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Abstract 
The intricate genotype-phenotype relationship has been a long-standing issue in biology, important both 
from the fundamental and applied points of view. One of the major irregularities hindering progress in 
establishing these links is epistasis – the complex and elusive interaction between mutations. Despite the 
vast accumulated genetic data and progress in this area, epistasis is still far from being completely 
understood. Epistasis can be studied quantitatively in combinatorially complete datasets, which form 
hypercubes in protein sequence space, where connected sequences are one mutation away from each 
other. However, this might be insufficient to portray the full picture of epistatic interactions. To extend 
the repertoire of the methods for exploring epistasis, we propose here to consider hyperrectangles, where 
some edges connect sequences being two or more mutations away from each other. The present work 
formalizes the theoretical knowledge about these novel structures and compares the amount of epistasis 
identified in hypercubes and hyperrectangles constructed from experimental datasets. A new algorithm, 
CuboidME, was developed for calculating hyperrectangles, which were then compared to hypercubes. In 
the experimental datasets, there were four orders of magnitude more hyperrectangles than hypercubes 
for the same sample size. Subsequently, we showed that for the studied datasets there is an increase in 
epistasis measured by epistatic coefficients in hyperrectangles compared to hypercubes. For the same 
datasets, hyperrectangles could find more sign epistasis than using hypercubes alone. We also show that 
there is a trend for increase in epistasis with increasing number of mutations being considered in a 
hyperrectangle. The results indicate that hyperrectangles can be used to reveal more information on 
epistasis in a fitness landscape, especially if it is combinatorially incomplete.  

Keywords: epistasis, fitness landscape, combinatorially complete dataset, hypercube, hyperrectangles 

Abbreviations: WT, wild type; GFP, green fluorescent protein; IGPD, imidazoleglycerol-phosphate 
dehydratase; IGPDSX, imidazoleglycerol-phosphate dehydratase, segment X; BASH, bourne again 
shell; H, hamming distance 
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1. Introduction 
Genotype-phenotype relationship is one of the central issues in evolutionary, developmental, and 
systems biology (de Visser et al., 2011). Understanding this relationship is critical in predicting disease 
from genotype and development of better vaccines and antibiotics through our enhanced understanding 
of microorganismal evolution. Phenotype, or observable traits of an organism, determines both the 
susceptibility to certain genetic diseases and adaptability to survive in the environment in question. 
Among the factors that largely determine phenotype, genotype is the principal heritable factor; therefore, 
understanding how genotype affects phenotype will allow us to predict evolutionary processes and 
determine which phenotypic characteristic an organism would have. Namely, an enhanced 
understanding of genotype’s effect on phenotype leads to numerous applications in the fundamental 
research and practical fields, such as predicting risk of disease from genotype, personalized medicine, 
developing vaccines and antibiotics through our enhanced understanding of microorganismal evolution, 
and control of crop pests (Kemble et al., 2019; Nosil et al., 2020). Yet, this relationship is far from being 
linear due to epistasis – the deviation in fitness from the additive effects of individual mutations (Breen 
et al., 2012; Sarkisyan et al., 2016; Weinreich et al., 2013; Phillips, 2008) – making the investigation of 
epistasis an important task. The linkage of fitness to genotype space can be viewed as an abstraction in 
the fitness landscape (Wright, 1932). The most straightforward way to study epistasis are 
combinatorially complete datasets, forming hypercubes in genotype space (Weinreich et al., 2013; 
Poelwijk et al., 2016; Esteban et al., 2019). The value of combinatorially complete datasets for the study 
of evolution and epistasis was shown convincingly for a number of evolutionary landscapes (Weinreich 
et al., 2013).  

Previously, we published a recursive algorithm for finding all hypercubes in fitness landscape 
experiments that use quasi-random mutagenesis, which would be infinitely slow for a brute-force 
approach (Esteban et al., 2019). Using the algorithm should be useful for investigating high-order 
epistasis in the high-throughput experimental data (Esteban et al., 2019; Erazo et al., manuscript in 
preparation). From an evolutionary point of view, we are reduced to studying single evolutionary 
effects, most of which being single nucleotide polymorphisms (SNPs) comprising hypercubes. However, 
using hypercubes gives only information about local neighborhood in the fitness landscapes. Moreover, 
for sparse landscapes the hypercubes may not be identified at all. 

Here, we propose consideration of composite mutations consisting of multiple single mutations. We 
generalize analysis of the combinatorially complete dataset using composite mutations. We argue that 
composite mutations allow finding many more epistatic characterizations of fitness landscapes than by 
using hypercubes. We show that, with the same amount of information obtained for hypercubes, the data 
obtained from the viewpoint of composite mutations contain much more information about epistasis and 
allow a more insightful glance into the nature of epistatic interactions.  
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2. Methods 
2.1. Fitness landscape datasets 

We took for our analysis local fitness landscapes of green fluorescent protein (GFP) (Sarkisyan et al., 
2016), segments 1-12 (S1-S12) of IGPD (imidazoleglycerol-phosphate dehydratase) (Pokusaeva et al., 
2019), RNA recognition motif (RRM2) of Saccharomyces cerevisiae poly(A)-binding protein (Melamed 
et al., 2013), and WW domain of hYAP65 protein (Araya et al., 2012). 

All fitness landscapes were converted into the format used in (Esteban et al., 2019): 
106*:110K\t0.146, where position is followed by the amino acid residue substituting the residue in 
the reference sequence (asterisk denoting stop codon).  

2.2. Algorithm 

The algorithm was written using Python 3.9.6 in Visual Studio Code IDE. The detailed description of 
the principle of work and notation of hyperrectangles is described in the subsection 3.1 of the Results 
section.  

2.3. Calculating epistatic coefficients 

In the present research work, we analyze pairwise epistasis expressed in coefficients  from a 

thermodynamic matrix for 2D hypercubes; therefore, epistatic coefficients were found using triangular 
transform matrix: (Poelwijk et al., 2016): 

 

 

(1) 

We chose the thermodynamic matrix described by (Poelwijk et al., 2016), as it was the most 
straightforward one and easier to understand. For the purposes of the present work, the choice of a 
matrix for calculating epistatic coefficients is not imperative, as hypercubes and hyperrectangles were 
compared based on the same method of calculating epistasis. The performance of different matrices for 
obtaining epistatic coefficients is a task for a separate research project and was not considered in this 
article.  
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2.4. Statistical analysis 

Distributions of epistatic coefficients  were checked for normality by using R to construct Q-Q plots 

and carry out the Anderson-Darling normality tests. Subsequently, the choice of statistical test was either 
an unpaired t-test (in case of normal distribution) or Mann-Whitney U test (in case of non-normal 
distribution). Mann-Whitney tested the following hypotheses: 

 H0: there is no difference between the distributions of epistatic coefficients derived from 
hypercubes and hyperrectangles; 

 HA: there is a difference between the two distributions (two-tailed test); mean of distribution of 
hyperrectangles is greater than that of hypercubes (one-tailed test). 

The choice of one-tailed or two-tailed test is specified in each chapter applying the statistical test.  

3. Results 
3.1. Hyperrectangles as a novel structure in sequence space 

For the purpose of the analysis, we introduce two new terms – hyperrectangles and hypercuboids. 
Hyperrectangles represent combinatorially complete datasets including necessary edges representing 
composite mutations (Figure 1). Hypercuboids comprise both hypercubes and hyperrectangles (Figure 
1). In the present work, we study hypercuboids for amino acid sequences; however, the same analysis 
could be performed on nucleotide sequences as well. Figure 1 provides an example of 2D hypercube and 
hyperrectangle regardless of the other structures present in a combinatorially complete dataset; Figure 2 
provides an example of 2D hypercube and hyperrectangle in the context of 3D hypercube.  

 

Figure 1. A visual explanation of the related terms hypercubes, hyperrectangles, and hypercuboids (H – hamming distance; 
amount of mutations separating two genotypes). Hypercuboids comprise hypercubes, in which each genotype connects to 
other genotypes if they are H = 1 mutation away, and hyperrectangles, in which some genotypes are connected if they are 
H = 2 and more mutations away from each other.  
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The notation of hypercubes is similar to that given in (Esteban et al., 2019). In brief, for a hypercube of 
any dimension we are given genotypes – WT, full mutant, and all genotypes in between. The key 
concept when considering both hypercubes and hyperrectangle is a diagonal which connects most 
distant genotypes in a hyperstructure. To denote diagonal in written form for hypercubes, mutations 
connecting the two genotypes are separated by a colon (Esteban et al., 2019) (Figure 2A). The notation 
for hyperrectangles builds upon the previous one, with an addition of a semicolon, which separates 
individual mutations within a composite mutation (Figure 2B).  

 
Figure 2. Examples of 2D hypercube and hyperrectangle in a combinatorially complete dataset of K = 3 mutational positions. 
Mutational pathways are given as leading from one sequence to another that is the closest to the WT variant. Sequences are 
represented as mutations added to the WT (e.g. 3C, mutation in position 3 to amino acid C). Letters A, T, C denote amino 
acids; letter Z – residue variant belonging to the WT sequence. A) A hypercube with WT, full mutant with two mutations 
(1A:2T) and a diagonal representing the mutational pathway from the full mutant to the WT variant; B) A hyperrectangle 
containing a diagonal with one point mutation (A1Z) and a composite mutation (C3Z;T2Z). 

Table 1. A combinatorially complete dataset with mutations in K = 3 positions. 

Sequence* (mutations) Fitness 

WT 0.7 
3C:2T 0.5 
3C:1A:2T 0.5 
3C 0.2 
1A:2T 0.7 
1A 0.9 
3C:1A 0.6 
2T 0.1 

*Sequences are represented as mutations added to the WT (e.g. 0C, mutation in position 0 to amino acid C). Letters A, T, C 
denote amino acids; letter Z – residue variant belonging to the WT sequence. Fitness values for each are randomly-generated 
numbers. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.16.496391doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.16.496391
http://creativecommons.org/licenses/by-nc-nd/4.0/


Composite mutations for extra epistasis insight 

The first step is generating 1D hyperrectangles from the sequences given in Table 1, which is 
accomplished by performing a pairwise comparison of all sequences. For each sequence pair a diagonal 
is generated, which consists of mutations needed to get from one sequence to the other. By default, all 
mutations in the diagonal are written to represent a mutational pathway leading to a sequence that is the 
closest to the WT variant, therefore, if we consider a pair of sequences WT and 1A, the diagonal consists 
of one mutation – A1Z, which would generate 1D hyperrectangle written as A1Z  1A  WT (Figure 3). If 
we consider two sequences which are more than one mutation away from each other, such as WT and 
3C:2T, then the diagonal would be C3Z;T2Z separated by a semicolon as part of a composite mutational 
path; this would be written as the following 1D hyperrectangle: C3Z;T2Z  3C:2T  WT. Higher dimensions 
are created by performing a pairwise comparison of hypercubes from lower dimensions and adding them 
together if they have a matching diagonal. For example, let us compare two 1D hypercubes – A1Z  1A  
WT and A1Z  3C:1A:2T  3C:2T – given in Figure 3. Since they have matching diagonals, they can be 
combined into a 2D hyperrectangle A1Z:C3Z;T2Z  3C:1A:2T  WT (Figure 3).  

 
Figure 3. An example of constructing one 2D hyperrectangle A1Z:C3Z;T2Z from a combinatorially complete dataset of 
eight sequences. Following (Esteban et al., 2019) Z represents a WT variant of an amino acid. Sequences are represented as 
mutations added to the WT (e.g. 3C, mutation in position 3 to amino acid C). Letters A, T, C denote amino acids; letter Z – 
residue variant belonging to the WT sequence. 

The program terminates when, having made all pairwise comparisons of hypercuboids in a dimension, 
there are no matching diagonals.  
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3.2. Composite mutations dramatically increase the library of fitness 

landscape datasets 

3.2.1. Combinatorially complete datasets 

Experimentally obtained fitness landscapes can have varying degrees of combinatorial completeness – a 
dataset might be lacking some of all possible combinations of the positions being considered. For this 
reason, we would expect to find different amounts of hypercubes and hyperrectangles depending on how 
combinatorially complete a given dataset is. Therefore, it is necessary to start the comparison of 
hypercubes and hyperrectangles by analyzing theoretically constructed combinatorially complete 
datasets of varying K (number of mutational positions under consideration).  

A 

 
B 

 
Figure 4. Procedure for constructing higher dimensional combinatorially complete space of K + 1 from a smaller 
dataset of K. A) Constructing K = 3 dataset from K = 2; B) Constructing K = 4 dataset from K = 3. Blue lines 
represent new edges duplicated from the previous dimension; red lines – new edges connecting the two 
duplicates.  
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For a combinatorially complete dataset, the numbers of hypercubes and hyperrectangles are constant for 
each K; accordingly, we can devise a mathematical equation for calculating the above structures. For a 
given K, we can calculate N (number of sequences or 0D hypercubes), determine the number of 
dimensions, and calculate the numbers of hypercubes, hyperrectangles, and both (hypercuboids) for each 
dimension and in total. Hypercubes follow a certain pattern of growth with each dimension. If we 
consider 1D hypercubes of a certain K, for example K = 2, we notice that increasing dimensionality by 
one (K = 3) yields the doubling of the lower-dimension edges (highlighted blue) as well as creation of 
the new edges connecting the two duplicate structures (highlighted red) (Figure 4A). Additionally, it can 
be noted that the number of the connecting edges increases by a factor of two with each K: going from 
K = 2 to K = 3, there are 4 new edges connecting the two duplicate planes (Figure 4A), while for the 
K = 3 to K = 4 transition there are 8 new edges (Figure 4B).  

From the patterns highlighted above, we can derive an equation sets that describe the growth of 
hypercubes, hyperrectangles, and hypercuboids for each dimension with each K.  

Notes on notation. Let K – number of amino acid positions in a combinatorially complete dataset, d – 
dimension in that dataset, x – number of hypercubes, y – number of hyperrectangles, z – number of 
hypercuboids. General notation of number of hypercubes, hyperrectangles, and hypercuboids, 
respectively, is: . For a given , possible dimensions for the 

hypercuboids are integers belonging to a closed interval of  (for hypercubes and 

hypercuboids),  (for hyperrectangles). Using these definitions, we can generate 

number of hypercubes, hyperrectangles, and hypercuboids for each dimension for a given K:  

Equation for calculating hypercubes: 

 

 

(2) 

Equation for calculating hypercuboids:  

 

 

(3) 

Equation for calculating hyperrectangles: 

 
 (4) 

The mathematical formulae described above were implemented in Python, followed by the calculation 
of hypercubes and hyperrectangles for each K in the range of  (Figure 5).  
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A B 

  
Figure 5. Numbers of hypercubes and hyperrectangles that were theoretically calculated for combinatorially 
complete datasets with K mutational positions. The lowest K calculated is 2 because K = 0 represents a WT 
sequence with no mutations being considered and at K = 1 there are no hyperrectangles found. A) Hypercubes 
and hyperrectangles theoretically calculated for each K; B) Ratio of hyperrectangles to hypercubes for each K. 

Figure 5A shows that both hypercubes and hyperrectangles experience an exponential increase in 
numbers with increasing K. Nevertheless, hyperrectangles have a much higher rate of increase per K; 
this is evidenced in Figure 5B, where the ratio of hyperrectangles to hypercubes continuously increases 
with rising K, reaching a ratio as high as 1013 at K = 26. This demonstrates that in combinatorially 
complete datasets, there are many more hyperrectangles than hypercubes, providing a researcher with 
more data to investigate epistasis. The exact numbers for the Figure 5 can be seen in Supplement Table 
S1.  

3.2.2. Combinatorially incomplete datasets 

Having completed the investigation of combinatorially complete datasets, we shifted our attention to 
analyzing large fitness landscape datasets. We analyze here the following datasets: green fluorescent 
protein (GFP) (Sarkisyan et al., 2016); segments 1-12 (S1-S12) of the protein IGPD (imidazoleglycerol-
phosphate dehydratase) from His3 gene required for synthesis of histidine (Pokusaeva et al., 2019); the 
RNA recognition motif (RRM2) of S. cerevisiae poly(A)-binding protein (Melamed et al., 2013); WW 
domain of  the protein hYAP65 (Araya et al., 2012). 

Figure 6A shows the number of hypercubes and hyperrectangles for sample sizes of 100 – 1000 
sequences. Figure 6B shows that the ratio of hyperrectangles to hypercubes is between 4 and 5 orders of 
magnitude. This is a much greater number than that for combinatorially complete theoretical datasets 
described in Chapter 3.2.1, where for K = 10 (equivalent to 1024 sequences) the ratio was 845, or just 
three orders of magnitude.  
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A B 

  
 

Figure 6. Comparison of hypercubes and hyperrectangles calculated for randomly-sampled fractions (100 – 1000 sequences; 
10 replicates for each fraction) of different fitness landscapes (RRM2, WW, GFP, IGPDS1, IGPDS2, IGPDS3). Error bars 
represent SD for median values obtained for each dataset. A) Line plot of the amount of hypercubes and hyperrectangles per 
each sample size; B) Ratio of hyperrectangles to hypercubes.  

3.3. Composite mutations allow detecting types of epistasis 

additional to that found by hypercubes.  

Using hyperrectangles for certain datasets can reveal additional types of epistasis not revealed by 
hypercubes. This is the case with the combinatorial complete subset from (Khan et al., 2011) displays 
example of ‘diminishing returns’ effects of beneficial mutations on fitness, or negative epistasis, which 
can explain the phenomenon of the diminishing fitness gain during adaptation (Chou et al., 2011). Let us 
consider the 3D combinatorially complete subspace comprising three positions (denoted in the article as 
g, r, and p), which represents a hypercube of K = 3; fitness values were extracted from Table S2 of 
(Khan et al., 2011). If within this subspace we consider 2D hypercubes (Figure 7A), we will only find 
negative epistasis (Figure 7B). However, when considering 2D hyperrectangles, there is a combination 
of datasets, specifically p-r-gp-gr (Figure 7C) which contains sign epistasis. Hence, the combinatorial 
subset of a real fitness landscape shows that hyperrectangles could find more sign epistasis as compared 
to hypercubes.  

An intriguing example from Figure 7 warrants a more thorough investigation of the difference in types 
of epistasis between hypercubes and hyperrectangles – do hyperrectangles have significantly more 
percentage of a particular type of epistasis (negative, positive, sign, or reciprocal sign) compared to 
hypercubes? To conduct such an investigation, we analysed samples from datasets containing N ≥ 200 
sequences by estimating types of epistasis in each hypercube and hyperrectangle for a dataset, then 
calculating percentage of each type of epistasis in each dataset, and finally performing Mann-Whitney U 
test to compare types of epistasis of the two groups (hypercubes and hyperrectangles) (Table 2).  
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A B 

 

Hypercube Epistasis 

wt-g-r-gr (top) Negative 
p-gp-pr-rpg 
(bottom) 

Negative 

r-gr-rp-rpg (right) Negative 
wt-g-p-gp (left) Negative 
g-gr-gp-rpg (back) Negative 
wt-r-p-rp (front) Negative 

 

 

C 

Hyperrectangle Epistasis 

p-r-gp-gr Sign epistasis 
 

Figure 7. An example of an experimenal fitness landscape where hyperrectangles allow discovery of a type of epistasis not 
detected by hypercubes. A) Combinatorially complete subset (K = 3) of the dataset from the experimental fitness landscape 
(Khan et al., 2011). Solid lines represent all edges with H = 1, dashed lines = some of the edges with H > 1; B) List of 2D 
hypercubes found in the subset; C) An example of a 2D hyperrectangle (highlighted blue) found in the subset. 

Table 2. Difference in various types of epistasis (no epistasis, positive, negative, sign, and reciprocal sign) between 
hypercubes and hyperrectangles. Statistical test used is Mann-Whitney U test; for each type of epistasis, a single observation 
is a median of percentage of that type of epistasis for one dataset.  

Type of epistasis two-tail Mann-Whitney,  
p-value 

one-tail* Mann-Whitney,  
p-value 

No epistasis 0.5897 0.7255 
Positive 0.9323 0.5563 
Negative 0.795 0.6246 
Sign 0.03872 0.01936 
Reciprocal sign 0.7125 0.6647 
*one-tail test, HA – hyperrectangles have more (type of epistasis) than hypercubes. Statistically significant values (p < 0.05) 
are highlighted bold. Datasets analysed: Franke et al. 2011, GFP, RRM2, WW, IGPDS1, IGPDS2, IGPDS3, IGPDS4, 
IGPDS6, IGPDS7, IGPDS9, IGPDS11. 

Table 2 shows that there is statistically significant difference between the two structures only for sign 
epistasis; furthermore, one-tail test indicates that hyperrectangles have more sign epistasis than 
hypercubes. Figure 8 shows the plot for residuals, where for each type of epistasis, we subtracted the 
percentage of one type of epistasis in hypercubes from hyperrectangles; each dot represents this action 
performed for each dataset. Indeed, the difference in percent of sign epistasis between the two structures 
averages around 5-10%, with one of the values reaching almost as high as 40% (Figure 8).  

Therefore, we can see that hyperrectangles allow finding a higher percentage of sign epistasis.  
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Figure 8. Distributions of residuals by types of epistasis. Residuals are calculated as the difference in percentage of a specific 
epistasis type in hyperrectangles and hypercubes for a specific dataset; each data point – one dataset. Horisontal line where 
Residuals = 0 represents no difference in percent of epistasis types between the two structures. 

3.4. Composite mutations allow for epistatic analysis in sparse 

datasets 

If hyperrectange analysis gives more epistatic coefficients than hypercube one, there is a question: can 
we imagine a situation when the hypercube analysis does not give any epistatic coefficients at all while 
hyperrectangle analysis gives some epistatic coefficients? To explore this question, we took the first 
1000 genotypes from some fitness landscapes, e.g. IGPDS2, IGPDS6, and IGPDS12, all subsets being 
combinatorially incomplete. Having calculated hypercuboids, we see that no hypercubes could be found, 
while hyperrectangles were found plentifully. This shows that there can be cases where using 
hyperrectangles can provide an information about some landsdcape where no hypercubes could be 
found. More datasets might be found in literature where researchers did not accomplish epistatic 
analysis because of absence of combinatorially complete datasets. 

Database Hypercubes (dim=2) Hyperrectangles (dim=2) 

IGPDS2 0 267 

IGPDS6 0 564 

IGPDS12 0 1,357 
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3.5. Comparison of epistatic coefficients obtained from hypercubes 

and hyperrectangles 

In this section, we statistically compare epistatic coefficients  and their squares  calculated for 

hypercubes and hyperrectangles. We would consider only those datasets which contain enough 
mutations and sequences to construct a combinatorially complete sample of K = 10, which is represented 
by  sequences. The sampling of the datasets is performed because the 

combinatorial incompleteness of the datasets is likely to bias the results towards more epistasis in 
hyperrectangles as well as making the analysis of whole datasets too computationally intensive.  

Of the large datasets, only four contained enough sequences to construct combinatorially complete 
datasets of K = 10 (Table 3). We used median as a measure of fitness, because the distributions are non-
normal with a high degree of skewness.  

Table 3. Description of datasets used for calculating epistatic coefficients. For each dataset, we consider K = 10 mutational 
positions (N = 1024 sequences); consequently, for each dataset the numbers of 2D structures are the same: 11520 hypercubes 
and 7284736 hyperrectangles.  

Sample Mutations Fitness value  
(median ± SD) 

IGPDS2 A138P:F139Y:A140S:F141V:I142T:D143N:C156S:I159V:P160T:I162V 0.81 ± 0.44 
  
IGPDS3 F146L:K147Q:K150M:I151V:E153Q:L163M:D164H:A167S:G168R:G169S 0.98 ± 0.29 
  
IGPDS4 A170S:A171G:I172V:I174L:D177N:I179L:A194S:F195L:I197L:I199L 1.00 ± 0.079 
  
IGPDS6 A96G:I97L:S98T:K101Q:H104N:F116Y:S118Y:A119G:F120Y:A121C 0.82 ± 0.30 
  

 

Figure 9 shows the distribution of epistatic coefficients calculated for hypercubes and hyperrectangles. 
These distributions were shown to be non-parametric by the Anderson-Darling normality test; therefore, 
we used Mann-Whitney statistical test to compare the distributions of hypercubes and hyperrectangles in 
each dataset.  

Mann-Whitney U test for  (two-tail) shows highly statistically significant (p < 0.001) difference in 

the distributions of hypercubes and hyperrectangles for IGPDS2, IGPDS3, and IGPDS6 (Table 4). To 
further confirm this difference, we conduct a one-tail Mann-Whitney U test for the squared epistatic 

coefficients ; squaring the coefficients exacerbates deviation from the null, or no epistasis. For 

these coefficients, we see that for all four datasets there is statistically significant difference (p < 0.001). 
Therefore, we can conclude that for the samples under consideration, hyperrectangles analysis give more 
epistasis than hypercubes one. 
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 IGPDS2 IGPDS3 IGPDS4 IGPDS6 
 

A 

    
B 

    
Figure 9. Distributions of epistatic coefficients for hypercubes and hyperrectangles. A) Histogram of epistatic coefficients 

; B) Histogram of squared epistatic coefficients . Both A) and B) have logarithmic y-axes.  

 

Next interesting question to study is how the amount of epistasis measured by  changes with 

increasing hypercuboid size. In other words, with increasing size of a hypercuboid (which is two for 2D 
hypercubes and 3+ for 2D hyperrectangles), would the epistasis increase, decrease, or no correlation 
would be found between the two variables? Figure 10 illustrates this pattern.  

 

Table 4. Descriptions of statistical tests of hypercubes and hyperrectangles.  
Dataset p-value for two-tailed 

Mann-Whitney test, a12 
Median ± SD of (a12)2 p-value for one-tailed 

Mann-Whitney test, (a12)2 Hypercubes Hyperrectangles 
IGPDS2 p < 2.2e-16 0.0045 ± 0.074  0.016 ± 0.17 p < 2.2e-16 
IGPDS3 p = 9.067e-05 0.0057 ± 0.16  0.018 ± 0.30 p < 2.2e-16 
IGPDS4 p = 0.7743 0.00074 ± 0.047  0.0011 ± 0.10 p < 2.2e-16 
IGPDS6 p < 2.2e-16 0.0055 ± 0.062  0.023 ± 0.13 p < 2.2e-16 
Mann-Whitney U test (two-tailed test), with the statistic value (W) and p-value. Alternative hypothesis: true location shift is 
not equal to 0 (two-tail test); Median and SD for distribution of epistatic coefficient squared ; Mann-Whitney U test 
(one-tail test), with the statistic value (W) and p-value. Alternative hypothesis: true location shift is less than 0 (one-tail test). 
Median and SD are given for  and not , because for  centers are at the 0 (no epistasis); for , median 
represents deviation from the null. 
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Figure 10. Dependence of epistasis and hypercuboid size. Epistatic coefficients  were excluded from the 
analysis. Horisontal black bars in each box plot represent median values.  

Figure 10 shows that there is a very big overlap between the individual boxes for different hypercuboid 
sizes; therefore, it is unlikely to be statistical difference in epistasis with the increasing hypercuboid size. 
Nevertheless, we can still see a trend of median value (depicted as black horizontal bar in each box 
subplot) increasing with hypercuboids size in datasets IGPDS2, IGPDS3, and IGPDS6.  

3.6. Modelling hypercuboids after random removal of sample 

fractions 

Having calculated the hyperrectangles / hypercubes ratio both for theoretically constructed 
combinatorially complete and experimental combinatorially incomplete datasets, we saw that the latter 
has a higher ratio – between 4-5 orders of magnitude (Section 3.2.2) compared to less than 3 orders of 
magnitude (Section 3.2.1). Therefore, in the present section we would investigate the dependence of 
ratio of hyperrectangles to hypercubes on the percentage of the dataset removed from analysis. In other 
words, if we move from analysing a combinatorially complete dataset to subsets with varying amounts 
of randomly removed sequences, in what direction would we see the ratio of hyperrectangles to 
hypercubes change? Here we calculated the ratios for ; we limited our analysis to K = 8 due to 

technical limitations by computational resources.  
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Figure 11. Ratios of hyperrectangles to hypercubes for increasing percentage of removed sequences (0%, combinatorially 
complete dataset; 90%, starting dataset with 90% of its sequences randomly removed), stratified by the number of positions 
K under consideration ( . 

Figure 11 shows that in smaller fitness landscapes (K = 3, K = 4), the ratio tends to slightly increase. 
However, in a larger dataset of K = 8, we see that ratio decreased from nearly 100 down to around 40. 
The ratio of 100 for the whole combinatorially complete dataset at K = 8 (Figure 10) coincides with the 
calculation provided in Table S2; this is expected, as in both cases the dataset is combinatorially 
complete. The surprising observation comes as we start to remove sequences from the dataset. In case of 
K = 8, the ratio goes down, eventually reaching the level below 40.  
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4. Discussion 
Despite numerous articles on the topic, epistasis remains a cryptic phenomenon. Its understanding 
influences our comprehension of fitness landscapes, as epistasis is a primary determinant of the shape of 
a fitness landscape by influencing its parameters such as ruggedness and curvature (Beerenwinkel et al., 
2007). Being considered from the standpoint of evolution, fitness landscapes are traversed by means of 
single mutations, with the evolutionary step being equal to 0.5-1 mutation per generation in eukaryotes 
(Barrick and Lenski, 2013). Nonetheless, there are some natural genetic phenomena including multiple 
mutaitions; these include recombination and transposition. Accordingly, studying many substitutions at 
a time could also be relevant even for the process of evolution; however, we understand that finding 
hyperrectangle structures in evolutionary data has practically zero chances.  

Previously, there have been limited attempts to implicitly utilize composite mutations to study epistasis. 
Beerenwinkel with colleagues (Beerenwinkel et al., 2007) used a so-called “new geometric approach”, 
where “the geometric framework allows not only tests of the standard pairwise interactions but also non-
pairwise tests that gave new insights into (i) the relationship between the form of epistasis and the 
individual mutational effects, and (ii) variation between mutations in their mixing ability with other 
mutations”. In their analysis, they were able to show that using non-standard tests over the standard ones 
enabled them to find more epistasis in the fitness landscape.  

Other research groups have studied effects of mutations in different contexts. Pokusaeva with 
colleagues, for example, explored effects of the same mutations in far genetic contexts (Pokusaeva et al., 
2019). Thus, they implicitly studied 2D hyperrectangles where two edges have H = 1 while the other 
two edges can be of any length.  

Table 2 (Section 3.3) showed some intriguing results. For most types of epistasis (positive, negative, 
reciprocal sign, or no epistasis), percentages between the two structures (hypercubes and 
hyperrectangles) do not seem to differ. At the same type, there is a difference in percentage of sign 
epistasis between the two groups (p = 0.03872), with hyperrectangles having a higher percentage of sign 
epistasis than hypercubes (p = 0.01936). This significant difference was observed even with such a small 
sample size of n = 12 datasets; therefore, we could expect that with a larger sample of datasets the 
statistical power may be even stronger and the difference – more statistically significant. Figure 6 shows 
that the difference in percent of sign epistasis between the two structures averages around 5-10%, with 
one of the values reaching almost as high as 40%. 

It is also interesting to compare the results of the ratio of hyperrectangles to hypercubes for 
combinatorially complete datasets (Section 3.2.1), for real experimental datasets (Section 3.2.2), and for 
the random removal experiment (Section 3.6). For convenience, some of the results are summarized in 
Table 5. If we consider a dataset of K = 7 (corresponding to 128 sequences), a theoretical 
combinatorially complete dataset would have a ratio of 36. The ratio is the same in the random removal 
experiment before randomly removing any sequences; after 90% of such removal, the ratio goes down to 
21. In general, if we consult Table 5B, C, we can see that after having removed 90% of sequences in a 
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dataset, the ratio goes down dramatically. However, Table 5D shows the ratios that far exceed those for 
the other datasets.  

Such a drastic difference in ratios could be explained by a systematic difference between incompleteness 
of the datasets given in Chapters 3.2.2 and 3.6. While in the latter case, the combinatorially incomplete 
datasets were created by removing fractions consisting of randomly sampled sequences, the former 
could have a bias for excluding mutations in a pattern which would lead to the increase in the ratio of 
hyperrectangles to hypercubes. Such a bias could be exemplified by choice of clusters of mutations for 
the experimental datasets that are separated spatially by many amino acids positions. In this case, 
hypercubes would only be found in the respective clusters of mutations that are close to each other, 
while hyperrectangles would be calculated within as well as between the clusters, leading to a great 
increase in numbers of hyperrectangles. This explanation could be tested in the future research as the 
dependence of ratio of hyperrectangles to hypercubes on the pattern of combinatorial incompleteness of 
the dataset.  

Overall, we demonstrate here that epistatic analysis based on composite mutations and hyperrectangles 
not only produce more dramatically more data containing valuable information about epistasis but also 
allows to reveal new types of epistasis. We expect that the proposed approach will have a high 
importance for the analysis of the evolutionary landscapes published by now and in the future.  

Table 5. Comparison of the hyperrectangles / hypercubes ratio for combinatorially complete datasets, real combinatorially 
incomplete datasets, and experimentally modelled incomplete datasets, for varying sequences.  

Sequences (K) A) Comb complete 

ratio 

B) Modelling 

incompleteness:  

0% removed 

C) Modelling 

incompleteness: 

90% removed 

D) Real 

experimental 

dataset 

64 (K = 6) 14 14 7 - 

128 (K = 7) 36 36 21 4867 

256 (K = 8) 96 96 31 18943 

512 (K = 9) 275 - - 28360 

1024 (K = 10) 846 - - 23020 

values are rounded to the nearest whole integer. Ratios for “real experimental dataset” are given as those for the number of 
sequences closest to the corresponding K: for K = 7, 100 sequences; for K = 8, 300 sequences; for K = 9, 500; for K = 10, 
1000.  
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