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ABSTRACT 49 

Temperature can influence mosquito-borne diseases like dengue. These effects are expected to 50 

vary geographically and over time in both magnitude and direction and may interact with other 51 

environmental variables, making it difficult to anticipate changes in response to climate change. 52 

Here, we investigate global variation in temperature–dengue relationship by analyzing published 53 

correlations between temperature and dengue and matching them with remotely sensed climatic 54 

and socioeconomic data. We found that the correlation between temperature and dengue was 55 

most positive at intermediate (near 24°C) temperatures, as predicted from the thermal biology of 56 

the mosquito and virus. Positive temperature–dengue associations were strongest when 57 

temperature variation and population density were high and decreased with infection burden and 58 

rainfall mean and variation, suggesting alternative limiting factors on transmission. Our results 59 

show that while climate effects on diseases are context-dependent they are also predictable from 60 

the thermal biology of transmission and its environmental and social mediators.  61 

 62 

 63 

 64 

 65 

 66 

  67 
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INTRODUCTION 68 

Some infectious diseases are sensitive to changes in temperature (Lafferty 2009; Rohr et 69 

al. 2011; Altizer et al. 2013; Lafferty & Mordecai 2016). This is most likely for pathogens 70 

transmitted from ectothermic hosts or vectors and/or temperature-sensitive infectious stages in 71 

the environment (Molnár et al. 2017). The dynamics and distributions of many diseases are 72 

predicted to alter with climate change (IPCC AR6 WG2 report 2022), with effects on human 73 

illness (Zhou et al. 2004), food security (Chakraborty & Newton 2011), and wildlife 74 

conservation (Cohen et al. 2019). Accurately predicting the effects of temperature change on 75 

infectious diseases requires understanding the impact of nonlinearity and the other factors that 76 

mediate the impact of temperature on disease systems. 77 

 78 

Temperature can increase or decrease biological rates and processes related to disease 79 

transmission depending on the context; this type of nonlinearity makes predicting changes in 80 

infectious disease with climate change difficult. The functional traits of organisms that contribute 81 

to disease transmission—such as rates of development, activity, and fecundity and probabilities 82 

of survival and reproduction—typically have hump-shaped responses to temperature, increasing 83 

from zero at a critical thermal minimum up to an optimal temperature then declining to zero at a 84 

critical thermal maximum (i.e., thermal performance curves; Angilletta 2009; Dell et al. 2011; 85 

Amarasekare & Savage 2012; Mordecai et al. 2019). As a result, population and community-86 

level processes, including population dynamics (Savage et al. 2004), disease transmission 87 

(Molnár et al. 2013), and trophic interactions (O’Connor et al. 2011; Dell et al. 2014), also tend 88 

to respond nonlinearly to temperature, integrating influences of temperature on multiple life 89 

stages and organisms. Thus, the observed effects of temperature on ecological processes can 90 
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appear idiosyncratic, changing in direction and magnitude and becoming more or less apparent 91 

under differing circumstances, belying general predictions for how ecosystems respond to 92 

climate change (Hoos & Harley 2021).  93 

 94 

To understand this apparent context-dependence in how temperature affects disease 95 

transmission, it may be beneficial to consider the temperature–disease relationships at a more 96 

local scale. Rather than considering a full nonlinear response of disease transmission across a 97 

large temperature range, we can instead consider the rate of change in disease with respect to 98 

temperature—which may vary across ecological settings—to link locally-determined 99 

relationships across places and times. For example, we may expect that local temperature–100 

disease relationships will be weak at the cold end of a thermal performance curve describing 101 

disease transmission or incidence versus temperature, strongly positive where the slope of the 102 

curve is highest, and zero or weak at the optimal temperature of the curve. Whether temperature 103 

increases, decreases, or has no effect on disease transmission is therefore predicted to depend on 104 

the local average temperature and its range.  105 

 106 

In addition to the direct effects of temperature on disease transmission, other climatic and 107 

non-climatic factors may mediate local temperature effects. For example, factors such as rainfall, 108 

drought, snow, humidity, or local variability in temperature may interact with or modify the 109 

impacts of mean temperature on disease. In particular, because body temperature and water 110 

regulation are tightly linked organismal processes, rainfall and temperature often jointly 111 

determine habitat availability and organismal performance (Rozen‐Rechels et al. 2019), as has 112 

been shown for juvenile Ixodid ticks when seeking hosts (Berger et al. 2014; Leal et al. 2020). 113 
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Local temperature variability can also play a mediating role via nonlinear averaging, in which 114 

organismal performance, and resulting population and community processes at realized 115 

temperatures, differ from what would be predicted at constant mean temperatures (Paaijmans et 116 

al. 2009, 2010; Bernhardt et al. 2018). Notably, more variable temperature tends to rescue 117 

disease transmission when it is cold and impair transmission when it is warm. Beyond climatic 118 

effects, socioeconomic and anthropogenic factors impact ecological systems through processes 119 

such as land conversion, wildlife trade and consumption, and the introduction of invasive 120 

species, which drive shifts in biodiversity, resource availability, and species distributions (Mack 121 

et al. 2000; Krkošek et al. 2007; Hendershot et al. 2020; Glidden et al. 2021). For diseases, these 122 

and other socioeconomic factors such as vector control, hygiene, and healthcare can alter the 123 

suitability of a location for disease transmission and opportunities for contacts among hosts 124 

and/or vectors. Effects of temperature on disease are most detectable when conditions are 125 

otherwise suitable for transmission, and may be dampened when other key requirements like host 126 

and vector presence and contact are not met.  127 

 128 

The net effects of nonlinearity and other factors mediating temperature impacts on 129 

disease will have consequences for human health, especially for vector-borne diseases. In 130 

particular, dengue is a climate-sensitive, tropical and subtropical disease caused by a flavivirus 131 

(DENV) primarily transmitted by female Aedes aegypti mosquitoes; it causes 100-400 million 132 

cases every year (WHO 2021) and cases have been increasing dramatically both regionally and 133 

globally over the last three decades (Stanaway et al. 2016). Notably, since mosquitoes and the 134 

parasites they harbor are ectotherms, temperature can influence multiple stages of the mosquito 135 

life cycle and transmission cycle, affecting the distribution and dynamics of disease (Liu-136 
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Helmersson et al. 2014; Morin et al. 2015; Wesolowski et al. 2015; Mordecai et al. 2017). 137 

Previous research has used a combination of experiments and mathematical modeling to first 138 

isolate the effects of temperature on different mosquito and pathogen traits (e.g., DENV 139 

development rate within the mosquito, mosquito lifespan and fecundity) and then combine these 140 

processes to understand how potential transmission rates vary across temperature (Lambrechts et 141 

al. 2011; Liu-Helmersson et al. 2014; Wesolowski et al. 2015; Huber et al. 2018; Caldwell et al. 142 

2021). This has provided specific predictions for how temperature affects dengue transmission in 143 

the field: small increases in temperature should increase transmission up to the optimal 144 

temperature of 29°C, after which increases in temperature should decrease transmission 145 

(Mordecai et al. 2017). The greatest relative increase in transmission per degree increase in 146 

temperature is expected to occur near 25°C (i.e., the temperature at which the slope of the 147 

transmission versus temperature curve is steepest). Although some empirical support for these 148 

predictions exists at broad spatial scales in the field (e.g., Wesolowski et al. 2015; Mordecai et 149 

al. 2017; Peña-García et al. 2017; Caldwell et al. 2021), recognition of the importance of 150 

nonlinear effects of temperature on transmission, especially at local scales, remains limited.  151 

 152 

Here, we consider dengue as a case study to examine correlations between temperature 153 

and disease transmission. Previous work has reported both positive and negative relationships 154 

between temperature and dengue outbreaks (Caldwell et al. 2021). We hypothesized that 155 

nonlinear effects of temperature, mediated by other climatic and non-climatic factors, might 156 

explain apparent differences in the inferred effects of temperature on dengue transmission. We 157 

searched the literature to test whether dengue transmission—measured as empirical 158 

correlations—changes nonlinearly with average study temperature and peaks near 25°C, the 159 
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temperature where the slope of the transmission versus temperature curve was suggested to be 160 

greatest in a previously published trait-based mathematical model (Mordecai et al. 2017). We 161 

also test our predictions that the strength of correlations increase positively with temperature 162 

variation since it should be easier to detect effects of temperature when it is more variable, and 163 

either increase or decrease with precipitation mean and variability depending on whether local 164 

vector abundance is rain- or drought-driven (Lowe et al. 2021). Finally, we test whether 165 

correlations decrease or become more negative with infection burden in the area due to depletion 166 

of susceptible hosts, increase with population density due to larger epidemic potential, and either 167 

decrease or become more negative with income (measured as per-capita gross domestic product; 168 

GDP), which reduces outbreak potential and dampens the effects of suitable temperatures. 169 

 170 

METHODS 171 

Overview 172 

To test our predictions, we synthesized published evidence of temperature–dengue 173 

relationships using a systematic literature review. We compiled reported correlations between 174 

temperature and dengue from previously published studies. We did not consistently have access 175 

to the underlying temperature and dengue data used in the original studies that would have 176 

allowed for a reanalysis of the raw data across locations. Instead, we paired each reported 177 

correlation with climate reanalysis data and data on factors such as wealth and human density. 178 

This means that while we did not have the underlying data used to estimate correlations in each 179 

study, we did have estimates of the average temperature, average variability in temperature and 180 

precipitation, population density, and other socioeconomic and climatic factors in each focal 181 

study area and time period. 182 
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 183 

We used this database to answer two questions: 1) Does average study temperature 184 

impact temperature–dengue relationships? and 2) How do other climatic and socioeconomic 185 

factors explain variation in temperature–dengue relationships? Below, we detail the database 186 

construction as well as the two separate analyses used to answer these questions. 187 

 188 

Database construction 189 

We downloaded abstracts and study metadata (N = 454) from Web of Science on January 190 

28, 2021 (accessed through the University of British Columbia library), using the search term TS 191 

= (("Aedes" OR "dengue") AND ("temperature" OR "climat*") AND ("disease*") AND 192 

("model*") AND ("incidence" or "prevalence" or "case*" or "notification*")). We then 193 

systematically conducted several rounds of scoring to exclude studies with irrelevant or missing 194 

information. First, we read each abstract and scored it as included or excluded based on the 195 

mention of factors such as measured climatic variables and measured disease burden, incidence, 196 

or prevalence. Studies were excluded if the abstract mentioned forecasting or simulations only. 197 

In total, 189 of 454 abstracts were accepted. Next, we read each study with an accepted abstract, 198 

and scored the study as either included or excluded based on the presence of effect sizes or 199 

correlations comparing the effects of measured temperature metrics and measured disease 200 

metrics. We excluded a study if only forecasting or simulation models were presented. For this 201 

step, 95 of 189 papers with accepted abstracts were accepted.  202 

 203 

We initially planned to collect data from studies that reported either a correlation between 204 

temperature and dengue or a coefficient estimating the effect of temperature on dengue from a 205 
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regression analysis. However, our systematic literature review revealed that most of the studies 206 

using regressions incorporated different covariates into their models, ranging from accounting 207 

for no covariates to accounting for the effects of multiple temperature metrics, precipitation, 208 

GDP, and others. We conducted simulations that illustrated how these different underlying 209 

models can lead to significantly different estimates of the effects of temperature on dengue 210 

despite the temperature and dengue data remaining identical across models (Supporting 211 

Information), making comparisons across regression models unreliable for the purposes of our 212 

study. Instead, we focused all subsequent analyses on reported correlations between temperature 213 

and dengue as these models do not include any covariates, resulting in 358 reported correlations 214 

from 38 studies (Table S1). 215 

 216 

We included methodological information (hereafter referred to as study factors) for each 217 

correlation, such as the location of the study, dates and length of the study, the types of 218 

temperature (e.g., minimum weekly temperature, mean daily temperature) and disease metrics 219 

(e.g., cases, incidence) used in the analysis, the type of correlation (Pearson, Spearman, or cross-220 

correlation), and the temporal lag of the effect of temperature. We also complemented our 221 

database with data (hereafter referred to as extracted predictors) obtained from several other 222 

sources. We used Google Earth Engine (Gorelick et al. 2017) to extract information on 223 

population density and climate over the period of each study. Population density was obtained 224 

from the Global Human Settlement Population Grid (JRC 2015), using the year closest to the 225 

median year of each study period. Average daily mean air temperature, standard deviation in 226 

daily mean air temperature, mean daily precipitation, and standard deviation in daily 227 

precipitation were obtained from ERA5 (C3S 2017) and calculated over each full study period. 228 
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Study locations on the scale of a single city or smaller were specified using a 5 kilometer buffer 229 

around point coordinates, while larger areas were mapped using shapefiles obtained from the 230 

Database of Global Administrative Areas (GADM 2021). To reflect the climatic and population 231 

factors most relevant to where people live (and thus where dengue cases occur), we weighted 232 

these measures over space by population density. The estimated infection burden of dengue at 233 

the country level (in the year 2010) was extracted from Bhatt et al. (2013) as a proxy for the 234 

degree of population immunity or susceptibility. Country level population size in 2010 and GDP 235 

per capita (adjusted for purchasing price parity in the year 2015) were obtained from the World 236 

Bank (2022). Estimated dengue incidence in 2010 was calculated as estimated burden / 237 

population size (see Supporting Information for more detail). 238 

 239 

Does average study temperature impact temperature–dengue effects? 240 

To test for a relationship across studies between mean study temperature (calculated as 241 

mean average daily temperature across the study period) and observed correlation between 242 

temperature and dengue within that study, we fit a series of linear mixed effects models using 243 

reported correlations as response variables. Prior to fitting these models, we limited the dataset to 244 

exclude observations that were generated using lags > 4 months (our estimate of the maximum 245 

biologically relevant window on which temperature could directly affect dengue transmission), 246 

and included only one observation per location and temperature metric per study to avoid having 247 

multiple observations estimated across different lags. For example, if a study reported five 248 

correlation values between minimum monthly temperature and dengue for a specific location 249 

using lags of 0, 1, 2, 3, and 4 months, we would only select the observation closest to the 250 
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midpoint of 2 months. This resulted in 78 correlation observations from 37 studies (one of the 38 251 

studies used only lags > 4 months). 252 

 253 

We aimed to test whether the measured relationship between temperature and dengue 254 

depended on the average temperature during the study, as well as whether ecological theory 255 

based on a lab-parameterized, trait-based model of dengue transmission across temperature 256 

(Mordecai et al. 2017) could accurately predict how correlations vary across mean temperature. 257 

Specifically, we fit a null model and four alternative mixed-effects models in R (R Core Team 258 

2021) using maximum likelihood with the lmer function (Bates et al. 2015). The null model 259 

included only a random effect for study ID, the basic model included the study ID random effect 260 

and an additional fixed effect for the type of temperature metric used in the study (minimum, 261 

mean, or maximum temperature), and the final three models included the previously described 262 

effects and additionally a fixed effect for either a linear effect of average temperature, a quadratic 263 

effect of average temperature, or for the derivative of the transmission curve from Mordecai et 264 

al. (2017) evaluated at the mean study temperature. The purpose of including this final model 265 

was to compare the observed relationship based on reported correlations to the a priori 266 

theoretical relationship that first motivated us to look for a concave-down pattern in correlations 267 

between 20°C and 29°C. However, we note that the derivative of model-predicted dengue basic 268 

reproduction number (R0) represents a mathematical quantity that is distinct from a correlation 269 

between temperature and dengue. Therefore, while we suspected that these two values may 270 

follow the same qualitative patterns across temperature, they are not mathematically equivalent 271 

because R0 does not predict incidence directly (Smith et al. 2007). 272 

 273 
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We compared the five models using AIC (R Core Team 2021) and extracted 274 

Nagelkerke’s pseudo-R2 values using the MuMIn package (Bartoń 2020). We did not incorporate 275 

error around reported correlation estimates because this information was not available, though 276 

we repeated the analyses described here while weighting estimates by the square root of their 277 

sample size, a method used in meta-analyses when error estimates are unavailable (Hargreaves et 278 

al. 2020).  279 

 280 

How do other climatic and socioeconomic factors explain variation in temperature–dengue 281 

effects? 282 

Next, we aimed to test how additional climatic factors such as precipitation and 283 

socioeconomic factors such as country-level GDP impacted the observed effects of temperature 284 

on dengue. As described in the Introduction, we predicted that temperature–dengue correlations 285 

would be more positive with higher temperature variation and population density, lower with 286 

higher infection burden and GDP, and modified (either positively or negatively) by precipitation 287 

mean and variability. While we originally intended to estimate how each of these extracted 288 

predictors separately mediates the effects of temperature, this was not possible due to the high 289 

collinearity between predictors (Fig. S2). We therefore conducted a two-step analysis, collapsing 290 

the variance from all predictors with a principal component analysis (PCA) and evaluating the 291 

PCA components along with study factors in linear regression models. 292 

 293 

The PCA incorporated seven extracted predictors: log-transformed country-level GDP, 294 

country-level infection incidence, and five metrics calculated by study: log-transformed 295 

population density, mean precipitation, standard deviation of precipitation, standard deviation of 296 
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temperature, and marginal temperature suitability (the derivative of the Mordecai et al. [2017] 297 

dengue transmission curve evaluated at the mean study temperature, as described above). We 298 

sampled the unique sets of these extracted predictors, then used the principal function from the 299 

psych package (Revelle 2021) to load the seven predictors across four principal components that 300 

were rotated using Varimax rotation. While traditional PCA typically rotates axes to explain the 301 

maximal amount of variation using the first component, Varimax rotation maximizes the sum of 302 

the variances of the squared loadings, allowing for better interpretability of which predictors are 303 

more strongly associated with which components. 304 

 305 

We fit regressions using the full dataset of correlations (n=358) as response variables. 306 

Predictors included the four rotated components from the PCA analysis, as well as study factors 307 

to help control for variation introduced by different study methods: the temperature metric used 308 

in the study (minimum, mean, or maximum), the disease metric used in the study (incidence or 309 

cases), the temporal scale of the study (daily, weekly, monthly, or annual), and the type of 310 

correlation used in the study (Pearson, Spearman’s, or cross-correlation). We also included a 311 

term for a spline (dimension of the basis = 3) for the effect of temporal lag in months on the 312 

effect of temperature on dengue. We did not include interactions between these predictors. We fit 313 

the regressions using the gam function in the mgcv package (Wood 2011) due to the inclusion of 314 

the spline term for lags. We did not want studies that provided relatively more observations 315 

(either because they estimated effects across multiple lags, multiple temperature metrics, or 316 

multiple locations) to be overrepresented in our regression. We therefore bootstrapped 10,000 317 

times, each time first sampling studies (n=38) with replacement and then sampling one 318 

observation within that study, until we generated a dataset equal in size to the original (n=358) to 319 
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reduce overrepresentation of studies with many data points. We extracted the mean and 0.025 320 

and 0.975 quantiles for each predictor coefficient estimate across the 10,000 bootstraps. 321 

 322 

RESULTS 323 

We obtained 358 reported correlations between temperature and dengue from 38 studies, 324 

ranging from 1981 to 2017 and spanning seven global health regions (Southeast Asia, East Asia, 325 

South Asia, Central Latin America, Tropical Latin America, Oceania and Caribbean; Moran et 326 

al. 2012)(Fig. 1a-b). The estimates were variable with 19% negative and 81% positive (Fig. 1c).  327 

 328 

Supporting predictions, we found that the best model included a nonlinear (quadratic) 329 

effect of mean study temperature on reported correlations (ΔAIC from null model = 10.3; 330 

pseudo-R2 = 0.209). The quadratic model estimates that reported correlations peak at mean study 331 

temperatures of 24.2°C (95% CI: 23.5–24.9°C; Fig. 2). The second-best model included the 332 

nonlinear effect of mean study temperature calculated from the derivative of the Mordecai et al. 333 

(2017) transmission curve, which peaks at 25.3°C (ΔAIC = 8.0; pseudo-R2 = 0.165), suggesting 334 

that ecological models based on vector and parasite biology can help predict how correlations 335 

vary across average temperatures. The model incorporating a linear effect of mean study 336 

temperature (ΔAIC = 5.0; pseudo-R2 = 0.132) did not perform better than the basic model that 337 

did not include any effect of mean study temperature (ΔAIC = 5.9; pseudo-R2 = 0.119). 338 

Repeating these analyses while weighting by the square root of the study sample size produced 339 

qualitatively similar results (Supporting Information). 340 

 341 
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We then examined the factors beyond mean temperature that mediated the observed 342 

relationship between temperature and dengue. Using PCA to decompose correlated climatic and 343 

socioeconomic predictors into fewer, uncorrelated rotated components (RCs) meant that we were 344 

not able to estimate the specific effect of each predictor on reported relationships between 345 

temperature and dengue. However, this method was useful for identifying RCs that have 346 

significant effects on our response, which we can then interpret as the underlying predictors 347 

associated with each component having a positive or negative effect on the response.  348 

 349 

Several RCs had a significant effect on reported correlations (Fig. 3), generally 350 

supporting our hypotheses. Infection burden (RC1) had negative effects on reported correlations, 351 

while temperature variation (RC1) and marginal temperature suitability (i.e., the derivative of the 352 

predicted transmission curve; RC3) had positive effects. We did not have a directional prediction 353 

for the effects of mean precipitation (RC2) and precipitation variation (RC2), but found that they 354 

had negative effects. Higher population density was associated with two different rotated 355 

components, and exhibited a significant, positive effect associated with RC1 and a non-356 

significant, positive effect when combined with lower GDP (RC4). Several study factors also 357 

had significant effects on reported correlations: most notably, we found that studies that used a 358 

metric of minimum or mean temperature reported more positive correlations between 359 

temperature and dengue than those studies that used a metric of maximum temperature (Figs. S3-360 

S4). 361 

 362 
 363 
 364 
 365 
 366 
 367 
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 368 
Figure 1. Reported correlations between temperature and dengue range from negative to 369 
positive. a) Locations of observations in the global health regions of Southeast Asia, East Asia, 370 
South Asia, and Oceania; b) Locations of observations in the global health regions of Central 371 
Latin America, Tropical Latin America, and Caribbean; c) Jittered rank-order plot of 358 372 
reported correlations between temperature and dengue. 373 
 374 
 375 
 376 
 377 
 378 
 379 
 380 
 381 
 382 
 383 
 384 
 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
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 393 
 394 

 395 
Figure 2. Nonlinear effects of temperature on the correlation between temperature and 396 
dengue, controlling for study factors. Quadratic model partial residuals (points) and fitted 397 
predictions (black line) with 95% confidence intervals (shaded region) for the relationship 398 
between mean study temperature and reported correlations between temperature and dengue. 399 
Partial residuals and fitted predictions are from the mixed effects model with a quadratic effect 400 
of mean study temperature (black line), which was significantly better than alternative models 401 
that included a linear effect or no effect of mean study temperature (ΔAIC from null model = 402 
10.3; pseudo-R2 = 0.209). Partial residuals are calculated as model errors plus the model-403 
estimated relationship between temperature and dengue. Confidence intervals generated using 404 
the effects package in R (Fox and Weisberg 2019). Figure S1 shows the same fitted model 405 
plotted over raw correlation data. 406 
 407 
 408 
  409 
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 410 

 411 
Figure 3. Infection burden, temperature variability, population density, precipitation, and 412 
predicted temperature suitability affect the strength of temperature – dengue correlations. 413 
Mean and 95% confidence intervals of regression coefficients for four rotated components (RC) 414 
across 10,000 bootstrap runs. Annotated text above each component lists the climatic and/or 415 
socioeconomic factors most strongly associated with that component (standardized loading > 416 
|0.6|), with +/- symbols representing the sign of the association and the numbers in parentheses 417 
representing the loading (where 1 and -1 represent the strongest positive and negative 418 
associations, respectively). The sign of each association (in boxes) combined with the signs of 419 
each respective regression coefficient (points) yields the direction of the effect of each predictor 420 
on correlations (e.g., infection burden (RC1), mean precipitation (RC2) and precipitation 421 
variation (RC2) all have significant, negative effects). 422 
 423 
 424 

  425 
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DISCUSSION 426 

Our examination of reported correlations between temperature and dengue support 427 

predictions that the effects of temperature on many ecological processes are nonlinear with small 428 

or negative effects expected at low and high temperatures, and large positive effects expected in 429 

some intermediate temperature range. Specifically, studies that occurred at relatively cool or 430 

warm average temperatures reported lower correlations than those that occurred at temperatures 431 

near the intermediate range, where transmission is expected to be most sensitive to temperature 432 

(24°C). Our results illustrate that locations differ in their underlying vulnerability to warming-433 

induced disease outbreaks, and that this variability in vulnerability can be explained by 434 

nonlinearity and average temperatures, as well as other climatic and socioeconomic factors such 435 

as precipitation and disease burden. 436 

 437 

The average temperature at which a study occurred had a significant quadratic 438 

relationship with the correlation between temperature and dengue, with a peak at 24.2°C (95% 439 

CI: 23.5–24.9°C; Fig. 2). This is close to but slightly cooler than the prediction from the 440 

derivative of the trait-based, dengue transmission curve that is informed by laboratory studies on 441 

the vector Aedes aegypti (25.3°C; Mordecai et al. 2017). Both the flexible quadratic temperature 442 

model and the a priori marginal temperature suitability model (the derivative of the Mordecai et 443 

al. [2017] model) were significantly better than the simpler models that assumed the correlation 444 

between temperature and dengue was constant or linear across average temperature. Further, in a 445 

PCA that controlled for multiple climatic and non-climatic factors, the component that was 446 

highly associated with the a priori marginal temperature suitability model had significant 447 

positive effects on correlations (Fig. 3). These results build on observations that reported 448 
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temperature effects on dengue varied across average temperatures or climates (Fan et al. 2015; 449 

Li et al. 2020; Caldwell et al. 2021) by quantitatively testing whether effects vary nonlinearly as 450 

predicted by ecological theory. Additionally, our database and analyses differed both by using 451 

reported correlations rather than coefficients from regression models, as well as by using 452 

standardized remotely sensed temperature data across studies rather than using average 453 

temperatures reported by each original study. Overall, our results suggest that ecological theory 454 

can be used to predict how relationships between temperature and disease vary with average 455 

temperature, an often underappreciated facet of the impact of climate change on infectious 456 

disease. 457 

 458 

In addition to temperature having a direct nonlinear impact on dengue across average 459 

study temperatures, we found that several other climatic factors mediated these effects. Mean 460 

precipitation and variation in precipitation each had significant negative effects (via their 461 

association with RC2) on reported correlations between temperature and dengue (Fig. 3). 462 

Precipitation could modulate the temperature–dengue relationship through several alternative 463 

mechanisms, though our approach does not allow us to differentiate between them. When 464 

temperature is not strongly limiting to transmission but immature vector habitat is inconsistently 465 

available, precipitation may be the main limiting factor, obscuring the relationship between 466 

temperature and dengue. Alternatively, both temperature and precipitation may be limiting in 467 

some settings, such that even when suitable temperatures occur there is insufficient vector habitat 468 

to promote transmission. Finally, correlations between temperature and rainfall regimes (e.g., 469 

seasonality) may obscure the causal relationships between each variable and dengue. While 470 

precipitation may not mediate temperature effects in all ecological or disease systems, it could 471 
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play a key mediating role in systems with animals that require pools of water for habitat or 472 

breeding (e.g., other mosquito-borne diseases; Paull et al. 2017), in waterborne-disease systems 473 

such as cholera, and in plant systems in which rainfall has been shown to impact disease levels 474 

(McElrone et al. 2010; Eastburn et al. 2011).  475 

 476 

In contrast to precipitation, average temperature variability during a study had significant 477 

positive effects (via its association with RC1) on the correlation between temperature and 478 

dengue, potentially because it is easier to detect correlations when temperature fluctuates over a 479 

wider range. Additionally, nonlinear averaging can cause more positive effects of temperature 480 

variation on dengue at ranges where the temperature–transmission relationship is concave-up 481 

than concave-down (Lambrechts et al. 2011). Consideration of temperature variability should 482 

become more important with climate change, as large changes in temperature variability and in 483 

the frequency, magnitude, and duration of temperature extremes are expected in many regions 484 

but their impacts on ecological processes have received relatively little attention (Easterling et al. 485 

2000; Smith 2011; Thompson et al. 2013; Turner et al. 2020; Ma et al. 2021). Together these 486 

results provide an important biological insight: effects of temperature on ecological processes 487 

can be exacerbated or masked by other aspects of climate suitability, including rainfall and 488 

variation in temperature. 489 

 490 

Immunological and other non-climatic factors also affected local relationships between 491 

temperature and dengue. As predicted, we observed a strong negative effect of infection burden 492 

(as estimated for the year 2010; Bhatt et al. 2013), in which locations with higher levels of 493 

dengue reported weaker or more negative correlations between temperature and dengue. One 494 
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possible explanation for this is that populations with historically high dengue burden have 495 

proportionally high levels of immunity and partial immunity (Gubler 1998), thereby leaving 496 

fewer people susceptible to infection when temperature conditions become more optimal. One 497 

potential caveat when interpreting these effects is that the Bhatt et al. model (2013) used 498 

additional data inputs beyond dengue cases—including temperature suitability—to estimate 499 

country-level infection burden, meaning that estimated dengue burden is not completely 500 

independent from temperature. Our predictions that population density would increase 501 

temperature effects due to larger epidemic potential, while higher GDP would decrease 502 

temperature effects due to higher income leading to better health infrastructure and disease 503 

mitigation were generally supported (Fig. 3). 504 

 505 

Because of the thermal physiology of organisms, we expect many ecological systems and 506 

processes to be nonlinearly dependent on temperature, and these temperature effects are likely to 507 

be mediated by other ecological and socioeconomic factors. Dengue provides a relatively well-508 

studied example for detecting these nonlinear and mediated effects, which may not be possible 509 

for more data-limited ecological systems. Primary studies that investigate nonlinear effects of 510 

temperature on ecological processes explicitly, and the mediators of these effects, are critical for 511 

more generally anticipating the impact of climate change on ecological systems.  512 

 513 

Many ecological systems are dominated by physiological processes that respond 514 

nonlinearly to temperature (Brown et al. 2004; Dell et al. 2011), making them prone to climate 515 

change impacts that vary in magnitude and direction across ecological settings. Recognizing this 516 

nonlinearity as a fundamental driver of context-dependent responses is a critical conceptual gap 517 
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in many ecological studies of climate change. This can help to resolve inconsistent correlations 518 

with temperature found between different field locations, as has been found with withering 519 

syndrome in abalone (Ben-Horin et al. 2013) and sea star wasting disease (Eisenlord et al. 2016; 520 

Menge et al. 2016; Harvell et al. 2019), as well as in other ecological contexts beyond disease 521 

(Leonard 2000). At the same time, the magnitude of nonlinear effects of temperature depends on 522 

a range of environmental, anthropogenic, and biogeographic factors, including climatic variation 523 

in rainfall, temperature, humidity, and extreme events, human-driven changes in habitat structure 524 

and species composition, and evolutionary history. Together, these factors mediate ecological 525 

effects of temperature by affecting body condition, behavior, species interactions, and 526 

evolutionary processes (Huey & Kingsolver 2019). Research that combines a mechanistic 527 

understanding of the nonlinear impacts of temperature on ecological processes with explicit 528 

consideration of important modifiers of temperature responses—through either comparative 529 

approaches like that taken here or experimental approaches that manipulate multiple drivers 530 

directly (e.g., Zhu et al. 2016)—can help to capture realistic variation in the effects of climate 531 

change across settings.  532 

 533 
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