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Abstract

Inference of complex demographic histories typically requires parameterized models specified
manually by the researcher. With an increased variety of methods and tools, each with its
own interface, model specification becomes tedious and error-prone. Moreover, optimization
algorithms used to find optimal parameters sometimes turn out to be inefficient. The open
source software GADMA addresses these problems, providing automatic demographic inference.
It proposes a common interface for several simulation engines and provides global optimization
of parameters based on a genetic algorithm. Here, we introduce new features of GADMA2,
the second version of the GADMA software. It has renovated core code base, new simulation
engines, an updated optimization algorithm, and flexible specification of demographic history
parameters. We provide a full overview of GADMA2 enhancements and demonstrate example
of their usage.

1 Introduction

Genetic variation of closely-related populations and species is formed by evolutionary forces. Prin-
cipal historical events like divergence, changes in population size, migration and selection could be
reconstructed from the genetic data using different algorithmic and statistical approaches. Infer-
ence of complex demographic historyis widely applied in conservation biology studies to identify
major events in population history. Moreover, it supplements archaeological information about the
historical events that have left no paleontological records. Moreover, demographic histories can
form the basis for subsequent population studies and medical genetic research.

In recent years many methods for demographic inference have appeared to investigate the de-
mographic histories of species populations from genomes of individuals (Gutenkunst et al., 2009,
Jouganous et al., 2017, Steinrücken et al., 2019, Kamm et al., 2020, Excofffier et al., 2021, De-
Witt et al., 2021). Most of these provide means to simulate data statistics under a proposed,
user-defined demographic history and compare them with real data by some measure of similarity.
Thus, demographic inference is an estimation of model parameters with different likelihood-based
optimization algorithms. One of the most widely-used data statistics is the allele frequency spec-
trum (e.g. Gutenkunst et al. (2009), Jouganous et al. (2017), Kamm et al. (2020)). However, newer
methods based on two-locus (Ragsdale and Gutenkunst, 2017) and linkage disequilibrium statistics
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(Ragsdale and Gravel, 2019, 2020) have also become available. While a number of different opti-
mization techniques are used to identify maximal likelihood demographic parameters, they often
turn out to be ineffective in practical applications (Noskova et al., 2020).

In 2020 we presented a new software GADMA (Noskova et al., 2020) for unsupervised demo-
graphic inference from allele frequency spectrum (AFS) data. GADMA separates the simulation
and optimization units. It provides a common interface for various simulation engines and new
global search optimization based on a genetic algorithm. It was shown that the proposed method
has better performance than previously existing optimization algorithms both on simulated and
real datasets (Noskova et al., 2020). Since its initial publication, GADMA has been applied in
several studies on a variety of species: Xiong et al. (2021), Valdez and D’Eĺıa (2021), Pazhenkova
and Lukhtanov (2021), Cassin-Sackett et al. (2021), Buggiotti et al. (2021).

The initial version of GADMA featured only two simulation engines: ∂a∂i (Gutenkunst et al.,
2009) and moments (Jouganous et al., 2017). Both of these engines work with allele frequency
spectrum statistics and provide similar results. Among the variety of other tools that are available,
we can highlight some other popular methods based either on AFS (momi2 , fastsimcoal2 ), LD
statistics (momentsLD) or haplotype data (diCal2) as potential valuable additions to the supported
engines in GADMA. Moreover, both ∂a∂i and moments have been upgraded since these programs
were first published and since GADMA’s initial release. For example, ∂a∂i introduced inference
of inbreeding coefficients (Blischak et al., 2020) and has started to support demographic histories
involving four and five populations and enabled GPU support (Gutenkunst, 2021). In light of these
advancements, we have sought to extend GADMA in several directions to support new engines and
further enhance its optimization algorithms. In this paper we describe new capabilities implemented
in GADMA2. The improved version has updated core codebase and implements a more efficient
and flexible unsupervised demographic inference method.
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Figure 1: Scheme of GADMA2. New features and enhancements are marked with gradient grey
colour. GADMA2 takes input genetic data presented in either AFS or VCF formats, engine name
and model specifications and provides inferred model parameters, visualization and descriptions of
final demographic history.
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2 Results

GADMA2 extends the initial version in several ways (Figure 1). First, the genetic algorithm used in
GADMA was improved with hyperparameter optimization. We have received new values of genetic
algorithm hyperparameters that fall into more efficient and stable convergence. Second, GADMA2
provides more flexible control on model specification for automatic model construction. For ex-
ample, it is possible to include inferences about selection and inbreeding coefficients. Third, two
new simulation engines were integrated: momi2 and momentsLD . Thus, GADMA2 now supports
four engines overall. Lastly, several useful enhancements were integrated including the ability to
use data in VCF format and new engines for model representations and visualization (momi2 and
demes).

2.1 Updated genetic algorithm

The method for demographic parameters estimation in GADMA is based on a genetic algorithm
(Noskova et al., 2020). A hyperparameter is usually defined as a parameter of an algorithm. The
performance of any algorithm depends on its hyperparameters and optimization of their values can
significantly improve the overall efficiency. As an example of a hyperparameter, we can consider
the number of demographic models in one iteration of the genetic algorithm. Several techniques
can be used for optimization of hyperparameters and Bayesian optimization is a primary method
among them (Snoek et al., 2012). The most popular and efficient method based on Bayesian
optimization that performs hyperparameter optimization on the proposed set of problem instances
is implemented in SMAC software (Hutter et al., 2011, Lindauer et al., 2021). It has been applied
in a number of studies including optimization of neural networks (Lago et al., 2018, Hewamalage
et al., 2021, Wu et al., 2022).

We used SMAC to tune hyperparameters of the genetic algorithm in GADMA2. The descrip-

Table 1: Values of the genetic algorithm hyperparameters after each round of their optimization
with SMAC. Round 1 hyperparameter values are equal to the default values as SMAC failed to
find better configuration. For each round of 2-6 rounds two discrete hyperparameters (gen size

and n init const) were fixed in order to gain SMAC efficiency and achieve a grid search.

Hyperparameter ID
Round number

1 (default) 2 3 4 5 6

gen size 10 10⋆ 10⋆ 10⋆ 50⋆ 50⋆

n init const 10 10⋆ 5⋆ 20⋆ 10⋆ 20⋆

p elitism 0.20 0.30 0.30 0.40 0.40 0.40
p mutation 0.30 0.20 0.20 0.10 0.08 0.10
p crossover 0.30 0.30 0.30 0.30 0.42 0.46
p random 0.20 0.20 0.20 0.20 0.10 0.04
mutation strength 0.200 0.776 0.370 0.534 0.833 0.528
const mutation strength 1.010 1.302 1.290 1.648 1.199 1.492
mutation rate 0.200 0.273 0.886 0.882 0.595 0.345
const mutation rate 1.020 1.475 1.942 1.417 1.645 1.472

⋆These values were fixed during the hyperparameter optimization with SMAC.
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tions and domains of all hyperparameters can be found in Table 4 and Table 5 (see the Materials
and Methods). Ten hyperparameters (Table 1) of the genetic algorithm were optimised during
the first round of SMAC. SMAC performed 13,900 runs of the genetic algorithm and tested 2,222
different hyperparameter configurations. This process took two weeks of continuous computations.
However, it failed to find a better solution than the default one. We assumed that such behaviour
may be caused by the presence of two discrete hyperparameters (gen size and n init const) in
the configuration. These hyperparameters of the genetic algorithm were fixed to several specific
values for the next rounds of SMAC optimization in order to perform a grid search.

We performed six rounds of SMAC optimization for different configurations of hyperparameters.
Final configurations obtained from SMAC are presented in Table 1. The optimization with SMAC
was performed for the moments simulation engine. The final solutions were also validated on all
datasets using the moments, ∂a∂i and momi2 engines. The mean values of log-likelihood were
independently evaluated from 128 runs on training and test datasets in a fixed number of log-
likelihood evaluations that were used in SMAC. They can be found in Table A1 for the moments
engine, Table A2 for the ∂a∂i engine and Table A3 for the momi2 engine. The costs and results for
∂a∂i are very similar to those shown in Table A1 with runs executed using the moments engine.
These results support the idea that the ∂a∂i and moments engines have very similar performance.

Configuration from round 2 showed better and faster convergence for all three tested engines
when compared to other configurations on most datasets. Thus, hyperparameters from round 2
were chosen as new updated hyperparameters for the genetic algorithm in GADMA2 (Figure 2).
However, we note that according to convergence plots on greater number of iterations for moments
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Figure 2: Example convergence plots for default genetic algorithm configuration from the initial
version of GADMA (red colour) and configuration obtained during rounds 2 of hyperparameter
optimization with SMAC (green colour) on two datasets: (a) train dataset 2 DivMig 5 Sim, (b) test
dataset 3 DivMig 8 Sim. The abscissa presents the log-likelihood evaluation number, the ordinate
refers to the distance to the optimal value of log-likelihood. Solid lines correspond to median
convergence over 128 runs and shadowed areas are ranges between first (0.25) and third (0.75)
quartiles. The vertical dashed black line refers to the number of evaluations used to stop a genetic
algorithm in SMAC.
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engine the configuration from round 6 demonstrated better median convergence and more narrow
confidence intervals on some datasets (Figure A1 and Figure A2). Configuration from round 4
also demonstrated good convergence on several datasets both for ∂a∂i and momi2 engine. More
information and details are available in the Materials and Methods section.

2.2 Flexible demographic model

Automatic demographic model construction is a crucial feature of GADMA. The requirement of
model choice that is necessary for classical tools is replaced by specification of the model structure
that determines how detailed the model will be. The structure of the demographic model defines the
number of model epochs before and between population splitting events. The demographic history
is constructed automatically and all possible parameters are estimated. However, the researcher
can control model parameter settings if desired or necessary. As a result, GADMA2 has a more
flexible regulation on model construction.

Migration rates
One of the existing controls over model parameters in the initial version of GADMA was the

opportunity to disable all migration events and to infer demographic history without any gene
flow. GADMA2 now includes a new control handle to make migrations symmetric. Additionally,
it allows for specific migrations to be disabled by setting up migration masks.

Selection and dominance rates
Both of the initially supported simulation engines included in GADMA, ∂a∂i and moments, are

able to infer selection and dominance rates. The first version of GADMA lacked the function to
make these inferences, but we have added these in the new version. GADMA2 enables approx-
imation of selection rates and dominance coefficients for automatically constructed demographic
models.

Population Size Dynamics
GADMA2 provides additional flexibility for population size estimation during model construc-

tion. Previously, demographic parameters such as functions of population size changes were es-
timated within a fixed set of three possible dynamics: constant, linear, or exponential change.
Now, the list of available population size dynamics in GADMA2 can be appointed to any subset of
three basic functions. Thus, for example, linear size change can be excluded from the demographic
inference if only constant and exponential dynamics are applicable, for example, for momi2 engine.

Inbreeding coefficients
Since the publication of the first version of GADMA, the supported simulation engines were

also upgraded. GADMA2 follows these changes and includes inference of inbreeding coefficients
that were implemented in ∂a∂i (Blischak et al., 2020). Using this new feature included in ∂a∂i, we
demonstrate that GADMA2 provides better and more stable results for inference of the demographic
models obtained from data for the puma and cabbage reported by Blischak et al. (2020) (Figure 3).
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2.3 Data formats

Another improvement of ∂a∂i and moments is the ability to build an AFS dataset directly from a
VCF file. Before this feature was implemented, this had to be done either manually or using another
software like easySFS (https://github.com/isaacovercast/easySFS). GADMA2 is able to read
data directly from a VCF file and to downsize, exclude populations from, or build a folded AFS
automatically. Such feature allows wider and more convenient usage of GADMA2.

2.4 A new simulation engines

In addition to ∂a∂i and moments, GADMA2 now includes two new simulation engines: momi2
(Kamm et al., 2020) and momentsLD (Ragsdale and Gravel, 2019, 2020). Thus, four engines are
provided in the common interface of GADMA2. The ∂a∂i and moments engines are based on the
Wright-Fisher model which assumes generations to be non-overlapping and both use allele frequency
spectrum statistics for demographic inference.

In contrast to the Wright-Fisher model, the Moran model used in momi2 (Kamm et al., 2020)
reflects reality better. Momi2 also uses AFS data, but it does not support continuous migration
and linear change in population size. Also, it is computationally faster than ∂a∂i and moments
and can handle up to ten populations. Therefore, momi2 was included as a simulation engine in
GADMA2.

Even though the allele frequency spectrum is one of the most popular statistics for demographic
inference, it has several limitations on how informative it can be (Myers et al., 2008). The software
moments has a submodulemomentsLD that is dedicated to demographic inference using linkage dis-
equilibrium (LD) statistics. A new simulation engine using momentsLD was integrated GADMA2.
It is the first simulation engine that does not use AFS-based statistics. Overall, GADMA2 now
provides a choice of four engines and we encourage the community to extend this list.

We compared four engines supported by GADMA2 on the simulated dataset of two orang-utan
species. The original demographic model includes migrations, however, the momi2 engine does
not support continuous migrations. Thus, two demographic histories were analysed: 1) without
migrations; 2) with migrations. The simulated parameter values and their estimations inferred
by engines in GADMA2 are presented in the Table A4 for model 1 and in Table A5 for model
2. The predicted parameters of both demographic histories turned out to be very similar between
∂a∂i, moments and momi2 engines that are based on the allele count statistics. MomentsLD
provided better estimations for demographic model without migrations (model 1). Discrepancies
between predicted and simulated parameter values could be explained by the fact that model 1 is
oversimplified and lacks migration events. Estimations provided by all engines were close to the
simulated parameter values for model with migrations (model 2).

Moreover, performance of momi2 engine was analysed for demographic histories with different
number of pulse migrations using the same dataset. The time interval between present and time
of divergence was divided in even parts and pulse migrations with equal rate were integrated
between them. Parameters of four momi2 demographic models were inferred with 0, 1, 3 and 7
pulse migrations. The results of parameter estimations are presented in Table A6. Inferred pulse
migration rates differs significantly from continuous rates used in simulation but they became more
accurate with increased number of pulse events. Other parameters also converge to the simulated
parameter values. Continuous migration is not supported in momi2 engine but to some degree
could be replaced by several pulse migration events.
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2.5 A new engine for demographic history representation

During demographic model inference, GADMA provides different text and visual representations
of the current best demographic history, for example, generated Python code for all available
simulation engines or picture with visualised demographic history. Recently, a new Python package
named demes (Gower et al., 2022) appeared to allow standard human-readable descriptions of
demographic histories. GADMA2 includes demes as an engine to generate native descriptions and
plots of demographic histories, which was only possible to do before using the moments or momi2
engine. Figures 4 and 5 show the examples of visual representations of demographic history using
demes.

2.6 Availability

GADMA2 is freely available from GitHub via the link https://github.com/ctlab/GADMA and
can be easily installed via Pip or BioConda. Detailed documentation is located on the website
https://gadma.readthedocs.io and includes a user-manual, ready-to-use examples, and a section
about Application Programming Interface (API). API enables an opportunity to use GADMA2 as
a Python package and allows its optimization algorithms to be applied for any general optimization
problem. An example of such usage is demonstrated for Rosenbrook function optimization, which
is provided in the documentation.

2.7 Usage case: inference of inbreeding coefficients

We performed demographic inference with GADMA2 using the data of American pumas (Puma
concolor) and domesticated cabbage (Brassica oleracea var. capitata) from Blischak et al. (2020).
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Figure 3: Boxplots for results of log-likelihoods obtained from 100 runs for demographic history
inference of (a) American Puma, (b) domesticated cabbage. Two models were used from Blischak
et al. (2020): with and without inbreeding. Results from GADMA2 were compared to the results
of 100 runs from the original paper by Blischak et al. (2020) that were received by optimization
techniques implemented in ∂a∂i. GADMA2 provided more accurate and stable solutions.
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Figure 4: Demographic histories for Texas and Florida populations of American puma inferred with
GADMA2. Figures were generated with the demes package (Gower et al., 2022). Time is presented
in log scale.

Table 2: Maximum likelihood parameters inferred from the demographic models for the Texas and
Florida populations of American puma.

Model 1 Model 1 Model 2 Model 2
Blischak et al. (2020) GADMA2 Blischak et al. (2020) GADMA2

Number of
4 4 6 6

parameters
Log-likelihood −453,003.05 −452,475.41 −318,058.08 −316,109.44

Population size (95% CI)

NA
120,000 118,141 130,000 133,934

(92,400 – 157,000) (98,447 – 141,775) (129,000 – 132,000) (130,623 – 137,329)

NTX
23,700 16,261 70,800 70,688

(3,490 – 161,000) (992 – 266,471) (63,300 – 79,200) (68,451 – 72,998)

NFL
1,210 821 1,600 769

(118 – 12,500) (120 – 5,624) (128 – 19,100) (0 – 1,971,771)

Time in years (95% CI)

T1
26,800 14,250 247,000 263,061

(504 – 1,420,000) (104 – 1,953,825) (169,000 – 359,000) (242,533 – 285,326)

T2
8,230 5,548 7,820 3,764

(784 – 86,500) (790 – 38,982) (650 – 94,200) (2 – 8,473,716)

Inbreeding coefficients (95% CI)

FTX NA NA
0.440 0.453

(0.408 – 0.474) (0.393 – 0.521)

FFL NA NA
0.607 0.628

(0.588 – 0.626) (0.576 – 0.685)

NA: size of ancestral population; NTX : size of ancestral population after growth and size of Texas population;
NFL: size of Florida population after divergence; T1: time of epoch between ancestral population size growth and
split event; T2: time of divergence; FTX : inbreeding coefficient for Texas population; FFL: inbreeding coefficient for
Florida population. Best log likelihood value.
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For each dataset two demographic models were inferred: 1) a model from the original paper without
inbreeding; 2) a model from the original paper with inbreeding included as a function. Each
demographic inference was run 100 times and the model with highest likelihood value was considered
the best.

In order to compare the performance of GADMA2 with ∂a∂i, model 1 and model 2 were inferred
with GADMA2 with the same parameter bounds as were used by Blischak et al. (2020). GADMA2
provided better and more stable results within 100 runs for both datasets (Figure 3). However,
several model parameters received values that were close to their upper or lower bounds (not
presented). In order to avoid this limitation, we performed another inference with wider bounds for
parameter values and observed more valid demographic parameters. Final values of the parameters
are presented in Table 2 for American pumas and in Table 3 for domesticated cabbage. Two result
models were compared with the likelihood ratio test (Coffman et al., 2016) to investigate which
model was more likely.

2.7.1 American puma demographic history

The best demographic histories obtained with GADMA2 had better values of log-likelihood
(−452,475.41 vs −453,003.05 for model 1 and −316,109.44 vs −318,058.08 for model 2) than those
reported in Blischak et al. (2020). Similar values of population sizes were obtained except for the
size of Florida population, which was estimated to be 800 individuals compared to the 1,200−1,600
individuals estimated by Blischak et al. (2020). Time of divergence was estimated as 4,000− 5,500
years ago. Inbreeding coefficients for model 2 were reported to be a little higher than for the same
model in Blischak et al. (2020): 0.453 for the Texas population and 0.628 for the Florida population.
The Godambe-adjusted likelihood ratio statistic is 2568.59 (P value = 0.0; Coffman et al. (2016)),
indicating that the model with inbreeding better describes data.

2.7.2 Domesticated cabbage demographic history

The best demographic histories obtained with GADMA2 for one population of domesticated cab-
bage had better values of log-likelihood (−24137.13 vs −24330.40 for model 1 and −4267.14 vs
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Figure 5: Demographic histories for a single population of domesticated cabbage inferred with
GADMA2. Figures were generated with the demes package. In both models, time of the most
recent epoch was estimated to be small.
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Table 3: Maximum likelihood parameters inferred from the demographic models for the domesti-
cated cabbage population.

Model 1 Model 1 Model 2 Model 2
Blischak et al. (2020) GADMA2 Blischak et al. (2020) GADMA2

Number of
5 5 6 6

parameters
Log-likelihood −24,330.40 −24,137.13 −4,281.14 −4,267.14

Population size (95% CI)

NA
19,100 19,163 17,500 17,496

(18,500 – 19,800) (16,751 – 21,923) (16,900 – 18,100) (16,425 – 18,636)

N1
123,000 111,740 31,600 31,768

(80,400 – 190,000) (24,388 – 511,961) (28,900 – 34,700) (28,658 – 35,216)

N2
592 6 215,000 174,961,828

(547 – 641) (2× 10−13 – 2× 1014) (4,910 – 9,370,000) (6,280 – 5× 1012)

Time in years (95% CI)

T1
5,870 5,905 16,600 16,440

(5,200 – 6,620) (1,421 – 24,535) (12,900 – 21,200) (11,252 – 24,021)

T2
38.3 0.383 322 258

(32.5 – 45.1) (1.4× 10−15 – 1014) (94.2 – 1,097) (141 – 474)

Inbreeding coefficient (95% CI)

F NA NA
0.578 0.578

(0.557 – 0.599) (0.556 – 0.599)

NA: size of ancestral population; N1: size of population during the first epoch; N2: size of population during the
first epoch; T1: time of the first epoch; T2: time of the second epoch; F : inbreeding coefficient.

−4281.14 for model 2) than those reported in the original paper by Blischak et al. (2020). Similar
values for the population sizes in the first and second epochs were obtained. However, the popula-
tion size for the most recent epoch was underestimated (6 vs 592 individuals) for model 1 without
inbreeding and overestimated (174,960,000 vs 215,000 individuals) for model 2 with inbreeding. The
time duration of the epoch was also smaller for both models than estimated previously by Blischak
et al. (2020). In the case of model 1 the time parameter was very close to zero. The likelihood
ratio test showed that the model with inbreeding describes the data better than the model without
inbreeding (LRT statistic = 127.10, P value = 0.0; Coffman et al. (2016)).

3 Discussion

GADMA2 is an extension of the initial version of GADMA. It has an updated genetic algorithm,
more flexible specification of the demographic model, and a greater number of simulation engines.
Based on our tests of two empirical datasets, GADMA2 provides more accurate and stable perfor-
mance.

Hyperparameter optimization with SMAC was used to improve a genetic algorithm and provided
several alternative configurations of hyperparameters. We note that SMAC failed to find a better
solution than the default one for a configuration of all hyperparameters including two discrete.
With fixed discrete hyperparameters new solutions were investigated. This supports the assumption
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that the presence of discrete hyperparameters can negatively influence the optimization and may
require a greater number of iterations. Two result configurations showed better performance than
the initial genetic algorithm. The first one obtained on round 2 has the same values of discrete
hyperparameters as the default and demonstrated the best convergence on the first iterations for
three simulation engines. Another configuration from round 6 has slower convergence on the first
iterations but was better on the last iterations and has a more stable result over several runs in case
ofmoments engine. The round 2 configuration was chosen as an universal updated genetic algorithm
for GADMA2. However, we note that the solution from round 6 should be also considered as a
possible enhancement in case of moments simulation engine for the datasets with slow convergence.

We note that the performance of the genetic algorithm before and after hyperparameter op-
timization was validated only for ∂a∂i, moments and momi2 engines. In case of controversial
performance for other engines, we recommend that hyperparameter optimization be run for each
engine separately. This area related to performance requires more research.

Two new simulation engines, momi2 and momentsLD , were incorporated into GADMA2.
Momi2 is based on the Moran generations model that reflects reality better than the Wright-Fisher
model used in ∂a∂i and moments. Unfortunately, the method from momi2 has some limitations
including absence of continuous migrations and linear population size growth. MomentsLD is the
first engine in GADMA2 that does not use allele frequency spectrum data for demographic inference
but linkage disequilibrium statistics instead.

Accuracy of GADMA2 engines was analysed on simulated dataset. All engines displayed consis-
tent performance and estimations close to simulated values. We also demonstrated that continuous
migration for momi2 engine could be replaced with several pulse migrations. However, this ap-
proach is limited due to increase in computation time for larger number of pulse migrations.

Moreover, the new package demes was incorporated as an engine into GADMA2 to provide
text and better visual representations of the demographic history models. Collectively, these new
engines provide valuable extensions of GADMA, allowing the inference of complex demographic
histories for up to 10 populations.

GADMA2 allows more flexible specification of the demographic model enabling inference of mi-
grations (gene flow), inbreeding coefficients, selection and dominance rates. We have demonstrated
better performance of GADMA2 on real datasets with inbreeding.

The best demographic history inferred for two populations of American pumas included inbreed-
ing. Our results demonstrated very broad confidence intervals for population size of the Florida
puma population and time of divergence in comparison to other parameters and models. The demo-
graphic models of domesticated cabbage population introduced in Blischak et al. (2020) originally
were three epoch models. The time of the third epoch was inferred to be very small both for models
with and without inbreeding. Thus, the wide confidence intervals for population size during the
third epoch can be explained by the fact that very recent events are difficult to investigate with
∂a∂i. We only tested the demographic models that were presented in Blischak et al. (2020) but
further models can be built based on our results.

GADMA2 extends the existing version of GADMA that has already shown itself as a powerful
and efficient software for inference of complex demographic histories from genetic data. GADMA2
can be further improved through integration of new simulation engines, new algorithms for opti-
mization, and automatic model construction.
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4 Methods and materials

4.1 Data availability

Several datasets were used in this work. Datasets used for hyperparameter optimization were taken
from the Python package deminf data v1.0.0 (Figure 6) available on GitHub via the link: https:
//github.com/noscode/demographic_inference_data. Each dataset in this package includes: a)
the allele frequency spectrum data; b) model of the demographic history; and c) bounds of the model
parameters. The package deminf data contains different datasets with both real and simulated AFS
data. Simulations were performed with the moments (Jouganous et al., 2017) software. The full
description of the AFS data and demographic model parameters are available in the repository on
GitHub.

We run tests for engines of GADMA2 on simulated dataset for two orang-utan species available
in stdpopsim library (Adrion et al., 2019). For simulation purpose we used previously described
scenario of demographic history of two orang-utan species Bornean (Pongo pygmaeus) and Suma-
tran (Pongo abelii) (Locke et al., 2011). Specifically it is an isolation-with-migration model that
describes the ancestral population split followed by exponential growth in Sumatran and exponen-
tial decay in Bornean population. We simulated 23 autosomal chromosomes with total length of
2.87 Gbp using msprime engine (Kelleher et al., 2016) in stdpopsim (Adrion et al., 2019). Mutation
rate used in simulation was equal to 1.5 · 10−8 per site per generation (Nater et al., 2017). Av-
eraged recombination rates for each chromosome were taken from the Pongo abelii recombination
map inferred in Nater et al. (2017).

Datasets for the demographic inference with inbreeding were taken from the original paper
Blischak et al. (2020). The 11 × 5 AFS data for two populations of the American puma (Puma
concolor) was constructed on the basis of Ochoa et al. (2019). The AFS data for 45 individuals of
domesticated cabbage (Brassica oleracea) were obtained from publicly available resequencing data
(Cheng et al., 2016a,b). Both allele frequency spectra were folded due to lack of information about
ancestral alleles. Datasets are presented in the repository of the original article and are available
via the following link: https://github.com/pblischak/inbreeding-sfs.

The scripts and results of hyperparameter optimization experiments with SMAC were saved
in the repository and are available via the link: https://github.com/noscode/HPO_results_

GADMA. The results of GADMA runs for different hyperparameter configurations were stored as an

2_DivMig_5_Sim

NANC

NANC N2

m12

m21 T

Pop 1 Pop 2

Populations
number

Parameters
number

Description Source of data
(Simulation or 

paper ID)

Figure 6: Structure of dataset name from deminf data v1.0.0 package.
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archive which is available via the link: https://ctlab.itmo.ru/files/papers_files/GADMA2/

comparison_on_datasets.zip. The results of experiments about inbreeding were added to the
repository with final demographic histories inferred in the original paper of GADMA and are located
via the link: https://bitbucket.org/noscode/gadma_results.

4.2 Hyperparameter optimization

The performance of any algorithm depends on the values of its hyperparameters. The learning
rate of neural network is one of the classical examples of such dependence. One of the most
popular frameworks for hyperparameters search is Bayesian optimization. The problem of finding
hyperparameters that provide best convergence not on one but on several instances of data is called
algorithm configuration problem. Algorithm configuration problem can be stated as follows: given
a target algorithm A, a set of problem instances I and a cost function (metric) c, seek for the best
set of hyperparameters for A on I in regard to c. Usually, cost function is based on time required
to solve the problem or on quality of solution that was achieved within a given budget. SMAC
(Hutter et al., 2011, Lindauer et al., 2021) is the software that implements Bayesian optimization
for solving the algorithm configuration problem.

SMAC is based on Bayesian optimization, which is a model-based algorithm. It uses a surro-
gate model to estimate objective function and acquisition function to find new promising points
for function evaluation. SMAC uses Random forest as a surrogate model for cost function approx-
imation and expected improvement as an acquisition function to make predictions of promising
hyperparameter configuration on each iteration. In contrast to classical Bayesian optimization
SMAC can handle several problem instances and therefore has some modifications. First of all,
the objective function that is modelled with Random forest is a mean value of cost functions on
instances. Another extension is the procedure of intensification. It is a mechanism that governs
how to compare the new configuration with the existing best configuration (incumbent). Random
Online Aggressive Racing (ROAR) implemented in SMAC considers a new configuration as a new
incumbent if it is better than the current incumbent on the set of problem instances and random
seed pairs. This set is extended each time when a new configuration is turned out to be worse than
the incumbent. Such an algorithm falls into the fact that this set is always growing and more and
more comparisons are required to beat the current best configuration.

In summary, SMAC is an iterative algorithm that keeps the best found configuration of hy-
perparameters. On each iteration new promising configuration is chosen and is compared to the
current incumbent within the procedure of intensification. The comparison is managed by the
value of cost function averaged over problem instances, as the result the best by average algorithm
performance hyperparameter configuration is provided.

The optimization method such as genetic algorithm has several hyperparameters and their
number varies within specific implementations. The genetic algorithm presented in GADMA main-
tains a set of problem solutions that is called generation. Each solution is presented as an array
of values for objective function parameters, i.e. parameters of the demographic history. The
initial generation is formed by the initial design procedure: a set of random solutions is cre-
ated. The size of this set is determined by the value of hyperparameter n init const: the num-
ber of solutions in the initial generation is equal to the number of target parameters multiplied
by n init const. Size of each generation in the genetic algorithm is equal to the value of the
gen size hyperparameter. New generation is constructed iteratively with the help of mutation,
crossover and selection of best by the value of likelihood models. The fractions of most adapted,
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Table 4: Short descriptions of GADMA genetic algorithm (GA) hyperparameters.

Hyperparameter ID Hyperparameter description

gen size Number of solutions in generation of genetic algorithm

n init const
Constant that determines number of random solutions that are
created during initial design at the beginning of GA

p elitism Fraction of the best solutions that are taken to new generation
p mutation Fraction of mutated solutions in a new generation
p crossover Fraction of crossed solutions in a new generation
p random Fraction of random solutions in a new generation
mutation strength Initial parameter change probability for mutation

const mutation strength
Constant to change a mutation strength during genetic
algorithm according to one-fifth rule

mutation rate Initial rate of a parameter change during mutation

const mutation rate
Constant to change the mutation rate during genetic algorithm
according to one-fifth rule

mutated, crossed and random models that form a new generation are determined by p elitism,
p mutation, p crossover, p random hyperparameters correspondingly. The special case is the mu-
tation process: it is determined by mutation strength and mutation rate that define how many
parameters of the model and how strong their values will change. Each of these two hyperparam-
eters are changed during the genetic algorithm performance according to one-fifth rule: the closer
to the optimum we are the smaller changes during the mutation process are. The constants of
one-fifth rule (const mutation strength, const mutation rate) are additional two hyperparam-
eters of the genetic algorithm. In total we highlight 10 hyperparameters for the genetic algorithm
implemented in GADMA: two have integer values and eight are continuous.The short descriptions
of each hyperparameter are presented in Table 4.

The initial values of hyperparameters in the first version of GADMA were obtained manually
within the demographic inference of two populations of modern humans for the model and data
from Gutenkunst et al. (2009) (2 YRI CEU 6 Gut dataset). Their values are presented in Table 5.

We used SMAC to investigate hyperparameter values of the genetic algorithm in GADMA.
As a result we have performed six rounds of SMAC optimization for different configurations of
hyperparameters (Table 1). The domains of hyperparameter values that were used are presented in
Table 5. Each round was running for two weeks, in parallel on 10 processes. In order to achieve the
valid comparison within the SMAC framework GADMA runs were stopped after a fixed number
of likelihood evaluations. We took 200 × number of parameters as the stop criteria for runs of the
genetic algorithm in SMAC. Such a number of evaluations was chosen to be a trade-off between
speed and accuracy: according to the convergence plots at this point convergence of default genetic
algorithm optimization was slowing down and was very close to the plateau walk (Figure A1,
Figure A2).

Four datasets were chosen as train problem instances for SMAC. The result configurations were
tested and compared to the default genetic algorithm on train and on additional six test datasets.
All used datasets were taken from Python package deminf data v1.0.0. Each dataset presented
in Table A1, Table A2 and Table A3 had a structured name (Figure 6) that is the sequence of
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Table 5: Default values and domains used for optimization of GADMA genetic algorithm hyperpa-
rameters. The first two hyperparameters gen size and n init const are integers and have discrete
domains. Other eight hyperparameters are continuous.

Hyperparameter ID Default value Domain

gen size 10 {10, 50, 100}
n init const 10 {5, 10, 20}
p elitism 0.2 [0, 1]
p mutation 0.3 [0, 1]
p crossover 0.3 [0, 1]
p random 0.2 [0, 1]
mutation strength 0.2 [0, 1]
const mutation strength 1.01 [1, 2]
mutation rate 0.2 [0, 1]
const mutation rate 1.02 [1, 2]

a) population number, b) short description of the demographic model, c) number of parameters
and d) information about the source of AFS data.

Each of four train datasets had demographic model and data for two populations: three sim-
ulated AFS data (2 BotDivMig 8 Sim, 2 DivMig 5 Sim, 2 ExpDivNoMig 5 Sim) and one real data
(2 YRI CEU 6 Gut) for modern human populations from Gutenkunst et al. (2009). Thus, datasets
require similar resources for likelihood evaluations and are well balanced for optimization with
SMAC.

Test datasets were chosen to be more diverse: two datasets (1 Bot 4 Sim, 1 AraTha 4 Hub) for
one population with simulated and real data from Huber et al. (2018), two datasets (2 ButAll 3 McC,
2 ButSynB2 5 McC) for two populations of butterflies from McCoy et al. (2014); one simulated
dataset for three populations (3 DivMig 8 Sim); and one dataset (2 YRI CEU struct 11 Nos) with
AFS data for two populations of modern human from Gutenkunst et al. (2009) and unsupervised
demographic history with structure (2, 1) that was observed in the original paper of GADMA
Noskova et al. (2020).

During the first run of SMAC all ten hyperparameters (Table 1) were optimised. However,
SMAC failed to find a better configuration than the default one. Two discrete hyperparameters
(gen size and n init const) were excluded from the configuration and more rounds were launched
in order to perform grid search.

Discrete hyperparameters gen size and n init const were fixed to default values (10 and
10 correspondingly) for the second round of SMAC optimization (Table 1). For the third and
fourth rounds we tested two alternative values (5 and 20) of initial design constant (n init const).
Then the number of demographic models on each generation of genetic algorithm (gen size) was
increased up to 50 and constant for initial design (n init const) was tested for values of 10 and
20. The value of n init const equal to 5 was excluded from the experiments as it provides a small
number of solutions for the first generation that should be of size 50.

SMAC compares configurations based on mean cost score evaluated over all provided training
datasets. This score was independently received from 128 runs per dataset and presented in Ta-
ble A1 for moments engine. Incumbents for rounds 2, 3 and 4 where gen size was fixed to the value
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of 10 showed better SMAC scores than an initial configuration. The round 3 configuration showed
the best score among them. The final incumbents for rounds 5 and 6 with gen size fixed to the
value of 50 showed a worse SMAC score than the default configuration (Table A1). Configurations
from rounds 4, 5 and 6 provided high mean log-likelihoods on three of four training datasets but
failed to perform accurate convergence on the 2 ExpDivNoMig 5 Sim dataset. We also note that
a genetic algorithm with hyperparameters from round 6 turned out to be more effective than the
incumbent from round 5 on all training and test datasets according to the mean costs (Table A1).
The round 2 configuration showed best mean scores on two training datasets (2 DivMig 5 Sim,
2 ExpDivNoMig 5 Sim), and the round 6 configuration turned out to be the best on the other two
training datasets (2 BotDivMig 8 Sim, 2 YRI CEU 6 Gut).

Further, final hyperparameter configurations were validated on six test datasets with the mean
costs associated with these datasets presented in Table A1. As in case of the training datasets,
two configurations from round 2 and round 6 showed the best performance on half (3 of 6) of the
test datasets. Thus, these two configurations were compared in terms of convergence on a greater
number of iterations. The convergence plots of genetic algorithms with the initial configuration
and configurations obtained on 2 and 6 rounds are presented in Figure A1 for the training datasets
and in Figure A2 for the test datasets. Mean scores of the final configurations were also evaluated
for the ∂a∂i (Table A2) and momi2 (Table A3) engines.

4.3 Performance test of GADMA2 engines

Four GADMA2 engines were compared on simulated dataset of two orang-utan species. Two demo-
graphic histories were used: 1) isolation with the ancestral population split followed by exponential
growth in Sumatran and exponential decay in Bornean population 2) isolation-with-migration with
the ancestral population split followed by exponential growth in Sumatran and exponential decay
in Bornean population. Mutation and recombination rates were taken the same as were used in
the simulation. Performance of all four engines was compared for model 1, however, momi2 engine
was not validated for model 2 as momi2 does not support continuous migrations. We ran GADMA
8 times for each engine and model.

In order to overcome momi2 limitation with continuous migrations we validated engine on
additional demographic scenarios with pulse migrations. Different number of pulse migrations with
equal rate were uniformly integrated within the epoch between present time and species divergence
time. Four demographic models were tested: 1) without pulse migrations, 2) with 1 pulse migration,
3) with 3 pulse migrations, and 4) with 7 pulse migrations.

4.4 Inbreeding

Mutation rates and sequence lengths used for parameter translation from genetic units were taken
the same as in Blischak et al. (2020). Demographic parameters for Puma concolor models were
translated from the genetic to real units using a mutation rate of µ = 2.2×10−9, a generation time
of 3 years, and a sequence length of 2,564,692,624 bp (Ochoa et al., 2019). In the case of Brassica
oleracea var. capitata population demographic parameters were translated using mutation rate of
µ = 1.5× 10−8, a generation time of 1 year, and a sequence length of 411,560,319 bp.

Confidence intervals reported in Table 2 and Table 3 were estimated on 100 bootstrapped AFS
data from the original paper using the Godambe information matrix with step size equal to ϵ = 10−2
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(Coffman et al., 2016). The scripts and data used for CI evaluation were taken from the repository
of Blischak et al. (2020) article: https://github.com/pblischak/inbreeding-sfs.
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A6 Appendix

A6.1 Hyperparameter optimization: SMAC costs and convergence plots using
moments engine

Table A1: Mean log-likelihood values (128 runs) for final configurations of six SMAC rounds on
train and test datasets. Log-likelihood was evaluated with moments simulation engine. Mean cost
value on train datasets presented in the table was used by SMAC intensification procedure. For
round 1 SMAC failed to find better configuration than the default one. Best mean values are
marked bold.

Dataset
Round number

1 (default) 2 3 4 5 6

Mean cost on
train datasets

−1,923.51 −1,860.98 −1,798.85 −1,843.54 −2,024.31 −1,955.98

Train datasets:
2 BotDivMig 8 Sim −2,328.19 −2,411.40 −1,967.04 −2,197.83 −2,042.13 −1,963.56
2 DivMig 5 Sim −1,497.23 −1,439.16 −1,523.42 −1,453.18 −1,483.18 −1,441.97
2 ExpDivNoMig 5 Sim −2,721.13 −2,353.94 −2,566.71 −3,137.09 −3,428.17 −3,137.09
2 YRI CEU 6 Gut −1,147.48 −1,139.41 −1,144.00 −1,138.40 −1,143.75 −1,134.40

Test datasets:
1 Bot 4 Sim −213.92 −193.49 −212.19 −186.22 −209.29 −212.42
1 AraTha 4 Hub −96.12 −93.05 −96.45 −94.88 −96.54 −95.53
2 ButAllA 3 McC −294.47 −290.30 −300.36 −294.22 −300.33 −293.99
2 ButSynB2 5 McC −215.20 −214.78 −216.51 −214.55 −214.48 −213.85
2 YRI CEU str 11 Nos −1,162.68 −1,164.41 −1,163.55 −1,165.00 −1,165.00 −1,150.26
3 DivMig 8 Sim −11,791.97 −11,742.43 −11,797.04 −11,718.42 −11,742.41 −11,637.73
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Figure A1: Convergence plots for six genetic algorithm configurations using moments engine on
four train datasets: 1) the default genetic algorithm from the initial version of GADMA, 2)-6) con-
figurations obtained during rounds 2-6 of hyperparameter optimization with SMAC. The abscissa
presents the log-likelihood evaluation number, the ordinate refers to the distance to the optimal
value of log-likelihood. Solid lines correspond to median convergence over 128 runs and shadowed
areas are ranges between first (0.25) and third (0.75) quartiles. The vertical dashed black line refers
to the number of evaluations used to stop a genetic algorithm in SMAC. The default configuration
(red) and two configurations from round 2 (green) and round 6 (blue) were compared in terms of
convergence on a greater number of iterations. The configuration from round 2 shows faster con-
vergence on first iterations, the configuration from round 6 turns out to have better convergence
at last iterations on three of four datasets.
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Figure A2: Convergence plots for six genetic algorithm configurations using moments engine on
six test datasets: 1) the default genetic algorithm from the initial version of GADMA, 2)-6) con-
figurations obtained during rounds 2-6 of hyperparameter optimization with SMAC. The default
configuration (red) and two configurations from round 2 (green) and round 6 (blue) were compared
in terms of convergence on a greater number of iterations. The configuration from round 2 shows
faster convergence on first iterations, the configuration from round 6 turns out to have better con-
vergence at last iterations on two of six datasets.
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A6.2 Hyperparameter optimization: SMAC costs and convergence plots using
∂a∂i engine

Table A2: Mean log-likelihood values (128 runs) for final configurations of six SMAC rounds on train
and test datasets using ∂a∂i simulation engine. Best mean values are marked bold. Log-likelihood
values and results are similar to moments engine.

Dataset
Round number

1 (default) 2 3 4 5 6

Train datasets:
2 BotDivMig 8 Sim −2,392.63 −2,264.38 −2,140.06 −2,115.68 −1,998.72 −1,908.14
2 DivMig 5 Sim −1,494.41 −1,457.52 −1,495.68 −1,461.03 −1,481.33 −1,465.06
2 ExpDivNoMig 5 Sim −2,720.98 −2,534.38 −2,448.77 −2,450.89 −3,471.70 −3,329.37
2 YRI CEU 6 Gut −1,148.08 −1,137.60 −1,139.10 −1,135.92 −1,152.00 −1,134.62

Test datasets:
1 Bot 4 Sim −231.34 −209.55 −170.73 −192.93 −216.42 −227.23
1 AraTha 4 Hub −93.27 −92.86 −95.80 −94.21 −95.96 −95.75
2 ButAllA 3 McC −296.52 −291.90 −301.06 −297.96 −301.25 −298.50
2 ButSynB2 5 McC −204.13 204.90 −191.29 −214.57 −216.21 −192.76
2 YRI CEU str 11 Nos −1,173.82 −1,166.12 −1,172.60 −1,154.80 −1,153.77 −1,148.56
3 DivMig 8 Sim −11,928.42 −11,766.96 −11,844.63 −11,726.69 −11,715.04 −11,652.18
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Figure A3: Convergence plots for six genetic algorithm configurations using ∂a∂i engine on four
train datasets: 1) the default genetic algorithm from the initial version of GADMA, 2)-6) con-
figurations obtained during rounds 2-6 of hyperparameter optimization with SMAC. The abscissa
presents the log-likelihood evaluation number, the ordinate refers to the distance to the optimal
value of log-likelihood. Solid lines correspond to median convergence over 128 runs and shadowed
areas are ranges between first (0.25) and third (0.75) quartiles. The vertical dashed black line refers
to the number of evaluations used to stop a genetic algorithm in SMAC.
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Figure A4: Convergence plots for six genetic algorithm configurations on six test datasets: 1) the
default genetic algorithm from the initial version of GADMA (red colour), 2)-6) configurations
obtained during rounds 2-6 of hyperparameter optimization with SMAC.
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A6.3 Hyperparameter optimization: SMAC costs and convergence plots using
momi2 engine

Table A3: Mean log-likelihood values (128 runs) for final configurations of six SMAC rounds on
train and test datasets using momi2 simulation engine. Two test datasets (2 ButAllA 3 McC,
2 ButSynB2 5 McC) were excluded as they lacked sequence length required for momi2 engine. More-
over, momi2 engine does not support continuous migrations and size of ancestral population could
not be inferred implicitly as for ∂a∂i and moments. Thus, number of parameters in datasets for
momi2 differs from moments and ∂a∂i. Best mean values are marked bold.

Dataset
Par. Round number
num. 1 (default) 2 3 4 5 6

Train datasets:
2 BotDivMig 8 Sim 7 −362,794.00 −362,661.13 −362,708.40 −362,436.72 −363,522.98 −363,208.38
2 DivMig 5 Sim 4 −352,187.20 −351,911.98 −352,240.74 −352,023.01 −352,108.35 −352,059.60
2 ExpDivNoMig 5 Sim 6 −1,161,762.17 −1,161,178.83 −1,161,297.18 −1,161,422.88 −1,162,363.59 −1,161,677.16
2 YRI CEU 6 Gut 6 −63,877.21 −63,866.37 −63,880.52 −63,856.10 −63,869.32 −63,858.89

Test datasets:
1 Bot 4 Sim 5 −109,557.18 −109,524.04 −109,555.30 −109,524.06 −109,600.74 −109,592.11
1 AraTha 4 Hub 5 −228,316.33 −228,309.85 −228,314.93 −228,314.22 −228,352.78 −228,311.32
2 YRI CEU str 11 Nos 10 −63,882.18 −63,871.54 −63,881.70 −63,881.69 −63,880.74 −63,860.48
3 DivMig 8 Sim 6 −641,960.29 −641,757.88 −647,365.31 −642,091.09 −641,481.87 −641,244.71
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Figure A5: Convergence plots for six genetic algorithm configurations using momi2 engine on four
train datasets: 1) the default genetic algorithm from the initial version of GADMA (red colour),
2)-6) configurations obtained during rounds 2-6 of hyperparameter optimization with SMAC. The
abscissa presents the log-likelihood evaluation number, the ordinate refers to the distance to the
optimal value of log-likelihood. Solid lines correspond to median convergence over 128 runs and
shadowed areas are ranges between first (0.25) and third (0.75) quartiles. The vertical dashed black
line refers to the number of evaluations used to stop a genetic algorithm in SMAC.
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Figure A6: Convergence plots for six genetic algorithm configurations on four test datasets: 1)
the default genetic algorithm from the initial version of GADMA (red colour), 2)-6) configu-
rations obtained during rounds 2-6 of hyperparameter optimization with SMAC. Two datasets
(2 ButAllA 3 McC, 2 ButSynB2 5 McC) were excluded as they are not supported by momi2 engine.
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A6.4 Performance test of GADMA2 engines

Table A4: The demographic parameters of orang-utan history without migration (model 1) inferred
with different engines in GADMA2. True values are the simulated parameter values that were
obtained from the original paper Locke et al. (2011).

Parameter True value ∂a∂i moments momi2 momentsLD

Nanc 17,934 19,834 19,776 19,331 16,390
NBor split 10,617 6,753 6,278 6,187 7,897
NSum split 7,317 8,516 7,753 7,719 6,666
NBor 8,805 11,039 10,886 10,663 10,427
NSum 37,661 55,733 56,415 54,184 61,577
Tsplit (gen.) 20,157 12,090 11,458 11,270 14,021

Nanc: size of ancestral population; NBor split: size of Pongo pygmaeus at split; NSum split: size of Pongo abelii at
split; NBor: size of Pongo pygmaeus after exponential decline; NSum: size of Pongo abelii after exponential growth;
Tsplit: time of divergence in generations.

Table A5: The demographic parameters of orang-utan history with migration (model 2) inferred
with different engines in GADMA2. True values are the simulated parameter values that were
obtained from the original paper Locke et al. (2011). Momi2 engine was excluded as it does not
support continuous migrations.

Parameter True value ∂a∂i moments momentsLD

Nanc 17,934 17,864 17,945 19,775
NBor split 10,617 10,787 10,246 11,187
NSum split 7,317 7,564 7,216 7,818
NBor 8,805 9,242 9,036 9,753
NSum 37,661 38,800 37,839 41,378
mBor−Sum(×10−5) 0.66 0.66 0.66 0.61
mSum−Bor(×10−5) 1.10 1.06 1.07 0.98
Tsplit (gen.) 20,157 20,847 19,916 21,516

Nanc: size of ancestral population; NBor split: size of Pongo pygmaeus at split; NSum split: size of Pongo abelii at
split; NBor: size of Pongo pygmaeus after exponential decline; NSum: size of Pongo abelii after exponential growth;
mBor−Sum: migration rate from Pongo pygmaeus population to Pongo abelii population; mSum−Bor: migration rate
from Pongo abelii population to Pongo pygmaeus population; Tsplit: time of divergence in generations.
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Table A6: The demographic parameters of orang-utan histories with pulse migrations inferred with
momi2 engine in GADMA2. The time interval after divergence was divided in equal parts and
pulse migrations were integrated between them. The inferred parameters showed convergence to
true values with increase of pulse migration number. True values are the simulated parameter
values that were obtained from the original paper Locke et al. (2011).

Parameter True value Model 1 Model 2 Model3 Model 4

Number of 0
0 1 3 7

pulse migrations (continuous)

Nanc 17,934 19,331 19,220 18,461 18,038
NBor split 10,617 6,187 8,731 8,715 10,275
NSum split 7,317 7,719 4,165 5,412 6,570
NBor 8,805 10,663 9,631 9,640 8,926
NSum 37,661 54,184 59,929 43,123 38,623
mBor−Sum 0.66× 10−5 0 0.065 0.057 0.022
mSum−Bor 1.10× 10−5 0 0.206 0.084 0.035
Tsplit (gen.) 20,157 11,270 16,211 20,086 20,538

Nanc: size of ancestral population; NBor split: size of Pongo pygmaeus at split; NSum split: size of Pongo abelii at
split; NBor: size of Pongo pygmaeus after exponential decline; NSum: size of Pongo abelii after exponential growth;
mBor−Sum: migration rate from Pongo pygmaeus population to Pongo abelii population; mSum−Bor: migration rate
from Pongo abelii population to Pongo pygmaeus population; Tsplit: time of divergence in generations.
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