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Abstract5

Hyperphosphatemia in patients with renal failure is associated with increased6

vascular calcification and mortality. Hemodialysis is a conventional treatment for7

patients with hyperphosphatemia. Phosphate kinetics during hemodialysis may be8

described by a diffusion process and modeled by ordinary differential equations. We9

propose a Bayesian model approach for estimating patient-specific parameters for10

phosphate kinetics during hemodialysis. The Bayesian approach allows us to both11

analyze the full parameter space using uncertainty quantification and to compare two12

types of hemodialysis treatments, the conventional single-pass and the novel multiple-13

pass treatment. We validate and test our models on synthetic and real data. The results14

show limited identifiability of the model parameters when only single-pass data are15

available, and that the Bayesian model greatly reduces the relative standard deviation16

compared to existing estimates. Moreover, the analysis of the Bayesian models reveal17

improved estimates with reduced uncertainty when considering consecutive sessions18

and multiple-pass treatment compared to single-pass treatment.19
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1 Introduction22

Phosphate enables the body to perform vital processes such as construction of nucleic23

acids, energy transport and bone tissue formation [3]. The level of phosphate is tightly24

controlled, and excess phosphate is excreted by the kidneys [20]. However, for patients25

with renal failure, the control of phosphate homeostasis is impaired. An abnormal level of26

phosphate is associated with increased vascular calcification and mortality [5, 16].27

About half of all dialysis patients suffer from hyperphosphataemia, and strategies to28

control phosphate levels include phosphate binders, low-phosphate diet and removal of29

phosphate by hemodialysis [11]. Hemodialysis (HD) is a conventional treatment for renal30

failure where a patient is coupled to a dialysis machine for four to eight hours. The blood31

plasma and dialysate fluid are passed through a filter that causes a diffusion process that32

removes toxic substances, e.g., phosphate, from the blood to the dialysate. The phosphate33

kinetics in HD is of particular interest because it differs the other removed toxins, e.g.,34

urea, by the fact that hypophoshataemia is fatal for the patient [25]. Thus, the phosphate35

concentration should not be exhausted, but kept within the critical values.36

1.1 Previous studies37

The control of the phosphate concentration is a considerable clinical problem and has been38

studied extensively [1, 2, 5, 6, 7, 8, 12, 17, 18, 24]. The conventional hemodialysis treatment39

is the single-pass (SP) treatment. Agar et al. [1] and Debowska et al. [5] both study40

the SP treatment by considering a simple two-compartment ordinary differential equation41

(ODE) model for phosphate removal during HD. They present their results as an average42

of the measured patients to obtain confidence intervals for their parameters, however, these43

are not patient specific. Poleszczuk et al. [20] extend the model proposed by Debowska44

et al. [5] to include a time delay. The time delay is introduced to improve the fit at the45

later stage of the HD where a minor rebound is observed in some clinical experiments.46

Andersen et al. [2] analyze the same model analytically and estimate parameters using an47

optimization-driven approach. Here the parameters are estimated for each patient, but48

the uncertainty of the parameter estimates is not addressed. Laursen et al. [17] propose a49

two- and three-compartment model for phosphate clearance during single pass and find50
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that the three-compartment model produces the most satisfying fit but does not address51

the uncertainty associated with the parameter estimates. Spalding et al. [24] propose a52

complicated four-compartment model where the fourth pool is a control pool for avoiding53

dangerously low phosphate concentrations. They argue that a simple two-compartment54

model cannot fit the relapse phase sufficiently, however, both Andersen et al. [2] and55

Debowska et al. [5] demonstrate that the simple two-compartment model can produce56

adequate fits for the relapse phase as well.57

A novel HD treatment called multiple pass (MP) [7, 8, 12] provides an alternative to58

the conventional SP. This novel treatment reduces the amount of dialysis fluid needed for59

a single session of HD. Andersen et al. [2] and Heaf et al. [12] analyse and compare the60

MP treatment and SP treatment.61

However, none of the above-listed models address patient specific uncertainties associated62

with the parameter estimates. Moreover, the reported uncertainty of the parameter estimates63

for the average of the measured patients is very large, e.g., Debowska et al. [5] report a64

phosphate clearance with a relative standard deviation of 79% and Agar et al. [1] report a65

relative standard deviation of 47%, indicating that parameters of the two-compartment66

model are poorly identified. Common for all models is that they assume that the phosphate67

concentration in the inner-source compartment is known exactly through measurements at68

time zero. However, measurements are noisy and can potentially bias the results.69

The Bayesian approach for parameter estimation for ODE modeling has gained attention70

in later years [14, 22] since it provides an elegant way of addressing the uncertainty associated71

with the estimated parameters and includes clinical knowledge. The Bayesian approach72

gives a complete image of the parameter estimation in terms of uncertainty quantification,73

i.e., posterior mean, credibility intervals and correlations. A Bayesian approach for patient-74

specific parameters for hemodialysis has been proposed by Bianchi et al. [4] but does not75

consider the phosphate kinetics.76

1.2 Contribution77

We propose a Bayesian approach for estimating patient-specific parameters for phosphate78

dynamics during hemodialysis. Moreover, we include the phosphate concentration in the79

inner compartment as a parameter of the model. We use uncertainty quantification to80

3

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.496370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496370
http://creativecommons.org/licenses/by/4.0/


assess the reliability of our parameter estimates and explore the full parameter space. We81

address the identifiability of the parameters for the SP, MP and the combination of the two,82

denoted combined pass (CP). In addition, we also investigate how the parameter estimation83

can be improved by including relapse measurements and / or measure consecutive sessions.84

1.3 Outline85

Section 2 describes the phosphate kinetics during hemodialysis and introduces the single-86

and multiple-pass treatments. Section 3 introduces the Bayesian model and describes87

implementation and sampling diagnostics. In Section 4, we test and validate SP, MP and88

CP models on data sets and discuss findings from synthetic data which are found in the89

supplementary materials. Lastly, we conclude the paper in Section 5.90

2 Hemodialysis modeling91

About 85% of the total phosphate in the human body is stored in the bones [15]. We92

assume that we have an inexhaustible source (bone) that excretes phosphate to the blood,93

including extracellular fluid. The phosphate transport from source to blood is driven by94

diffusion. The diffusion process is governed by the diffusion coefficient (permeability) and95

concentration gradient. The blood compartment is coupled to the dialysate compartment96

through a semipermeable membrane which generates a flow of phosphate to the dialysate97

fluid. The flow of phosphate from blood to dialysate is mainly governed by diffusion and to98

an insignificant degree by a convection process. [17] However, comprehensive investigations99

have shown that the convective flow has a negligible effect on the model and parameters100

during the normal range of dialysis treatment, i.e., up to eight hours [2]. Thus, we exclude101

the convection term from the models. In this paper, we consider three types of models102

for HD for phosphate clearance in dialysis patients, the conventional SP, MP and the103

combination CP.104

The value of this analysis for clinicians is twofold. Firstly, accurate modeling permits105

the prediction of phosphate removal during different forms of dialysis, e.g., short and long106

dialysis or use of filters with standard or high phosphate clearances. Secondly, it is possible107

to get insight into the underlying physiological causes of phosphate dynamics.108
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2.1 Single-pass dialysis109

For the SP treatment, the dialysate is constantly replenished by fresh dialysate such that110

the phosphate concentration in the outflowing dialysate remains low. Data shows this111

phosphate concentration to be approximately constant throughout the treatment. SP112

requires excessive amounts of dialysate for each session. A conceptual diagram of the SP113

treatment is depicted in Figure 1 that illustrates the removal of phosphate by diffusion.

Source
Cs

Plasma and
extracellular fluid

z(t)

Dialysate
Cd

Diffusion
Ks · (Cs − z(t))

Diffusion
Kb · (z(t)− Cd)

Water out

Water in

Figure 1: Conceptual diagram for single pass (SP). In SP, blood and dialysate are passed
through a filter which initiates a diffusion process that removes toxic substances from the
blood (plasma and extracellular fluid). The outflowing dialysate is constantly replenished
by fresh dialysate, and the concentration of phosphate in the dialysate is assumed constant.

114

Agar et al. [1] proposed a simple compartment model for SP consisting of a single

linear autonomous ODE,

Vb
dz(t)

dt
= CsKs − (Ks +Kb)z(t) +KbCd, (1)

where z(t) is the concentration of phosphate in the blood compartment at time t, Cs is the115

constant concentration in the source compartment and Cd is the phosphate concentration116

in the dialysate assumed to be constant and measurable. Ks and Kb are diffusion rates117

from source to blood and from blood to dialysate, respectively. Lastly, Vb denotes the118

blood volume taken as the blood plasma and extracellular volume. For the system to have119

a unique solution, we equip the ODE with the initial condition z(0) = z0. Notice that the120

system is not identifiable since Vb can be integrated in the remaining parameters and thus121

we assume that Vb is known through measurements for single-pass.122

The assumption of a constant Cd is not crucial. If we allow the phosphate concentration123

to be a variable with initial value 0, then we can extend the model by an extra differential124

equation. This extension results in a fast transient in Cd toward the steady state value125
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given by data shown in Table 1 with at doubling time of approximately 10-15 minutes126

(see supplementary, Figure S.14). Moreover, such extension does not affect the parameter127

estimates achieved. Hence we confine ourselves to consider Cd as a constant.128

2.2 Multiple-pass dialysis129

Contrary to SP where dialysate is constantly replenished, the dialysate for MP is recirculated,130

and consequently, the removed substances accumulate in the dialysate fluid over time. A131

conceptual diagram of the MP treatment is depicted in Figure 2.132

MP is less effective than SP due to the accumulation of substances in dialysate. However,133

MP greatly reduces the amount of dialysate fluid needed for HD treatment, which makes134

a smaller clinical setting possible. Furthermore, it may ease HD treatment at home and135

treatment during travels, which can possibly greatly improve the quality of life for renal136

failure patients. [7, 8, 12]137

Source
Cs

Plasma and
extracellular fluid

x(t)

Dialysate
y(t)

Diffusion
Ks · (Cs − x(t))

Diffusion
Kb · (x(t)− y(t))

W
ater

recircu
lation

Figure 2: Conceptual diagram for multiple pass (MP) treatment. Like in conventional
SP, blood and dialysate is passed through a filter that causes a diffusion process that
removes toxic substances from the blood (plasma and extracellular fluid). The dialysate is
recirculated and consequently, the removed substances accumulate in the dialysate, i.e.,
y(t) changes as a function of time.

The MP model can be described by the following system of linear autonomous ODEs,

Vb
dx(t)

dt
= CsKs − (Ks +Kb)x(t) +Kby(t), (2a)

Vd
dy(t)

dt
= Kb(x(t)− y(t)), (2b)

where x(t) and y(t) are the time-varying phosphate concentrations for the blood compart-138

ment and in the dialysate at time t, respectively, and Vd is the volume of the dialysate.139

The remaining parameters, i.e., Vb, Cs, Ks and Kb, have the same interpretation as for the140
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SP model in (1). The initial conditions are x(0) = x0 and y(0) = y0 corresponding to the141

phosphate concentration in blood and dialysate at time t = 0, respectively. The phosphate142

concentration in the dialysate at time t = 0 is zero, i.e., we assume y0 = 0 henceforth.143

The MP model carries additional information compared to the SP model since the144

only new parameter, the dialysate volume (Vd) is assumed known and can be estimated145

reliably from available data. Hence, we have an additional equation in the model but the146

same number of unknown parameters compared to SP. Thus, given sufficient data, the147

MP model allows for structural identifiability of the parameters due to the addition of148

(2b) since we cannot simply integrate Vb in the remaining parameters. However, when149

measurements of Vb are available, we will consider Vb to be known a priori.150

2.3 Combined-pass dialysis151

The parameters for a single patient are shared for the two treatments. Thus, if a patient

completes both SP and MP, we can utilize all available information by considering the CP

model,

Vb
dz(t)

dt
= CsKs − (Ks +Kb)z(t) +KbCd, (3a)

Vb
dx(t)

dt
= CsKs − (Ks +Kb)x(t) +Kby(t), (3b)

Vd
dy(t)

dt
= Kb(x(t)− y(t)), (3c)

with z(0) = z0, x(0) = x0 and y(0) = 0, and the parameters as described for SP. The CP152

model, just as the MP model, allows for structural identifiability, and potentially even153

more precise estimation compared to the MP model due to the addition of the SP model.154

2.4 Clinical data155

We consider longitudinal data sets from 10 patients with renal failure that were measured156

during an SP session and an MP session. The measured phosphate concentrations for SP157

and MP (Z, X and Y ) are depicted in Figure 3. Measurements were once every hour for a158

total of four and eight hours for SP and MP, respectively. No measurements were taken in159

the relapse phase, i.e., after ended treatment.160
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Figure 3: Visualization of the measured phosphate concentrations for SP and MP. The dots
represent the measurements, and the full line is the linear interpolation of the measurements.
The concentration of phosphate in dialysate in MP is denoted Y and the phosphate
concentration in the blood is denoted Z and X for SP and MP, respectively.

Considering the SP measurements (orange dotted line) in Figure 3, we see an exponential-161

like decay in the measured phosphate concentration after two hours as predicted by (1).162

Thereafter, phosphate concentration seems to stabilize around a reduced concentration level.163

For the MP measurements (green and blue dotted lines), we see similar exponential-like164

decay for the phosphate concentration in agreement with the bi-exponential solution to (2).165

However, this drop in phosphate concentration is a bit slower for some patients and after two166

hours it starts to slowly increase due to the accumulation of phosphate in the dialysate. The167

phosphate concentration in the dialysate increases rapidly in the beginning of the treatment168

but slows down and approaches an equilibrium with the phosphate concentration in the169

blood. This behavior is expected according to the model in (2) since the concentration170

gradient vanishes.171
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3 Bayesian inference172

We solve the parameter estimation problem using a Bayesian approach, where we consider173

the parameters, measurement noise and initial conditions as random variables. In Bayesian174

inference, we are interested in the posterior probability of the parameters. The posterior175

probability consists of two components: a prior probability reflecting our knowledge or176

beliefs about likely parameter values, and a likelihood function that expresses how likely it177

is to observe the data for a set of parameters. Thus, the posterior allows us to formally178

include clinical prior knowledge in the model. Moreover, the inclusion of the prior may have179

a regularizing effect on the parameter estimation problem in the sense that the parameter180

estimates become less sensitive to measurement noise.181

We use uncertainty quantification to assess the reliability of the parameter estimates182

and the concentrations in terms of posterior statistics, i.e., mean, correlation and 95%183

credibility intervals (CI). A strength of the uncertainty quantification is that the solution184

is based on all probable outcomes instead of being solely based on a point estimate [23].185

Uncertainty quantification can also be used for model analysis and improvement, e.g.,186

revealing strong correlation or identifying potential measurements that could improve187

identifiability of the model [26]. Hence, uncertainty quantification is a flexible method to188

assess how certain we are of the parameter values and parameter-dependent solutions189

3.1 Likelihood and prior modeling190

We describe the Bayesian model for the SP and MP treatments and presume data for the191

relevant state variables (phosphate concentrations) are measured. Notice that the Bayesian192

formulation is trivially extended to CP by combining the SP and MP models.193

3.1.1 Single-pass formulation194

First, we consider the Bayesian formulation for SP. Let θ = [Cs, Ks, Kb] denote the vector195

of unknown parameters and zIC denote the initial condition for SP. We assume that Vb196

and Cd are known to a sufficient degree a priori and do not estimate them based on the197

model. A justification of this assumption is given in Section 4.198

The state variable z(t, θ, zIC) is the solution to (1) and we wish to infer the model199
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parameters θ and initial condition zIC defining the state variable. Henceforth, we shorten200

notation such that z(t) ≡ z(t, θ, zIC).201

We assume that the measurement noise is normally distributed such that the state

variable, z(t) is inferred through the Gaussian likelihood function,

Zi ∼ N
(
z(ti), σ

2
d

)
, for i = 1, 2, ...,m, (4)

where Z ∈ Rm is a vector with the measurement of the phosphate concentration in the blood202

at time t = ti. The parameter σ2d ∈ R+ is a hyperparameter describing the variance of the203

measurement noise. The hyperparameter σ2d is not known a priori. Thus, we infer σ2d as a204

parameter of the model and assign an inverse gamma prior [23]. We enforce non-negativity205

on the likelihood function by truncating it at 0 since the phosphate concentrations are206

non-negative.207

We consider the initial condition zIC to have mean equal to the phosphate concentration

at time t = 0 and variance σ2d equal to the measurement error, i.e.,

zIC ∼ N
(
Z0, σ

2
d

)
. (5)

This choice of prior for the initial condition can be interpreted as the initial measurement208

following the same measurement model as the measurements for time t > 0, i.e., we do not209

assume that the first measurement is more accurately measured than the subsequent ones.210

We model the prior of the unknown parameters θ by the Gaussian distribution,

θ ∼ N



µCs

µKs

µKb

 ,

σ2Cs

0 0

0 σ2Ks
0

0 0 σ2Kb


 , (6)

where µCs , µKs and µKb
represent the prior clinical knowledge, i.e., our prior belief about211

most likely parameter values and σ2Cs
, σ2Ks

and σ2Kb
are the variances for Cs, Ks and Kb,212

respectively. As with the likelihood function, we impose constraints such that we only213

consider the parameters in a physiologically meaningful range.214

As commonly done, we assume that at the start of the dialysis, i.e., t = 0, the patient’s215

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.496370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496370
http://creativecommons.org/licenses/by/4.0/


phosphate concentration is approximately in a steady state, i.e., we assume that Z0 is216

close to Cs and we choose µCs = Z0. The steady state assumption follows from (1) where217

Kb = 0 when the patient is not receiving dialysis treatment.218

In previous publications [1, 2, 5] Cs is fixed to the value of the initial phosphate219

measurement. However, the data from Agar et al. [1] show large uncertainty for the first220

measurement point. Our choice of prior allows Cs to deviate from the initial measurement221

of the phosphate concentration and thereby our model is not oblivious to measurement222

errors for the initial phosphate measurement.223

We base our values for µKs and µKb
on literature and we choose µKs = 8.06 L/hour224

and µKb
= 7.56 L/hour [5].225

We initially considered σ2Cs
, σ2Ks

and σ2Kb
to be parameters of the model. However,226

preliminary results showed that it greatly decreased the stability of the results. Thus, we227

choose σ2Cs
= 0.2, σ2Ks

= 2.0 and σ2Kb
= 2.0 based on visual inspection of the prior to228

incorporate adequate uncertainty about the prior mean.229

3.1.2 Multiple-pass formulation230

The main difference between the MP formulation and the SP formulation is the inclusion of

an additional state variable through equation 2b. Hence, the likelihood function for MP is

Xi

Yi

 ∼ N

x(ti)

y(ti)

 , σ2dI
 , for i = 1, 2, ..., n, (7)

where X ∈ Rn and Y ∈ Rn are vectors with the measurements of the phosphate concen-

tration in the blood and dialysate at time t = ti, respectively, and I is the 2× 2 identity

matrix. The initial condition for the phosphate concentration in the dialysate is set to

zero, i.e., yIC = 0, and the initial condition for the phosphate concentration in the blood is

assigned a prior with mean X0 and variance equal to the measurement variance, i.e.,

xIC ∼ N
(
X0, σ

2
d

)
. (8)

Lastly, we choose the prior for the parameters θ to be (6) with the exception that µCs = X0.231
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3.2 Implementation and diagnostics232

We use sampling-based techniques to approximate the posterior [26]. Markov Chain Monte233

Carlo (MCMC) is a sampling technique that generates a Markov chain of samples that234

converges to the posterior distribution of the parameters [21]. Hence, we can compute235

posterior statistics, i.e., mean, 95% CI and correlation from the Markov chain.236

The simple MCMC techniques such as random walk Metropolis Hastings and the Gibbs237

sampler are plagued by inefficient exploration of the parameter space via random walks238

and are highly sensitive to correlated parameters. Hamiltonian Monte Carlo (HMC) is an239

MCMC method that avoids random walk behavior by taking a series of first-order gradient240

informed steps in the simulation and explores the parameter space well even in the case of241

correlated parameters. The performance of the HMC sampler is highly sensitive to the242

choice of user-specified parameters. However, the No-U-Turn Sampler (NUTS) is an HMC243

method where the user-specified parameters are automatically estimated. [13] We use244

Runge-Kutta 45 (RK45) to solve the ODE system [19] and the PySTAN implementation of245

NUTS [9] with default choice for all associated parameters to compute the samples that246

approximate the posterior distribution.247

For each simulation, we generate four sample chains from random initializations, and248

we consider the potential scale reduction statistic, the so-called R̂ value for sampling249

diagnostics [10]. The R̂ value measures the ratio of the average variance of samples within250

each chain to the variance of the pooled samples across chains, and if all chains are at251

equilibrium, then the R̂ value will be one.252

4 Results253

In this section, we consider two data sets for dialysis patients during hemodialysis. For254

each patient, we generate 4000 samples and visualize the results in terms of posterior mean255

and 95% CIs for the estimated parameters and phosphate concentrations during and after256

hemodialysis. In addition, we also visualize the pairwise correlation for the parameters by257

scatter plots of the samples and compute the relative standard deviation. All presented258

results returned an R̂ value of one, indicating convergence of the sample chains. In addition,259

we visually inspected the sample chains, which appeared well mixed. Tables with estimated260
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posterior means, 95% CIs and relative standard deviations are found in Appendix B, and261

RMSE is listed in Table 2.262

We have also investigated the models using synthetic data to confirm the findings of263

the results with real data. These synthetic experiments can be found in the supplementary.264

Here we present the results obtained by the Bayesian model described in Section 3 for the265

data depicted in Figure 3.266

4.1 Single pass and Multiple pass267

First, we consider the hemodialysis data for the ten patients shown in Figure 3. Beside268

phosphate concentrations in the blood and dialysate depicted, we have hourly measurements269

of the phosphate concentration in the dialysate (Cd) for SP, the volume of the blood270

compartment (Vb) for both SP and MP, and the dialysate volume (Vd) for MP. Cd was271

measured when exiting the dialysate compartment after initializing the dialysis process. We272

assume that the concentration of phosphate in the dialysis for SP is constant as suggested273

by data, and for each patient, we compute Cd as the spatial average of the concentration274

of phosphate from inlet to outlet of the dialysis machine. Table 1 lists Cd, Vd and Vb275

estimated directly from available data and Figure A.1 and Figure A.2 in Appendix A276

provide exploratory statistics of the corresponding data.277

Estimate
Patient

1 2 3 4 5 6 7 8 9 10

SP
Cd [mmol/L] 0.16 0.12 0.11 0.16 0.18 0.21 0.14 0.09 0.14 0.09

Vb [L] 16.88 17.74 16.92 21.20 18.20 14.74 15.32 13.04 20.20 18.00

MP
Vb [L] 16.99 17.80 17.43 21.20 18.39 15.15 15.48 13.76 20.21 18.25

Vd [L] 22.61 23.00 26.57 31.93 28.51 20.15 23.42 14.24 28.59 23.25

Table 1: The mean concentration of phosphate in the dialysate for SP, Cd, the mean
dialysate volume for MP, Vd and the mean extracellular volume, Vb for both SP and MP.

4.1.1 Estimation278

The estimated phosphate concentrations obtained for SP are depicted in Figure 4 along279

with the predicted relapse. The solid line represents the posterior mean, the full circles are280

data points and the transparent region indicates the 95% CI i.e., the region that contains281
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95% of the samples. Considering the estimated phosphate concentrations for SP, we see282

that the sampler has computed a decent fit in terms RMSE in Table 2 and posterior mean283

with a narrow 95% CI for the treatment phase. However, there is a large 95% CI for the284

relapse phase.285
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Figure 4: Estimated treatment and relapse for SP. The full lines are the posterior mean
of the samples whereas the transparent regions represent the 95% CI. The full circles are
measurements, and the dashed line is the posterior mean of the estimated relapse. For
RMSE, see Table 2.

The corresponding parameter estimates with 95% CI for SP are visualized in Figure286

5 and listed in Table B.1 where the average relative standard deviation is 10.3%, 18.4%287

and 18.6% for Cs, Ks and Kb, respectively. The full posterior density for the parameters288

for patient 2 is shown in Figure 6. We have chosen to only include a correlation plot for289

patient 2 in this section since it shows the general trend of the estimated parameters. The290

correlation plots for the remaining patients are found in Figure C.1-C.9 in Appendix C.291

Figure 7 shows the estimated phosphate concentrations and predicted relapse phase for292

MP. Figure 7 and Table 2 show that the parameter estimation has found a satisfying fit293

both visually and in terms of RMSE for MP as for SP. However, the width of the 95% CIs294

is smaller for the relapse phase. The reduced uncertainty in the relapse can be explained by295

14

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.496370doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496370
http://creativecommons.org/licenses/by/4.0/


1.0 1.5 2.0 2.5 3.0
Cs [mmol/L]

1

2

3

4

5

6

7

8

9

10

P
at

ie
nt

SP

MP

CP

0 5 10 15
Ks [L/hour]

0 5 10 15
Kb [L/hour]

Figure 5: Visualization of the parameter estimates. The dots, diamonds and triangles
represent the posterior mean for SP, MP and CP, respectively. The transparent region is
the 95% CI. The full posterior of the parameters for patient 2 is shown in 6 and for the
remaining patients in Figure C.1-C.9 in Appendix C.
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Figure 6: Plot of the posterior density and correlation of the parameters estimated for
patient 2 for SP, MP and CP. The density plots show the posterior density functions, and
the scatter plots show the posterior samples.

the reduced 95% CI for Cs in MP compared to SP which is shown in Figure 5 and Figure296

6 and quantified by the decreased average standard deviation of 7.3% in Table B.2, i.e., a297

reduction of 3%.298

Moreover, Figure 5 shows a great reduction in the uncertainty about Kb as expected299

from the addition of equation (2b) with a relative standard deviation of 9.6%, i.e., a300

reduction of 9% compared to SP. However, the uncertainty about Ks remains largely301
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Figure 7: Estimated treatment and relapse for MP. The full lines are the posterior mean
of the samples whereas the transparent regions represent the 95% CI. The full circles are
measurements, and the dashed line is the posterior mean of the estimated relapse. For
RMSE, see Table 2.

unaffected by the additional knowledge utilized by the MP model and the uncertainty302

actually increases on average with an average relative standard deviation of 24.8%.303

Considering the CP results in Figure 8, we see that CP finds a unified set of parameters304

that describe the SP and MP sessions for each patient. Moreover, the CP estimates a305

satisfying fit both visually and in terms of RMSE in Table 2. The parameter estimates306

are very similar to the ones obtained by MP as seen in Figure 5 except for patient 6 and307

with only a slight reduction compared to MP in average relative standard deviation, 6.9%,308

22.9% and 8.2% for Cs, Ks and Kb, respectively. A possible explanation for the difference309

in Ks for patient 6 is the large difference in initial measured phosphate concentration,310

indicating that steady state had not been reached before treatment onset.311

The synthetic results in Figure S.2 and S.3 in the supplementary materials show that312

with fixed Cs and a uniform prior on Ks and Kb (mimicking the parameter estimation in313

[1, 5, 2]), we have a very limited identifiability of Ks and Kb for SP, whereas MP and CP314

recover values very close to the true parameters with significantly lower uncertainty. In315
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Figure 8: Estimated treatment and relapse for CP. The full lines are the posterior mean
of the samples whereas the transparent regions represent the 95% CI. The full circles are
measurements, and the dashed line is the posterior mean of the estimated relapse. For
RMSE, see Table 2.

addition, the parameter estimates for Ks and Kb were highly correlated and this correlation316

was significantly reduced by MP and CP. We also considered the full Bayesian model317

with priors on the synthetic data and the results are depicted in Figure S.5 and S.6 in the318

supplementary materials. The results showed that MP and CP in general came closer to319

the true parameters with smaller 95% CI and showed similar results in terms of relative320

standard deviation.321

In summary, the uncertainty associated with the SP results is reduced significantly322

by using the Bayesian model with priors compared to the standard parameter estimation323

without the clinical knowledge incorporated. For the Bayesian models, we see that MP and324

CP are superior to SP in estimating patient-specific parameters Cs and Kb, but that the325

gain of considering CP compared to MP is limited. However, we see that the uncertainty326

about Ks is large even when using all available data with the CP model. These findings327

are further supported by the synthetic results in the supplementary materials, where the328

estimates obtained by MP and CP are closer to the true parameter value and with less329
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uncertainty. Thus, based on the estimation results, it seems that the SP data without330

relapse data or consecutive sessions are not sufficient for estimating the parameters reliably.331

Patient SP MP CP

1 2.14·10−8 2.08·10−4 1.67·10−3

2 3.23·10−6 5.06·10−6 2.12·10−4

3 1.69·10−6 1.95·10−5 2.59·10−4

4 7.99·10−9 1.79·10−5 9.95·10−4

5 3.79·10−5 1.85·10−7 1.11·10−3

6 6.36·10−9 3.99·10−5 1.67·10−3

7 4.88·10−5 7.56·10−5 1.25·10−2

8 2.22·10−7 4.27·10−5 5.63·10−4

9 2.87·10−6 4.84·10−5 8.18·10−4

10 9.07·10−6 9.41·10−7 2.46·10−4

Table 2: Computed RMSE for Figure 4, 7 and 8. We compute RMSE by the formula
RMSE = 1

n

∑n
i=1(X̂i −Xi)

2 where X̂ and X are the estimated and measured phosphate
concentrations, respectively.

4.2 Consecutive SP sessions332

Debowska et al. [5] present a data set consisting of 25 patients that were examined during333

three consecutive SP sessions of a one-week dialysis treatment cycle. They present the334

data as the average of the measurement for the 25 patients and we have read off the data335

from the figures. Measurements were obtained hourly for a total duration of four hours336

with the addition of a measurement 45 minutes after ended treatment, i.e., we have five SP337

measurements and a relapse measurement for each of the three consecutive SP sessions.338

We choose Vb = 20 and Cd = 0.339

4.2.1 Simulations and estimates340

The aim of this subsection is to investigate the improvement of information obtained341

by including relapse measurement and / or consecutive sessions in the SP model. We342

investigate the four following scenarios, No Relapse (NR) where we consider the first SP343

treatment only, Partial Relapse (PR) with the first SP treatment with a measured relapse344

point, Full Relapse (FR) where we consider the first SP treatment with relapse point and345

the first measured data point of the second SP, and Full Three Relapse (FTR) where we346

include the data from all three SP consecutive sessions.347
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The results for the four scenarios are depicted in Figure 9. The measurements included348

in each parameter estimation are marked with colored dots, whereas the measurements349

not included in the model estimation are marked with black open circles. The posterior350

statistics for the parameters are shown in Figure 10 and listed in Table B.4. Correlation of351

the parameters is shown in Figure 11.352
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(a) No Relapse (NR).
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(b) Partial Relapse (PR).
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(c) Full Relapse (FR).
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(d) Full Three Relapse (FTR).

Figure 9: Four simulations for the relapse data. (a) first SP with no relapse data (NR),
(b) first SP with a single relapse data point after 4.75 hours (PR), (c) first SP with full
relapse data, i.e., after 4.75 and 48 hours (FR). Lastly (d) shows the fit when including all
three consecutive SP treatments (FTR). The measurements are shown with colored circles.
The open black circles in (a) and (b) indicate that the measurements are not used for
estimation. RMSE is NR =6.18·10−6, PR=1.19·10−6, FR=1.07·10−5 and FTR=9.36·10−7,
respectively.

Figure 9a shows estimation without relapse measurement for a single SP session, the353

phosphate concentration has a quite large 95% CI and undershoots the relapse. If we354

consider the uncertainty in the correlation plot for the parameters in Figure 11 and Figure355

10, we see a large 95% CI for the parameter estimates and relative standard deviation356

in Table B.4 which is similar to the uncertainty associated with the estimate for the SP357

estimation in Section 4.1.358

A model estimation including the measured relapse 45 minutes after ended treatment359
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Figure 10: Posterior mean and 95% CI for the parameter estimates for the four scenarios,
No relapse (NR), Partial relapse (PR), Full relapse (FR) and full-three relapse (FTR). The
figure shows that the uncertainty about the parameter estimates decreases as the number
of measurements increases.
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Figure 11: Plot of the posterior density and correlation for the parameter estimates for
the four scenarios, No relapse (NR), Partial relapse (PR), Full relapse (FR) and full-three
relapse (FTR). The density plots show the posterior density functions, and the scatter
plots show the posterior samples. The uncertainty associated with the posterior mean of
the parameters decreases as more information is included in terms of relapse measurement
and /or consecutive sessions.

is depicted in Figure 9b. The 95% CIs for the phosphate concentration is slightly reduced,360

but the 95% CIs for the parameters have barely changed as seen in Figure 10, Figure 11361

and Table B.4. Hence, including a measurement after 45 minutes relapse has limited effect362

on the uncertainty of the parameter estimates. This can also be seen by considering the363

correlation plot in Figure 11, where the width of the distribution is only slightly changed. It364

is noteworthy that the addition of the relapse point has such limited effect on the estimation.365

However, this limited effect is due to the very rapid dynamics in the initial relapse phase.366

The initial relapse is not very sensitive to small changes, whereas a relapse point measured367

later e.g., after two hours, will have a larger effect on the estimation process due to the368
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slower change in the concentration.369

Considering the full relapse in Figure 9c, we see the effect of having a relapse measure-370

ment several hours after ended treatment. The estimated steady state for the phosphate371

concentration has an increased posterior mean and narrower 95% CI compared to Figure372

9a and 9b. This increase is explained by the increase for Cs which can be seen in Figure373

10 and Figure 11. There is also a slight narrowing of the 95% CI for Ks whereas the effect374

on Kb is limited as the relative standard deviation actually increases from 16% to 18%375

compared to the partial relapse. Hence, including relapse measurements has limited effect376

on the identifiability of Kb, but reduces the uncertainty associated with the estimates for377

Cs and Ks. This observation is expected based on the model (1), since we have Kb = 0 in378

the relapse phase.379

Lastly, if we have three consecutive SP treatments for the same patient, we can reduce380

the uncertainty even further, as shown in Figure 9d. The three consecutive SP treatments381

carry significant information since the repetition makes the estimates less sensitive to382

fluctuations in the data, which can also be seen in Figure 10 and Figure 11. Considering383

the relative standard deviation for Ks in Table B.4, we find that it decreases from 20% to384

5 % by considering the consecutive sessions compared to a single session. However, even385

in the case of a single session, our Bayesian approach has significantly smaller relative386

standard deviation compared to the estimates found by Debowska et al. [5] and Agar et387

al. [1], who report a relative standard deviation of 79% and 47%, respectively. Even for388

Kb, we see a significant narrowing of the 95% CI. Thus, measuring consecutive sessions389

greatly increases the identifiability of all three model parameters as the relative standard390

deviation decreases significantly for all three parameter estimates, as seen in Table B.4.391

We also investigated the effect of including relapse measurements for the synthetic392

data for SP, MP and CP. The results including relapse measurements are shown in Figure393

S.8-S.11 and results for two consecutive sessions are shown in Figure S.12 and S.13. Here394

we found that the consecutive sessions were more effective than relapse measurements to395

reduce the uncertainty of the parameters which aligns with the findings in Figure 9. In396

general for the synthetic data, we found that MP compared to SP had less uncertainty and397

came closer to the true parameter values.398
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5 Conclusion399

Phosphate clearance with hemodialysis is crucial for patients with renal failure since400

abnormal levels of phosphate are associated with increased vascular calcification and401

mortality. We propose a Bayesian approach to parameter estimation for patients undergoing402

hemodialysis treatments (SP, MP and CP). The Bayesian approach allows us to formally403

include clinical knowledge in the model and to use uncertainty quantification to assess404

how reliably we can estimate the three model parameters: phosphate concentration in the405

bones, phosphate clearance from bone to blood and from blood to dialysate.406

We validated and tested our Bayesian model on two data sets for patients with renal407

failure. The results showed that the uncertainty for the parameter estimates is greatly408

reduced by considering MP and CP compared to SP. However, for the parameter governing409

the diffusion rate between bone phosphate and blood, the uncertainty remained unchanged.410

We also investigated the impact of including relapse data and consecutive treatments. The411

results showed that including an early relapse measurement (after 45 minutes) had little412

effect on the estimation process if not combined with a measurement in the later relapse413

phase. The relapse measurements taken more than 45 minutes after ended treatment414

had significant impact on the reliability of the model parameters. Moreover, the results415

showed that we can reduce the relative standard deviation for the phosphate clearance416

from blood to bone from 20% to 5% by including consecutive sessions in the estimation417

process compared to estimation based on a single session.418

Numerical results on synthetic data confirmed the findings obtained from the real data,419

and showed that the parameters were poorly identified for SP if no prior information was420

included. The uncertainty of the estimates greatly decreased when using the Bayesian421

model incorporating clinical knowledge, and the MP model generally was closer to the422

true parameter values of the model. Compared to existing parameter estimates of the423

phosphate clearance from bone to blood, our Bayesian model can estimate a parameter424

associated with significantly lower uncertainty for both SP and MP.425
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A Summary statistics507
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Figure A.1: Boxplots of the measured parameters Cd and Vb for the SP sessions in Figure
3.
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Figure A.2: Boxplots of the measured parameters Vb and Vd for the MP sessions in Figure
3.
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B Tables508

Patient
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

1 1.41 1.71 2.06 9% 6.18 9.33 12.1 16% 10.14 13.16 15.31 10%

2 0.88 1.12 1.44 13% 5.03 8.94 12.96 22% 6.48 10.03 13.63 17%

3 0.98 1.23 1.51 11% 6.06 9.56 13.23 19% 5.38 8.57 12.25 21%

4 1.61 1.90 2.23 8% 7.50 10.66 13.13 13% 8.75 11.39 13.46 11%

5 1.33 1.63 1.98 10% 4.79 8.36 11.94 22% 6.42 9.54 12.63 17%

6 2.22 2.60 2.99 8% 4.10 4.97 6.10 10% 9.27 10.25 11.20 5%

7 1.45 1.78 2.08 9% 5.42 8.86 12.33 20% 2.30 4.97 8.24 30%

8 0.85 1.08 1.39 13% 5.45 8.43 11.52 18% 6.43 9.35 12.18 16%

9 1.10 1.4 1.71 11% 4.07 8.06 11.93 25% 1.90 4.69 8.14 34%

10 0.97 1.23 1.51 11% 5.93 9.27 12.73 19% 3.43 6.60 9.91 25%

Table B.1: Median (m), lower (l) and upper (u) 95% CI and relative standard deviation
( std
mean) for the parameters for the SP estimation.

Patient
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

1 1.41 1.57 2.13 12% 2.30 6.98 11.97 38% 5.82 7.08 8.73 10%

2 1.05 1.15 1.37 7% 4.38 7.80 11.58 24% 7.39 8.47 9.78 7%

3 1.26 1.40 1.62 7% 4.96 7.78 11.22 21% 6.48 7.78 9.41 10%

4 1.29 1.45 1.71 7% 4.50 7.46 11.06 23% 7.14 8.49 10.16 9%

5 1.31 1.42 1.65 6% 4.45 7.23 10.21 22% 9.43 10.07 10.79 3%

6 1.23 1.37 1.65 8% 3.71 7.13 11.06 26% 6.04 7.50 9.43 11%

7 1.50 1.64 1.91 6% 4.22 7.89 11.86 24% 5.84 7.12 8.75 11%

8 0.90 0.99 1.19 7% 3.07 7.36 11.45 28% 3.22 4.34 6.9 20%

9 1.16 1.28 1.44 6% 5.95 9.03 12.63 19% 4.96 5.98 7.43 10%

10 1.2 1.32 1.54 7% 4.40 7.11 10.66 23% 6.54 7.16 7.88 5%

Table B.2: Median (m), lower (l) and upper (u) 95% CI and relative standard deviation
( std
mean) for the parameters for MP estimation.
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Patient
Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

1 1.37 1.51 1.91 8% 3.19 7.26 11.34 28% 7.07 8.27 9.78 8%

2 1.03 1.11 1.27 5% 5.44 8.45 11.72 19% 8.2 9.30 10.51 6%

3 1.24 1.38 1.60 7% 5.11 7.70 11.14 19% 7.23 8.38 9.74 8%

4 1.34 1.51 1.79 8% 4.30 7.25 11.14 24% 6.57 7.59 8.79 7%

5 1.26 1.34 1.50 5% 6.72 10.48 13.93 18% 8.20 9.09 10.05 5%

6 1.37 1.66 2.24 14% 2.02 4.21 8.41 39% 5.67 6.70 7.86 8%

7 1.55 1.67 1.86 5% 5.89 9.20 12.74 19% 4.82 5.81 7.08 10%

8 0.86 0.96 1.13 7% 3.39 7.09 11.05 27% 4.27 5.64 7.59 16%

9 1.22 1.33 1.52 6% 5.42 8.54 12.28 20% 4.59 5.36 6.27 9%

10 1.17 1.24 1.36 4% 6.70 9.62 12.62 16% 6.28 6.97 7.68 5%

Table B.3: Median (m), lower (l) and upper (u) 95% CI and relative standard deviation
( std
mean) for the parameters for CP estimation.

Cs Ks Kb

l m u std
mean l m u std

mean l m u std
mean

NR 1.11 1.37 1.74 11% 6.44 10.51 14.84 20% 6.48 10.04 13.53 18%

PR 1.25 1.45 1.71 8% 7.57 11.70 15.61 18% 8.18 12.17 14.42 14%

FR 1.49 1.68 1.79 4% 5.97 8.75 11.21 15% 7.77 11.94 14.88 16%

FTR 1.64 1.68 1.71 1% 8.64 9.66 10.57 5% 13.01 14.4 15.51 4%

Table B.4: Median (m), lower (l) and upper (u) 95% CI and relative standard deviation
( std
mean) for the relapse data.
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C Correlation plots for SP and MP
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Figure C.1: Correlation and posterior
density for the patient 1.
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Figure C.2: Correlation and posterior
density for the patient 3.
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Figure C.3: Correlation and posterior
density for the patient 4.
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Figure C.4: Correlation and posterior
density for the patient 5.
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Figure C.5: Correlation and posterior
density for the patient 6.
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Figure C.6: Correlation and posterior
density for the patient 7.
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Figure C.7: Correlation and posterior
density for the patient 8.
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Figure C.8: Correlation and posterior
density for the patient 9.
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Figure C.9: Correlation and posterior
density for the patient 10.
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