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Abstract 
Despite an increasing use of genomic sequencing in clinical practice, interpretation of rare 
genetic variants remains challenging even in well-studied disease genes, resulting in many 
patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect 
Predictors (VEPs) are currently used to provide valuable evidence in variant classifications, 
but they often misclassify benign variants, contributing to potential misdiagnoses. Here, we 
developed Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for 
interpreting missense variants in actionable disease genes with improved performance over 
existing VEPs (20% decrease of false positive rate). Our tool has balanced specificity (82%) 
and sensitivity (94%) on clinical data, and the lowest misclassification rate on putatively 
benign variants among evaluated tools. DeMAG takes advantage of a novel epistatic feature, 
the ‘partners score’, which is based on evolutionary and structural partnerships of residues as 
estimated by evolutionary information and AlphaFold2 structural models. The ‘partners 
score’ as a general framework of epistatic interactions, can integrate not only clinical but 
functional information. We anticipate that our tool (demag.org) will facilitate the 
interpretation of variants and improve clinical decision-making. 
 
 
Introduction 
 
Assessing the pathogenicity of genetic variants remains a significant challenge in research 
and clinical translation. The American College of Medical Genetics and Genomics (ACMG) 
recommends reporting secondary findings which are known to be pathogenic in a set of 
clinically actionable genes (e.g., ACMG SF lists1,2) for patients who undergo sequencing3. 
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Knowledge of a pathogenic variant in such a gene might improve clinical management, 
diagnosis, and prevention. At present, over three quarters of variants which have been 
submitted to ClinVar4 are classified as Variants of Uncertain Significance (VUSs) given 
insufficient epidemiological, functional, or other supportive evidence (Supplementary Fig. 1). 
Importantly, many patients who carry variants in these established disease genes will not 
learn about them when following clinical guidelines, despite their potential for increasing risk 
of disease. The uncertainty about the pathogenicity of a variant may pose a psychological 
burden for patients, left without guidance, and can lead to potential health costs associated 
with under and overdiagnosis.  
 
Many Variant Effect Predictors (VEPs) have been developed to predict the functional impacts 
of these variants, and these tools are often used in diagnostic variant interpretation. A 
computational prediction that a variant will have a deleterious effect is considered evidence 
in support of pathogenicity when following the American College of Medical Genetics and 
Genomics/Association for Molecular Pathology (ACMG/AMP) clinical guidelines for 
sequence variant interpretation5. Widely used predictors include PolyPhen-26, VEST47, 
M-CAP8, and REVEL9. Except REVEL and VARITY10 which are meta-predictors, the others 
are supervised methods which use lists of pathogenic and benign variants to train a statistical 
model that assigns a pathogenicity score for any given variant using sequence-based and 
structural features. While most tools are designed to be used exome-wide, specialized 
predictors can reach higher performance on selected genes and disease phenotypes11.  
 
Unsupervised methods, such as DeepSequence12, EVmutation13 and EVE14 are agnostic to 
variant labels as they infer functional effects from multiple sequence alignment (MSA) alone. 
These methods rely on the availability of sufficient quality MSA data, which is often missing 
in disordered and low-complexity regions, and poorly conserved genes. Unsupervised 
methods characterize the fitness effects of mutations independently from reported disease-
causing variants, and do not provide an interpretation of pathogenicity13,15, with the exception 
of EVE, which relies on labeled clinical data to identify gene-specific pathogenicity 
thresholds. While this is useful for clinical applications, it suffers from the same labeling bias 
as other supervised tools.  
 
Due to limited clinical data, there are two primary challenges in training sufficiently accurate 
VEPs16. The first issue (type 1 circularity) refers to a biased testing set and requires that the 
testing set contains variants that were not used in the training of all predictors. This is 
challenging as many methods train models using variants collected from similar sources, and 
can result in general inflation of predictive performance. The second issue (type 2 circularity) 
refers to an intrinsic characteristic of clinical databases: variants in a given gene, with an 
established link to a disease phenotype, may often be classified as pathogenic17. VEPs which 
use gene-based features, e.g., length of the protein, can make predictions based on a gene’s 
characteristics and pathogenicity, rather than on the attributes of a specific variant. This bias 
hinders discrimination between pathogenic and benign variants within a given gene and 
skews the predictive performance toward high sensitivity and poor specificity18. Thus, 
addressing these issues of unbiased testing set, and balancing sensitivity and specificity are 
crucial for the development of an accurate predictor for clinical applications.  
 
Evolutionary sequences and 3D structures of proteins contain valuable information about the 
importance of residue positions and substitutions. The evolutionary conservation of a position 
in orthologous sequences correlates with the tolerance to mutations within a population, and 
can be used to predict the pathogenicity of genetic variants19. Several conservation scores 
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have been developed and are used as predictive features in VEPs19–21. While most assume 
site-independence, considering epistasis between pairs of residue positions improves variant 
assessment13. Here, epistasis refers to the interdependence of two residue positions. An 
estimated 90% of variation is impacted by epistasis22,23. Indeed, human pathogenic variations 
appear as neutral substitutions in closely-related orthologous from other species. These are 
termed, compensated pathogenic deviations24 as the pathogenicity of the substitution is 
suppressed by another compensatory substitution either within the same gene25–28 or in 
another one29. The compensatory mechanism often involves residues in close proximity in the 
3D structure and the preservation of side-chain side-chain interactions24.  In general, the 
hydrophobic core of proteins tends to evolve slowly, while the surface evolves faster30. 
Accordingly, disease-causing mutations tend to occur in the hydrophobic core of the 3D 
structure of the protein, while common variants tend to be located on the surface, i.e. areas 
with high solvent accessibility31. Incorporating epistatic and structural information 
comprehensively only recently became possible with biome-wide sequencing efforts and 
AlphaFold2 predictions32.  
 
Here, we extend the traditional conservation paradigm to assess variant effects with novel 
protein sequence- and structure-based features. We designed an epistatic feature, the partners 
score, which defines epistatic residue pairs based on co-evolutionary and 3D structural 
partnership of residues as defined by AlphaFold232 models. The partners score is informed by 
the clinical label of the partner residues, and it relies on the wealth of already existing clinical 
knowledge. Based on their high medical relevance and wealth of clinical diagnostic data, we 
focused on interpreting missense variants in clinically actionable disease genes in the ACMG 
SF v2.0 list, which we refer to as ACMG SF genes2. 
We developed DeMAG (Deciphering Mutations in Actionable Genes), a specialized 
supervised classifier for the ACMG SF genes. DeMAG achieves the best performance across 
VEPs tested on clinical and common variants in population sequencing data. Our specialized 
classifier outperforms VEPs not designed for ACMG SF genes, which are critical for clinical 
sequencing applications. We share predictions and interpretations of all ~1.3 million 
missense variants in the ACMG SF genes as a web server application (demag.org). 
 
Results 
 
Method overview 
The uncertainty associated with the interpretation of mutations in clinically actionable disease 
genes presents major challenges for clinical translational research. Under and overdiagnosis 
as well as patients’ psychological burden due to lack of evidence to support variants’ 
pathogenicity may result in increased costs for the healthcare system. 
Therefore, we developed DeMAG (Deciphering Mutations in Actionable Genes) a supervised 
classifier to assess the pathogenicity of mutations in clinically actionable disease genes 
(ACMG SF) and support clinical decision making. First, we carefully curated variants with 
known phenotypic effects and putatively benign variants used for training the model (Fig. 1 
and Supplementary Fig. 2). For those variants, we then tested several sequence- and 
structure-based features and selected those that discriminated between pathogenic and benign 
mutations (Fig. 1 and Supplementary Table 1). We designed the partners score, which is 
based on evolutionary and structural partnerships of residues as estimated by AlphaFold2 
structural models. Then, we trained a machine learning model that was validated with 3 
different ground-truth test sets: clinical, functional (deep mutational scanning) data, and 
common variants from population data. Finally, we computed DeMAG pathogenicity scores 
for all missense variants in the ACMG SF genes. 
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Curated training set 
In order to curate a high-quality training set, we considered several independent sources of 
SNVs and set strict criteria to retain only high-quality variants. We included high-quality 
ClinVar variants with at least two stars review status label, namely variants labeled with no 
conflicts between all submitters or reviewed by expert panels or practice guidelines. We 
supplemented that with variants which have previously been described in the medical 
literature in  Human Gene Mutation Database (HGMD)33, that have not yet been observed in 
ClinVar (Supplementary Fig. 4a). The last source of pathogenic mutations included all 
disease-causing mutations from UniProtKB. In total, the pathogenic class consisted of 6,713 
unique pathogenic mutations (Fig.1 and Supplementary Fig. 2a). 
We collected putatively benign variants from the a large population database, gnomAD34 
(Genome Aggregation Database), and additional population-specific databases, including 
individuals of  Korean35 and Japanese36 ancestry, as well as human orthologous 
polymorphisms37 (Supplementary Fig. 2a). We defined benign variants as those with a minor 
allele frequency (MAF) greater than the associated disease prevalence in accordance with 
ACMG-AMP guidelines5. Using a disease-specific MAF threshold, we gained almost 3,000 
benign variants compared to using a generic MAF >0.5% threshold (Supplementary Fig. 2b). 
The benign class consisted of 4,512 variants. The above approach of using gene-specific 
MAF thresholds can generally be applied to other genes to increase the number of benign 
variants. Overall, we assembled 40% benign and 60% pathogenic variants (Supplementary 
Fig. 2d).  
 
Development of the partners score to quantify epistasis 
Overall, DeMAG uses only 13 features, 8 derived from sequence conservation, and 5 from 
3D structural models, disorder scores and epistatic relationships (Supplementary Table 4). 
We designed a novel feature called the partners score, based on the observation that partner 
residues that are connected whether because they are close in 3D proximity or because they 
are co-evolving, share the same phenotypic effect (Supplementary Fig. 7a).  
We used the AlphaFold2 3D protein structural models to identify residues in spatial 
proximity (<11Å between C-alpha atoms, see Methods) and highly correlated positions 
inferred from multiple sequence alignments of homologous sequences38,39, to identify co-
evolving residue pairs. Each residue position can be associated with only pathogenic, only 
benign or both pathogenic and benign (mixed), or not being associated with any known 
mutations (Fig. 2a). Each residue has a score (residue score) based on the type and number of 
connections it has (Fig. 2a). We used a mixture discriminant analysis40 approach to define the 
partners score: we first estimated the density of the residue score for pathogenic and benign 
mutations in the training set and then we calculated the posterior probability of belonging in 
either class, given the residue score. The posterior probability of pathogenicity represents the 
partners score (Fig. 2a and Methods), which highlights how mutations with the same 
phenotypic effects cluster both in linear and 3D space of the protein.  
 
Partners score identifies functional sites 
While only 13% of ACMG SF residues positions have annotated mutations in the training set, 
we can now inform 74% of positions with the partners score by making use of these 
relationships (Fig. 2a). For example, the DNA mismatch repair protein Msh6 has only 7 
pathogenic and 8 benign co-evolving annotated residue positions, but with the partners score 
we annotated another 255 positions. The same trend applies to positions in spatial proximity 
(Fig. 2b).  
For the cellular tumor protein p53, we observed a clear correlation between the partners score 
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and Pfam protein domain annotations, e.g., the low-complexity region and disordered region 
are characterized by low partners score, while the DNA-binding domain has overall high 
score (Fig. 2b). 
In addition, we observed that residues located in important functional sites of the protein such 
as DNA or ATP binding sites, have statistically significantly higher partners score compared 
to other residue locations (Fig 2c and Methods). Interestingly, we found that the Msh6 ATP 
binding site has a high partners score (Fig. 2c). The role of the ATP binding site of the Msh2-
Msh6 heterodimer is crucial for DNA mismatch repair (MMR) competency: mutations of the 
lysine invariant residue in the msh6 Walker A motif are complete loss of function mutations 
in vivo in S. cerevisiae41. Moreover, all 14 mutations (G1134[A,R,E,V], P1135A, N1136D, 
M1137[T,V], G1138R, G1139[D,C,V], S1141[C,P]) in this site are ClinVar VUSs, hence 
they do not currently have an interpretation. Overall, 74% of variants that are in motifs and 
domains are pathogenic in our dataset. In accordance, variants in motifs and domains have 
higher partners score supporting the efficacy of this feature in assessing the effects of 
mutations. 
 
DeMAG reaches high sensitivity and specificity 
Many existing VEPs do not explicitly attempt to balance sensitivity and specificity. Their 
recommended thresholds are usually set to reach high sensitivity in variant interpretation, 
while tolerating a high misclassification rate of benign variants. This imbalance increases the 
number of potentially false positive variants to be evaluated (benign variants predicted 
incorrectly to be pathogenic).  
To address this issue, we made efforts to improve training set balance with 60% pathogenic 
and 40% benign mutations (Fig. 1 and Supplementary Fig. 2d). The 13 features that we 
selected had independent balanced performance in discriminating between pathogenic and 
benign classes (Supplementary Table 1a and Methods). DeMAG was trained with a gradient 
boosting tree method42,43 (See Methods) and it yielded high accuracy (87%) and AUC-ROC 
(92%) values that correspond to high sensitivity (87%) and specificity (85%), as well as high 
precision (90%) (Fig. 3c). Our recommended threshold to interpret a variant as pathogenic is 
0.5. Overall, DeMAG has a balanced sensitivity and specificity that is also maintained within 
genes (Fig. 3a).  
 
Epistatic and structural information increase DeMAG’s performance 
We investigated the contribution of each feature and observed that the partners score is the 
most informative one (Fig. 3b). In addition, a structural feature, i.e., the normalized 
accessible surface area, is contributing at least as much as other conservation-based features, 
e.g., PSIC score. In order to quantify the contribution of epistatic and structural features, we 
trained DeMAG without those features and observed a consistent decrease across all 
evaluation metrics (Fig. 3c). In particular, the specificity dropped from 85% to 69%, while 
the sensitivity was decreased from 87% to 82%.  
We explored the contribution of epistatic and structural features at the gene level and 
observed an increase in sensitivity for genes with high proportions of pathogenic mutations. 
The specificity increased for genes with different proportions of pathogenic mutations, albeit 
mainly for genes with high proportions of benign mutations (Supplementary Fig. 8a). The 
difference in performance with and without epistatic and structural features appears to be 
independent of the number of training variants per gene (Supplementary Fig. 8b). 
While it is evident that DeMAG’s performance increased with epistatic and structural 
features overall, the improvement at the gene level is more challenging to assess. 
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Many VEPs fail to predict functional effects observed in deep mutational scans  
We validated DeMAG against Deep Mutational Scanning (DMS) data as in prior studies15, 
using data for 4 genes (BRCA144, TP5345, PTEN46 and MSH247), which are expected to be 
strong proxies for variant functional effects. Most variants in these assays are not yet 
annotated in ClinVar (51%), and 41% are ClinVar VUSs (Supplementary Fig. 9). Among the 
7 VEPs evaluated, DeMAG performed best on BRCA1 (35% Matthews Correlation 
Coefficient, MCC) and PTEN (27% MCC), while EVE performed better for TP53 (39% 
MCC) and MSH2 (38% MCC) (Supplementary Fig. 9).  
Nevertheless, the overall performance of VEPs on functional data is poor, with MCC values 
below 40% (Supplementary Fig. 9). This might be due to the high proportion of variants 
interpreted as functional by DMS data, e.g., for MSH2, 92% of single nucleotide missense 
substitutions are assessed as functional. As VEPs usually set recommended thresholds to 
interpret pathogenicity for high sensitivity, they fail to identify benign variants. While EVE 
and DeMAG outperform other tools, their misclassification rate is still high on DMS datasets, 
which underlies a potential limitation for the clinical application of such data. 
 
DeMAG outperforms existing tools on clinical and population data 
As VEPs often collect variants from the same database sources, it is essential to benchmark 
the different predictors against an unbiased testing set to avoid type 1 circularity16. To 
compare our performance with PolyPhen-2, SIFT4G, REVEL, DEOGEN248, M-CAP, 
VEST4 and EVE, we designed a clinical testing set comprising high-quality variants 
submitted to ClinVar after 2017. As the most recent supervised method was published in 
2016, none of the VEPs were trained on those newer variants. We re-trained DeMAG without 
the testing variants and used this model to predict ClinVar testing variants (Supplementary 
Table 2). The testing set had 852 (66%) pathogenic and 433 (34%) benign variants. As not all 
VEPs have predictions for these variants, we benchmarked DeMAG in pairs (Table 1 and 
Fig. 4a). DeMAG stood out from all the other predictors, reaching the highest specificity, 
accuracy, and MCC value (Table 1 and Fig. 4a). DeMAG performance is consistently high 
across the different evaluation metrics. There is great discrepancy between the specificity of 
DeMAG and other tools, e.g., DeMAG 84% and REVEL 62%. 
It should be noted that EVE’s high accuracy (89%) dropped to 72% when we included 
variants that the authors predicted as Uncertain, although they are actually annotated as 
benign or pathogenic variants in ClinVar. While each tool has different strengths, DeMAG 
outperforms all other methods tested in at least one evaluation metric reported. 
 
We also benchmarked against putatively benign common variants in the Estonian 
population49. Even if variants from the Estonian Biobank are not yet part of gnomAD, 80% 
were already annotated in ClinVar (Table 2 and Fig. 4b). Most variants were VUSs (33%) 
and high-quality benign variants (30%). We evaluated variants, not already annotated in 
ClinVar or in our training set, and we filtered the variants based on MAF greater than the 
corresponding disease prevalence, resulting in a total of 94 putatively benign variants. 
DeMAG had by far the lowest misclassification rate among the other predictors (Table 2 and 
Fig. 4b). DeMAG yielded superior performance across clinical and population-based 
validation sets.  
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Discussion 
 
As genomic sequencing becomes more frequent in clinical practice and research, the 
interpretation of missense variants remains a major challenge. It is especially important to 
correctly classify genetic variants in the context of clinical decision making, i.e., variants in 
clinically actionable genes. Therefore, we developed DeMAG, a specialized VEP tool that 
reaches high performance for clinically actionable disease genes, as defined by the ACMG. It 
demonstrates superior balance between sensitivity and specificity (Fig. 3a and c), and can be 
useful for variant prioritization, rare variant studies, and to reclassify VUSs in the ACMG SF 
genes. As high as 30% of missense VUSs in ClinVar belong to the ACMG SF genes, 
underlying the importance of a specialized classifier. While exome-wide predictors have a 
wide range of utilities in basic research, here we show that a specialized classifier reaches 
higher performance on clinically actionable genes, and should be prioritized in translational 
research (Tables 1 and 2 and Fig. 4). 
 
The assembly of a high-confidence balanced training set is crucial for the development of 
supervised predictors. For example, the ClinVar Review status provides a system to evaluate 
review quality and agreement on the clinical significance of a variant. Thus, we included only 
variants whose clinical interpretation is shared among different submitters, i.e., 2 or more 
review status stars. On the other hand, HGMD does not provide detailed rules to distinguish 
between high and low-quality variants’ annotations. The joint analysis of clinical annotations 
between databases, namely ClinVar and HGMD, allowed the removal of potentially 
conflicting or lower-quality variants. Indeed, we removed almost 40% of disease-causing 
variants in HGMD that were interpreted in ClinVar as VUSs (Supplementary Fig. 4). As 
clinical databases become increasingly important repositories for genetic variation in relation 
to human health and disease phenotypes, it is crucial to implement quality control pipelines to 
include only variants with non-conflicting and clear interpretations. 
 
As many VUSs are identified in diagnostic testing, many studies are focusing on VUS 
assessment and reclassification50,51. For instance, Dines et al. reclassified BRCA1 exon 11 as 
a coldspot, suggesting a strong benign reinterpretation of variants located within that region. 
DeMAG predictions for that region agree with such reclassification (Supplementary Fig. 11). 
On the other hand, the reassignment of the BRCA1 coiled-coil domain (1393-1424) as a 
moderate benign region seem in disagreement with previous study that showed that mutations 
in that region disrupt the complex formation with PALB2, which would impair the 
Homologous Repair (HR) mechanism52. DeMAG agrees with this work and it classifies at 
least 45% of all possible missense substitutions in that region as pathogenic (Supplementary 
Fig. 11). Overall, we provide classification for all missense variants, including all VUSs, 
revealing that 43% of them are predicted pathogenic by DeMAG. 
 
It is still not common practice to report different performance statistics metrics for VEPs, and 
often only the AUC-ROC is provided, that is not adequate especially when training on 
unbalanced data53 (Supplementary Fig. 2d). Therefore, we reported several performance 
metrics when benchmarking DeMAG (Tables 1 and 2 and Figure 4) that highlighted how 
several popular VEPs fail to identify benign variants (Tables 1 and 2 and Fig. 4). As 
computational evidence is one of the criteria used to classify sequence variants, bias to 
overestimate pathogenicity contributes to labeling more variants as pathogenic in publicly 
available databases.  
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So far, the lack of experimental structures for most of the human proteome failed to 
highlight the role of structural properties of individual proteins for most VEPs. For the 
ACMG SF genes the experimental structures with a resolution higher than 4 Å covered 
only 28% of the residues (Supplementary Fig. 5), and now all residues have AlphaFold2 
3D model predictions. Nevertheless, the comparison between AlphaFold2 and 
IUPred2A showed how high-quality predictions are still missing for many ordered 
regions (Supplementary Fig. 6), highlighting how the mystery of protein folding is yet 
to be understood. 

The epistatic and structurally derived features are informative, as DeMAG has inferior 
performance without these features in training for all metrics considered (Fig. 3c). Despite 
the overall improvement, there are a few genes that do not benefit from those new features. 
This might be due to the imbalanced nature of pathogenic and benign training variants within 
the genes (Supplementary Fig. 2). The performance of genes that harbor almost only 
pathogenic (or benign) mutations will be dominated by high sensitivity (or specificity), so an 
improvement in the dominant metric will result in a substantial drop of the other one. For 
instance, the new features increase sensitivity in FBN1, but as the gene has 93% pathogenic 
mutations, the specificity drops by 27% (Supplementary Fig. 12 and Fig. 3a). The same 
happens for APOB, MYH11 and APC. They have benign mutations in proportions greater 
than 86%, and indeed, an increase in specificity corresponds to more than 30% drop in 
sensitivity. Though we are able to dramatically improve the balance in performance 
characteristics, some clinically actionable disease genes have significant biases which pose 
challenges for variant interpretation. 

We combined co-evolutionary and structural information with the annotated phenotypic 
effect of the coupled positions. We observed that evolutionary coupled positions as well as 
spatially proximal ones are enriched for the same phenotypic effect and might serve to 
identify functional sites, e.g., binding sites (Fig. 2c and Supplementary Fig. 7a). We show 
that the traditional conservation paradigm to interpret human coding missense mutations 
should be complemented with epistatic and structural information.  
DeMAG requires abundant clinical data to be successfully extended to any other gene, which 
is currently not available for most genes, even among actionable ones. In the coming years, 
the lack of clinical data for less studied genes will be generated and become available and 
supervised predictors like DeMAG will further improve variant effect assessment directly 
from patients sequencing data.  
In conclusion, we anticipate that our tool and the web server (demag.org) will facilitate 
clinical decision-making. Moreover, the newly developed features can be applied to other 
genotype-phenotype predictors and be generalized to other genes and organisms. 
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Online methods 

Training dataset  
VCF files for SNPs were collected both from clinical and population databases. We 
downloaded the ClinVar VCF file, version 2021.05, and we retained variants with at least 2 
review status stars variants annotations that contained in the clinical significance field either 
the word ‘pathogenic’ or ‘benign’. Variants of conflicting pathogenicity were excluded as 
well as variants with only somatic labels. We used the Human Mutation Gene Database 
(HGMD), version 2020.03, to extract pathogenic mutations. We filtered for disease mutations 
(DMs) and we only retained variants that were not already annotated in ClinVar 
(Supplementary Fig. 4).  With this analysis we removed HGMD variants with a VUSs label in 
ClinVar (26%), as well as low quality (zero and one review status star) ClinVar pathogenic 
variants (27%) and ClinVar benign variants (1%). PolyPhen-2 HumVar set derived from 
UniProtKB release 2021_01 was utilized to collect both pathogenic and benign variants. We 
also added common variants to the benign set from the Genome Aggregation Database 
(gnomAD), from the NCBI ALFA (Allele Frequency Aggregator) project release 20201124, 
from country specific sequencing projects, i.e., Korea (KRGDB) and Japan (3.5KJPNv2), and 
from human orthologues variations (PrimateAI and HumOrtho). For the population data, as 
suggested by the ACMG-AMP guidelines, we considered as benign the variants with a minor 
allele frequency (MAF) greater than the associated disease prevalence. Disease prevalences 
were collected from Orphanet and when not available a MAF greater than 0.5% was applied 
(Supplementary Table 3). Putatively benign non-human primate variants were collected from 
primateAI database but only Chimpanzee and Bonobo species were considered.  
Both duplicates and conflicting variants, i.e., variants reported both as pathogenic and benign 
among different sources, were removed from the final training set. Number of training 
variants among different sources and different genes are shown in Supplementary Fig. 2. 

Clinical testing dataset 
The primary clinical testing set (852 pathogenic and 433 benign variants) was built from the 
ClinVar database. To ensure the independence of the testing set, we only considered variants 
submitted to ClinVar after December 2017 (Supplementary Fig. 3). Since the newest 
supervised method we were benchmarking with was published in 2016, we are sure that those 
variants were not used in the training pipeline of any of these predictors. As we used ClinVar 
variants for training, we trained a different model excluding the variants used as a testing set. 
This ensured unbiased comparison for DeMAG (Supplementary Table 2).  

Functional variants testing set 
In order to investigate the accordance between DeMAG predictions and experimental data, 
we evaluated DMS data for BRCA1, TP53, PTEN and MSH2. All datasets were collected 
from the Supplementary material of the respective papers. When possible, we assessed the 
concordance between different experimental replicas to ensure a robust functional score for 
each variant. For BRCA1, two scores were available and as the correlation and the variance 
explained was 81% and 65% respectively, we included all the variants. The authors assessed 
variants’ functional scores in three categories: loss of function (LOF), intermediate (INT) and 
functional (FUN). We did not evaluate the intermediate class. After removing overlapping 
variants with our training set, we evaluated 1587 variants: 1268 (80%) FUNC and 319 (20%) 
LOF. For PTEN, 8 different scores were available. Since the correlation pattern among the 
replica was variable, we only evaluated variants whose standard deviation among all 
available 8 scores was smaller than 10%. In this case as well, we did not evaluate uncertain 
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functional categories, namely possibly wt-like and possibly low. We eventually evaluated 34 
FUNC (64%) and 19 LOF (36%) variants. For MSH2, we could not analyze the concordance 
among different replicas, as only one score was provided. The total number of variants 
analyzed was 5075: 4737 (93%) FUNC and 338 (7%) LOF variants. The last gene we 
analyzed was TP53, for which we did not have more than one functional score but agreement 
between replicas was already assessed by the authors. We eventually evaluated 1017 variants: 
714 (70%) FUNC and 303 (30%) LOF variants.  

Common variant testing set 
We assembled another testing set from the Estonian Biobank. This set comprises common 
variants in the Estonian population. To consider a variant as benign we applied the same rule 
as for the common variants in the training set: MAF greater than disease prevalence. In order 
to design a testing set as independent as possible, we removed variants that were present in 
our training set as well as variants with a ClinVar interpretation. This might not guarantee 
that those variants were not used for training by the other tools, thus there is still a potential 
bias to overestimate their performance. The validation set consisted of 94 variants. We 
repeated the analysis on 5000 bootstrap samples, in order to obtain the standard deviation of 
the performance metric, namely the misclassification rate. 

Pathogenicity scores 
Pathogenicity scores were collected through dbNSFP v4.1a command-line application. We 
have downloaded scores for SIFT4G v2.4, VEST v4.0, Polyphen-2 v2.2.2, M-CAP v1.3, 
DEOGEN2 and REVEL. To calculate the accuracy, we used the threshold as recommended 
by the authors, which is 0.5 for all the methods except for M-CAP which is 0.025 and 
SIFT4G which is 0.05. For EVE, we downloaded the predictions from the web server 
(https://evemodel.org/download/bulk). EVE does not provide a unique threshold, rather a 
gene-based predefined categorical feature with 3 different levels: Pathogenic, Benign and 
Uncertain. We evaluated only the benign and pathogenic variants, but we calculated the 
accuracy when misclassified variants based on EVE’s Uncertain class were retained.  

Variant annotation 
We used PolyPhen-2 MapSNPs annotation tool to map the genome assembly hg19/GRCh37 
variants coordinates to missense coding SNPs. Only variants mapping to known canonical 
transcripts according to the UCSC Genome Browser were retained. 

Sequence-based features 
We used PolyPhen-2 pipeline to annotate DeMAG features, a complete list and description is 
available at the PolyPhen-2 Wiki page 
(http://genetics.bwh.harvard.edu/wiki/pph2/appendix_a ). The new features are annotated 
separately (see sections below). IUpred2A scores were collected from the tool’s web 
interface (https://iupred2a.elte.hu/). 

Epistatic and structure-based features 
EVmutation scores were obtained using the EVcouplings python package, version v0.1.1. 
The alignments were manually curated in order to maximize the coverage. In particular, 
protein sequences were tiled in regions of 100 residues with an overlapping window of 50 
residues, i.e., 1-100, 50-150. We computed the first three stages of the EVcouplings pipeline, 
i.e., align, couplings and compare, for each tiled region and for five different bit score 
thresholds (0.1,0.2,0.3,0.4,0.5). We merged adjacent regions if either the number of 
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sequences in the alignment was greater than 5 times the length of the region or if the 
skewness of the Evolutionary Couplings (EC) distribution was greater than 1. We repeated 
these steps until no more adjacent regions could be joined together. The final alignment 
coverage for the ACMG SF genes is shown in Supplementary Fig. 12a. 
Co-evolving residue positions were identified within the EVcouplings framework.  
Each residue might be associated with many or only few residue positions.  
We excluded residue positions in a connection with only not annotated residues as in the 
training set. A residue that is not annotated is a residue that according to our training set does 
not have any associated mutations. To each residue is assigned a score that is 1 for 
pathogenic residue positions, -1 for benign and 0 for mixed or not annotated ones. The 
residue score is the sum of the scores of all co-evolving positions (Fig. 2a). We used the 
residue score distribution as input for the mixture discriminant analysis. First, we estimated 
the density of the residue score distribution for the pathogenic and benign residues positions 
independently. Next, we predicted for each residue position the posterior probability of 
belonging to the benign and pathogenic class given the residue score and the prior probability 
of being a pathogenic or benign position as in the training set. The partners score of co-
evolving residue positions is the posterior probability of belonging to the pathogenic class 
(Fig. 2a).  
The significance of evolutionary coupled residues is determined by their location in the EC 
distribution. A probability model has been defined to identify strong coupled positions. The 
higher the probability the stronger the coupled residues. In order to select the best probability 
threshold, we trained such a model for different cutoffs. We selected the probability cutoff 
(0.6) with the smallest difference between sensitivity and specificity (Supplementary Fig. 7b).  
The same approach was used for spatially close residue positions as in AlphaFold2 3D 
models. In order to select the Ångström distance threshold for considering a pair of residues 
as contacting in 3D space we trained different models with different cutoffs (4-11Å). We 
selected 11Å as the best distance, i.e., smallest difference between sensitivity and specificity 
(Supplementary Fig. 7b).  
We did not consider larger distances to avoid introducing protein-specific properties rather 
than residues-based ones.  
The residue score for co-evolving positions and spatially close ones highly correlate 
(Supplementary Fig. 7c), thus we combined them and in case of overlap we took the spatially 
close residues score. To derive the partners score feature we used a mixture discriminant 
analysis approach implemented with the mclust54,55package in R. The best model selected by 
BIC had 3 gaussian components with variable variance for the density of the residue score for 
pathogenic residue positions and 4 gaussian components with equal variance for the benign 
ones. Given the density estimation of the residue score and the prior probabilities of the 
pathogenic and benign residue positions in the training set, the mixture model predicts the 
posterior probability of belonging in both classes (pathogenic and benign). We considered the 
posterior probability of pathogenicity as the partners score. Eventually, 49822 residues have a 
partners score. Both the residue score and the partners score are not biased towards protein’s 
length, thus scores normalization was not needed (Supplementary Fig. 7c).  
In order to evaluate whether mutations located in functional motifs and domains have higher 
partners score than any other locations, we tested the null hypothesis of equal means in the 
two groups with a bootstrap analysis approach. We first built the distribution under the null 
hypothesis of equal means in the two groups. Then, we drew 20000 samples from the null 
distribution and stored the t-statistic of each sample. Lastly, we calculated the approximated 
p-value by dividing the times the t-statistic in each of the bootstrap samples was greater than 
t-statistic observed in the original sample by the number of bootstrap samples. The 
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approximated p-value was 0. We obtained the same statistically significant results with the 
Wilcoxon rank sum test (p-value was 0.0005532). 

Structures and 3D models 
Structures were collected from PDB (Protein Data Bank). We included any experimental 
structure with a resolution not greater than 4 Ångström. To increase structural coverage, we 
also included 3D models. We used SWISS-MODEL (https://swissmodel.expasy.org/) to 
derive protein structure homology models, as well as de novo modeling. For the homology 
modeling we only considered models with a template identity greater than 70% to the query 
protein. We used the EVcouplings pipeline as already described in the Features paragraph. 
For each protein’s region we got different 3D models predictions. The models were clustered 
based on their RMSD score. The most populous cluster should contain the most reliable 
models. To select the best model, we chose the top 20 models that belonged to the biggest 
cluster. Among those we excluded models with knots and we took the model with the 
smallest radius of gyration, as a metric of protein compactness56. Overall, considering those 3 
different sources for 3D structures/models, 50% of ACMG SF residues were covered 
(Supplementary Figure 5a). Since July 2021 we updated our 3D data with AlphaFold2 
models (https://ftp.ebi.ac.uk/pub/databases/alphafold/UP000005640_9606_HUMAN.tar) that 
resulted in 100% coverage among ACMG SF genes (Supplementary Fig. 5). For long genes 
(APC, APOB, BRCA2, DSP, FBN1, RYR1, RYR2) AlphaFold2 produces different 
overlapping models that we combined to obtain one single complete model. The models are 
~1400 aa long with non-overlapping regions of ~200 aa that eventually cover the full 
sequence. 

Cross-validation scheme 
In order to select the probability and Ångström distance cutoff as well as for the features 
selection pipeline and in general for the model training, we trained the models with a cross 
validation scheme. The cross-validation scheme ensured that each testing fold contained 
different proteins than the ones in the training folds. This prevents bias due to training and 
testing within the same protein. In addition, each testing fold should have a distribution of the 
pathogenic and benign class that reflects the one of the training set. To respect these two 
principles, we considered 4 CV-folds for model training and hyperparameters selection and 5 
CV-folds for the features selection pipeline.  

Feature selection 
Training set variants were annotated with a total of 91 features. Most features were annotated 
with PolyPhen-2 pipeline and a description of each feature can be found here 
(http://genetics.bwh.harvard.edu/wiki/pph2/appendix_a). After removing gene-based 
features, 39 features were retained. In order to select the most discriminative features to train 
the model with, we trained a univariate logistic regression model. The CV strategy is 
explained above (see Cross-validation scheme subsection). The features that had an ROC-
AUC above 0.7, while ensuring a correspondent sensitivity and specificity greater than 0.5, 
were selected. We trained the model with a total of 13 features. The feature selection process 
was repeated twice: one time for DeMAG and another one for DeMAG without the ClinVar 
testing set. The selected features for both models can be found in Supplementary Tables 1a 
and 2b. 

Machine learning models 
DeMAG was trained with a gradient-boosting model with classification tree as base learner 
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and Bernoulli deviance as loss function. R package “gbm” version 2.1.8 was used for 
training57. We trained the model with the 13 features selected during the feature selection 
pipeline. We implemented a grid search for two of the parameters of the gbm function: 
shrinkage and interaction depth. The combinations evaluated were 9, resulting from 3 values 
for the shrinkage parameter (0.001, 0.0055, 0.01) and for the interaction depth (1, 2, 3). The 
best combination of parameters was selected based on performance in 4-fold CV: the models 
were ranked based on the smallest difference between sensitivity and specificity and if more 
than one model satisfied the condition the model with the highest sensitivity and specificity 
was selected (Supplementary Tables 1b and 2b). As for the feature selection, the grid search 
was performed for DeMAG without the ClinVar test set as well. Once we identified the best 
parameters, the gbm model was trained with 4-fold CV to inspect the robustness of the 4 
models’ performance and to investigate any potential biases in the training set. The final 
model was then trained on the complete dataset. The gradient boosting model was chosen 
over other ensemble machine learning techniques such as Random Forest because it explicitly 
handles missing values, namely for each decision in the tree there are not only the left and 
right nodes but a missing node as well. Missing information is thus treated as information and 
it is not imputed.  

Data availability (code and website about training data and precomputed scores) 
The code will be available here https://github.com/Fedeluppi/DeMAG and the webserver is 
https://demag.org/. 

Software 
The statistical analysis was all done in R (see the github repository for the lists of packages 
used). The figures and tables were made with R, Biorender.com and LaTeX. To visualize 
protein 3D models we used Pymol. The webserver was created with RShiny app. 
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Figures: 
 
 

 
Figure1: DeMAG (Deciphering Mutations in Actionable Genes) overview. 
First, we assembled the training set for 59 actionable genes; the pathogenic variants were 
collected from clinical databases such as ClinVar and HGMD. The benign class was enriched 
with variants from different sources such as clinical, population and benign human 
orthologues data. The training set consisted of 6713 (60%) pathogenic and 4512 (40%) 
benign variants. Next, we annotated the features, e.g., EVmutation, IUPred2A and 
AlphaFold2 confidence score pLDDT. We designed a novel feature, the partners score 
feature, that captures the role of epistasis both in the sequence and in 3D space of the protein. 
It highlights how evolutionary coupled and spatially close residues are enriched in the same 
phenotypic effect. Next, we trained a classification tree based gradient boosting model using 
the selected 13 features. The model was validated with 3 different types of data, 1) clinical 
testing set from ClinVar, 2) putatively benign common variants from the Estonian population, 
3) Deep Mutational Scanning (DMS) data for four genes, i.e., BRCA1, TP53, MSH2 and 
PTEN. The validation sets identify variants with a ground-truth label, e.g., variants’ clinical 
significance or functional score. Finally, we provide predictions for all variants whose 
phenotypic effect is yet unclear or unknown. 
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Figure 2: The partners score: integrating evolutionary and structural information to 
inform variants effect assessment. 
a: The design of the partners score feature. On the left, co-evolving positions in the protein 
sequence and spatially close residues (<11 Å) in the protein 3D structure. Residues are 
colored according to the associated mutations’ phenotypic effect, e.g., red for positions with 
only pathogenic mutations (see legend on the left). Only residues with at least one connection 
with an annotated residue position have a partners score.  
On the right, we first defined the residue score as the sum of partners points per residue. 
Next, we estimated the density of the residue score distribution for the benign and pathogenic 
residue positions with a gaussian mixture model. Then, for each position we calculated the 
posterior probability of belonging both to the pathogenic and benign class, given the residue 
score. The posterior probability of pathogenicity represents the partners score. 
The partners score feature is available for 74% of ACMG SF residues positions, compared to 
only 13% of positions annotated in the training set. 
b: On the left, co-evolving residue positions for the DNA mismatch repair protein Msh6. The 
inner circle shows that there are only 7 pathogenic and 8 benign annotated co-evolving 
positions. The outer circle shows the partners score, which is also assigned to the 255 not 
annotated residue positions. On the right, AlphaFold2 3D model of the protein where residue 
positions are colored based on their partners score.  
Below, the same representation for the cellular tumor antigen p53. More co-evolving residue 
positions are annotated and it is clearer a correlation between partners score and domain 
annotation. 
c: On the left, the partners score distribution between residue positions located (YES) and not 
found (NO) in important sites e.g., DNA or ATP binding sites. On the right, an example for 
msh6 protein, whose ATP binding site residues have a high partners score.  
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Figure3: Epistatic and structural features increase DeMAG performance, both within 
and between genes. 
a: DeMAG performance within genes: for most genes, variants are highly classified 
(AUC>70%). The high performance is also maintained for the classification of pathogenic 
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(sensitivity>70%) and benign (specificity>70%) variants, regardless of the gene, with only 
few exceptions. 
b: DeMAG features’ importance for the 4-fold CV. On the x-axis is feature importance and 
on the y-axis are features names (see Supplemetary Table 4 for features description). The 
partners score feature clearly stands out from the others.  
c: Different performance metrics for DeMAG. The metrics represent mean values of 4-fold 
CV with standard deviation in parentheses. Notably, DeMAG is balanced across all 
evaluation statistics (e.g., 87% sensitivity and 82% specificity). DeMAG without epistatic 
and structural features has consistently lower performance than the complete model. 
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Figure 4: DeMAG outperforms VEPs on clinical and putatively benign common 
variants. 
a: DeMAG’s pairwise comparison on clinical variants from the ClinVar testing set, according 
to difference performance metrics (specificity, sensitivity, ROC-AUC, Matthews Correlation 
Coefficient (MCC), variant coverage).  
The left panel shows that, except for EVE, DeMAG’s advancement in specificity stands out. 
While all tools reach almost perfect ROC-AUC and sensitivity (top right panels), DeMAG 
reaches the most balanced performance, namely the highest MCC (bottom left panel).  
b: DeMAG’s pairwise comparison on putatively benign common variants from the Estonian 
Biobank. DeMAG shows the lowest misclassification rate among all VEPs.  
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Tables 
 
Table 1. DeMAG best classifies clinical variants. 
Different comparison metrics for DeMAG and seven popular pathogenicity predictors tools. 
The test set is assembled from the ClinVar database, consisting of both pathogenic (n=852) 
and benign variants (n=433) submitted after the year 2017. The comparison in pairs 
guarantees that each predictor is evaluated on all the variants for which a prediction exists. 
DeMAG is the best performing tool, as it is the most balanced across all of the metrics. 
DeMAG’s specificity highlights how it does not overpredict pathogenic variants like other 
tools such as SIFT4G and M-CAP. 

 
 
 
 
  

VEPs Sensitivity Specificity Accuracy MCC AUC

Variants

Predicted

(n = 1285)

VEP’s

coverage

DeMAG 0.93 0.82 0.9 0.77 0.96 0.95

SIFT4G 1 0.07 0.68 0.21 0.81 1226 0.95

DeMAG 0.94 0.82 0.89 0.76 0.96 1

REVEL 0.99 0.62 0.86 0.69 0.96 1285 1

DeMAG 0.93 0.79 0.89 0.74 0.95 0.75

DEOGEN2 0.91 0.58 0.8 0.53 0.91 964 0.75

DeMAG 0.93 0.79 0.89 0.74 0.95 0.76

PolyPhen2 0.91 0.72 0.85 0.64 0.86 972 0.76

DeMAG 0.94 0.81 0.89 0.76 0.96 1

VEST4 0.99 0.64 0.87 0.72 0.95 1280 1

DeMAG 0.94 0.81 0.9 0.76 0.96 0.98

M-CAP 1 0.28 0.77 0.44 0.93 1256 0.98

DeMAG 0.96 0.81 0.92 0.8 0.97 0.73

EVE 0.92 0.81 0.89/0.72
1

0.73 0.91 940 0.73

1The accuracy is 72% if misclassified variants
based on EVE’s Uncertain class are included.

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.15.496230doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.15.496230


 22 

Table 2. DeMAG classifies putatively benign variants with the lowest misclassification 
rate. Misclassification rate of putatively benign common variants within the Estonian 
population (see Methods). DeMAG reaches by far the lowest misclassification rate among the 
other tools. The values in parentheses represent the misclassification rate standard deviation 
calculated on 5000 bootstrap samples. 
The lower table shows ClinVar clinical significance for the Estonian Biobank variants: 
among high-quality (review status with at least 2 stars) annotations most variants are benign 
and VUSs.  

 
 
 
 
 
 
 
 
 
 
 
  

Review Stars

Clinical Significance 0 1 2 3

Benign 0 3 99 39
Pathogenic 1 1 2 0
VUS 1 48 106 1
Conflicting Pathogenicity 0 168 0 0

Not annotated in ClinVar 117

VEPs
Misclassification

Rate

Variants
Predicted
(n=94)

VEP’s
coverage

DeMAG 0.44 (0.06) 0.74
SIFT4G 0.93 (0.03) 70 0.74

DeMAG 0.43 (0.05) 1
REVEL 0.51 (0.05) 94 1

DeMAG 0.36 (0.05) 0.8
DEOGEN2 0.59 (0.06) 75 0.8

DeMAG 0.36 (0.06) 0.77
PolyPhen2 0.53 (0.06) 72 0.77

DeMAG 0.42 (0.05) 0.99
VEST4 0.49 (0.05) 93 0.99

DeMAG 0.43 (0.05) 1
M-CAP 0.93 (0.03) 94 1

DeMAG 0.44 (0.06) 0.86
EVE 0.51 (0.06) 81 0.86
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List of Supplementary Figures and Tables: 
 

Supplementary Figure 1: ClinVar clinical significance is biased for actionable genes. 

Supplementary Figure 2: DeMAG training set reaches high balance between the pathogenic 
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Supplementary Figure 3: ClinVar unbiased testing set allows to evaluate 853 pathogenic and 

433 variants. 

Supplementary Figure 4: Most HGMD variants have a ClinVar label. 

Supplementary Figure 5: AlphaFold2 predictions cover 100% of ACMG SF sites. 

Supplementary Figure 6: High correlation between IUPred2A disorder and AlphaFold2 

confidence score. 

Supplementary Figure 7: Spatially close and co-evolving residues are enriched in the same 

phenotypic effect. 

Supplementary Figure 8: Epistatic and structural features increase sensitivity for 

“pathogenic” genes and specificity for “benign” genes. 

Supplementary Figure 9: Most ClinVar VUSs are predicted as functional variants by DMS 

data. 

Supplementary Figure 10: EVmutation covers 73% of ACMG SF sites and 23% of residues 

are disordered. 

Supplementary Figure 11: Interaction with PALB2 region (1397-1424) in BRCA1 is mainly 

predicted as pathogenic by DeMAG. 

Supplementary Figure 12: Most genes benefit from the epistatic and structural features. 

Supplementary Table 1: DeMAG model is balanced among different statistics metrics. 

Supplementary Table 2: DeMAG (ClinVar) model is balanced among different statistics 
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