Abstract
Spermatogenesis is a key process for the sexual reproduction species. In lepidopteran insects, dichotomous spermatogenesis is a notable feature, which produces eupyrene (nucleate) and apyrene (anucleate) spermatozoa. Both sperm morphs are essential for fertilization, as eupyrene sperm fertilizes the egg, while apyrene sperm is necessary for eupyrene sperm migration. In Drosophila, Prmt5 acts as a type II arginine methyltransferase to catalyze the symmetrical dimethylation of arginine residues (sDMA) in Vasa. However, Prmt5 is involved in regulating spermatogenesis, but Vasa is not. To date, the functional genetic study on dichotomous spermatogenesis in the lepidopteran model Bombyx mori has been limited, thus the underlying mechanism remains largely unknown. In this study, we report that both BmPrmt5 and BmVasa act as essential components in the regulation of dichotomous spermatogenesis in Bombyx mori. The loss-of-function mutants of BmPrmt5 (△BmPrmt5) and BmVasa (△BmVasa) derived from CRISPR/Cas9-based gene editing show similar male and female-sterile phenotypes. Through immunofluorescence staining analysis, we found that the morphs of both △BmPrmt5 and △BmVasa sperm show severe defects, indicating an essential role for both BmPrmt5 and BmVasa in the regulation of dichotomous spermatogenesis. RNA-seq analyses indicate that the defects in dichotomous spermatogenesis observed for △BmPrmt5 and △BmVasa mutants could be attributed to the reduced expression of the spermatogenesis-related genes including Sex-lethal (BmSxl), implying that BmSxl may act downstream of Prmt5 and Vasa in regulating apyrene sperm development. These findings suggest that BmPrmt5 and BmVasa constitute an integral regulatory module essential for dichotomous spermatogenesis in Bombyx mori, in which BmPrmt5 may promote BmVasa activity through sDMA modification.
Competing Interest Statement
The authors have declared no competing interest.