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Abstract 

         Hierarchical processing requires activity propagating between higher and lower-order 
cortical areas. However, studies of brain development have chiefly quantified fluctuations within 
regions over time rather than propagations occurring over space. Here, we leveraged advances 
in neuroimaging and computer vision to track cortical activity propagations in a large sample of 
youth (n=388). We found that propagations robustly ascend and descend the cortical hierarchy, 
and that top-down propagations become both more prevalent with cognitive control demands 
and with development in youth.  
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Main 
         The hierarchical organization of the cortex provides a scaffold for bottom-up sensory 
integration and top-down control1,2,3. Existing evidence suggests that cortex-wide hierarchical 
organization is a product of protracted development4,5,6. Understanding the development of 
hierarchical processing is critical, as developmental deficits in cognitive control that are thought 
to rely on top-down processing are associated with transdiagnostic psychopathology7, reduced 
quality of life8, and youth mortality9. In the brain, hierarchical processing necessarily involves 
activity propagating through space between higher- and lower-order areas. However, most fMRI 
studies of hierarchical processing have chiefly quantified activity fluctuations in fixed regions 
over time, rather than examining activity propagations over space. While some recent work has 
approximated spatial propagations by detailing sequences of activations in nodes within graph-
based representations of the brain10,11,12, non-invasive measurement of cortical activity 
propagations in humans has remains an open challenge, and it is unknown how propagations 
may evolve in development.  

Several recent studies have used a combination of fMRI and intracranial recordings to 
demonstrate that infraslow but large-scale activity systematically propagates along a principal 
gradient (PG)13 of cortical organization from lower- to higher-order areas14,15,16. Two studies also 
noted top-down propagation, where activity instead moved from higher- to lower-order areas. 
Intriguingly, such top-down propagations were associated with alertness15 and the ascending 
arousal system17, suggesting that top-down propagations might be linked to top-down cognitive 
processing. However, to infer hierarchical directionality, these approaches relied upon a single, 
group-level cortical pattern linked to the time series of a single variable: either respiratory 
variability15, the global signal16,18, or the difference in signal from two subcortical regions over 
time17. While these approaches revealed prominent, stereotyped hierarchical propagations, they 
are circumscribed to their respective time-locked variables of interest, and predominantly reveal 
group-averaged propagations. As a result, little is known about how propagations vary across 
individuals and mature with development. 
         Here, we fill this critical gap by capitalizing upon a widely-used method in computer 
vision – optical flow – to quantify activity propagations across the cortex. Optical flow enabled us 
to derive directional information regarding propagations directly from changes in local BOLD 
signal (methods). In neuroscience, optical flow has been primarily implemented either on 
group-level patterns16, or on mesoscale sections of cortex19. Recently, the optical flow algorithm 
was adapted to efficiently estimate biological motion on the surface of spheres20. We leveraged 
this advance to quantify the movement of the BOLD signal directly on each participant’s cortex 
following spherical registration. We hypothesized that this approach would reveal bottom-up and 
top-down propagations along the principal gradient of macroscale cortical organization. 
Furthermore, we predicted that top-down propagations would be associated with task demands 
and become more prominent with age in youth. To test these hypotheses, we leveraged a large 
developmental dataset with both high-quality resting-state and task fMRI data17 (n = 388 after 
QC, mean age = 15.6, SD = 3.7 years). 
         Optical flow yielded vector fields describing the direction of signal propagation between 
pairs of sequential fMRI volumes mapped to the cortical surface via spherical registration 
(Figure 1a). To evaluate the presence of hierarchical propagations, we extracted the gradient 

vector field (∇) of an established map that defines the principal gradient (PG) of the cortical 

hierarchy (∇PG, Figure 1b). Because gradient vector fields describe the direction of image 

intensity increases, ∇PG describes the direction of hierarchical ascent at each point on the 

cortex. Local ∇PG directions were subsequently utilized as reference directions for optical flow 
vectors for each participant (Figure 1c). After removing volumes corrupted by head motion, we 
recorded the difference in the angle (in degrees) of the direction of activity estimated by the 
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optical flow vectors with respect to the direction of hierarchical ascent defined by the ∇PG 

(Figure 1d). In this framework, alignment with the angle of hierarchical ascent (0° from ∇PG) 

indicates a bottom-up propagation, whereas flow in the opposite direction (180° from ∇PG) 
indicates a top-down propagation (Figure 1e, Figure S1, Figure S2). 
 

 

Figure 1: Schematic for spherical optical flow and assessment of hierarchical propagations. a) To estimate the
spatial directionality of activity across the cortex, all fMR images are projected to the fsaverage4 spherical surface. 
Specifically, for each pair of sequential images, we used optical flow to estimate the directions of signal propagations 
at each face on the cortical mesh. b) To estimate the direction of hierarchical ascent, the gradient vector field of a 

validated map of cortical hierarchy10 was extracted along the cortical surface (∇PG). This procedure yields vectors 

he 

s 
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across the entire cortex, with each vector describing the most immediate direction of hierarchical ascent for any given 
face on the mesh. c) To quantify directional distributions, each optical flow direction is assessed relative to the 
direction of hierarchical ascent over all sequential image pairs. d) This procedure is repeated for each face on the 

cortical mesh to yield a matrix of activity directions relative to ∇PG over time for each participant. e) Example bottom-

up and top-down propagations: vectors are extracted from pairs of sequential BOLD images (white arrows) and 
overlaid onto the group-level PG (yellow-black shading). 
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We observed a predominance of both bottom-up and top-down propagations, which 
formed a bimodal distribution. These bimodal distributions were evident at the group (Figure 2a) 
and participant-level (Figure 2b). To rigorously test whether propagations were enriched for 
bottom-up and top-down directionality, we used a conservative spin-based permutation method 
that perseveres the spatial covariance structure of the data (Figure 2c). This procedure 

revealed that the angular distributions of propagations were specifically aligned with ∇PG for 

every participant in the sample, far beyond what could be expected by chance (real data median 
SD from null distribution = 13.6 SD; p < 0.001 for every participant in the sample). To further 
confirm that optical flow captured continuous propagations rather than differences between 
discrete activation patterns, we shuffled the temporal ordering of fMRI volumes from each 
participant (Figure 2d). These temporal permutation tests confirmed that optical flow captured 
specific sequences of activity that were not present in shuffled data (real data median SD from 
null distribution = 18.8 SD; p < 0.01 for 93% of participants in the sample). 
         Having demonstrated the presence of hierarchical propagations in all participants, we 
next sought to define the spatial distribution of bottom-up and top-down propagations. For each 
location on the cortex, we quantified the percentage of propagations that could be characterized 
as bottom-up or top-down (Methods). While all regions exhibited a mix of both bottom-up and 
top-down propagations at different points in time, bottom-up propagations were more common 
in certain regions (i.e., medial prefrontal cortex) and top-down propagations were enriched in 
others (i.e., dorsolateral prefrontal cortex; Figure 2e). At the participant-level, the percentage of 
top-down optical flow vectors was highly correlated with our statistical summary measure of 
non-unimodality (i.e., dip statistic, r = .70, p < 0.01x10-14; Figure S3). This percentage allowed 
us to directly test whether top-down propagations became more common under task demands 
and with development in youth.  
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Figure 2: Cortical activity propagates up and down the cortical hierarchy. a) Group-level directional distributions 

revealed a bimodal distribution of angular distances between ∇PG and flow vectors (n = 4.4 billion optical flow 

directions over all TRs and participants). b) Directional distributions are bimodal for hierarchical ascent (0°) and 
descent (180°) within individual participants. The percentage axis is rescaled from panel (a) for detail, with the 
equivalent y-axis range demarcated across panels with dashed lines. c) Spatial null models permuted the reference 

directions (∇PG) continuously in space, preserving the spatial covariance structure of the original map (left). Spatial 
null models are computed within participants (middle; participant #1 from panel b) by comparing the dip statistic 
obtained from permuted reference directions (black distribution) and the true dip statistic (red line). Whereas 1.96 
standard deviations from the mean is a common statistical threshold for significance, we found that true dip statistics 
tended to be approximately 13.6 standard deviations from the null distribution (right). d) Temporal null models 
involved shuffling the order of retained fMRI volumes in time, preserving complex spatial patterns found within 
individual images (left). Temporal null models were computed within participants (middle; participant #1 from panel b) 
by comparing the dip statistic obtained from permuted fMRI volume ordering (black distribution) and the true dip 
statistic (red line). True dip statistics were a median of 18.8 standard deviations from the null distribution (right). 5 
participants with positive outlier values were omitted for clarity (SDs = 166.7, 189.3, 258.9, 369.7, and 747.9). e) All 
faces exhibited a mix of both bottom-up (<90°) and top-down (>90°) propagations, but certain regions were enriched 
for bottom-up propagations or top-down propagations. For example, bottom-up propagations were more common in 
medial prefrontal cortex, whereas top-down propagations were more common in dorsolateral prefrontal cortex. 
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Specifically, we sought to evaluate whether the prevalence of top-down propagations 

was modulated by a cognitive task that requires top-down cognitive control. We compared 
propagations observed during rest to those present during a modified Go/NoGo task, where top-
down control is intermittently required to suppress reflexive button-pressing21. Mass univariate 
analyses revealed more top-down propagations during task than rest (tface = 2.37-13.97, pfdr 
<0.05; Figure 3a). While these effects were distributed across the cortex, increases in top-down 
propagations were particularly prominent in regions within the dorsal and ventral attention 
systems. Increases were maximal in the left upper-extremity subdivision of motor cortex, likely 
corresponding to the uniform usage of the right hand to execute task demands across 
participants21. These results suggest that task demands modulate the prominence of top-down 
propagations within individuals.   

Next, we evaluated whether the prevalence of top-down propagations evolved with age 
in youth. Analyses using generalized additive models that capture both linear and nonlinear 
effects revealed widespread increases in the proportion of top-down propagations observed with 
age across the cortex (Δ Adjusted R2 = 0.01 - 0.19, pfdr <0.05, Figure 3b). These effects were 
particularly prominent in the dorsal and ventral visual streams, as well as the medial and lateral 
premotor pathways. Surprisingly, age effects extended continuously beyond the canonical 
premotor pathway into inferio-medial prefrontal cortex. These results suggest that maturation of 
internally-oriented default-mode regions may be spatially overlapping with maturation of the 
internally-driven medial premotor pathway22. These observations were part of a broader pattern 
of increases in the proportion of top-down propagations across the cortex (Δ Adjusted R2 = 0.14, 
p = 1.7x10-14, Figure 3c). 

We next sought to determine how development alters the full distribution of propagation 
directions rather than simply evaluating the change in proportion of top-down or bottom-up flow.  
To do so, we calculated the difference in the average angular distribution of propagations for the 
youngest (n = 127, mean age = 11.49, SD = 1.70 years) and oldest (n = 132, mean age = 
19.76, SD = 1.39 years) tertile of the data (Figure 3d). We then evaluated the significance of 
this difference of distributions by comparing the true difference to a null distribution created from 
random tertile splits (Figure 3d, gray band). We found that the angular distributions shift 
monotonically towards top-down propagations with age: maximally top-down propagations 
increased with age the most, whereas maximally bottom-up propagations showed the largest 
declines with age.  
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Figure 3: The prevalence of top-down propagations is impacted by task demands and develop with age. a) 
Compared to rest, the demands of a cognitive control task elicit a shift in the proportion of propagations that are top-
down (PFDR < 0.05, more top-down under task demands in orange). b) Top-down propagations become more 
prominent with age in youth, particularly in attention systems (PFDR < 0.05, more top-down with age in red). c) When 
averaged across the cortex, top-down propagations increase with age (smooth term effective degrees of freedom = 
1.89). d) Whole-cortex directional distributions mature such that after adolescence, a greater percentage of 
propagations are top-down. This difference extends above and beyond distribution differences observed in 1,000 
equally sized, randomly selected subgroups of participants (gray band = 95% confidence interval on bootstrap 
resamples). 
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Finally, we conducted sensitivity and specificity analyses to confirm our findings. 
Notably, the spatial distribution of the principal gradient is collinear with the distribution of 
functional networks10, and the age effects we report occur over the same age range as 
developmental functional network segregation6. To ensure that our developmental results were 
not attributable to previously reported functional network segregation, we quantified network 
segregation in all participants. While controlling for network segregation, increases in top-down 
propagations over development remained prominent (Δ Adjusted R2 = 0.14, p = 1.2x10-14, 
Figure S4) and exhibited a stronger age-effect size than network segregation itself (Δ Adjusted 
R2 = 0.05, p = 3.1x10-5). Finally, to verify that age effects were not attributable to scanning-site 
differences, we performed ComBat harmonization and repeated the above analyses. 
Developmental effects remained prominent when accounting for site differences (Δ Adjusted R2 

= 0.12, p = 2.0x10-12, Figure S5). Together, these sensitivity and specificity analyses confirmed 
that our findings were not attributable to previously documented properties of functional 
neurodevelopment or scanner differences. 
         Several limitations should be noted. First, the temporal resolution of fMRI restricted our 
analyses to infraslow frequencies. Although animal studies continue to corroborate the 
importance of infraslow fluctuations in brain-wide neuronal synchronization and behavioral 
arousal23,24, future studies may reveal similar15,16, independent24, and inverted25 propagation 
patterns in different frequency domains. Second, the cost function of optical flow is agnostic to 
the positivity of the propagating signal: propagating decreases in BOLD signal are also captured 
by the resulting vector fields. Because hierarchically propagating infraslow activations and 
deactivations can facilitate or suppress faster rhythms15,16, explicitly delineating activations from 
deactivations is an important step for future work. Third, respiratory16,26 and vascular18,27 
processes are known to contribute to BOLD signal propagations at similar frequencies. Further 
analyses of concurrently acquired physiological data15,16,28 may serve to disentangle their 
contributions to observed propagations. Nonetheless, existing evidence suggests that traveling 
local field potentials may underlie the propagations observed in this study29-33. Finally, motion-
related signal artifact is likely to have a substantial impact on functional propagations. 
Consequently, we erred on the side of being extremely stringent in quality assurance – using 
only low motion data and statistically controlling for residual motion artifact in all analyses. 
          These limitations notwithstanding, we developed an approach to quantify how 
propagations align with the cortical hierarchy. This revealed that activity preferentially flows up 
and down the cortical hierarchy. Our observation that top-down propagations increase in 
response to top-down task demands suggests that such propagations are to some degree state-
dependent. This observation coheres with initial evidence from other studies12,14, and further 
suggests that top-down processing may rely upon hierarchical cortical propagations. Finally, we 
found that top-down propagations become more prominent with age in youth. Our findings 
suggest that the directionality of propagating cortical activity may be broadly relevant for studies 
of hierarchical cortical organization and neurodevelopment, with potentially important 
implications for our understanding of psychopathology and the design of neuromodulatory 
interventions. 
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Methods 

Sample 

To evaluate the maturation of cortical propagations, we used high-quality resting-state and task-
fMRI data from the Human Connectome Project-Development 2.0 Release (HCP-D, n = 652, 
mean age = 14.4, SD = 4.1 years). Participants were scanned at four sites on 3 Tesla Siemens 
Prisma platforms. Structural scans consisted of high-resolution MPRAGE T1w images (0.8 mm3, 
TR/TI=2,500,1000 ms, TE = 1.8/3.6/5.4/7.2 ms, flip angle = 8°) and a variable-flip-angle turbo-
spin-echo T2w sequence (0.8 mm3, TR/TI=3,200,564 ms, turbo factor = 314). Additionally, each 
subject underwent 26 minutes of resting-state scans across 4 runs, and 8 minutes of task-fMRI 
across 2 runs for our task of interest21. Multiband acceleration factors afforded sub-second 
temporal resolution for all functional images (2.0 mm3, TR/TE = 800/37 ms, flip angle = 52°). 

Image processing 

All images were processed with an updated version of the Human Connectome Project MRI 
pipeline34,35. Specifically, all structural images underwent gradient distortion correction, bias field 
correction, boundary-based registration, and normalization. Functional images underwent 
gradient distortion correction, re-alignment, EPI distortion correction, boundary-based 
registration, and normalization prior to being projected to the cortical surface and smoothed with 
a 2mm FWHM gaussian kernel. Next, functional images were demeaned and de-trended using 
nuisance regressors. Finally, functional images were band-pass filtered between 0.008 and 0.09 
Hz with a 2nd order Butterworth filter. Framewise displacement was calculated after accounting 
for the influence of respiratory signal on framewise image realignment. Noteworthy changes 
from the HCP pipeline included usage of Advanced Normalization Tools (ANTs) for denoising, 
bias field correction, and diffeomorphic symmetric image normalization, which was selected due 
to consistently higher registration performance over previous methods36. Finally, all images 
were downsampled to fsaverage4 with connectome workbench for computational feasibility. 

Quality assurance 

In order to be included in analyses, participants needed to have at least 600 TRs surviving three 
quality-control thresholds. First frames were excluded if head motion exceeded 0.2 mm 
framewise displacement for that frame. Second, frames were excluded if they contained DVARS 
values that were > 3 standard deviations above the mean. Third, because we were interested in 
propagations across TRs rather than patterns within single, low-motion TRs, we excluded 
otherwise low-motion segments that were interrupted by moderate to high-motion frames. 
Specifically, if TRs that met the first two criteria were not part of a broader sequence of at least 
10 consecutive low-motion TRs, these TRs were discarded. 388 participants (mean age = 15.6, 
SD = 3.7 years) met the > 600 TR requirement after the aforementioned quality assurance 
procedures. 

Cognitive control task 

For task-fMRI, we selected the Carit task a priori because it requires top-down cognitive control. 
The Carit task is a modified Go/No-Go task, where participants are instructed to make repeated 
button-presses in response to rapid, consistent stimuli, which are periodically interrupted. At the 
time of this interruption, the participant is to withhold a button press, probing their ability to 
suppress their button-pressing response. Because fewer scans were allocated to this task within 
HCP-D, we relaxed the minimum TR requirement to 300 TRs for task analyses only. As we 
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compared propagations between task and resting conditions on a within-subject basis, only 
participants who passed both resting-state quality control (600 remaining TRs) and task QC 
(300 TRs) were included for these analyses. 

Optical flow 

Optical flow is a computer vision technique used to estimate the motion of signal intensity 
between successive images37. Like image registration, this procedure optimizes the deformation 
field that best explains the spatial discrepancy of signal intensity between two images. Recently, 
the optical flow algorithm was adapted to efficiently estimate biological motion on spherical 
surfaces20. We leveraged this advance to quantify the movement of the BOLD signal directly on 
each participant’s cortex following spherical registration. As 2-dimensional “patch” projections of 
the cortex incur large discontinuities between spatially adjacent cortices, use of the spherical 
implementation of optical flow allowed us to efficiently analyze propagations across the cortex. 

Defining hierarchical ascent and descent 

In order to estimate directions of hierarchical ascent and descent, we extracted the gradient 

vector field (∇) of an established map that defines the principal gradient (PG)13 of the cortical 

hierarchy (∇PG). This approach is analogous to that taken in Tian et al. (2020)38, but extracted 
across the cortical mantle rather than in subcortical volumetric space.The resultant vector field, 
describing hierarchical ascent at each face on the cortical mesh, was subsequently used as a 
common set of reference directions for each participant’s optical flow data. 

Quantification of angular distances 

In order to evaluate directional alignment between optical flow vectors and hierarchical vectors, 
we evaluated their angular similarities in degrees. Magnitude measurements were discarded 

from optical flow and ∇PG; only directional information was reported. Our primary metric of 
interest was the angle (in degrees) between hierarchical vectors and optical flow vectors. To 
derive these angles, the 3-dimensional cartesian (x,y,z) vectors describing both vector fields 
were converted to a spherical coordinate system (azimuth, elevation, rho) via cart2sphvec in 
MATLAB. Because the signal travels across the surface of the sphere rather than into or away 
from it, this conversion obviates the third coordinate (rho). Consequently, we retained azimuth 
and elevation only for each hierarchical and optical flow vector, which describe directionality on 
a 2-D tangent-plane at each cortical face (Figure 1c). From this point, the angular distance was 

computed as the difference in directional orientation in degrees between ∇PG and optical flow, 
with 0 degrees indicating perfect alignment and 180 degrees indicating the maximum possible 
difference. 

Assessment of alignment between ∇ PG and null models 

In order to test whether hierarchical ascent and descent were both directional modes in the 
distribution of optical flow vectors, we employed Hartigan’s dip test. Specifically, we used the dip 
statistic to quantify the deviance of angular distributions from a unimodal distribution: a higher 
dip stat indicates that a distribution is more likely multimodal than unimodal. Subsequently, we 
compared this measure to dip statistics derived from spatial and temporal null models. 
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For spatial null models, optical flow angular distances were calculated relative to a spatially 

“permuted” ∇PG. By rotating or “spinning” the entire ∇PG continuously in space, local spatial 
properties of the original map are conserved39. Consequently, this procedure yields a more 
realistic and conservative spatial null model than random permutations where the spatial 
covariance structure is lost. We performed 1,000 permutations, and 1,000 corresponding null 
dip statistics were obtained for each participant. Finally, to extract a metric comparable across 
participants, we recorded the number of standard deviations between the true observed dip 
statistic and the mean of the 1,000 permutations. 

For temporal null models, optical flow itself was re-calculated on temporally permuted data. 
Specifically, the temporal sequence of fMRI volumes surviving QC was shuffled iteratively for 
each participant. Because fitting optical flow to a pair of frames is computationally intensive 
(equivalent to a co-registration), we were limited to 100 temporal permutations per subject 
(613,000-1,883,000 optical flow decompositions per subject). This process yielded 100 sets of 
optical flow vectors for each participant’s shuffled data. These null sets of vectors were then 

subjected to the same angular distance calculation (relative to ∇PG), and 100 null dip statistics 
were subsequently obtained from these distributions. As for the spatial permutation tests, we 
compared true vs. permuted dip statistics as a single participant-level standard deviation. 

Analysis of the impact of task demands 

To test our hypotheses regarding shifts in top-down propagation prominence with task, we 
quantified the proportion of propagations that descended the cortical hierarchy. To do so, we 
calculated the proportion of optical flow vectors that indicated descent in any capacity (i.e., 

greater than 90 degrees from ∇PG) versus optical flow vectors that indicated hierarchical ascent 

(i.e., less than 90 degrees from ∇PG). This procedure provided a measure of the prevalence of 
top-down propagations at each cortical face for each participant. 

We then compared the proportion of top-down propagations during rest and under the cognitive 
control demands of the Carit Task. Specifically, we conducted a paired t-test on the proportion 
of top-down propagations at each cortical face. This procedure provided a t-statistic quantifying 
the degree to which faces exhibited more top-down propagations during the task than during 
rest. Multiple comparisons were controlled by the false-discovery-rate (FDR: q < 0.05); only 
statistics that remained significant after correction for multiple comparisons were retained and 
reported. 

Analysis of developmental effects 

Developmental effects were estimated using generalized additive models40 (GAMs) with 
penalized splines in R (Version 3.6.3) using the mgcv package. Non-linearity was penalized to 
avoid over-fitting, and fitting was optimized with restricted maximum likelihood (REML)41. 
Participant sex, in-scanner head motion, and the number of frames passing quality assurance 
were included as covariates within each GAM. Four knots were specified as the maximum 
flexibility afforded to age splines in all models. To quantify the effect sizes of each age spline, 
we calculated the change in adjusted R2 (ΔR2

adj.) between the full model and a nested model 
that did not include an effect of age. Statistical significance was assessed using analysis of 
variance (ANOVA) to compare the full and nested models42. As above, multiple comparisons 
were controlled for with the false-discovery-rate (q < 0.05). Finally, because ΔR2

adj. describes 
effect size but not direction (i.e., increasing or decreasing top-down propagations with age), as 
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in prior work6, we extracted and applied the sign of the age coefficient from an equivalent linear 
model.  

To quantify developmental differences in the full distributions of angular distances between 

optical flow vectors and ∇PG, we compared the oldest and youngest tertiles of all participants. 
Specifically, we reduced each participant’s angular distribution to 18 bins, with each bin 

comprising a 10-degree span from 0-180 degrees from ∇PG. Each bin represents the 
percentage of optical flow vectors that fell within a 10-degree window of angular distances from 

∇PG (0-10 degrees, 10-20 degrees, etc.)  Across participants within each tertile split, the 
average of these percentages represents the average percentage of total propagations each 
10-degree bin encompasses for each age tertile. To observe age-dependent differences, we 
subtracted the resultant value of each bin in the younger tertile from the resultant values in the 
older tertile. This approach provided a description of the difference in angular distributions 
between older and younger participants. However, that difference measure does not provide a 
statistical test of whether the difference is significant. To evaluate the statistical significance of 
age effects, we performed a bootstrap procedure, where tertile splits were determined 
randomly. We repeated the difference-of-distributions procedure described above for 1,000 
random tertile splits, producing 1,000 random differences of distributions. Finally, we extracted 
the 95% confidence interval from these 1,000 distribution differences to obtain an estimate of 
distribution differences that could be expected by chance alone. Observed differences 
exceeding this confidence interval were interpreted as true group differences, exceeding those 
expected by selecting two groups of the same size when the age distribution was random. 

Sensitivity and specificity analyses 

We used sensitivity analyses to confirm that our results were not due to confounding factors. 
First, to ensure that hierarchical development of cortical propagations is not explained by 
hierarchical development of cortico-functional networks, we repeated our analyses while 
controlling for developmental network segregation. To do so, we constructed a 17-network 
group-consensus atlas for the participants in our study with spatially regularized non-negative 
matrix factorization. Next, we calculated network segregation as prior6: the mean between-
network coupling of a network with all other networks. We included this value as a model 
covariate in sensitivity analyses. Based on prior work, we identified which of the delineated 
networks are those most likely to exhibit developmental segregation. Previously, we have 
detailed that the functional networks undergoing the most dramatic developmental segregation 
are those lying at the top of the cortical hierarchy6, and other publications have similarly 
suggested that default-mode networks undergo developmental segregation43,44. Accordingly, we 
evaluated each network for its hierarchical position and overlap with canonical functional 
networks, and selected the single network fulfilling both a priori criteria (high in hierarchy and 
overlapping with the canonical default mode). Segregation of this network (higher-order default-
mode) comprised the metric of interest for our first sensitivity analysis.  

Finally, to ensure that the association between top-down propagations and age were not 
attributable to site effects, we harmonized top-down propagations across sites with ComBat45,46. 
This provided a site-harmonized measure of the proportion of top-down propagations exhibited 
by each participant, which we then tested in the same GAM framework. 

Code availability 
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All analysis code and a step-by-step replication guide is available at 
https://github.com/PennLINC/PWs.  
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Supplemental Figures 

Figure S1: Whole-hemisphere visualization of the bottom-up propagation sequence depicted in 
Figure 1e in the main text. 
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Figure S2: Whole-hemisphere visualization of the top-down propagation sequence depicted in 
Figure 1e in the main text. 
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Figure S3: Across participants, top-down propagations are strongly associated with non-
unimodality (e.g., the dip statistic) of directional distributions of optical flow vectors (r = .70, p < 
0.01x10-14). The 95% confidence interval of this linear relationship is indicated by the shaded 
area.  
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Figure S4: Hierarchical functional network segregation is also related to age. a) Group 
consensus functional network template derived for HCP-D with regularized non-negative matrix 
factorization. Functional network membership is indicated by color. b) Each network ranked by 
the average value of the principal gradient with that network. Hierarchical positioning indicated 
by brighter coloration. Only one network (magenta in panel a, white in panel b) fulfilled both a 
priori criteria of default-mode overlap and high hierarchical positioning. c) Consistent with our 
prior work, this network exhibited segregation from all other networks over development, even 
after controlling for the proportionate increases in top-down propagations observed with age 
(Figure 3; smooth term effective degrees of freedom = 1.71). Shaded area indicates 95% 
confidence interval on the smooth term estimated for age.   
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Figure S5: Observed top-down propagation development is not driven by site effects. 
Top-down propagation maturation is substantial after controlling for site with ComBat 
harmonization (Δ Adjusted R2 = 0.12, p = 2.0x10-12, smooth term effective degrees of freedom = 
1.87). Shading indicates 95% confidence interval for estimation of the age spline. 
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