Chen, Y., Cheng, X., 371 Deng, G., Deng, X., Ding, W., Feng, Y., Gan, R., Guo, C., Guo, W., He, S., Jiang, C., 372 Liang, J., Li, Y. M., Lin, J., Ling, Y., Liu, H., Liu, J., Liu, N., Liu, S. Q., Luo, M., Ma, 373 Q., Song, Q., Sun, W., Wang, G., Wang, F., Wang, Y., Wen, X., Wu, Q., Xu, G., Xie, 374 X., Xiong, X., Xing, X., Xu, H., Yin, C., Yu, D., Yu, K., Yuan, J., Zhang, B., Zhang, 375 P., Zhang, T., Zhao, J., Zhao, P., Zhou, J., Zhou, W., Zhong, S., Zhong, X., Zhang, S., 376 Zhu, L., Zhu, P., Zou, B., Zou, J., Zuo, Z., Bai, F., Huang, X., Zhou, P., Jiang, Q., Huang, Z., Bei, J. X., Wei, L., Bian, X. W., Liu, X., Cheng, T., Li, X., Zhao, P., 377 378 Wang, F. S., Wang, H., Su, B., Zhang, Z., Qu, K., Wang, X., Chen, J., Jin, R., and 379 Zhang, Z. (2021) COVID-19 immune features revealed by a large-scale single-cell 380 transcriptome atlas. Cell 184, 1895-1913 e1819 381 13. Merad, M., and Martin, J. C. (2020) Pathological inflammation in patients with 382 COVID-19: a key role for monocytes and macrophages. Nature reviews. Immunology 383 **20**, 355-362 384 14. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., 385 and Hlh Across Speciality Collaboration, U. K. (2020) COVID-19: consider cytokine 386 storm syndromes and immunosuppression. Lancet 395, 1033-1034 387 Grupp, S. A., Kalos, M., Barrett, D., Aplenc, R., Porter, D. L., Rheingold, S. R., 15. 388 Teachey, D. T., Chew, A., Hauck, B., Wright, J. F., Milone, M. C., Levine, B. L., and 389 June, C. H. (2013) Chimeric antigen receptor-modified T cells for acute lymphoid 390 leukemia. The New England journal of medicine 368, 1509-1518

391	16.	Spitz, F., and Furlong, E. E. (2012) Transcription factors: from enhancer binding to
392		developmental control. Nature reviews. Genetics 13, 613-626
393	17.	Vaishnav, E. D., de Boer, C. G., Molinet, J., Yassour, M., Fan, L., Adiconis, X.,
394		Thompson, D. A., Levin, J. Z., Cubillos, F. A., and Regev, A. (2022) The evolution,
395		evolvability and engineering of gene regulatory DNA. Nature 603, 455-463
396	18.	Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C. A.,
397		Zhang, Y., and Liu, X. S. (2013) Target analysis by integration of transcriptome and
398		ChIP-seq data with BETA. Nat Protoc 8, 2502-2515
399	19.	Falvo, J. V., Jasenosky, L. D., Kruidenier, L., and Goldfeld, A. E. (2013) Epigenetic
400		control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell
401		differentiation. Advances in immunology 118, 37-128
402	20.	Tsytsykova, A. V., Rajsbaum, R., Falvo, J. V., Ligeiro, F., Neely, S. R., and Goldfeld,
403		A. E. (2007) Activation-dependent intrachromosomal interactions formed by the TNF
404		gene promoter and two distal enhancers. Proceedings of the National Academy of
405		Sciences of the United States of America 104, 16850-16855
406	21.	Chow, N. A., Jasenosky, L. D., and Goldfeld, A. E. (2014) A distal locus element
407		mediates IFN-gamma priming of lipopolysaccharide-stimulated TNF gene expression.
408		<i>Cell Rep</i> 9 , 1718-1728
409	22.	Jasenosky, L. D., Nambu, A., Tsytsykova, A. V., Ranjbar, S., Haridas, V., Kruidenier,
410		L., Tough, D. F., and Goldfeld, A. E. (2020) Identification of a Distal Locus
411		Enhancer Element That Controls Cell Type-Specific TNF and LTA Gene Expression
412		in Human T Cells. J Immunol 205, 2479-2488
413	23.	Gordon, M. G., Inoue, F., Martin, B., Schubach, M., Agarwal, V., Whalen, S., Feng,
414		S., Zhao, J., Ashuach, T., Ziffra, R., Kreimer, A., Georgakopoulos-Soares, I., Yosef,
415		N., Ye, C. J., Pollard, K. S., Shendure, J., Kircher, M., and Ahituv, N. (2020)
416		lentiMPRA and MPRAflow for high-throughput functional characterization of gene
417		regulatory elements. Nat Protoc 15, 2387-2412
418	24.	Park, E. K., Jung, H. S., Yang, H. I., Yoo, M. C., Kim, C., and Kim, K. S. (2007)
419		Optimized THP-1 differentiation is required for the detection of responses to weak
420		stimuli. Inflamm Res 56, 45-50
421	25.	Starr, T., Bauler, T. J., Malik-Kale, P., and Steele-Mortimer, O. (2018) The phorbol
422		12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1
423		macrophages with Salmonella Typhimurium. PloS one 13, e0193601
424	26.	Schoenfelder, S., and Fraser, P. (2019) Long-range enhancer-promoter contacts in
425		gene expression control. Nat Rev Genet 20, 437-455
426	27.	Reiter, F., Wienerroither, S., and Stark, A. (2017) Combinatorial function of
427		transcription factors and cofactors. Current opinion in genetics & development 43,
428		73-81
429	28.	Sedy, J., Bekiaris, V., and Ware, C. F. (2014) Tumor necrosis factor superfamily in
430		innate immunity and inflammation. Cold Spring Harb Perspect Biol 7, a016279
431	29.	Koroleva, E. P., Fu, Y. X., and Tumanov, A. V. (2018) Lymphotoxin in physiology
432		of lymphoid tissues - Implication for antiviral defense. Cytokine 101, 39-47
433	30.	Wang, J., Nikrad, M. P., Travanty, E. A., Zhou, B., Phang, T., Gao, B., Alford, T., Ito,
434		Y., Nahreini, P., Hartshorn, K., Wentworth, D., Dinarello, C. A., and Mason, R. J.
435		(2012) Innate immune response of human alveolar macrophages during influenza A
436		infection. <i>PloS one</i> 7, e29879
437	31.	Corces, M. R., Trevino, A. E., Hamilton, E. G., Greenside, P. G., Sinnott-Armstrong,
438		N. A., Vesuna, S., Satpathy, A. T., Rubin, A. J., Montine, K. S., Wu, B., Kathiria, A.,
439		Cho, S. W., Mumbach, M. R., Carter, A. C., Kasowski, M., Orloff, L. A., Risca, V. I.,
440		Kundaje, A., Khavari, P. A., Montine, T. J., Greenleaf, W. J., and Chang, H. Y. (2017)
441		An improved ATAC-seq protocol reduces background and enables interrogation of
442		frozen tissues. Nat Methods 14, 959-962
443		

444 Figure legends

445	Figure 1. Primary human alveolar macrophages transcribe <i>TNF</i> genes to
446	extremely high levels in responding to poly(I:C) stimulation. Human alveolar
447	macrophages were untreated (UN), treated by poly(I:C) for four hours (4h), eight
448	hours (8h) or twenty-four hours (24h). qPCR analysis of the mRNA expression of
449	TNF genes. P values were calculated using the Mann-Whitney U test. Data represent
450	mean \pm SEM of seven biological samples.
451	

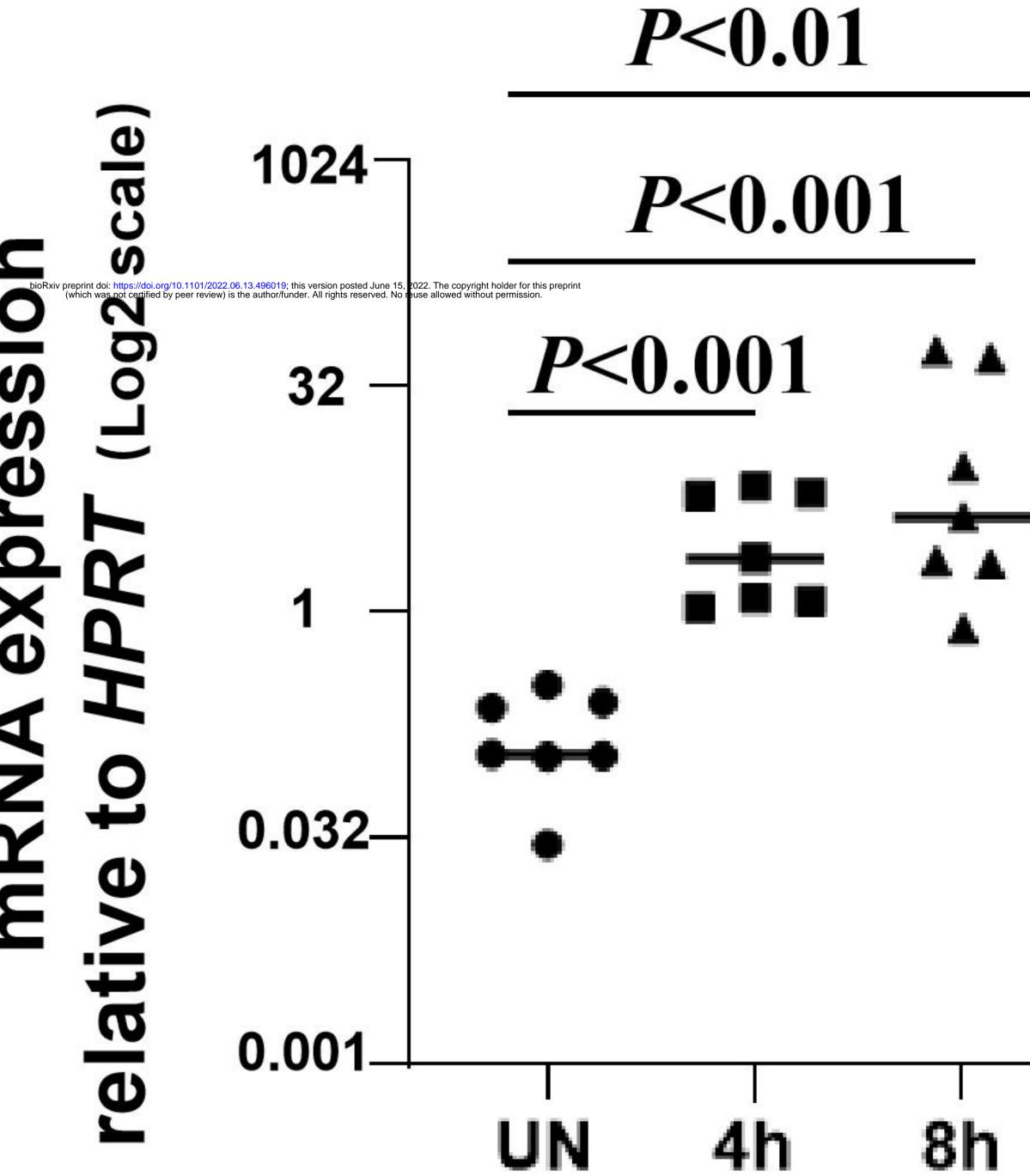
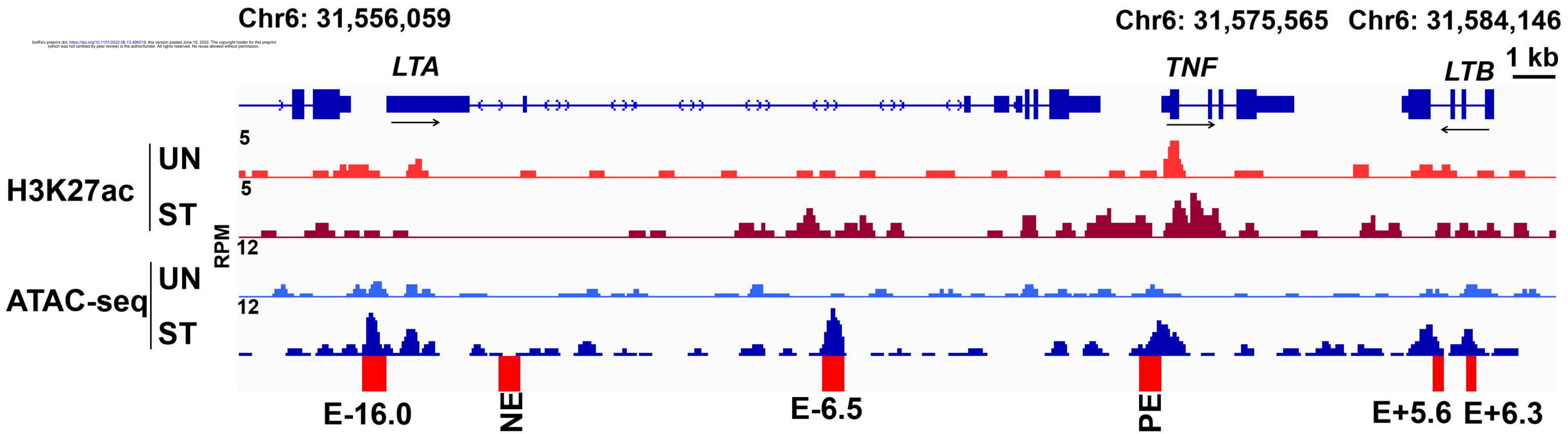
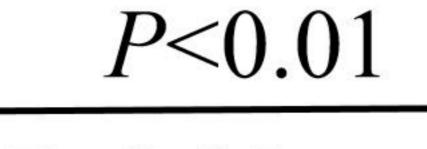

452 Figure 2. Identification of the putative TNF enhancers. Representative Integrated 453 Genome Viewer (IGV) tracks from H3K27ac ChIP-seq and Omni-ATAC-seq. Human 454 alveolar macrophages with unstimulation (UN) or poly(I:C) stimulation for four hours 455 were used for H3K27ac ChIP-seq and Omni-ATAC-seq. Red bars indicate putative 456 TNF enhancers that show increased H3K27ac modifications and chromatin 457 accessibility. RPM: reads per million mapped reads; E: enhancer; PE: proximal 458 enhancer; NE non-enhancer. The numbers following E indicate the distance (kb) of 459 enhancer to the TSS of the TNF gene; + means the enhancers are located at the 460 downstream of the TSS, and – means the enhancers are located at the upstream of the 461 TSS. One IGV track was from one biological sample, representing two biological 462 replicates with similar patterns. 463

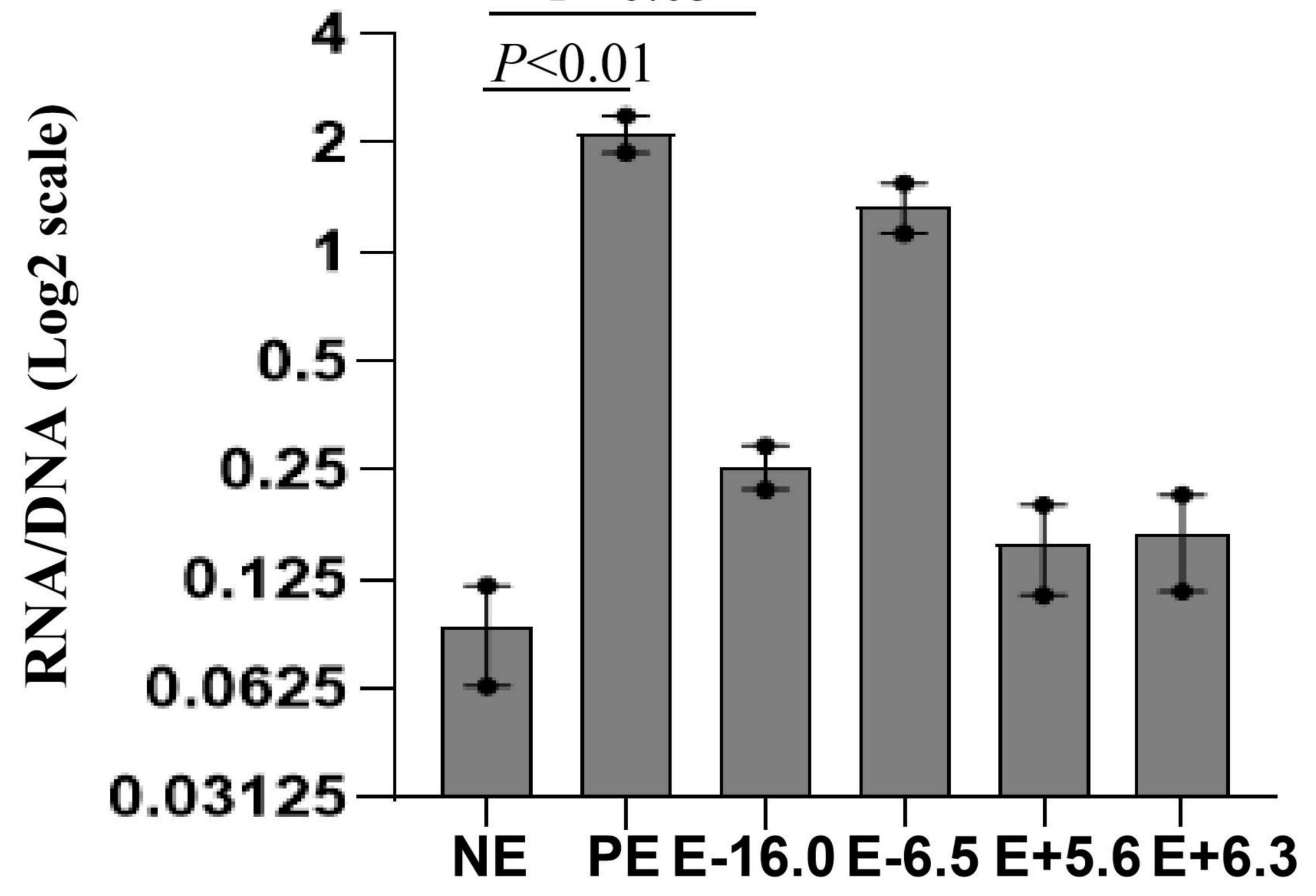

Figure 3. *TNF* E-16.0 and PE possess enhancer activity in response to poly(I:C)
stimulation. A. Barcoded GFP reporter gene constructs. B. Barcoded enhancer
activity. The number RNA barcode transcripts and DNA barcode inserts in RNA and
DNA samples prepared from the enhancers-transduced-THP-1 cells were determined

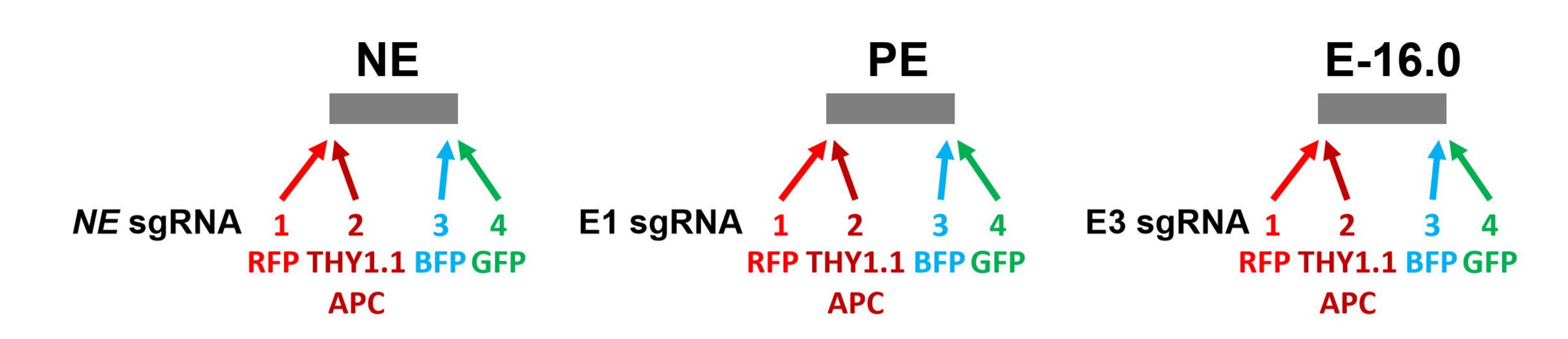

468	by NGS sequencing. The log2 ratios of barcode RNA transcripts to barcode DNA
469	inserts (as input controls) were used to determine enhancer activity. Data represent
470	mean \pm SEM of two biological samples. C. qPCR analysis of RNA barcodes or DNA
471	barcode inserts in samples prepared from the enhancers-transduced-THP-1 cells
472	untreated or treated with poly(I:C) for four hours. Data represent mean \pm SEM of
473	three transduced samples. P values were calculated using two-tailed student's t test.
474	
475	Figure 4. The TNF E-16.0 is required for TNF gene transcription in response to
476	poly(I:C) stimulation. A. Targeting one enhancer with bicistronic sgRNA guides co-
477	expressing BFP, GFP, RFP, and Thy1.1. B. FACS sorting gates. THP-1 cells were
478	transduced with BFP, GFP, RFP, and Thy1.1 sgRNA guides (4c sgRNA guides).
479	BFP ⁺ , GFP ⁺ , RFP ⁺ , and Thy1.1APC ⁺ transduced cells were FACS-sorted using
480	sorting gates indicated. C. DNA deletion efficiency analysis. Vector control (VC) and
481	deleted DNA fragments in FACS-sorted BFP ⁺ , GFP ⁺ , RFP ⁺ , and Thy1.1APC ⁺ cells
482	were analyzed with PCR. D. TNF mRNA expression in the FACS-sorted transduced
483	cells was measured by qPCR. The percentages indicate the percent reduction in TNF
484	mRNA expression in enhancer-deleted (del) relative to non-transduced or vector-
485	transduced THP-1 cells. E. LTA mRNA expression in the FACS-sorted cells was
486	measured by qPCR. F. LTB mRNA expression in the FACS-sorted cells was
487	measured by qPCR. P values were calculated using two-tailed student's t test. Data
488	represent mean \pm SEM of three transduced samples.

TNF

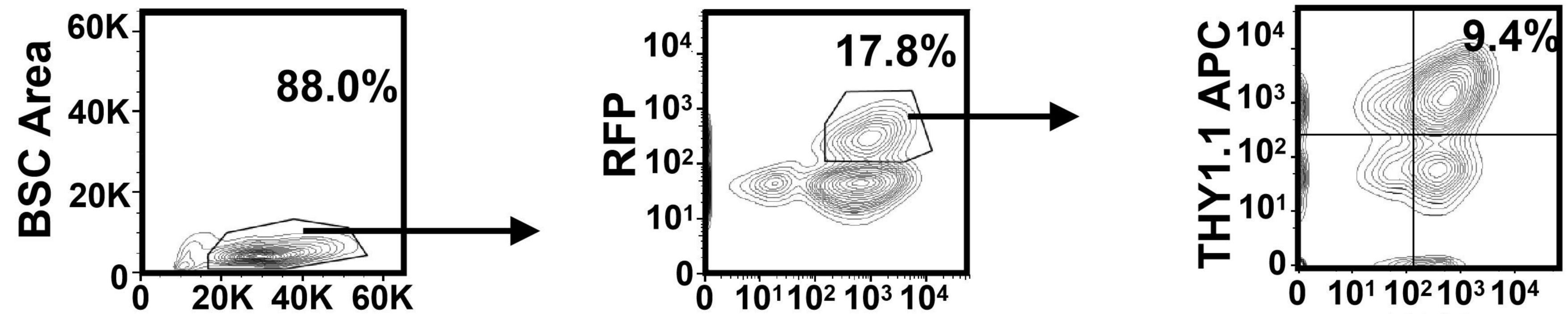
scale) mRNA expression relative t






C

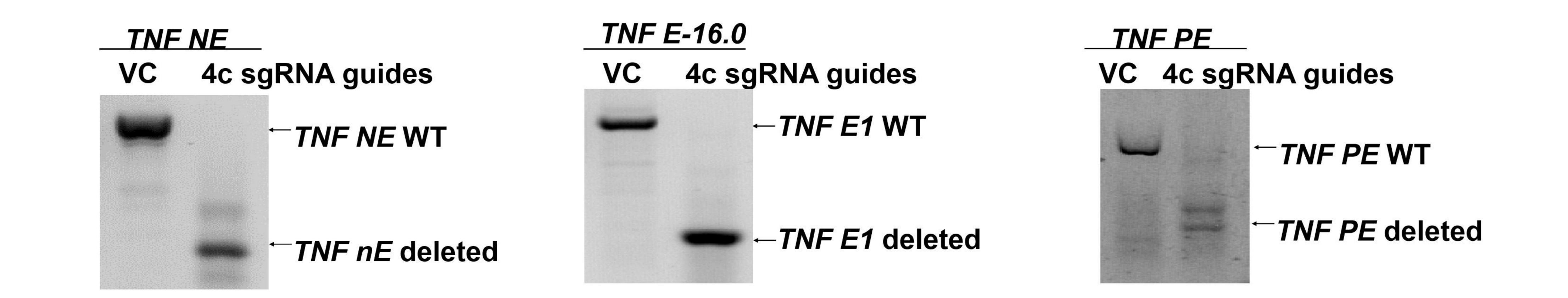
P<0.05

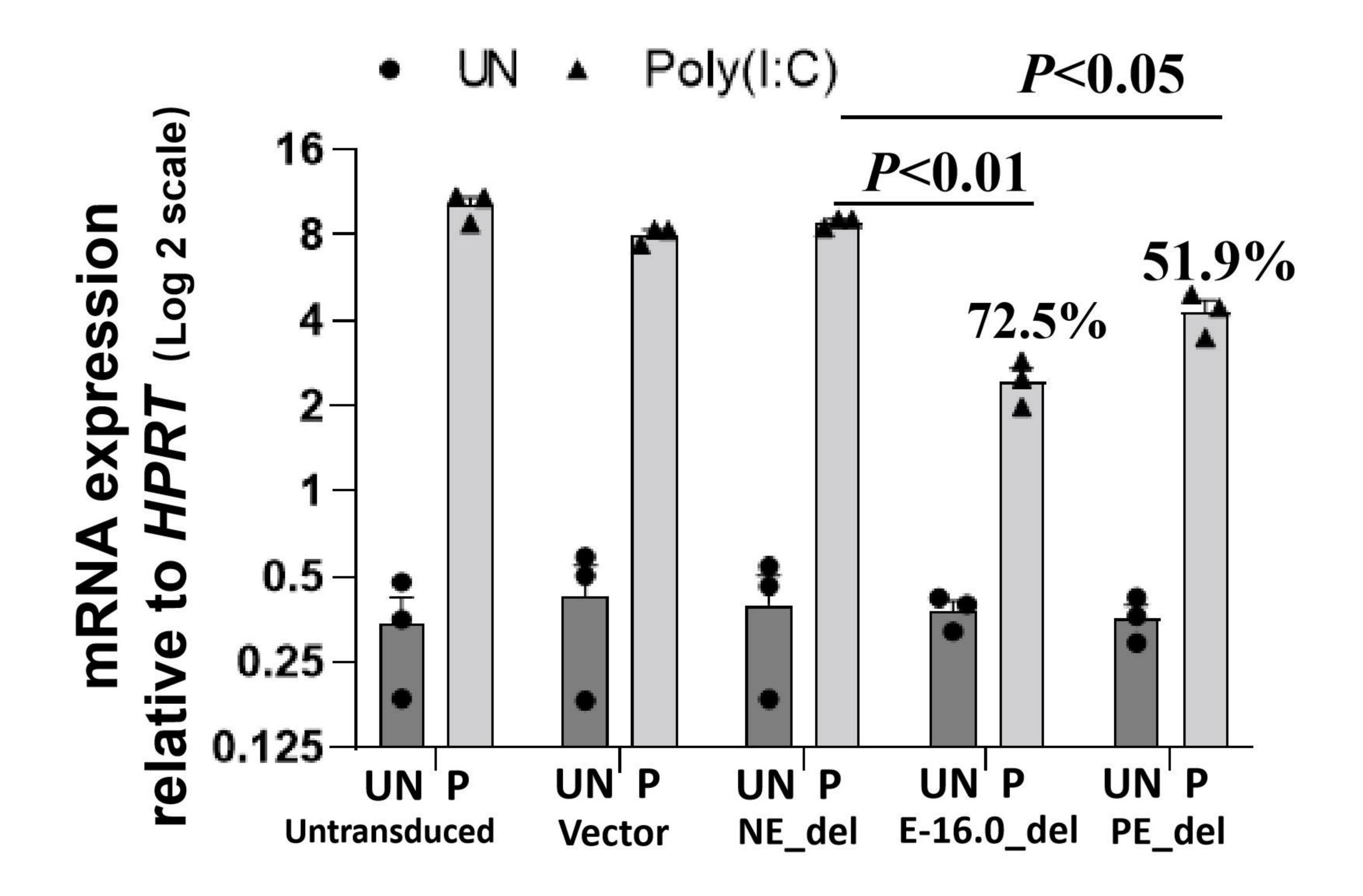


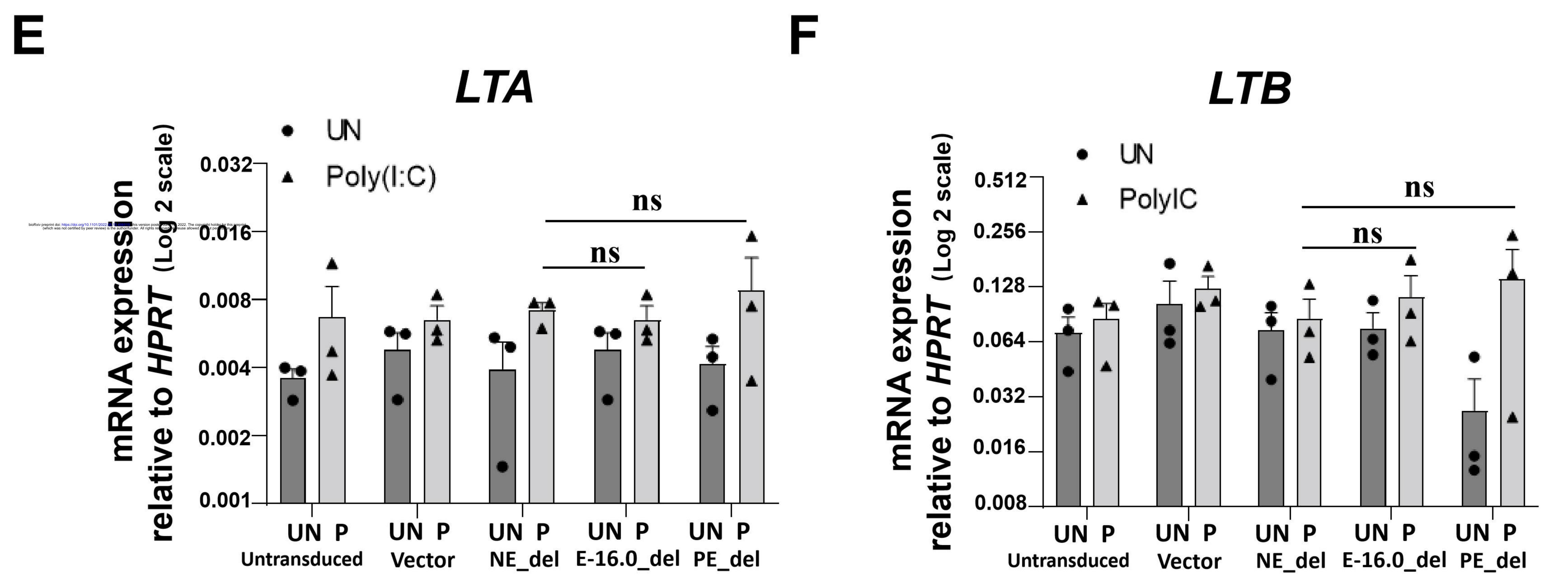
C

D

A


Four color sgRNA guides




0 20K 40K 60K FSC Area

0 10¹10²10³10⁴ GFP

BFP

