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Abstract 
Tumours are dynamically evolving populations of cells. Subclonal reconstruction algorithms use 
bulk DNA sequencing data to quantify parameters of tumour evolution, allowing assessment of 
how cancers initiate, progress and respond to selective pressures. A plethora of subclonal 
reconstruction algorithms have been created, but their relative performance across the varying 
biological and technical features of real-world cancer genomic data is unclear. We therefore 
launched the ICGC-TCGA DREAM Somatic Mutation Calling -- Tumour Heterogeneity and 
Evolution Challenge. This seven-year community effort used cloud-computing to benchmark 31 
containerized subclonal reconstruction algorithms on 51 simulated tumours. Each algorithm was 
scored for accuracy on seven independent tasks, leading to 12,061 total runs. Algorithm choice 
influenced performance significantly more than tumour features, but purity-adjusted read-depth, 
copy number state and read mappability were associated with performance of most algorithms 
on most tasks. No single algorithm was a top performer for all seven tasks and existing ensemble 
strategies were surprisingly unable to outperform the best individual methods, highlighting a key 
research need. All containerized methods, evaluation code and datasets are available to support 
further assessment of the determinants of subclonal reconstruction accuracy and development of 
improved methods to understand tumour evolution. 
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Introduction 
Tumours evolve from normal cells through sequential acquisition of somatic mutations. These 
mutations occur probabilistically, influenced by the cell’s chromatin structure and both 
endogenous and exogenous mutagenic pressures1. If specific mutations provide a selective 
advantage to a cell, then its descendants can expand within their local niche. This process can 
repeat over years or decades until a population of cells with a common set of somatic mutations 
(a clone) exhibits multiple hallmarks of cancer2,3. Throughout this time, different tumour cell 
subpopulations (subclones) can emerge through drift or selective pressures across the 
population4. 

Tumour evolutionary features are increasingly recognized to have clinical implications. Genetic 
heterogeneity has been associated with worse outcomes, larger numbers of mutations, and 
therapy-resistance5–8. The evolutionary timing of individual driver mutations influences the fraction 
of cancer cells that will be affected by therapies targeting them. The specific pattern of mutations 
and their timing can shed light on tumour aetiology and sometimes predicts therapeutic 
sensitivity9. 

The process of inferring quantitative features of an individual tumour’s (sub)clonal composition 
based on mutational features of its genome is called subclonal reconstruction10, and is an 
common approach to quantify aspects of tumour evolution. Numerous algorithms have been 
developed for this task based on allelic frequencies of somatic single nucleotide variants (SNVs) 
and copy number aberrations (CNAs). Many apply Bayesian inference11–14, but a broad variety of 
strategies have been developed15–17. 

Subclonal reconstruction results can vary dramatically from algorithm to algorithm18. Little is 
known about how tumour characteristics and technical parameters –  such as depth of sequencing 
or accuracies of variant and copy-number calls – quantitatively influence the performance of 
subclonal reconstruction algorithms. It has even been unclear how best to quantify algorithm 
accuracy19. There is a clear need to identify which subclonal reconstruction algorithms most 
accurately infer specific evolutionary features, and what aspects of both the cancer itself and of 
the DNA sequencing experiment most influence accuracy. 

To address these questions, we applied a validated framework for simulating and scoring 
evolutionarily realistic cancers19 in a crowd-sourced benchmarking challenge to quantify the 
accuracy of 31 strategies for subclonal reconstruction against 51 extensively annotated tumour 
phylogenies. Using this library of interchangeable methods, we quantify algorithm performance 
and show that only a small number of specific tumour features strongly influence reconstruction 
accuracy. These results and resources will improve the application of existing subclonal 
reconstruction methods and support algorithm enhancement and development. 
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Results 
Challenge design 
To benchmark methods for tumour subclonal reconstruction, we built upon the ICGC-TCGA 
DREAM Somatic Mutation Calling Challenges and their tumour simulation framework (Figure 
1a)19–21. We designed 51 tumour phylogenies (Supplementary Figure 1) to cover wide ranges 
of tree topologies, tumour purities, mutation burdens and effective read depth (Figure 1b). 
Twenty-five of these phylogenies were based on manually curated tumours from the Pan-Cancer 
Analysis of Whole Genomes consortium (PCAWG)22, while 16 were based on non-PCAWG 
tumours13,23–28. The remaining ten were designed as variations of a single breast tumour, each 
testing a specific edge-case or assumption of subclonal reconstruction algorithms (Extended 
Data Figure 1a; 13). We supplemented these with a five-tumour titration series at 8x, 16x, 32x, 
64x and 128x coverage19. For each tumour design, we simulated normal and tumour BAM files 
using BAMSurgeon19, then used GATK MuTect29 to identify somatic SNVs and Battenberg13 to 
identify somatic CNAs and estimate tumour purity. These were provided as inputs to participating 
groups, who were blinded to all other details of the tumour genome and evolutionary history. 

Participating teams submitted 31 containerized workflows that were executed in a reproducible 
cloud architecture30. Organizers added five reference algorithms: an assessment of random 
chance predictions, the PCAWG “informed brute-force” clustering31, an algorithm that placed all 
SNVs in a single cluster at the variant allele frequency mode and two state of the art algorithms 
(SOTA1: DPClust13 and SOTA2: PhyloWGS11). Each method was evaluated on seven 
SubChallenges (sc) evaluating different aspects of subclonal reconstruction: sc1A infers purity, 
sc1B subclone number, sc1C SNV cellular frequencies, sc2A hard mutation clustering, sc2B soft 
mutation clustering and sc3A and sc3B infer phylogeny deterministically and probabilistically, 
respectively (Figure 1c). A library of interoperable Docker containers was generated, one for 
each entry. These are publicly available in Synapse 
(https://www.synapse.org/#!Synapse:syn2813581/files/). Each prediction was scored using an 
established framework, with scores normalized across methods within {Tumour, SubChallenge} 
tuples to range from zero to one19. Runs that generated errors and produced no outputs, that 
produced malformed outputs or that did not complete within 21 days on a compute node with at 
least 24 CPUs and 200 GB of RAM, were deemed failures and assigned a score of NA (2,189 
runs; Supplementary Table 1). These failures mainly occurred for two tumours with over 100,000 
SNVs. To ensure our conclusions were consistent across software versions, we executed 
updated versions for five algorithms (Extended Data Figure 2; Supplementary Table 1). 
Differences were modest (r = 0.74) but varied across SubChallenges and algorithms; updates 
particularly influenced assessments of subclone number (sc1B; r = 0.34). In total we considered 
11,432 runs across the seven SubChallenges (Supplementary Table 1) and refined these to 
6,758 scores after eliminating failed runs, highly correlated submissions (r > 0.75) from the same 
team and only considering submissions made during the initial Challenge period (Methods; 
Supplementary Tables 2-3). 
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Top-performing subclonal reconstruction methods 
We ranked algorithms based on median scores across all tumours: no single eligible entry was 
the top performer across multiple SubChallenges (Figure 2a). For each SubChallenge, a group 
of algorithms showed strong and well-correlated performance (Figure 2b, Extended Data Figure 
3a-e), suggesting multiple near-equivalent top performers. We therefore bootstrapped across 
tumours to test statistical significance of differences in ranks (i.e. to assess rankentry < rankbest and 
assign a p-value under the null hypothesis rankentry = rankbest). sc1A and sc2B had single top-
performing submissions, while two statistically indistinguishable (P > 0.1) submissions were 
identified for sc1B and sc1C, and three for sc2A (Extended Data Figure 4). The top performer 
for sc1A used copy number calls alone to infer purity, outperforming the purity estimates from the 
provided copy number calls. The second best sc1A method used a consensus of purity estimates 
from both copy-number and SNV clustering and was statistically indistinguishable from CNA-
based purity estimates (P=0.16). 

Seven algorithms were submitted to the phylogenetic reconstruction tasks (sc3A and sc3B). 
Multiple algorithms were statistically indistinguishable as top performers in both challenges 
(Extended Data Figure 4), but accuracy differed widely across and within tumours. Two 
examples of divergent predictions are given in Supplementary Figures 2a-b. Predicted and true 
phylogenies for all tumours are at https://mtarabichi.shinyapps.io/smchet_results/, and true 
phylogenies are in Supplementary Figure 1. Algorithms differed in their ability to identify 
branching phylogenies (Supplementary Figure 2c) and in their tendency to merge or split 
individual nodes (Supplementary Figure 2d). Parent clone inference errors shared similarities 
across algorithms: ancestor inference for SNVs within a node was the more likely to be correct if 
the node was closely related to the normal (i.e. if it was the clonal node or its child) 
(Supplementary Figures 2e,f). When algorithms inferred the wrong parent for a given SNV, most 
assignment errors were to closely related nodes (Supplementary Figure 2g). As expected, these 
results emphasize that single sample phylogenetic reconstruction is most reliable for variants with 
higher expected alternate read counts, such as clonal variants and their direct descendants; 
detailed phylogenies vary widely across tumours and algorithms. 

The scores of methods across SubChallenges were correlated (Extended Data Figure 3f). This 
is in part driven by patterns in the set of submissions that tackled each problem, and in part by 
underlying biological relationships between the problems. For example, sc1C, sc2A and sc2B 
assess different aspects of SNV clustering and their scores were strongly correlated with one 
another, but not with tumour purity estimation scores (sc1A). Rather, numerous algorithms scored 
highly on sc1A, suggesting different approaches are effective at estimating cellular prevalence 
(Extended Data Figure 4). 

Algorithm performance is largely invariant to tumour biology 
To understand the determinants of the variability in algorithm performance between and within 
tumours, we considered the influence of features intrinsic to tumours. We ranked tumours by 
difficulty, quantified as the median score across all algorithms. We did so separately for CCF 
estimation (sc1C; Figure 2c), SNV clustering (sc2A; Figure 2d) and the other SubChallenges 
(Extended Data Figures 3g-k). The most and least difficult tumours differed across 
SubChallenges (Supplementary Figure 3a) and tumour ranks across SubChallenges were 
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moderately correlated (Supplementary Figure 3b). SubChallenges sc2A and sc2B were the 
most (⍴ = 0.61) while sc1C and sc3B were the least correlated (⍴ = -0.10). 

To determine if specific aspects of tumour biology influence reconstruction accuracy, we identified 
18 plausible tumour characteristics. We supplemented these with four features that represent key 
experimental or technical parameters (e.g. read-depth; Supplementary Table 2). These 22 “data-
intrinsic” features were generally poorly or moderately correlated to one another, with a few 
expected exceptions such as ploidy being well-correlated with whole genome duplication (WGD; 
Extended Data Figure 5a). For each SubChallenge we assessed the univariate associations of 
each feature with the pool of scores from all algorithms (Extended Data Figure 5b). We only 
considered algorithms that ranked above the one-cluster solution to ensure baselines and outliers 
would not bias our results. As a reference we also considered Tumour ID, which captures all data-
intrinsic features as a single categorical variable. We focused on the SubChallenges with large 
numbers of submissions and where scores can be modeled as continuous proportions using β-
regression (Methods). Individual data-intrinsic features explained a surprisingly small fraction of 
the variance for sc1A, sc1C, sc2A and sc2B. Tumour ID explained ~15% of the variance in scores, 
and no individual feature explained over 10%, suggesting data-intrinsic features are not exerting 
consistent large influences on subclonal reconstruction accuracy across algorithms. 

We hypothesized that data-intrinsic features might therefore exhibit a method-specific effect that 
would be clearer in algorithms with generally strong performance. We repeated this univariate 
analysis on scores from the top five algorithms in each SubChallenge, which were moderately 
correlated (Supplementary Figure 3c). This modestly enhanced the strength of the detected 
associations. In sc1C the varying sensitivity of SNV detection across tumours (relative to the 
simulated ground truth) explained 15.7% of variance in accuracy (Figure 3a). In sc2A the read-
depth adjusted for purity and ploidy (termed NRPCC, number of reads per chromosome copy10) 
explained 19.8% of the variance across tumours. The total number of SNVs and the number of 
subclonal SNVs explained 9.3% and 9.2% of the variance for sc1C, as might be expected since 
both define the resolution for subclonal reconstruction10. These results indicate that data-intrinsic 
features either explain little of the variability in subclonal reconstruction accuracy or do so in ways 
that differ widely across algorithms. 

Algorithmic and experimental choices drive reconstruction 
accuracy 
Given the relatively modest impact of data-intrinsic features on performance, we next focused on 
algorithm-intrinsic features. We first modeled performance as a function of algorithm ID, which 
captures all algorithmic features together. Algorithm choice alone explained 19-35% of the 
variance in scores in each SubChallenge (Extended Data Figure 5c). This exceeded the ~15% 
explained by Tumour ID, despite our assessment of more tumours than algorithms. 

To better understand the effect of algorithm choice, we quantified 12 specific characteristics of 
each algorithm. For example, we annotated whether or not each method adjusted allele 
frequencies for local copy-number (Extended Data Figure 5d). The variance explained by the 
most informative algorithm feature was 1.5-3x higher than that of the most informative tumour 
feature (Extended Data Figure 5c). Our analysis highlighted Gaussian noise models as 
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particularly disadvantageous for SNV co-clustering (sc2A) relative to Binomial or Beta noise 
models (GLM Bgaussian = -0.98, P = 1.43 x 10-15, R2 = 0.11). This trend became stronger when we 
compared algorithms with Gaussian noise models to those with Binomial noise models and 
adjusted for tumour ID (Bgaussian = -1.11, P < 2 x 10-16, R2 = 0.35). 

The strong impact of algorithm choice on performance led us to hypothesize that data-intrinsic 
features show algorithm-specific influences on performance. We therefore developed multivariate 
models to control for algorithm ID when modeling data-intrinsic features. After making this change, 
SNV caller sensitivity, tumour purity, and experimental read-depth were significantly associated 
with increased scores for nearly all SubChallenges (q < 0.05). These associations were consistent 
whether we analyzed all algorithms that exceeded the baseline (Extended Data Figure 5e) or 
only the top five algorithms for each SubChallenge (Supplementary Figure 3d). Taken together, 
our results show that algorithm choice is the strongest driver of subclonal reconstruction accuracy, 
followed by technical data-intrinsic features. Biological data-intrinsic features are weak 
determinants of subclonal reconstruction accuracy. 

Optimizing experimental design for subclonal reconstruction 
Most data-intrinsic features reflect aspects of tumour biology not known a priori. In contrast, the 
main controllable technical feature is sequencing coverage. We investigated the sensitivity of 
subclonal reconstruction to this experimental design choice by considering NRPCC. By adjusting 
sequencing coverage for tumour purity and ploidy, NRPCC provides an excellent estimate of 
power in subclonal reconstruction10. We modeled the relationship between NRPCC and SNV co-
clustering SubChallenge scores (sc1C and sc2A) using a generalized linear model in which we 
controlled for algorithm ID because of the strong influence of this feature in our univariate analyses 
above. We fit the model on five tumours with a coverage titration series (five points per tumour19) 
and on five randomly selected tumours, leading to 373 scores from these 10 tumours. We then 
assessed model generalizability on 466 scores from 30 tumours. Nine edge cases and two 
tumours with a high mutation burden (>50k SNVs) were excluded from both the training and 
testing cohorts. As expected, higher NRPCC increased sc1C and sc2A scores for most algorithms 
(Figure 3b). Increasing NRPCC improves co-clustering by reducing read-sampling noise, thereby 
improving subclone resolution10,31. We observed an unexpected saturation effect: at high NRPCC, 
most variability in scores was due to differences among algorithms. These data quantify a clear 
benefit to tumour sequencing to an NRPCC of at least 32 for subclonal reconstruction from a 
single sample across the range of algorithms tested here. 

We replicated these analyses for estimation of tumour purity (sc1A). Lower NRPCC was 
associated with over-estimation of tumour purity (sc1A) in both the titration series and in the SMC-
Het cohort (Figure 3c). This likely occurs because in low-coverage sequencing data, SNVs 
detected on a few reads are indistinguishable from background. These false negatives lead to a 
truncated binomial distribution and over-estimation of the average frequencies of detected SNV 
clusters10,31. Conversely, high NRPCC increases the number of subclonal mutations detected, 
causing some algorithms to underestimate purity (especially the naive one-cluster and random 
algorithms). In a similar way, NRPCC influenced the prediction of subclone number (sc1B). More 
algorithms underpredicted the number of subclones as the tree depth and the true subclone 
number increased (Figure 3d; Btree depth = -1.18, P = 1.60 x 10-41, ordinal regression, likelihood 
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ratio test), suggesting there is a limit to how many subclones can be distinguished at a given 
NRPCC. Consistently, the number of subclones predicted increases with NRPCC for a given 
tumour for most algorithms (Extended Data Figure 6a; B = 0.71, P = 2.99 x 10-24). These data 
emphasize that it is critical to report NRPCC and interpret estimates of tumour subclonal diversity 
in that context. 

Finally, we asked if other tumour features might bias prediction of purity and subclone number. 
We used multivariate penalized regression with leave-one-out cross-validation to model sc1A and 
sc1B errors. After controlling for algorithm ID, the sc1A model explained 40.1% of variance and 
the sc1B models explained 57.1%. The multivariate model for purity estimation error highlighted 
that algorithms are less likely to underpredict purity as the clonal fraction (CF) of SNVs and the 
percent genome altered (PGA) increase, but are more likely to overestimate purity when the true 
purity is low (Extended Data Figure 6b). The subclone number error model showed algorithms 
are more likely to underestimate the number of subclones if there is a whole genome duplication 
(WGD). These results suggest that increasing power i.e. NRPCC for SNV clustering and allelic 
imbalance for copy-number calling, is especially important if there is a priori knowledge that a 
given tumour or tumour type is prone to low purity, clonal fraction, PGA, or is likely to harbour a 
WGD10,31. These features should be considered when interpreting subclonal reconstruction 
results and confirm NRPCC as a crucial study design parameter. 

Sources of error in SNV cellular prevalence estimation 
Estimating what fraction of cancer cells each SNV occurs in is one of the most fundamental goals 
of subclonal reconstruction, shedding light on the evolution of mutational processes in a 
tumour3,31–33. To understand errors in these estimates, we focused on the 20 algorithms that 
produced submissions for both sc1C and sc2A. For each tumour, we annotated the SNV subclone 
assignments (sc2A output) with the predicted cellular prevalence for that subclone (sc1C output; 
Figure 4a). Most algorithms accurately determined whether an SNV is clonal: 14/20 had both 
median specificity and sensitivity above 80% (Figure 4b). Clonal assignment specificity increased 
with NRPCC as more subclonal SNVs are correctly assigned, leading to improved accuracy 
(Figure 4c; Supplementary Figure 3a; Blog2(nrpcc) = 0.29, q-value = 3.11 x 10-17) and decreased 
with SNV caller precision (Blog2(precision) = -1.24 q-value = 1.94 x 10-14, Supplementary Figure 4a). 
Accuracy also slightly decreased with mutational burden and tumour clonal fraction 
(Supplementary Figure 4a). 

The inference of SNV clonality was impacted by the underlying copy number state of the genomic 
region. Subclonal CNAs significantly reduced SNV clonality assignment accuracy relative to 
clonal CNAs after controlling for algorithm and tumour ID (Bsubclonal CNA = -0.21 , P = 1.14 x 10-6, 
GLM). SNVs that arose clonally in a region that then experienced a subclonal loss had the least 
accurate clonal estimates (Figure 4d; Bclonal SNV x subclonal loss = -0.33 , P = 3.06 x 10-2; 
Supplementary Table 3). Subclonal losses on the mutation-bearing DNA copy reduce VAF, 
causing many algorithms to underestimate the cellular prevalence of these SNVs (WSNV clonal = 
1.04 x 1010, P < 2.2 x 10-16; Wilcoxon rank-sum test for SNVs in subclonal deletions, 
Supplementary Table 3). Similarly, algorithms overestimated SNV cellular prevalence in regions 
with subclonal gains and subclonal SNVs (WSNV clonal = 2.96 x 109, P < 2.2x 10-16; Wilcoxon rank-
sum test; Supplementary Table 4). This resulted in lower accuracy (Bsubclonal SNV * subclonal gain =-
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0.32, P = 8.0 x 10-3, GLM; Figure 4d; Supplementary Table 4). Biases in CP estimation due to 
CNAs differed among algorithms (Figure 4e). To assess if robustness to CNAs impacts 
performance, we associated the proportion of variance in SNV CP error explained by CNA status 
and SNV clonality in these models with algorithm score. Algorithms whose CP estimates were 
more robust to CNAs better estimated the overall subclonal CP distribution (sc1C; ⍴CNA= -0.43) 
and better co-clustered SNVs (sc2A; ⍴cna= -0.37; Supplementary Figure 4b). 

Because subclonal CNAs can be difficult to detect, we investigated whether copy number calling 
errors aggravated the effects of CNAs on estimation of cellular prevalence. Across all tumours, 
clonal CNA regions were nearly perfectly detected by our CNA caller (Battenberg), in part 
because they had been carefully curated during simulation (Extended Data Figure 7a). By 
contrast, 7/68 subclonal losses and 25/48 subclonal gains were entirely missed. Additionally, 
Battenberg inferred gains rather than losses for four CNAs and mis-estimated copy number for 
two subclonal gains. The titration series tumours showed that accuracy of subclonal CNA 
detection is strongly influenced by tumour NRPCC (Extended Data Figure 7b). Within a given 
tumour, elastic-net logistic regression showed that CNAs in low CP subclones and in SNP-poor 
regions were less accurately detected (Extended Data Figure 7c). While Battenberg CNA calling 
errors did not significantly impact the accuracy of SNV clonality assignment, algorithms were more 
likely to overestimate CP for SNVs on segments with incorrect CNA states, with consistent 
direction of error biases (Extended Data Figure 7d; Supplementary Table 5). 

SNV features also shaped error profiles independent of CNAs. Almost all algorithms were more 
likely to overestimate the CP of subclonal SNVs (Figure 4d-e) due to reduced power at lower 
tumour read depths10,13,31. Examining two edge-case tumours with identical architectures 
emphasized that this bias increases for lower subclone CPs and NRPCC (Figure 4f). To quantify 
how other sources of error in SNV and CNA calls propagate to subclonal reconstruction, we 
derived 53 measures of variant call quality from the BAM files, VCF files and Battenberg outputs 
(see Methods) that we hypothesized could impact CP estimation and correlated them with CP 
error. Variant call quality was associated with CP error in patterns that varied across metrics and 
algorithms, with mean SNV mapping quality showing positive associations for many algorithms 
(Figure 4g). 

Pragmatic optimization of algorithm selection 
Driven by these insights into individual algorithm performance for the seven subclonal 
reconstruction SubChallenges and its underlying determinants, we next sought to optimize 
algorithm selection across an arbitrary set of SubChallenges. To visualize algorithm performance 
across all SubChallenges, we projected both algorithms and SubChallenges onto the first two 
principal components of the scoring space, explaining 66% of total variance (Figure 5a). This 
visualization simultaneously shows algorithm performance across SubChallenges (coordinate of 
each algorithm on each SubChallenge axis), dissimilarities across SubChallenges (angle 
between SubChallenge axes) and across algorithms (distance between algorithms). The blue 
“decision axis” shows the axis of average score across SubChallenges when all SubChallenges 
are weighted equally and is stable to small fluctuations in these weights (shown by the decision 
“brane” around the decision axis; Figure 5a). 
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The decision axis is subjective, as it depends on arbitrary weights given to each tumour and 
SubChallenge. To understand the sensitivity of algorithm selection to these weights, we simulated 
forty thousand “studies”. In each such study, weights were randomly assigned to each 
SubChallenge and each tumour (Online Methods). We used the weighted average scores across 
SubChallenges and tumours to rank algorithms within each study. We performed the simulation 
experiments for three groups of SubChallenges: {sc1B, sc1C}, {sc1B, sc1C, sc2A}, and {sc1B, 
sc1C, sc2A, sc2B} (Figure 5b). For each algorithm, we then visualized the distribution of their 
ranks across all studies. Across groups of SubChallenges, 12 algorithms (35%) reach a top rank 
within at least one study, while 22 (65%) were never ranked first. Algorithms consistently among 
the top performers across SubChallenges included 6185626, 6204327, 6087362, 6184478, and 
the two state-of-the-art methods. Because the choice of weights is ultimately user-dependent, we 
created a dynamic web application for modeling the influence of different selections: 
https://mtarabichi.shinyapps.io/smchet_results/. 

Ensemble approaches have previously been used in many different areas of biological data 
science to combine outputs from multiple algorithms and improve robustness21,34,35,31. They have 
not been widely explored for subclonal reconstruction, in part because many subclonal 
reconstruction outputs are complex and heterogeneous31. To begin assessing the potential of 
ensemble approaches to improve subclonal reconstruction, we identified and ran ensemble 
methods for individual SubChallenges based on median or voting approaches, which serve as 
conservative baselines. Specifically, we used: the median of sc1A and the floor of the median for 
sc1B, and the ensemble methods recently developed by the PCAWG consortium31 for sc1C and 
sc2A (Online Methods). We ran these ensemble methods for each SubChallenge on estimates 
from a large representative subset of all possible algorithm combinations (Online Methods) and 
for all tumours after excluding the ten special cases and two tumours with over 100, 000 SNVs 
for which only five algorithms produced outputs. 

The median ensemble performance increased with the number of input algorithms for all 
SubChallenges (Figure 5c). The ensemble performance was also more consistent across 
tumours for sc1A and sc1B when more input algorithms were used, as shown by the decreasing 
variance in the scores (Supplementary Figure 5). Ensemble approaches outperformed the best 
individual methods for sc1B, but not for sc1A, sc1C and sc2A (Figure 5c). Rather, for these three 
SubChallenges, ensemble approaches had above-median performance (Figure 5d,e). In line with 
this, the highest ensemble performance was reached with a low number of input algorithms (two 
for sc1A, four for sc1B, three for sc1C and three for sc2A). These results suggest that ensemble 
approaches, particularly those built from multiple top-performing methods, represent a robust 
algorithm choice. In situations where the top-scoring algorithms for a specific dataset are not 
known, Dentro et al.31 suggested using an ensemble of all algorithms, which would also result in 
robust solutions. The results from our dataset nevertheless show that the proposed ensemble 
methods do generally improve performance over current methods despite significant 
computational costs. Future work on bespoke ensemble approaches for subclonal reconstruction 
is therefore indicated. 
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Discussion 
Cancer is an evolutionary process, and subclonal reconstruction from tumour DNA sequencing 
has become one central way this process is quantified3,31,36,37. Subclonal reconstruction is a 
complex and multi-faceted mathematical and biological process, with multiple distinct 
components19. Despite rapid proliferation of new methodologies, there has been limited 
benchmarking, or even surveys of the relative performance of multiple methods on a single 
dataset3,10,18. Further, despite the clear value of multi-sample and single-cell sequencing 
strategies, clinical studies have almost exclusively eschewed these for pragmatic, cost-effective 
bulk short-read sequencing of index or metastatic lesions38,39. 

We report a crowd-sourced, unbiased benchmarking of subclonal reconstruction algorithms for 
single-sample designs. We show that characteristics of the experimental design (sequencing 
depth) and cancer types (mutation load, purity, copy number, etc.) influence accuracy, especially 
through their influence on NRPCC10. These results highlight important trends in the influence of 
the underlying copy number states on CP estimation. Algorithms are limited in the number of 
subclones they can confidently detect at a given depth, but their resolution increases with 
NRPCC. Practitioners should consider optimizing NRPCC rather than read-depth for single-
sample subclonal reconstruction, and multi-region sequencing may particularly improve subclone 
detection sensitivity10,40 in low purity cancer types. Other tumour and algorithm features influence 
the scores in an algorithm-dependent fashion, and the choice of algorithm is the major 
determinant of high-quality subclonal reconstruction. 

Unlike for other applications in data science such as mutation calling, current ensemble 
approaches for subclonal reconstruction are only as good as the best algorithms, except for 
identifying the number of subclones. These ensemble approaches are based on voting and 
averaging strategies, which might be too simplistic for sc1C and sc2A and could explain why they 
do not improve performance. Further development of ensemble strategies might be required to 
best combine the outputs of multiple algorithms and increase the performance and robustness. 
For these future developments, and since currently different algorithms are best at different 
subtasks of subclonal reconstruction, we provided online tools to extend this benchmarking, as 
well as a web application to help users choose the best algorithm for their dataset and question 
of interest (https://mtarabichi.shinyapps.io/smchet_results/). 

A key opportunity for simulator improvement will be to better account for and model different 
aspects of cancer evolution, such as the ongoing branching evolution in the terminal (leaf) 
subclones16, the power effect and errors in SNV and CNA calling. The influence of improved 
simulations will also likely interact closely with specific point mutation detection strategies, 
suggesting future work focusing jointly on these two key algorithmic features. Recent single-cell 
WGS development might help build benchmarking datasets complementary to simulation-based, 
providing pseudo-bulk as ground truth41–43. Constructing an accurate ground truth from these 
datasets will bring its own algorithmic challenges from taking the single-cell noise into account. 
On-going benchmarks based on realistic and robust datasets will support continuous algorithm 
development, and ultimately clinical translation.  
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Figure Legends 
Figure 1. Design of the challenge 
a) Timeline of the SMC-Het DREAM Challenge. The design phase started in 2014 with final 
reporting in 2021. b) Simulation parameter distributions across the 51 tumours. From left to right: 
number of subclones, whole genome doubling status, linear vs. branching topologies, number of 
reads per tumour chromosomal copies (NRPCC), total number of SNVs and fraction of subclonal 
SNVs. c) Examples of tree topologies for three simulated tumours (P3, T12, and S2). For each 
simulated tumour, its tree topology is shown on top of the truth (column 1) and two example 
methods predictions (columns 2 and 3) for each SubChallenge (rows). 

Figure 2. Overview of algorithm performance 
a) Ranking of algorithms on each SubChallenge based on median score. The size and colour of 
each dot shows algorithm rank on a given SubChallenge while the background colour reflects its 
median score. The top performing algorithm for each SubChallenge is shown in bold text and 
winning submissions are highlighted in red, italic text. b) Algorithm score correlations on 
SubChallenges 1C and 2A with select algorithm features. The top performing algorithm for each 
SubChallenge is shown in bold, italic text. Algorithm scores on each tumour for c) SubChallenge 
1C and d) SubChallenge 2A. Bottom panels show algorithm scores for each tumour with select 
tumour covariates shown above. The distribution of relative ranks for each algorithm across 
tumours is shown in the left panel. Top panels show scores for each tumour across algorithms 
with the median highlighted in red. Tumours are sorted by difficulty from highest (left) to lowest 
(right), estimated as the median score across all algorithms. 

Figure 3. Tumour features influence subclonal reconstruction 
performance and biases 
a) Score variance explained by univariate regressions for the top five algorithms in each 
SubChallenge. Heatmap shows R2 for univariate regressions for features (x-axis) on 
SubChallenge score (y-axis) when considering only the top five algorithms. The right and upper 
panels show the marginal R2 distributions generated when running the univariate models 
separately on each algorithm, grouped by SubChallenge (right) and feature (upper). Lines show 
the median R2 for each feature across the marginal models for each SubChallenge. b) Models for 
NRPCC on sc1C and sc2A scores when controlling for algorithm ID. The left column shows model 
fit in the training set composed of titration series tumours (sampled at five depths each) and five 
additional tumours (N=10 individual tumours). The right column shows fit in the test set (N=30 
tumours; comprising the remaining SMC-Het tumours after removing the edge cases). Blue dotted 
lines with a shaded region show the mean and 95% CI based on scoring ten random algorithm 
outputs on the corresponding tumour set. The top performing algorithm for each SubChallenge is 
shown in bold italic text. c) Effect of NRPCC on purity error. Top panels show purity error with 
NRPCC accounting for algorithm ID with fitted regression lines. sc1A score across tumours for 
each algorithm are shown in the panel below. Bottom heatmap shows Spearman’s ⍴ between 
purity error and NRPCC for each algorithm. The winning entry is shown in bold. d) Error in 
subclone number estimation by tumour. Bottom panel shows subclone number estimation error 
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(y-axis) for each tumour (x-axis) with the number of algorithms that output a given error for a given 
tumour. Tumour features are shown above. NRPCC is number of reads per chromosome copy; 
CCF is cancer cell fractions; CF is clonal fraction (proportion of mutations in the clonal node); 
PGA is percent of the genome with a copy number aberration. See Methods for detailed 
descriptions of each of these. 

Figure 4. Impacts of genomic features on SNV subclonality 
predictions 
a) Schematic showing how outputs from SubChallenge 1C and 2A were used to annotate SNV 
CP for each entry. b) Mean clonal SNV detection sensitivity and specificity for each entry with 
standard errors. Winning entries for sc1C and sc2A are highlighted in bold. c) Clonal SNV 
detection F-scores for each entry on each tumour. d) Clonal accuracy for each entry and tumour 
tuple (top) and SNV CP estimation error for each entry (bottom). e) Effect size and FDR-adjusted 
p-values for entry-specific linear models for SNV CP error by CNA type and SNV clonality with 
median sc1C and sc2A scores. f) SNV CP error grouped by subclone for a corner case tumour 
simulated at two depths. g) Correlation between BAM features and Battenberg output features 
with SNV CP error for each entry. Only features that had an absolute correlation > 0.1 are shown. 
Battenberg features are noted with a star and top performing algorithms are highlighted in bold 
italic. 
Figure 5. Performance across multiple algorithms and 
SubChallenges 
a) Projections of the algorithms and SubChallenge axes in the principal components of the score 
space. A decision axis is also projected and corresponds to the axis of best scores across all 
SubChallenges and tumours, when these are given equal weights. The five best methods 
according to this axis are projected onto it. A decision area in blue shows the density of decision-
axes coordinates after adding random fluctuations to the weights. b) Rank distribution of each 
method from 40,000 sets of independent random uniform weights given to each tumour and 
SubChallenge in the overall score. From left to right: SubChallenges 1B+1C; 1B+1C+2A; 
1B+1C+2A+2B. Methods in bold generate outputs for all considered SubChallenges; names of 
the algorithms have a star if they are ranked first at least once. c) Four SubChallenges for each 
of which one ensemble approach could be used (sc1A - median, sc1B - floor of the median, sc1C 
- WeMe, sc2A - CICC; Online Methods), we show the median and first and second tertiles 
(segments) of the median scores across tumours of independent ensembles based on different 
combinations of N methods (N varying on the x-axis). The dashed line represents the best 
individual score. d) Colour-coded hexbin densities of median ensemble vs. median individual 
scores across all combinations of input methods. The identity line delimiting is shown to delimit 
the area of improvement. e) Same as d) for maximum individual scores instead of median. 
Extended Data Figure 1. Design and scoring of special case 
tumours 
a) Designs of special case tumours (top row) and their scores across SubChallenges. Each point 
in the strip plots represents an entry score and the red line shows the median. b) Heatmap of 
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scores for sc1C and sc2A for each entry on the corner case tumours. Tumour T5 is considered 
as the baseline. 

Extended Data Figure 2. Effects of algorithm version updates 
Updated (y-axis) and original (x-axis) for five algorithms on the SMC-Het tumours. Point colour 
reflects the difference in the algorithm’s relative rank (r. rank) for that tumour. 

Extended Data Figure 3. Overview of SubChallenge scores 
a-e) Correlation in scores among algorithms. Each row and column is an entry for a specific 
SubChallenge, with colour reflecting Spearman’s ρ between entries across the main 40 SMC-Het 
tumours (excluding the corner cases and two tumours with > 100k SNVs where only five 
algorithms generated outputs), or the subset both algorithms successfully executed upon. 
Algorithms are clustered by correlation. Columns are sorted left-to-right in the same order that 
rows are top-to-bottom, thus values along the principal diagonal are all one. f) Correlation in 
scores among SubChallenges g-k) Scores for each tumour for SubChallenge 1A including 
Battenberg purity estimates as a reference g) sc1B h) sc2B i) sc3A j) and sc3B k) on the SMC-
Het tumours. The top performing algorithm for each SubChallenge is shown in bold text and the 
winning submission is shown in italic. Bottom panels show algorithm scores for each tumour with 
select tumour covariates shown above. The distribution of relative ranks for each algorithm across 
tumours is shown in the left panel. Top panels show scores for each tumour across algorithms 
with the median highlighted in red. 

Extended Data Figure 4. Rank generalizability assessment 
To evaluate generalizability of ranks and differences amongst algorithms, bootstrap 95% 
confidence intervals were generated for median scores (left column) and ranks (right column) 
based on 1000 resamples. The top ranking algorithms are marked with a star for each 
SubChallenge and highlighted in bold on the x-axis. Winning submissions are highlighted in red. 
For any entry with confidence intervals overlapping those of the top ranking algorithm, bootstrap 
P-values comparing the rank of that algorithm to the top ranking algorithm are shown: P(rankentry 

≤ rankbest). P-values for equivalent top performers (P>0.1) are highlighted in red. Algorithms are 
sorted by the median of their relative rank (rank/maximum rank) on each SubChallenges and top 
performing algorithms are highlighted in bold. Battenberg is included as a reference for sc1A. 
Extended Data Figure 5. Tumour feature score associations 
a) Correlations among tumour features and their distributions (boxplot, top). NRPCC is number 
of reads per chromosome copy; CCF is cancer cell fraction; CF is clonal fraction (proportion of 
mutations in the clonal node); PGA is percent of the genome with a copy number aberration after 
correcting for ploidy. See Methods for detailed descriptions of each. b,c) Score variance 
explained by univariate generalized linear models (ꞵ-regressions with a logit link) for scores 
generated with tumour (b) and algorithm (c) features. Models were fit on scores from all algorithms 
ranking above the one cluster solution on a given SubChallenge. Heatmap shows R2 for univariate 
GLMs for features (x-axis) on SubChallenge score (y-axis) on the full dataset, gray indicates 
missing values where models could not be run. The right and upper panels show the marginal R2 

distributions generated when running the univariate models separately on each algorithm and 
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tumour (for tumour and algorithm features, respectively). Tumour and algorithm ID were not 
included in the marginal models as the number of levels would be equivalent to the number of 
observations in the data subset. Lines show the median R2 for each feature across the marginal 
models for each SubChallenge. d) Distribution of algorithm features. e) Results of generalized 
linear models for tumour features on scores (ꞵ regression with a logit link) that controlled for 
algorithm-ID. The size of the dots shows the effect size and the background colour shows the P-
value after FDR adjustment. Effect size interpretation is similar to that of a logistic regression, 
representing a one unit change in the log ratio of the score relative to its distance from a perfect 
score (i.e. ꞵx=log(score/(1-score)). The bottom panel shows the results of modes fit on the full 
dataset. The top panel shows the same bi-variate models were fit on scores from the top five 
algorithms. 

Extended Data Figure 6. Mutational feature error associations 
a) Error in subclone number estimation for each algorithm on each tumour (center). Top panel 
plot shows NRPCC for each tumour. Right panel shows subclone number estimation error 
correlations with NRPCC. The top performing algorithm for SubChallenge sc1B is shown in bold 
italic text. b) Coefficient from penalized regression models for tumour features on purity estimation 
error (x-axis) and subclone number estimation error (y-axis). 

Extended Data Figure 7. Battenberg CNA assessment 
a) Battenberg errors for clonal and subclonal CNAs. The proportion of CNAs with correctly or 
incorrectly inferred clonality and copy number is shown in the heatmap. The total number of each 
type of CNA is indicated by the barplot on the right. b) Battenberg accuracy in the titration series 
tumours. c) Clonal accuracy for each entry and tumour combination (top) and SNV CP estimation 
error (bottom) for each entry. d) Effect sizes from a L1-regularized logistic regression for genomic 
features on Battenberg accuracy. 
Supplementary Figure 1. True tumour designs 
All 51 phylogenies originally designed for the challenge (52 trees are shown but T5 and S1 
(shaded) are the same phylogeny based on PD4120 - this topology is both from the literature and 
a special case). From the fertilized egg (FE) to the first clone and subclones, we show cellular 
prevalences as percentages in the circles, next to which copy number events (CN) with losses (-
) and gains (+) of whole chromosomes and whole-genome duplication (WGD) events are shown, 
along with total number of SNVs and SVs. The length of the branches are proportional to the 
number of SNVs. 

Supplementary Figure 2. Phylogeny inference assessment 
a) Sample true (left) and predicted tree phylogenies for T12. Each node is annotated with its CP. 
Branch length is proportional to the number of SNVs in a given node and the area of each colour 
inside corresponds to the proportion of SNVs it contains from the corresponding true node. b) As 
a) for the special case tumour S4 which had two clonal nodes. c) Each algorithm's error profile 
for detecting branching phylogenies (e.g. nonlinear phylogenetic trees). d) The probability that 
each SNV from the same clone in the true tree was predicted to be in a different clone (left) and 
the probability that two SNVs predicted to be in the same clone are actually from different ones in 
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the true tree. Each point represents the probability from one tumour for a given algorithm. e) The 
probability that the predicted parent of a randomly drawn SNV is correct across all tumours, with 
tumour specific covariates shown in the top-most heatmap. f) The mean probability and standard 
error that the predicted parent for an SNV randomly drawn from a predicted tree is correct 
depending on its inferred relatedness to the clonal node (i.e. 0 indicates the SNV is within the 
predicted clonal node and 3 indicates the SNV is within a subclone that is the great-grandchild of 
the predicted clonal node). g) For an SNV randomly drawn from a predicted tree and a SNV 
randomly drawn from its predicted parent clone, the mean probability and standard error of each 
error case across tumours for each algorithm. Algorithms are ordered by median sc3A score and 
the top performing algorithm for SubChallenge sc3A is shown in bold italic text. 

Supplementary Figure 3. Profiling tumour difficulty and feature 
associations with score 
a) Tumour rank among SubChallenges, based on median score in a given SubChallenge. Bottom 
panel shows relative rank (rank/total number of tumours) for each tumour on each SubChallenge 
and the corresponding tumour features are shown above. Relative rank for each tumour on each 
SubChallenge is also shown in the top scatterplot. Tumours are ordered by rank product across 
SubChallenges. b) Correlation for median tumour score among SubChallenges. c) Correlations 
in scores among the top five algorithms in each SubChallenge. The highest absolute correlation 
for each SubChallenge is shown. d) Results of univariate generalized linear models for tumour 
features on scores (ꞵ regression with a logit link) for each of the top five algorithms for sc1C and 
sc2A (sorted by ascending rank). The top-performing algorithms are highlighted in bold-italic. The 
size of the dots shows the feature effect size and the background colour shows the P-value for 
feature coefficients after FDR adjustment. Effect size interpretation is similar to that of a logistic 
regression, representing a one unit change in the log ratio of the score relative to its distance from 
a perfect score (i.e. ꞵx=log(score/(1-score)). 

Supplementary Figure 4. SNV cellular prevalence error profiling 
a) Results of generalized linear models for tumour features on clonal accuracy (β-regression with 
a logit link) that controlled for entry-ID. The size of the dots shows the effect size and the 
background colour shows the P-value after Bonferroni adjustment. b) Partial residual plots 
showing the relationship between sc1C and sc2A scores after adjusting for covariates and the 
proportion of variance in SNV CP error explained by CNAs and SNV clonality for each algorithm 
specific model in Figure 4e. Lines show the mean effect averaged across all covariates and the 
shaded region shows the confidence interval. 

Supplementary Figure 5. Variance of ensemble performance as 
function of number of input algorithms 
For sc1A, sc1B, sc1C and sc2A, we show the variance of the ensemble method minus the lowest 
variance of the individual methods (y-axis) as a function of the number of input methods (on the 
x-axis). The dashed line represents the lowest variance of the individual methods. 
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Online Methods 
Tumour designs and simulations 
We designed 51 realistic tumour tree topologies with underlying subclonal structure: 16 tumour 
trees were inspired by published phylogenies13,23–28, 25 were based on manually-reconstructed 
PCAWG trees22 and 10 cases were special theoretical cases based on the highly curated 
PD412013. Tumours from the literature and from the PCAWG study covered some of the most 
common cancer types (breast, prostate, lung, colorectal, and leukemia) as well as other 
sometimes less represented cancer types (pancreatic, sarcoma, kidney, brain, lymphoma, head 
and neck, thyroid), respectively (Supplementary Table 1). 

PCAWG manual tree building was performed using DPClust (v2.1.0) and Battenberg (v2.2.10)13, 
using the pigeon-hole principle and mutation-to-mutation phasing to constrain the possible tree 
topologies. When multiple tree topologies were possible, we picked one at random for the 
simulation, while balancing branching and linear topologies across the full set of simulated 
tumours. 

For each node, we associated a cellular prevalence, specific whole-chromosome copy-number 
events, a number of SNVs and SVs, as well as expected trinucleotide contexts, which all were 
taken as input by our simulator19. 

As described previously19, we used a custom BAMSurgeon19,21 pipeline (implemented in Perl 
v5.26.3) to simulate BAM files with underlying tree topology and subclonal structure for the 51 
tumours. Briefly, we began by aligning a high-depth (300x), Illumina paired-end publicly available 
BAM file (Genome in A Bottle GM24385) that was part of a father, mother, son trio using bwa 
(v.0.7.10) and the hs37d5 human reference. Following a standard variant calling pipeline, we 
phased reads using PhaseTools (v1.0.0)19, achieving median phased contig length of ~85kb. We 
then partitioned each phase and chromosome sub-BAM to simulate subclonal structure, adjusting 
the depth of each read pool by its cellular prevalence and total fractional copies (i.e. to simulate 
chromosome-length CNAs). We then spiked in SNVs, SVs, and indels into each read-pool using 
BAMSurgeon while preserving phylogenetic ordering (so except for deletion events, a child 
subclone would contain its parent’s mutations). SNVs were distributed semi-randomly to follow 
pre-specified trinucleotide signatures and replication timing biases. We then merged sub-BAMs 
across phase and chromosome to obtain the final tumour BAMs. To obtain realistic SNV calls and 
copy-number profiles, MuTect (v1.1.5)29 and Battenberg (v2.2.10)13 were run on the simulated 
tumour-normal BAM files. 

Battenberg was run to identify clonal and subclonal copy number changes. Battenberg segments 
the mirrored B-allele frequencies (BAF) of phased heterozygous SNPs identified in the normal 
germline sample. It then selects a combination of purity and ploidy that best aligns the data to 
integer copy-number values in the tumour, akin to ASCAT44. Finally, it infers mixtures of up to two 
allele-specific copy number states from the BAF and logR of the obtained segments13. We 
compared the purity and ploidy values to the expected values from the designs and refitted the 
profiles if they did not agree. For this, we constrain a copy number state of a clonally aberrated 
chromosome to its known design state. Reversing ASCAT equations, we can infer ploidy and 
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purity from a given chromosome’s BAF and logR and derive the profile using the new pair of ploidy 
and purity values. Only in special cases breaking the assumptions, especially those harbouring a 
subclonal whole-genome doubling such as PD4120, estimated purity values are not expected to 
closely match the design. Algorithms were run and scored on tumour VCFs and Battenberg 
outputs that excluded the X and Y chromosomes.  

Scoring metrics 
For each SubChallenge, we used different metrics that respected a set of criteria, as described in 
19. Here we summarize these metrics: 
sc1A = 1 − |ρ − c| 
where ρ is the true cellularity, c is the predicted cellularity and |x| is the absolute value of x. Note 
that we require that 0 ≤ ρ ≤ 1 and 0 ≤ c ≤ 1. 
 
sc1B = [L - d + 1] / (L+1) 
where L ≥ 1 is the true number of subclonal lineages, d is the absolute difference between the 
predicted and actual number of lineages, d = min(|κ - L| , L+1). We do not allow d to be higher 
than L+1 so that the SC1B score is always ≥ 0. 
 
sc1C=1-EMD 
where EMD is the normalized earth mover’s distance 
 
sc2AB =𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

2
 

where AUPR is the normalized area under the precision recall curve and AJSD is the normalized 
average Jensen-Shannon divergence. We normalize AUPR and AJSD by the worst AUPR and 
AJSD obtained by two extreme methods, namely assigning all SNVs to one cluster and assigning 
each SNV to its own cluster. sc2A takes the hard assignments whereas sc2B the soft-assignment 
matrix. 
 
sc3AB = PCC 
where PCC is the Pearson correlation coefficient between the predicted and true values from the 
co-clustering matrix, cousin matrix, ancestor descendant matrix and the transposed ancestor 
descendant matrix. sc3A takes the hard assignments whereas sc3B the soft-assignment matrix. 

Scoring and ranking 
We scored outputs obtained from participant submitted Dockerized Galaxy workflows using a 
Python (v2.7.18) implementation of the scores described above (https://github.com/uclahs-
cds/tool-SMCHet-scoring). Algorithm outputs were scored against truth files based on perfect 
SNV calls which contained all SNVs spiked in each tumour. False negatives were added to 
1c,2a,2b,3a and 3b outputs as a single cluster with a cellular prevalence of zero that was derived 
from the normal. False positives were excluded from outputs before scoring. We normalized 
scores s within each tumour and SubChallenge across methods using min-max normalization, 
i.e. offsetting and scaling such that the lowest and highest scores were set to 0 and 1, respectively: 
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𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑠𝑠𝑖𝑖 − 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) −𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)
 

Where 𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑠𝑠𝑖𝑖 are the min-max normalized score and raw scores of method i, respectively. 
We normalized the titration series tumours simultaneously across all depths for a given tumour. 

We ranked algorithms by normalized score across the 51 SMC-Het tumours, assigning any tied 
algorithms equal ranks. The best methods were defined as those with the highest median score 
across all tumours for which they produced a valid output. 

As missing data could have been caused by technical restrictions that may not apply to users (eg. 
users would typically downsample SNVs in SNV dense tumours) and the correct penalty for 
missing data is subjective, we did not penalize missing outputs. However, interested users can 
assign scores of zero to missing outputs in the interactive app and explore how they impact 
algorithm rankings (https://mtarabichi.shinyapps.io/smchet_results/).  

Random methods 
For sc1A, we draw a single number from a uniform distribution between 0.2 and 0.99. For sc1B, 
we draw from 4 integer values {1,2,3,4} with probabilities {0.2, 0.3, 0.3,0.2}, respectively. For 
sc1C, we assign one cluster to a CCF 1, and if there are more than one cluster, we assign random 
CCF values to the other clusters by drawing from a uniform distribution between 0.2 and 0.9. We 
then assign a random number of SNVs to each CCF cluster by drawing uniformly from 1 to 10. 
For sc2A, we assign a proportion of SNV per cluster by drawing uniformly from 1 to 10 for each 
cluster. We then randomly assign classes to SNVs. For sc2B, we generate 100 random vectors 
of SNV assignment to subclones and run the function comp.psm from the R package mcclust 
(v1.0) to obtain the proportions of co-clustering.  

Linear models for tumour and algorithm features 
All statistical analyses were performed in R (v3.5). For each SubChallenge, we first removed 
algorithms from the same team with scores that were highly correlated across tumours (r > .75), 
retaining the algorithm with the highest median score for each SubChallenge. We derived 22 
features to describe each tumour. Key features were defined as follows 

𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝐵𝐵𝑚𝑚𝑠𝑠𝐵𝐵𝑠𝑠 𝑤𝑤𝑚𝑚𝑤𝑤ℎ𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑛𝑛𝑚𝑚𝑛𝑛𝐵𝐵𝑛𝑛 𝑚𝑚𝑛𝑛𝐵𝐵𝑛𝑛𝑛𝑛𝑚𝑚𝑤𝑤𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠

𝑇𝑇𝑐𝑐𝑤𝑤𝑚𝑚𝑇𝑇 𝑛𝑛𝑚𝑚𝑠𝑠𝐵𝐵𝑠𝑠 𝑚𝑚𝑚𝑚 𝑔𝑔𝐵𝐵𝑚𝑚𝑐𝑐𝑚𝑚𝐵𝐵
 

Where CNAs were defined as segments within the Battenberg output where total clonal or 
subclonal copy number deviated from the integer tumour ploidy. 

𝐶𝐶𝐶𝐶 =
 𝑚𝑚 𝑚𝑚𝑚𝑚 𝐶𝐶𝑇𝑇𝑐𝑐𝑚𝑚𝑚𝑚𝑇𝑇 𝑚𝑚𝑐𝑐𝑛𝑛𝐵𝐵

𝑇𝑇𝑐𝑐𝑤𝑤𝑚𝑚𝑇𝑇 𝑚𝑚
 

Where m is the count of SNV, Indels or SVs. 

𝑁𝑁𝑃𝑃𝑁𝑁𝐶𝐶𝐶𝐶 =
⍴𝑛𝑛

⍴Ѱ + 2(1 − ⍴)
 

Where d is read depth, ⍴ is purity and Ѱ is tumour ploidy. 
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Peak overlap was calculated by fitting density curves to each subclone in CCF space after 
adjusting each tumour’s variant allele-frequencies using true CNAs and cellular prevalences. To 
compute the relative proportion of CCF space covered by multiple subclones (peak overlap), we 
calculated the area underneath multiple CCF density curves relative to the total area as 
approximating integrals using the trapezoidal rule for each tumour. SNV, indel, and SV counts 
were derived from the ground-truth files used to generate each tumour. 

We collected algorithm features from teams through an online form filled at the time of algorithm 
submission into the challenge. For each algorithm feature within each subchallenge, we removed 
levels represented by fewer than three algorithms as well as any labeled ‘other’ to enhance model 
integrity and interpretability. 

We then assessed the impact of tumour and algorithm features on scores using ꞵ-regressions 
with the R package betareg (v.3.2) with a logit link function for the mean and an identity link 
function for Ѱ (which models variance) with only an intercept term 45. We analyzed only sc1A, 
sc1C, sc2A and sc2B with ꞵ-regressions as scores for sc1B are discrete proportions (difference 
between the true and predicted subclone number relative to true subclone number) and measures 
of variance explained from binomial GLMs would not be directly comparable. Effect size 
interpretation is similar to that of a logistic regression, representing a one unit change in the log 
ratio of the expected score relative to its distance from a perfect score (i.e. ꞵx=log(score/(1-
score)). Because they represent change to a log ratio, the predicted change on a linear scale will 
depend on the reference score. See Figure 3B, for an example of effect size visualizations on a 
linear scale. We ran univariate models with only tumour features when we considered only the 
top five scoring algorithms in each SubChallenge (Figure 3A), as well as models that included 
both tumour and algorithm features when we considered all algorithms that ranked above the one 
cluster solution in a given SubChallenge (Extended Data Figure 5C). We used the same 
procedures to assess feature associations when controlling to algorithm ID. For these analyses 
we excluded corner case tumours and two tumours with >100k SNVs (P2 and P7) where only five 
algorithms produced outputs. 

Linear models for error bias 
Bias in purity was assessed by taking the difference between the predicted and true purity for 
each tumour. We modeled inverse normal transformed errors using a linear regression that 
allowed interactions between NRPCC and algorithm ID in both the titration series and the SMC-
Het tumours (excluding corner cases). As the SMC-Het tumours contained two lower NRPCC 
tumours, we verified results remained consistent in their absence. We then extended this analysis 
to multivariate modeling with elasticnet regressions as implemented in glmnet (v.2.0-18). Models 
were trained and assessed using nested cross validation where one tumour was held out in each 
fold. We tuned lambda and alpha in the inner loop and retained the value that achieved the lowest 
root mean squared error across the held out samples. In each fold, we also removed features that 
were >70% correlated. We used the same framework on the full dataset to train the final model. 
We computed R2 based on predictions in the held out samples of the outer loop to estimate 
predictive performance. 
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We similarly analyzed the difference between the predicted and true number of subclones. For 
statistical modeling we only included observations where error < 8 to minimize the effect of outliers 
and used a cumulative link ordinal regression implemented in MASS (v7.3-51.6) to model the 
effect of NRPCC on subclone .number estimation error when controlling for algorithm ID. We 
extended these to multivariate models using L1 regularized ordinal regression as implemented in 
ordinalNet (v2.9). We trained and assessed these models using leave one tumour out cross 
validation. One tumour was held out in each fold and R2 was computed from correlating model 
predictions to the held out tumours. Within each fold we removed strongly correlated features (r 
>0.7) and ƛ was tuned using AIC. We report effect sizes from the final model which was trained 
on the full dataset. We repeated both the purity estimation error and subclone number estimation 
error multivariate analysis with and without algorithm ID terms. Effect sizes were congruent for 
both models but R2 decreased without algorithm ID terms. 

Genomic feature models 
True CNA status was called based on the known truth. If a region experienced both clonal and 
subclonal CNAs, then CNAs were labeled subclonal. Genomic features were extracted from the 
MuTect (v1.1.5) VCF files using the Variant Annotation R package and from BAM files using 
Rsamtools (v1.34.1) and bam-readcount (commit 625eea2). We modeled clonal accuracy using 
ꞵ-regressions as described above. SNV CP error was modeled using linear regressions following 
an inverse normal transform. We excluded the corner case tumours from all modeling unless 
stated otherwise. 

Battenberg assessment  
For assessing Battenberg accuracy, Battenberg copy number calls were obtained from the first 
solution provided in the Battenberg outputs. If a region was represented by multiple segments, 
we weighed each segment by its relative length and averaged their copy number estimates. We 
considered a clonal CNA to be correct if the total copy number for the segment matched the total 
true copy number of the region. Similarly, a subclonal copy number event was correct if 
Battenberg provided a clonal and subclonal copy number solution (P < 0.05) and the total copy 
number matched the true copy number of any of the tumour leaf clones (e.g. clones that did not 
have children). We trained and assessed the L1-regularized logistic regression for correct 
Battenberg CNA calls using nested cross validation as described above, tuning lambda using the 
inner loop. As the dataset was highly unbalanced, within each fold we sampled 250 CNAs where 
Battenberg was correct, and included all 104 CNAs where Battenberg was incorrect and 
resampled with replacement an additional 50 incorrect CNAs. Within each fold we removed 
correlated features (r>0.7) and optimized ƛ for sensitivity in the held out samples. We repeated 
this procedure on the full dataset to train the final model. 
Ensemble subclonal reconstruction 
We ran ensemble methods on the outputs of four SubChallenges: sc1A, sc1B, sc1C and sc2A. 
For sc1A, the ensemble approach is the median of the outputs. For sc1B, it is the floor of the 
median. For sc1C, we ran WeMe31, which takes a weighted median of the CCF and the proportion 
of SNVs assigned to the CCF to construct a consensus location profile, and ignores individual 
SNVs assignments. Finally, consensus for sc2A was performed using CICC31, which takes the 
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hard cluster assignment of each SNV to clusters and performs a hierarchical clustering on the co-
assignment distances across methods between mutations to identify SNVs that most often cluster 
together across methods. We ran these approaches on 39 tumours, excluding the special cases 
and the two tumours with the largest number of SNVs, P2 and P7, for which most algorithms did 
not provide any outputs. For an increasing number of input algorithms, we ran the ensemble 
approaches on all possible combinations of algorithms, except when the possible number of 
combinations was >200, in which case we randomly sampled 200 combinations without 
replacement. 

Scores across multiple SubChallenges and multi-criteria decision 
Akin to the PROMETHEE methodology used in decision engineering for the subjective choice of 
alternatives based on a set of quantitative criteria46, we perform principal component analyses on 
the weighted means of the scores across tumours in the SubChallenge dimensions, representing 
~66% of the variance in the data. We project methods and SubChallenges in that space. A 
decision axis is also projected which is a weighted mean of the scores across SubChallenges. 
Projection of the methods onto that axis leads to a method ranking. To assess the stability of the 
decision axis upon weight changes, we also show a density area for the decision axis projection 
defined by 3,000 decision axes obtained after adding from -50% to 50% changes drawn uniformly 
to the SubChallenge weights. We also randomly assigned weights to tumours (200 times) and 
SubChallenges (200 times) from uniform distributions and derived 40,000 independent rankings. 

Best performing methods 
Table 1. Top performing methods for each SubChallenge. SubChallenges where the method was 
a top performer are indicated with an X.  

Algorithm Associated 
IDs 

1A 1B 1C 2A 2B 3A 3B Reference 

Object 
Integration 

6184761 X*       TBA  

PhylogicNDT 6184478   X X X   31 

GISL 6185626, 
6087362 

X** X X X  X  Supplementary 
Note 1 

CCube 6204327  X      47 

FastClone 6184572, 
6182210 

   X  X X 48 

Data Visualization 
Figures were generated using R (v4.0.5), Boutros Lab Plotting General (v6.0.0)49, lattice (v0.20-
41), latticeExtra (v0.6-28), gridExtra (v2.3) and Inkscape (v1.0.2). Partial residual plots were 
generated with the effects package (v4.2). colour palettes were generated using the 
RColorBrewer package (v1.1-2).  
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Accession Codes 
BAM files are available in EGA at EGAS00001002092. SNV, SV, CNA, and Indel calls and 
corresponding truth files are available at https://www.synapse.org/#!Synapse:syn2813581/files/. 
Participant-submitted Docker containers are available in Synapse at 
https://www.synapse.org/#!Synapse:syn2813581/docker/, and Galaxy workflows at 
https://github.com/smc-het-challenge/. BAMSurgeon is available at: 
https://github.com/adamewing/bamsurgeon. The framework for subclonal mutation simulation is 
available at: http://search.cpan.org/~boutroslb/NGS-Tools-BAMSurgeon-v1.0.0/. The 
PhaseTools BAM phasing toolkit is available at https://github.com/mateidavid/phase-tools. 

Supplementary Note 1 
GISL. We developed a cascade ensemble model based on the Dirichlet process mixture model 
for tumour subclonal reconstruction. This model consists of four connected modules, named 
Module 1 (M1) to Module 4 (M4). Module M1 derives an initial estimate of cellularity from the 
phased phenotype information provided in the input Battenberg CNA data. This value is used in 
the subsequent steps to improve the accuracy of the decomposition results. Modules M2 and M3 
predict the tumour subclonality based on a truncated Dirichlet process mixture model 
implemented by the blocked Gibbs sampler, but using different subsets of mutations. On the one 
hand, to consider the effect of CNAs, we perform the decomposition on a selected subset of 
mutations in M2 for which the total copy number exactly equals one. The expected variant allele 
frequencies for these mutation loci are deterministic and hence no arbitrary assumptions are 
needed. On the other hand, to reduce the effect of false positive mutation callings, we designed 
several filtering criteria making use of the information available in the input MuTect VCF data. 
Module M3 then performs the decomposition on the subset of mutations passing those filters. The 
above methods address the questions in SubChallenges 1 to 3. For SubChallenge 4, module M4 
reconstructs the evolutionary relationships of the inferred subclones using a heuristic tree building 
method based on three assumptions: (a) infinite site (b) parsimony, and (c) that each subclone 
has no more than two child nodes. 

This model has several advantages. First, the cascade ensemble architecture provides flexibility 
to customize for different practical application scenarios. Second, the core technique for inferring 
tumour subclones (modified truncated Dirichlet process mixture model) features the automatic 
generation of the number of components. Finally, during the subclonal reconstruction process, 
the method considers the effects from CNAs and the false positive mutation callings, and 
accordingly adjusts the predictions for improved accuracy. 

Object Integration. This method relies solely on the Battenberg copy-number profiles to re-
estimate the purity. It first identifies segments that are not flagged as subclonal by Battenberg, 
and derives separate purity estimates from both the BAF and LogR. From the fitted integer values 
and the BAF and LogR, it is possible to back-calculate the purity for each segment. Object 
Integration summarizes these estimates using linear modeling and iterative fitting and the length 
of the segments as weights. It then takes a median between those independent purity estimates 
if the range is lower than 0.1 or takes the highest purity estimate if not.  
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