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Abstract 17 

 18 

The emergence of SARS-CoV-2, and the challenge of pinpointing its ecological and evolutionary 19 

context, has highlighted the importance of evidence-based strategies for monitoring viral dynamics 20 

in bat reservoir hosts. Here, we compiled the results of 93,877 samples collected from bats across 21 

111 studies between 1996 and 2018, and used these to develop an unprecedented open database, 22 

with over 2,400 estimates of coronavirus infection prevalence or seroprevalence at the finest 23 

methodological, spatiotemporal, and phylogenetic level of detail possible from public records. 24 

These data revealed a high degree of heterogeneity in viral prevalence, reflecting both real 25 

spatiotemporal variation in viral dynamics and the effect of variation in sampling design. 26 

Phylogenetically controlled meta-analysis revealed that the most significant determinant of 27 

successful viral detection was repeat sampling (i.e., returning to the same site multiple times); 28 

however, fewer than one in five studies longitudinally collected and reported data. Viral detection 29 

was also more successful in some seasons and from certain tissues, but was not improved by the 30 

use of euthanasia, indicating that viral detection may not be improved by terminal sampling. 31 

Finally, we found that prior to the pandemic, sampling effort was highly concentrated in ways that 32 

reflected concerns about zoonotic risk, leaving several broad geographic regions (e.g., South Asia, 33 

Latin America and the Caribbean, and most of Sub-Saharan Africa) and bat subfamilies (e.g., 34 

Stenodermatinae and Pteropodinae) measurably undersampled. These gaps constitute a notable 35 

vulnerability for global health security and will likely be a future barrier to contextualizing the 36 

origin of novel zoonotic coronaviruses.  37 
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Introduction 38 

 39 

Since the emergence of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) 40 

in 2002, coronaviruses (Coronaviridae: Orthocoronavirinae) have been the subject of concern as 41 

potential pandemic threats. The group comprises four genera containing an estimated hundreds 42 

or thousands of viruses [1]. Two of these genera, the delta- and gammacoronaviruses, are 43 

primarily pathogens of birds, though they infect a handful of mammals: notably, porcine 44 

deltacoronavirus became the first shown to infect humans in 2021 [2]. The alpha- and 45 

betacoronaviruses contain all other known human-infective coronaviruses; the latter includes 46 

SARS-CoV, Middle East respiratory syndrome–related coronavirus (MERS-CoV), and severe 47 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the three highly pathogenic 48 

coronaviruses that have caused significant morbidity and mortality in humans [3]. While alpha- 49 

and betacoronaviruses exhibit a high degree of host plasticity, there is substantial diversity of 50 

these viruses in bats, which are likely the ancestral hosts of these groups [4,5]. As such, 51 

coronaviruses have been among a handful of other clades of zoonotic pathogens (e.g., 52 

filoviruses, lyssaviruses, and henipaviruses) that have been monitored extensively in wild bats, 53 

and continue to be the subject of ongoing surveillance [6].  54 

 55 

Research into the natural origins of SARS-CoV-2, and a broader renewed interest in coronavirus 56 

ecology and evolution, have highlighted the immense value of these surveillance studies. 57 

However, outside of long-term coordinated research projects, field sampling is often 58 

opportunistic in response to concerns about spillover, and capacity for systematic sampling is 59 

frequently financially- or logistically-constrained [7]. For example, prior comparative analyses of 60 

bat filovirus and henipavirus positivity have found that only a small fraction of studies report 61 

longitudinal data, limiting inference into temporal dynamics of infection in bats [6]. In turn, this 62 

limits the interpretability of these data in aggregate: for example, single sampling events can bias 63 

prevalence estimates in biologically meaningful ways (e.g., if sampling is more convenient in 64 

one season over another), and may lead to non-randomly missing data. In contrast, explicit 65 

spatiotemporal sampling designs can identify seasonal and environmental drivers of viral 66 

prevalence and shedding intensity, but these are logistically challenging and can necessitate 67 

prioritizing either spatial or temporal replication at the expense of the other scale [6]. These are 68 
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essential considerations for study design, particularly if the ultimate goal is to explain and predict 69 

pathogen spillover, a dynamic process that is driven by geographical and temporal variation in 70 

infection prevalence and shedding from reservoir hosts [6,8], and the relative importance of non-71 

spatiotemporal factors that may impact virus positivity (e.g., tissues sampled, use of euthanasia, 72 

diagnostic method) further warrants examination. Presently, our ability to quantify whether and 73 

how these factors shape global assessments of coronavirus spillover risk is limited by a lack of 74 

standardized and aggregated data from disparate studies.  75 

 76 

Here, we compiled a standardized global database of infection prevalence and seroprevalence 77 

estimates from pre-pandemic coronavirus testing in wild bats, alongside relevant metadata on bat 78 

and viral taxonomy, study methodology, bat demography and seasonality, and ecological 79 

context. We first identified global biases in the distribution and intensity of pre-pandemic bat 80 

coronavirus surveillance, followed by comparative analyses to quantify phylogenetic signal in 81 

sampling effort and identify especially oversampled or undersampled bat clades. Next, we used a 82 

phylogenetically controlled meta-analysis to identify study designs, spatiotemporal factors, and 83 

biological traits that predict higher viral prevalence, with the aim of identifying potential ways to 84 

optimize future sampling. More broadly, we evaluate the global state of coronavirus surveillance 85 

in natural bat hosts prior to SARS-CoV-2-motivated research efforts. 86 

 87 

Results 88 

 89 

Descriptive analyses 90 

From publicly available literature over the last quarter-century, we were able to recover data on 91 

93,877 tests worth of coronavirus surveillance in bats. Over 90% of the 2,434 data points in our 92 

database report infection prevalence (93.7%; compared to 6.3% seroprevalence data ascertained 93 

using a mix of immunologic assays, including ELISA, western blot, and indirect 94 

immunofluorescence). Within the pooled-coronavirus genera (i.e., alpha- and betacoronavirus) 95 

infection prevalence dataset, nearly 95% of estimates used PCR targeting the RNA-dependent 96 

RNA polymerase (RdRp) gene; other gene targets included subunits of the coronavirus spike 97 

protein, the nucleocapsid gene, or the envelope protein. Of the 99.6% of rows detecting 98 

coronaviruses via PCR, approximately 56% used single-round PCR as opposed to nested PCR or 99 
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multiple PCR assays in parallel (e.g., targeting different genes on the same RNA sample). More 100 

than half of these records (53.8%) based their primers on protocols from four past studies [9–12]. 101 

34.8% of the pooled-coronavirus genera infection prevalence records were derived from studies 102 

that had euthanised their sampled bats. Table S2 shows the distribution of tissue types analyzed 103 

and the associated percentages of positive and zero infection prevalence values. Fecal samples 104 

and rectal swabs were the most common tissue used to detect coronavirus RNA. Sex and/or 105 

reproductive status of the bats sampled was only described in 12.6% of studies (14/111), 106 

resulting in 10% of individual prevalence records being stratified by sex. 107 

 108 

Spatial bias in surveillance effort 109 

Prior to the COVID-19 pandemic, we found recoverable data describing sampling of wild bats 110 

for coronaviruses across 54 countries spanning six continents. However, we found that the 111 

distribution and intensity of viral surveillance has been starkly uneven (Fig. 1). Sampled 112 

countries varied in having one to 32 bat coronavirus studies (Fig. 1a), with the number of total 113 

samples tested ranging from four to 26,313 (Fig. 1b). Whereas sampling has occurred across all 114 

North American countries, both Central America and South America have had sparse 115 

surveillance. Similarly, sampling in sub-Saharan Africa as well as Central and South Asia has 116 

been inconsistent, with the majority of global surveillance having taken place in China, and to a 117 

lesser extent other regions of Southeast Asia. A generalized linear model (GLM) of binary 118 

sampling effort (χ2 = 12.08, p = 0.02, R2 = 0.04) confirmed that countries in Asia and Europe 119 

were marginally more likely to be sampled for bat coronaviruses than those in the Americas 120 

(Table S3). We found more substantial geographic biases regarding the relative intensity of 121 

sampling, specifically from the number of studies (χ2 = 17.08, p = 0.002, R2 = 0.05) and the 122 

number of tested samples (χ2 = 19549, p < 0.001, R2 = 0.11). Post-hoc comparisons from GLMs 123 

revealed significantly more studies per country in Asia compared to Africa and to Europe (Table 124 

S4). Similarly, the greatest contrast in total number of tested samples was between Asia and 125 

Europe (risk ratio [RR] = 4.41) and between the Americas and Europe (RR = 2.11; Table S5).  126 

 127 

Taxonomic biases in surveillance effort 128 

Over one in four bat species (363 species of the 1,287 included in our phylogeny [13]) were at 129 

some point targeted by pre-pandemic coronavirus surveillance. Surprisingly, bats have been 130 
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sampled relatively evenly across the phylogeny (Fig. 2a). Indeed, we only identified intermediate 131 

phylogenetic signal in binary sampling effort (D = 0.88) that departed from both phylogenetic 132 

randomness (p < 0.001) and Brownian motion models of evolution (p < 0.001). Similarly, 133 

phylogenetic factorization [14], a graph-partitioning algorithm based on the bat phylogeny, did 134 

not identify any bat clades that differed significantly in their fraction of sampled species. In 135 

contrast, we observed stronger taxonomic biases in sampling intensity. The number of studies 136 

per sampled species ranged from one to 24 (Miniopterus schreibersii), whereas the number of 137 

total samples tested ranged from one to 16,628 (Rhinolophus sinicus). The number of studies per 138 

sampled species showed low phylogenetic signal (λ = 0.04) that departed from Brownian motion 139 

models of evolution (p < 0.001) but not phylogenetic randomness (p = 0.35); phylogenetic 140 

factorization did, however, more flexibly identify four bat clades with significantly greater mean 141 

numbers of studies than the paraphyletic remainder (Fig. 2b): a subclade of the genus Myotis 142 

(including both European and Asian species), a subclade of the tribe Pipistrellini (including 143 

pipistrelle and noctule bats), the sister families Hipposideridae and Rhinolophidae, and the whole 144 

genus Miniopterus (Table S8).  145 

 146 

For the total number of tested samples per species, we instead observed more intermediate 147 

phylogenetic signal (λ = 0.2) that departed from both Brownian motion models of evolution (p < 148 

0.001) as well as phylogenetic randomness (p < 0.001). Accordingly, phylogenetic factorization 149 

identified a total of 23 clades with differential intensities of sampling effort, seven of which had 150 

relatively more tested samples and 16 of which had relatively fewer tested samples (Fig. 2c). The 151 

top clades with comparatively fewer total samples included the sister families Hipposideridae 152 

and Rhinolophidae as well as the above subclade of the tribe Pipistrellini, suggesting a greater 153 

number of publications on these bats but fewer tested samples. However, smaller subclades of 154 

the Hipposideridae and Rhinolophidae families were some of the most heavily sampled, 155 

suggesting key biases in sampling effort within these taxa that have been the subject of much 156 

coronavirus research (Table S9). Finally, members of the subfamily Stenodermatinae within 157 

phyllostomid bats were undersampled, as were several genera within the Pteropodinae subfamily 158 

(i.e., Pteropus, Eidolon, and Acerodon).  159 

 160 

 161 
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 162 

Heterogeneity in coronavirus infection prevalence 163 

Using a phylogenetic meta-analysis model that accounted for sampling variance, bat phylogeny, 164 

additional species effects, and within- and between-study variation [15,16], we observed high 165 

heterogeneity among coronavirus infection prevalence estimates (I2 = 86.32%, Q2075 = 12995.13, 166 

p < 0.0001). This heterogeneity was mainly driven by within-study (42.15%) and between-study 167 

effects (37%), with lesser contributions from bat phylogeny (7.04%) and additional species 168 

effects (0.13%). When repeating this intercept-only model for alphacoronavirus- and 169 

betacoronavirus-specific datasets, prevalence showed similar patterns of heterogeneity 170 

(alphacoronavirus: I2 = 82.37%, Q1769 = 8759.34, p < 0.0001; betacoronavirus: I2 = 76.9%, Q1626 171 

= 6043.81, p < 0.0001), driven primarily by within-study (alphacoronavirus: 46.53%; 172 

betacoronavirus: 36.43%) and between-study effects (alphacoronavirus: 29.003%; 173 

betacoronavirus: 27.10%), and secondarily by phylogenetic (alphacoronavirus: 6.83%; 174 

betacoronavirus: 13.37%) and other species-level effects (alphacoronavirus: 0.003%; 175 

betacoronavirus: 0.003%).  176 

 177 

Methodological and biological predictors of infection prevalence 178 

When considering our suite of methodological and biological predictors in phylogenetic meta-179 

analysis models, the fixed effects explained approximately 20% of the variance in infection 180 

prevalence (pooled-coronavirus genera R2: 0.21; alphacoronavirus-only R2: 0.21; 181 

betacoronavirus-only R2: 0.20). Across all three datasets, repeat sampling was associated with a 182 

0.84-1.6% percentage point increase in coronavirus prevalence (pooled coronavirus: 183 

untransformed β = 0.15; 95% confidence interval (CI) 0.06-0.25, p < 0.005; alphacoronavirus: 184 

untransformed β = 0.14; 95% 0.03-0.26, p < 0.05; betacoronavirus: untransformed β = 0.14; 95% 185 

CI: 0.04-0.24, p < 0.05) as compared to one-time (single) sampling (Fig. 3). Similarly, 186 

longitudinal study design predicted a small increase (~ 0.2-0.3% percentage points) in positive 187 

viral detection in the pooled coronavirus (untransformed β = 0.06; 95% CI: 0.02-0.11, p < 0.01) 188 

and alphacoronavirus-only (untransformed β = 0.07; 95% CI: 0.02-0.12, p < 0.01) datasets, as 189 

opposed to cross-sectional sampling. Other model variables including tissue type, sampling 190 

season, bat family, PCR type, and gene target showed weak or no significant association with 191 
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coronavirus positivity across all datasets. Notably, use of euthanasia was not associated with 192 

greater ability to detect coronavirus RNA.  193 

 194 

Discussion 195 

 196 

Since the onset of the COVID-19 pandemic, significantly increased research attention has been 197 

paid to bats as potential reservoir hosts of coronaviruses (including, presumably, many with 198 

zoonotic potential) [17–19]. While other studies have reported data on the geographical and 199 

taxonomic distribution of reported bat hosts [19,20], ours has generated the first standardized, 200 

PRISMA-generated open database of coronavirus surveillance in bats that provides 201 

disaggregated data (including negative results). In doing so, our study takes one of many first 202 

steps towards building an open database of wildlife disease surveillance with relevance to 203 

pandemic prediction and preparedness [21].  204 

 205 

Our initial dataset represents a systematic snapshot of bat coronavirus research prior to the 206 

COVID-19 pandemic and includes 111 studies, 2,434 records, and a total of 93,877 bat samples. 207 

Our geographic and taxonomic analyses suggest a large focus on bat sampling in China 208 

compared to (and potentially at the expense of) gaps throughout South Asia, the Americas, Sub-209 

Saharan Africa, and East Africa. Additionally, very few studies sampled in the United States and 210 

Canada (two and three, respectively). However, we acknowledge that progress towards 211 

addressing some of these gaps has been made since the onset of the pandemic; for example, more 212 

recent bat surveillance work has taken place in Latin America and Madagascar [19,22–26]. 213 

While phylogenetic coverage across bats is a strength of the dataset, we noted key taxonomic 214 

biases in the intensity of sampling efforts, with subclades of the Hipposideridae and 215 

Rhinolophidae families being some of the most heavily sampled taxa versus significant 216 

undersampling within the Stenodermatinae and Pteropodinae subfamilies. Priorities for future 217 

research should include strengthening surveillance efforts in these undersampled regions and bat 218 

taxa, especially as some have been predicted to harbor novel betacoronaviruses [19]. 219 

 220 

After controlling for bat phylogeny, sampling variance, and both study- and observation-level 221 

heterogeneity, repeat sampling and longitudinal study design were the only consistently 222 
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significant predictors of positive coronavirus prevalence. Thus, to optimize detection sensitivity, 223 

substantial resources and careful planning should be allocated towards following this study 224 

format [27]. Additionally, euthanasia did not impact the likelihood of viral detection; thus, 225 

terminal sampling may not be necessary for studies attempting to detect coronavirus RNA, and 226 

our analysis suggests that coronavirus positivity will not be substantially biased by tissue or 227 

sample type. This is important for researchers, given that coronavirus surveillance can be 228 

accomplished with opportunistic (e.g., roost feces) and readily accessible (e.g., museum-derived) 229 

samples [28]. Further, avoiding euthanasia reduces negative impacts of virus surveillance studies 230 

on bat population dynamics, and also facilitates true longitudinal, mark-recapture designs.  231 

 232 

Finally, our systematic data compilation process revealed marked challenges in synthesizing 233 

viral surveillance data from wildlife studies. Although study-level effects are in part accounted 234 

for with the random effects structure of our meta-analysis, we note that at least some of our non-235 

significant results could still be due to variability in study format, sampling design, and 236 

reporting. To reduce this risk in future analyses, we encourage researchers collecting these data 237 

to be methodical in reporting their data at the finest resolution possible (i.e., fully stratified by 238 

location, timepoint, bat species, virus species or strain, tissue type, etc.). In the longer term, 239 

developing and adopting data standards for reporting these types of data—and developing real-240 

time channels to aggregate them with standardized metadata—could significantly improve their 241 

ability to address key questions about transmission dynamics, bat immunology, viral evolution, 242 

and spillover risk.    243 
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Methods 244 

 245 

Systematic review  246 

To identify studies quantifying the proportion of wild bats positive for alpha- or 247 

betacoronaviruses using PCR or serological methods, we followed the Preferred Reporting Items 248 

for Systematic Reviews and Meta-Analyses (PRISMA) protocol (Figure S1) [29]. We 249 

systematically searched Web of Science, PubMed, and Global Health (a database comprising 250 

publications from the Public Health and Tropical Medicine database and CAB Abstracts). 251 

PubMed searches used the following string: (bat* OR Chiroptera*) AND (coronavirus* OR 252 

CoV*). Web of Science and Global Health (comprised of CAB Abstracts and Public Health and 253 

Tropical Medicine database) searches used the following string: (bat* OR Chiroptera*) AND 254 

(coronavirus* OR CoV*) AND (wild*). Searches were performed on September 24, 2020.  255 

 256 

We screened a total of 1,016 abstracts for studies that included sampling of wild bats for 257 

coronaviruses. Publications were excluded if they did not assess coronavirus prevalence or 258 

seroprevalence in bats or were published in languages other than English. In total, we identified a 259 

total of 159 candidate articles that we screened for these data. Of these, 111 studies tested bats 260 

for coronaviruses, reported reusable data, and were included in our final, publicly available 261 

dataset. Geographic and taxonomic analyses, which did not rely on prevalence proportion 262 

positive, were performed on a 109-study subset of the public dataset which excludes records with 263 

genus- or family-level versus species-level bat data and includes seroprevalence data as well as 264 

data that could not be used to calculate prevalence (e.g., number of samples corresponds to 265 

geographic region rather than bat species). Infection prevalence analyses were performed on a 266 

107-study subset of the public dataset. Each of these two datasets were then divided into three 267 

more: pooled-coronavirus genera, alphacoronavirus genus-only, and betacoronavirus genus-only 268 

(Table S1). The datasets used for geographic and taxonomic analyses, which included 269 

seroprevalence data as well as data that could not be used to calculate prevalence (e.g., number 270 

of samples corresponds to geographic region rather than bat species) had 176 (pooled-271 

coronavirus genera), 56 (alphacoronavirus genus-only), and 143 (betacoronavirus genus-only) 272 

more rows than the corresponding infection prevalence datasets.  273 

 274 
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Our aim was to provide a comprehensive record of bat coronavirus surveillance up to the 275 

beginning of the COVID-19 pandemic, and our sample necessarily omits some more recent 276 

publications that have reanalyzed samples motivated by investigations into the evolutionary 277 

origins of SARS-CoV-2 and other L2 lineage sarbecoviruses. It also omits the final dataset 278 

compiled by the USAID PREDICT dataset and released at the end of 2020. While these data are 279 

an incomparable resource, their scope and standardized format makes them a substantively 280 

different kind of data than all other studies we analyze here; these data have been extensively 281 

analyzed elsewhere [1]. Perhaps most importantly, the majority of studies that report primary 282 

data on bat coronavirus testing by this program are included in our dataset.  283 

 284 

Data collection 285 

Our initial dataset consists of a total of 111 studies and 2,434 records. Each record provides a 286 

prevalence or seroprevalence estimate at the finest spatiotemporal, methodological, and 287 

phylogenetic scale reported. More precisely, each unique record includes a distinct combination 288 

of coronavirus genus; bat genus, family, and/or species; sampled tissue; detection method (i.e., 289 

PCR or serology); gene/protein target; date, and geographic location (sampling country, state, 290 

and specific site and/or geographic coordinates, if available). Detection estimates derived at finer 291 

phylogenetic scales (e.g., virus strain) were aggregated to genus. As observed previously for bat 292 

filoviruses and henipaviruses, some studies pooled coronavirus detection estimates for more than 293 

one bat species [6]. Rows with these pooled prevalence estimates were excluded from 294 

subsequent statistical analyses. Sampling strategies were classified as longitudinal and cross-295 

sectional: prevalence estimates derived from repeated sampling at one location were marked as 296 

longitudinal, while those derived from one location on a specific date were listed as cross-297 

sectional. Thus, most studies (93.6%) yielded more than one detection estimate record: for 298 

example, a longitudinal study that provides individual coronavirus detection estimates from two 299 

types of tissue in a given bat species on six separate dates spanning several years would result in 300 

at least 12 records in the dataset.  301 

 302 

In addition to these spatial and temporal components, we recorded data on detection 303 

methodology (e.g., single or nested/multiple PCR for RNA detection, ELISA for antibody 304 

detection, or immunohistochemistry), additional virus taxonomy (e.g., subgenus, strain), PCR 305 
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primers (and their gene targets), and whether the authors included information on the sex of the 306 

sampled bats or the use of euthanasia.  307 

 308 

Geographic and taxonomic analyses of sampling effort  309 

With these data, we assessed geographic and taxonomic patterns in bat sampling effort. For the 310 

former, we fit a generalized linear model (GLM) with whether a country had been sampled for 311 

bat coronaviruses as a binomial response and region as the predictor in R. For sampled countries 312 

(n=55), we fit equivalent GLMs that modeled the number of unique studies and the total samples 313 

per country as a Poisson-distributed response. For each GLM, we assessed fit using McFadden’s 314 

R2 and the performance package [30]. We also adjusted for the inflated false-discovery rate in 315 

post-hoc comparisons using emmeans [31]. 316 

 317 

For taxonomic patterns, we derived equivalent response variables across bat species, using a 318 

recent phylogeny as a taxonomic backbone [13]. For all bat species in this phylogeny (n = 1287), 319 

we derived a binary response for whether a species had been sampled for coronaviruses. For 320 

those sampled species (n = 363), we derived the number of unique studies and the total samples. 321 

Using the caper package [32], we first estimated phylogenetic signal in sampling effort (i.e., the 322 

propensity for related bat species to be sampled in a similar intensity). For binary sampling 323 

effort, we calculated D, where a value of 1 indicates a phylogenetically random trait distribution 324 

and 0 indicates phylogenetic clustering under a Brownian motion model of evolution [33]. For 325 

sampled species, we estimated Pagel’s λ for the log10-transformed number of studies and samples 326 

[34]. Next, we applied a graph-partitioning algorithm, phylogenetic factorization, to more 327 

flexibly identify any bat clades across taxonomic levels that differ in sampling effort. With a 328 

standardized taxonomy from our bat phylogeny [13], we used the phylofactor package to 329 

partition binary sampling effort, number of studies, and number of samples in a series of iterative 330 

GLMs for each edge in the tree [14,35]. As in our geographic analyses, we modeled these 331 

variables with binomial and Poisson distributions. We then determined the number of significant 332 

clades using Holm’s sequentially rejective test with a 5% family-wise error rate [36]. 333 

 334 

Phylogenetic meta-analysis of infection prevalence 335 
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We first used the metafor package to calculate Freeman–Tukey double arcsine transformed 336 

proportions of coronavirus infection-positive bats and their corresponding sampling variances 337 

[16 2010]. We then built two hierarchical meta-analysis models for three infection prevalence 338 

datasets: the global dataset, an alphacoronavirus-specific dataset, and a betacoronavirus-specific 339 

dataset (see Table S1 for the sample size per model). Each model was fit using restricted 340 

maximum likelihood and included bat species and phylogeny (using the previous bat tree) as 341 

random effects alongside an observation-level random effect nested within a study-level effect 342 

[15]. The first model (i.e., model 1) for each dataset only included an intercept and was used to 343 

estimate I2, which quantifies the contribution of true heterogeneity (rather than noise) to variance 344 

in infection prevalence [37]. We report both the overall I2 per dataset as well as the proportional  345 

I2 for each random effect, and we used Cochran’s Q to test if such heterogeneity was greater than 346 

that expected by sampling error alone. The second model (i.e., model 2) for each dataset 347 

included the following moderators: sampling method (repeat vs. single) study type (longitudinal 348 

vs. cross-sectional sampling), PCR type (nested/multiple vs. single), tissue analyzed, whether 349 

terminal sampling was performed, bat family, sampling season, and gene target. We calculated 350 

variance inflation factors of all moderators in the linear model: the moderators displayed no 351 

substantial collinearity [38]. To facilitate estimating model coefficients, we removed levels for 352 

any moderators with n < 3. For each iteration of model 2, we assessed moderator significance 353 

using the Q test (i.e., a Wald-like test of all coefficients per moderator) and estimated a pseudo-354 

R2 as the proportional reduction in the summed variance components compared against those 355 

from an intercept-only model [39].   356 
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Figures and Tables 381 

 382 

Figure 1. Geographic distribution of bat coronavirus sampling effort, defined by the 383 

number of studies per country (a) and the number of samples tested per country (b). 384 

Sampled countries varied in having one to 32 bat coronavirus studies (a), with the number of 385 

total samples tested ranging from four to 26,313 (b). A disproportionate number of bat 386 

coronavirus studies and testable samples were conducted and assayed in China, likely reflecting 387 

interest in the subgenus Sarbecovirus and the risk of future SARS-like virus emergence. Many 388 

areas were severely understudied, particularly relative to ecological and evolutionary risk factors 389 

for emergence [19]. In particular, sampling in Central and South America, sub-Saharan Africa, 390 

and Central and South Asia was notably limited. 391 

 392 

  393 
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Figure 2. Evolutionary distribution of bat coronavirus sampling effort, defined as whether 394 

a bat species has been sampled (a), the number of studies (b), and the number of samples 395 

tested (c). Clades identified by phylogenetic factorization with greater or lesser sampling effort 396 

compared to a paraphyletic remainder are shown in red and blue, respectively, alongside clade 397 

numbers per analysis. Phylogenetic factorization did not identify any taxonomic patterns in 398 

binary sampling effort across the bat phylogeny (a) but did identify a number of bat clades within 399 

sampled bat species that have been particularly well-sampled for coronaviruses, both in terms of 400 

number of studies (b; Table S8) and number of samples (c; Table S9, only the first 10 401 

phylogenetic factors are displayed). For analyses of total studies and tested samples, segment 402 

length corresponds to the relative degree of sampling effort.   403 

 404 

 405 
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Figure 3. Methodological and biological predictors of coronavirus prevalence in wild bats. 406 

Phylogenetic meta-analysis model coefficients and 95% confidence intervals, estimated using 407 

restricted maximum likelihood (REML) for each of our three datasets. Colors indicate the 11 408 

variables included in each model (binary covariates for sampling season). Estimate confidence 409 

intervals are shaded by whether they cross zero (the vertical dashed line), with increased 410 

transparency denoting non-significant effects. The intercept contains the following reference 411 

levels: single sampling (sampling method); cross-sectional study (study format); single PCR 412 

(PCR type); fecal, rectal, or anal sample (tissue type); euthanasia not used (euthanasia use); 413 

Craseonycteridae (bat family); not fall, not winter, not spring, and not summer (sampling 414 

season); and RNA-dependent RNA polymerase (RdRp) only (gene target).   415 

  416 
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 417 

Table 1. Meta-analysis of coronavirus prevalence across studies. ANOVA table from the 418 

phylogenetic meta-analysis model fit using REML to all data and each data subset 419 

(alphacoronavirus only or betacoronavirus only). For each variable, we provide Cochran’s Q, the 420 

associated degrees of freedom, and the p value. 421 

 422 

 any coronavirus genus alphacoronavirus only betacoronavirus only 

 Q df p Q df p Q df p 

sampling method 16.754 2 < 0.001 9.516 2 0.009 18.765 2 < 0.001 

study format 6.650 1 0.01 7.283 1 0.007 2.380 1 0.123 

PCR type  1.279 1 0.258 0.428 1 0.513 2.833 1 0.092 

tissue type 36.536 8 < 0.001 15.556 8 0.049 29.398 8 < 0.001 

euthanasia use 0.098 1 0.755 0.254 1 0.614 0.001 1 0.975 

bat family 12.679 11 0.315 11.670 11 0.389 12.617 11 0.319 

sampling season 8.406 4 0.078 10.177 4 0.038 7.263 11 0.123 

gene target 1.989 2 0.370 0.556 2 0.758 2.408 2 0.300 

  423 
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