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Abstract

The estimation of effective population sizes (Ne) through time is of fundamental
interest in population genetics, but the interpretation of Ne as the effective number of
breeding individuals in the population is challenged by the effect of population struc-
ture. In fact, variation in Ne reported in many studies may be a consequence of changes
in migration rates between populations rather than changes in actual population size.
We address this long-standing problem here by constructing joint models of popula-
tion size changes, migration, and divergence that can adjust temporal estimates of Ne

and estimate the actual Ne of a local deme connected to another population through
migration. We also develop a method for estimating divergence times and migration
rates taking into account complex scenarios of changing population sizes. We apply
the method to previously published data from humans, and show that, when taking
migration and changes in Ne into account, the estimated divergence between the San
and Dinka populations is approximately 108 kya, and not 255 kya as reported in a
previous study. Using simulations, we demonstrate that the previously reported and
surprisingly old estimates of divergence between San and Dinka is in fact caused by a
quantifiable estimation bias due to changes in Ne through time.
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1 Introduction

Effective population size is one of the main characteristics of the demography of a pop-
ulation, and an important parameter determining evolutionary processes. Although it is
related to census population sizes, it does not correspond to it in most cases. For example,
for humans, effective population size is estimated to be on the order of ten thousand, which
is much smaller than actual population size, in the order of billions [Henn et al., 2012].

Effective population size has been formally defined in many different ways. The concept
was originally introduced by Wright [1931] in the context of describing causes of random
variation in allele frequencies through time (i.e. genetic drift). In that context, effective
population size is “the number of individuals in a theoretically ideal population having the
same magnitude of random genetic drift as the actual population” [Hartl and Clark,
2007]. Common models for this ideal population are standard Wright-Fisher [Fisher, 1930,
Wright, 1931] or Moran [Moran, 1958] models. In an actual population, a combination
of population size, inbreeding, unequal sex ratios and variance in offspring number all
contribute to genetic drift, and thus to the effective population size. In population models
where these parameter values are known, effective population size can be calculated directly
using well-established equations [Hartl and Clark, 2007].

In practice, because effective population size measures genetic drift, and drift deter-
mines the amount of genetic diversity in the idealized population, effective population size
is often interpreted as a measure of genetic diversity. The definition of effective population
size then changes slightly to the number of individuals in a theoretically ideal population
having the same amount of genetic variation as the actual population. Under this defini-
tion, effective population size can be calculated directly from measures of genetic diversity
of real populations. In a real population, however, the level of genetic diversity is affected
by processes other than drift, such as migration and natural selection. When the effective
population size is estimated from genetic diversity, it is affected by these other processes.
In other words, when we define effective population size as a measure of genetic diversity,
it no longer reflects only drift.

The Wright-Fisher and Moran population models mentioned earlier, as well as many
others, converge to Kingman’s coalescent model when population sizes are large [Kingman,
1982, Sjödin et al., 2005, Wakeley and Sargsyan, 2009]. In this model, effective population
size is a parameter determining the probability distribution for coalescence times (time to
a common ancestor) of two lineages. More specifically, the coalescent effective population
size is the inverse of the coalescence rate. Because coalescence times predict most measures
of genetic diversity in a population, the coalescent effective population size has been argued
to be the most general definition of effective population size [Sjödin et al., 2005], and it is
the definition we will use here.
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1.1 Methods to estimate historical effective population size

Many methods were developed to estimate the variation of effective population size through
time. The most widely used one is PSMC [Li and Durbin, 2011], which uses a single diploid
genome (or a pair of haploid genomes) to infer past effective population sizes. PSMC is
based on a sequentially Markovian coalescent model [McVean and Cardin, 2005], where
states (coalescence times, discretized) change along a DNA sequence. A Hidden Markov
Model (HMM) approach is used to infer the distribution of coalescent times between a pair
of lineages. The emission probabilities of this HMM are the probabilities of observing a
site that is variable (heterozygous) or non-variable (homozygous), given a coalescence time.
The underlying intuition is that the probability of observing a heterozygous site increases
with coalescence time. The effective population size is then given by the inverse of the
coalescence rate. There are many other HMM-based methods for inference of historical
effective population size: coalHMM [Hobolth et al., 2007, Dutheil et al., 2009], diCal
[Sheehan et al., 2013], MSMC [Schiffels and Durbin, 2014], SMC++ [Terhorst et al., 2017]
(see Spence et al. [2018] for a review).

Previous studies have shown how these and other methods can infer past effective popu-
lation sizes that are very different from simulated census population sizes when populations
are structured [Heller et al., 2013, Mazet et al., 2016, Chikhi et al., 2018]. These studies
showed how population structure can lead to misinterpretation of past effective population
size plots. While it is true that PSMC plots can be often misinterpreted, we argue that
the change in past effective population size due to population structure is an expected and
desirable behaviour, since these methods infer the coalescent effective population size, and
not the census population sizes.

Migration, for example, is a phenomenon that generally increases the coalescent effective
population size of the population receiving migrants, since incoming migrants will likely
increase genetic diversity. Interestingly, if we consider the alternative definition of effective
population size as the change in allele frequency through time due to drift, the effect
of migration on effective population size is the opposite: migration introduces sudden
changes in allele frequency, which can be interpreted as strong drift, and thus small effective
population size [Wang and Whitlock, 2003]. This effect is expected only in the short term,
and it is reversed in the longer term as populations approach an equilibrium [Wang and
Whitlock, 2003]. Here, however, we are focusing on the coalescent effective population size,
which tends to increase with immigration. We emphasize that the effective population
size inferred with PSMC should be interpreted as the amount of genetic variation in a
population through time. Therefore, PSMC results are informative about both population
size and migration. Nonetheless, as we will show, inferences of effective population size
from PSMC can in some cases be biased when the transition probabilities of the HMM
underlying PSMC inferences cannot adequately fit the true transitions in coalescence times
along the genome in the presence of migration.

In this work we make an effort to disentangle the effects of migration from effective
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population sizes. We discuss the case of two fully exchangeable populations (e.g. Wright-
Fisher populations) with migration between them. A sample from any of the two admixed
populations contains footprints of historical effective population size of both parental pop-
ulations. We formalize the concept of local effective population size, which is the effective
population size of the parental populations, after accounting for the effect of migration.
We show that the local effective population size can be determined from the the ordinary
effective population size estimated by PSMC if migration rates are known or inferred.

We also develop a method called MiSTI (for “migration and split time inference”),
which infers split time and migration rates under a model of two populations that exchange
migrants after their split from a common ancestor. To do so, MiSTI combines information
from the joint site frequency spectrum of two diploid samples with the ordinary historical
effective population sizes (as inferred by PSMC). MiSTI also uses the inferred migration
rates to recover the local effective population size, i.e. to “correct” the PSMC curves for
the effect of admixture. By applying this method to simulated data we show scenarios
where PSMC finds a good approximation of the simulated effective population size, and
scenarios where PSMC results do not correspond to the true effective population size. We
also show that MiSTI appropriately corrects PSMC curves for the effect of migration, when
migration rates are known and PSMC estimates are close to the true effective population
size. Next, we apply MiSTI to data from humans and show i) How MiSTI can correct
the effect of Neanderthal admixture on the historical effective population size of a human
genome of European ancestry (CEU) and ii) What split times and migration rates best fit
a model of split time and migration between pairs of human populations.

1.2 Other methods that infer population split times and/or migration
rates from a pair of diploid genomes

Wang et al. [2020] developed a method, MSMC-IM, that also infers migration rates from
historical effective population sizes. MSMC-IM fits an isolation-migration model with con-
tinuous symmetric migration to the inverse coalescence rates inferred by MSMC2. Instead
of explicitly modelling a split time point, they model population split as a continuous pro-
cess. The event of two populations merging backwards in time is represented as an increase
in migration rates, to a point where both populations exchange migrants freely. In contrast
to MiSTI, MSMC-IM does not aim to recover the local effective population size. Other
differences worth pointing out are that MiSTI allows for asymmetric migration between
populations and it uses PSMC instead of MSMC, which requires phased genomes.

Song et al. [2017] also tackled the problem of fitting an isolation-migration model to infer
population split times from PSMC results. Their approach differs from ours methodologi-
cally and conceptually. In terms of methodology, Song et al. [2017] use an ABC approach
to fit parameters, while we compute the composite likelihood of parameter values based
on equations derived analytically. Conceptually, we formalize the distinction between the
ordinary effective population size of admixed samples (often inflated by migration) and
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the local effective population size of its parental populations, which we can recover in the
presence of migration, while Song et al. [2017] does not make this distinction.

Arredondo et al. [2021] use yet another approach. Their method, SNIF (Structured
Non-stationary Inferential Framework) fits the curves of coalescent effective population
size through time (which they denominate inverse instantaneous coalescence rate, IICR),
as inferred by PSMC, to island models with symmetric migration and constant deme size.
This method allows to infer the number of demes and migration rates among demes from
IICR curves alone.

Schlebusch et al. [2017] introduced the TT-method [Sjödin et al., 2021], which can
also infer population split times from two diploid genomes representing each of the two
populations. The TT-method uses the joint site frequency spectrum of these two genomes
to analytically calculate split times. It relies on two assumptions that are relaxed in MiSTI:
1) the effective population size of the ancestral population remains constant and 2) there
is no migration between populations after the split. We compared MiSTI and TT-method
inferences of split times between human populations, and we show through simulations
that the first assumption of TT-method leads to large errors in the inferred split times
for historical effective population sizes similar to those of human populations, even in the
absence of migration.

2 Methods

2.1 Historical effective population size.

As previously discussed, effective population size can be defined as the average time to coa-
lescence of two lineages, measured in number of generations [Wakeley and Sargsyan, 2009].
Under the standard coalescence model with a single homogeneous population [Kingman,
1982], the interpretation is simple. For an effective population size N >> 1 the rate of
coalescence is λ = 1/N per generation, and the expected waiting time to coalescence is
λ−1 = N generations. This definition can be naturally extended in order to define the
historical effective population size. Consider the coalescence rate at time t, λ(t), between
the pairs of lineages from a population. The time t = 0 corresponds to the present and
t increases toward the past. The coalescent rate λ(t) determines an inhomogenous Pois-
son process which describes the distribution of coalescent times. Hence, the probability
distribution of coalescent times Tc is

P (Tc = t) = λ(t)e−
∫ t
0 λ(s)ds.

We define the inverse of λ(t) as the ordinary historical effective population size

N(t) =
1

λ(t)
.
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This quantity depends on population structure and demography, and it is a parameter
which allows mapping of a real population with complex demography and structure on a
single idealized population (e.g., a Wright-Fisher population) that is similar with respect
to some property, as described in the Introduction. We note that this concept of historical
effective population size is useful for interpreting the results of methods such as PSMC
that allow inferences of varying effective population size through time [Li and Durbin,
2011, Spence et al., 2018]. We will show that though for some scenarios PSMC indeed
infers a good estimate of the ordinary effective population size, in other scenarios with
migration, PSMC infers a biased estimate of effective population size.

Using standard population genetic theory, it is possible to explore the effect of popula-
tion structure on effective population size [Mazet et al., 2016, Chikhi et al., 2018]. Assume,
for example, that an observed (modern) population Sm is formed by admixture of several
parental populations. To determine its historical effective population size, we need to trace
pairs of lineages from Sm back in time, until their coalescence. The lineages can switch
between parental populations (Fig. 1), hence the genetic variation of Sm has a footprint
from each of these populations.

We here develop this concept for the case of two parental populations with admixture
(continuous or pulse). We denote the two parental populations by S1(t) and S2(t). At any
time t, a lineage ancestral to the observed population Sm is either in population S1(t) or in
population S2(t), due to migration. Within populations S1(t) and S2(t) lineages are fully
exchangeable, which means that every pair of lineages from the same population has the
same probability of coalescence. Effective population sizes of S1(t) and S2(t) are NL1(t)
and NL2(t) respectively. NL1(t) and NL2(t) are what we define as local effective population
sizes, i.e they represent the effective number of individuals in the populations at time t
after discounting for the effect of migration. In other words, this is the rate of coalescence
of two lineages conditional on both of them being in the given population.

If two lineages are in the same population Si(t) (i = 1, 2) at time t, they can coalesce
with rate 1/NLi(t). If they are in different populations, coalescence is not possible between
them. Conditional on two lineages having not coalesced by time t, let P1(t) and P2(t) be
the probabilities that two lineages are in the population S1 and population S2 respectively.
Let P0(t) be the probability that the two lineages are in different populations. Then the
coalescence rate between a pair of lineages at time t is

λ(t) = P1(t)
1

NL1(t)
+ P2(t)

1

NL2(t)
+ P0(t) · 0, (1)

and the ordinary effective population size is

N(t) =
1

λ(t)
=

1

P1(t)
1

NL1(t)
+ P2(t)

1
NL2(t)

. (2)

The condition that the sampled population Sm is S1(0), is equivalent to setting the
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initial conditions of probabilities Pi (i = 0, 1, 2) to

P1(0) = 1, P2(0) = P0(0) = 0.

The dependence of Pi on the time of observation is natural, because probabilities of mi-
gration might change over time, and even if they are constant, the cumulative amount of
migration changes over time.

So, as shown above there is a clear difference between the local effective population
size (NL1(t) and NL2(t)) of parental populations and the ordinary effective population
size of an observed admixed population (N(t)). The estimates of effective population size
obtained by PSMC and similar methods are estimates of the ordinary effective population
size (N(t)) and not local effective population size (NL(t)).

2.2 Continuous and pulse migration

Equation 2 defining the ordinary effective population size, depends on the probabilities
Pi(t) (i = 1, 2, 0) of two lineages being in population i at time t, given they have not
coalesced at t. These probabilities can be found by solving a set of differential equations.
The past dynamics of two lineages is described by a coalescent model, which is a Markovian
process going back in time. There are four possible states for this process:

• both lineages are in the first population at time t with probability p1(t),

• both lineages are in the second populations at time t with probability p2(t),

• the lineages are in different populations at time t with probability p0(t),

• the lineages have coalesced by time t with probability pc(t). This is an absorbing
state.

Transitions between the first three states are possible through migration (either contin-
uous or pulse). Transitions into the last absorbing state occur through coalescences, and
pc(t) = 1− p1(t)− p2(t)− p0(t). By definition of conditional probabilities,

Pi(t) =
pi(t)

1− pc(t)
=

pi(t)

p1(t) + p2(t) + p0(t)
, (3)

for i = 1, 2, 0.
The continuous migration rate mij(t) (for i = 1, j = 2 or i = 2, j = 1) is the rate with

which a single lineage from population Si(t) moves into population Sj(t), backwards in time.
Considered forward in time, these migration rates correspond to the fraction of population
Si made of lineages from population Sj (i ̸= j), when scaled in units of a reference effective
population sizeN0 >> 1. This is the same definition as used in standard coalescence models
with migration [Slatkin, 1982, 1987, Notohara, 1990, Wilkinson-Herbots, 1998] including
Hudson’s ms simulator [Hudson, 2002].
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Henceforth, we omit the dependence of these functions on t in our notations to improve
readability. From standard definitions of the coalescent with migration, we then have the
following system of differential equations:

p′1 = −
(
2m12 +

1

NL1

)
p1 +m21p0,

p′2 = −
(
2m21 +

1

NL1

)
p2 +m12p0,

p′0 = 2m12p1 + 2µ21p2 − (m12 +m21)p0.

(4)

where p′i indicates the derivative of pi with respect to t.
Pulse migration acts instantaneously at time tπ. Backwards in time, it drags a lineage

from one population to the other with a certain probability π. Forward in time, π is the
proportion of a recipient population made up of individuals from the donor population due
to pulse admixture. Assume that the donor population is population 1 and the recipient
population is population 2. We write t+π to indicate the time right before the pulse migration
and t−π to indicate the time right after the pulse migration, forward in time (see Figure 1
for clarification). Then the probabilities pi (i = 1, 2, 0) change as follows

p1(t
+
π ) = p1(t

−
π ) + π2p2(t

−
π ) + πp0(t

−
π ),

p2(t
+
π ) = (1− π)2p2(t

−
π ),

p0(t
+
π ) = (1− π)p0(t

−
π ) + 2π(1− π)p2(t

−
π ).

(5)

The parameter π is equivalent to the parameter 1− p of the -es switch in Hudson’s ms
simulator [Hudson, 2002].

2.3 Disentangling the effect of migration on effective population size.

Assume that we observe two populations S
(1)
m = S1(0) and S

(2)
m = S2(0), which had ances-

tral admixture with each other. Writing equation 2 for samples from both populations, we

get the system of equations relating the ordinary effective population size of S
(1)
m and S

(2)
m

(N1 and N2) with the local effective population size of each of the two parental populations
(NL1 and NL2). 

N1(t) =
1

P
(1)
1 (t) 1

NL1(t)
+ P

(1)
2 (t) 1

NL2(t)

,

N2(t) =
1

P
(2)
1 (t) 1

NL1(t)
+ P

(2)
2 (t) 1

NL2(t)

,

(6)

where P
(j)
i is the probability that both ancestral lineages from population S

(j)
m are in

population i (see equation 3). These functions can be derived from equation 2 by setting
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Figure 1: Notations for continuous migration (on the left) and pulse migration (on the
right) models. In the continuous migration case, mij is the migration rate from population
i to population j, backwards in time. In the pulse migration case, π is the probability of
migration of a lineage, tπ is the instantaneous time of migration, t+π and t−π are the times
right before and right after the migration pulse.

initial conditions to P
(1)
1 (0) = 1 for the first populations and P

(2)
2 (0) = 1 for the second

population.
As we already mentioned, PSMC or similar methods can be used to estimate the or-

dinary effective population size, N(t). Given samples from two admixed populations, the
underlying local effective population size (NL1 and NL2) of their parental populations S1(t)
and S2(t) can be estimated from equation 6.

Unfortunately, there is no closed form solution of equations 4 and 6. PSMC approxi-
mates historical effective population size with a piece-wise constant function. In our infer-
ence, we assume that migration rates are constant in each time interval, and similarly to
PSMC, we approximate local effective population sizes with a piece-wise constant trajec-
tory. So, instead of solving equation 6, we calculate piece-wise constant functions NL1(t)
and NL1(t) such that the probabilities to coalesce within each time interval is the same as
inferred by PSMC. In more details, for two lineages from population i the probability of
coalescence p̂ic within [t1, t2] inferred by PSMC is

p̂ic = pnc

(
1− e

− t2−t1
Ni

)
,

where pnc is the probability that two lineages have not coalesced by time t1.
From equation 4 the probability pic that two lineages from population i coalesce within

the interval [t1, t2] is
pic = pc(t2)− pc(t1).
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And we fit NL1 and NL2 so that
pic = p̂ic.

2.4 Estimating migration rates and split time

In the previous subsection we show how one can calculate local effective population sizes
for given values of migration rates and split time. Of course, it is also desirable to estimate
these parameters, because they are often unknown. Our method fits the joint site frequency
spectrum (SFS) of two diploid individuals representing two populations. Let fi,j (i, j =
0, 1, 2) be the probability that a variable site has i derived alleles in the first individual and
j derived alleles in the second individual. Notice that f0,0 and f2,2 are excluded because
they correspond to non-variable sites. Then the probabilities fi,j define a multinomial
distribution.

Let n = {n0,1, n1,0, n1,1, n1,2, n2,1} be the site frequency spectrum from the data, i.e.
ni,j is the non-normalised counts of sites with i and j derived alleles in the first and second
individual, respectively. We consider the composite likelihood function (which ignores
possible correlations between the sites) given by the multinomial distribution:

L(SFS|n) =
∏̂

i,j
f
ni,j

i,j .

The theoretical SFS for a given set of parameters and PSMC trajectories can be com-
puted by numerically solving a set of linear differential equations describing a Markov
process with 44 states. These states describe all possible ways in which lineages of a coa-
lescent tree with four tips (two samples from each of two populations) can be distributed
among populations. These states include the possibility of coalescence between lineages
and migration between populations through time (details are given in the Appendix A).

2.5 Software implementation

Our method for estimating underlying local effective population size is implemented in
Python 3 under the name MiSTI. The implementation is available at https://github.

com/vlshchur/MiSTI and distributed under GNU GPL3.

3 Results

3.1 Obtaining local effective population size from the ordinary effective
population size estimated by PSMC

In this section we demonstrate the effect of migration on effective population sizes, and we
will qualitatively assess the PSMC inference of historical effective population size trajec-
tories.
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We used ms [Hudson, 2002] to simulate two population size trajectories: one trajectory
(population 1) has constant size through time after the population split, and the second
trajectory (population 2) has a bottleneck after the split, followed by a recent population
expansion. Using these population size trajectories, we simulated symmetric migration
between populations, as well as unidirectional migration. For each simulation, we show:
1) the ordinary effective population size of both populations (N1 and N2) calculated using
Equation 6, 2) the ordinary effective population size estimated using PSMC (N̂1 and N̂2),
and 3) the local effective population size (N̂L1 and N̂L2) obtained with MiSTI by correcting
the effective population size trajectories for the effect of migration.

Continuous, bidirectional migration between populations 1 and 2 from the present
until the split time generally increases the ordinary effective population size (N1 and N2)
relative to the simulated local population size (NL1 and NL2, Figure 2A). However, notice
that population 1 has a decreased effective population size relative to its simulated local
size, during the population 2 bottleneck (Figure 2A). This decrease in genetic variation
observed in population 1 is caused by the possibility that lineages from population 1 go
through the bottleneck in population 2, where coalescence rates are increased.

In this scenario, PSMC generally estimates the ordinary effective population size (Fig-
ure 2C) well, despite the smoothing of instantaneous populations size changes that has
been described previously [Li and Durbin, 2011]. We also note that in Figure 2A, the
historical effective population size of populations 1 and 2 coincide before the bottleneck,
but PSMC trajectories do not coincide (Figure 2C). We discuss this possible bias in PSMC
below.

Continuous, unidirectional migration from population 1 to 2, generates an increase
in the ordinary effective population size of population 2 (Figure 2B), which is detected
by PSMC (Figure 2D). In this scenario, the inferred PSMC trajectory underestimates
effective population size of population 2 (the one receiving migrants) during the bottleneck,
and overestimates it before the bottleneck. We hypothesize that this effect, as well as
the discordance of PSMC curves prior to the bottleneck in Figure 2C, could be due to
the violation of the SMC model assumption that samples come from a single panmictic
population, as we explore further in the next section.

Applying MiSTI correction of PSMC curves with the known migration rates and split
times used in the simulations, to estimate local population sizes (NL1 and NL2), recovers
trajectories similar to the simulated ones (Figures 2E,F).

Pulse migration also increases historical effective population size. A single pulse of mi-
gration at time zero will cause effective population size to increase monotonically backwards
in time until the time when populations split (Figure 3A,B). Similar to the continuous mi-
gration case discussed above, PSMC detects this increase in historical effective population
size, although it underestimates the extreme peak of effective population size preceding
the population split (Figure 3C,D). This underestimation is due to an smoothing effect of
the PSMC method, which has been described [Li and Durbin, 2011]. MiSTI recovers the
local effective sizes of populations 1 and 2, slightly underestimating it when the PSMC
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Figure 2: Continuous migration (ms parameter Mij = 2) from the present to split time
(25000 generations, indicated by vertical bar). (A,C,E) Bidirectional migration. (B,D,F)
Uni-directional migration from population 1 to population 2. (A,B) Simulated local ef-
fective population sizes and ordinary effective population sizes calculated according to
equation 6. (C,D) True ordinary effective population size from A,B, and estimated by
PSMC. (E,F) True local population sizes from A,B, and estimated by MiSTI.
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smoothing underestimated the peak in effective population size (Figure 3E,F).

3.2 Transition matrices and the assumption of a single panmictic popu-
lation in PSMC

PSMC assumes a model of a single panmictic population. When data comes from a struc-
tured population, PSMC can often find a best fitting transition matrix that has a stationary
distribution equivalent to that of a single population with the same effective population
size [Chikhi et al., 2018]. However, in the previous section, we showed one example where
the ordinary effective population size inferred by PSMC was strongly biased (”population
2” in Figure 2D). This reveals that the stationary distribution of the transition matrix
fitted by the HMM underlying PSMC is different from the true distribution.

To investigate this bias in PSMC, we simulated a single panmictic population with the
same effective population size as population 2 (i.e. following the trajectory of N2 in Figure
2D). In other words, this population has the same stationary distribution of the coalescence
time transition matrix as population 2, but it did not receive any migrants. Let us call this
population P, for panmictic. We found that the empirical transition matrix of population
P (Figure 4C) differs more from the empirical matrix of population 2 (Figure 4E) than the
transition matrix inferred by PSMC (Figure 4D). This indicates that the matrix inferred
by PSMC is a better fit of the empirical matrix, and therefore the PSMC bias we detected
is not due to an optimization problem.

Next, we compare the empirical transition matrix from population 2 (Figure 4A) to the
transition matrix inferred by PSMC (Figure 4B). One difference between those matrices
is that the PSMC matrix (Figure 4B) shows mostly vertical bands, while the true transi-
tion matrix (Figure 4A) shows a horizontal band corresponding to the time between the
bottleneck and the split of populations (7-25k generations).

The horizontal band in the true transition matrix in Figure 4A is caused by a correla-
tion in coalescence times between adjacent sites that can not arise in a panmictic model,
assumed by PSMC. If two lineages coalescence during the bottleneck at a site, then there
is an increased probability that both these lineages are in the bottlenecked population at
other sites. Furthermore, if recombination happens during the bottleneck period, and both
lineages are in the bottlenecked population, then there is an increased probability that the
two lineages again will coalesce in this time interval in the next site after recombination.
This contrasts with a standard SMC coalescence model in a panmictic population, in which
the time of coalescence in site i + 1 is independent of the coalescence time in site i, con-
ditional on it being older than the time of recombination between the sites. A structured
model with a bottleneck, therefore, creates a correlation structure that cannot be modeled
by the standard SMC model used in PSMC.

The bias in PSMC can therefore be explained by the fact that PSMC fits the transition
matrix, and not its stationary distribution. Importantly, it fits the transition matrix of a
panmictic model. As we mentioned previously, in many cases, fitting the best panmictic
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Figure 3: Pulse migration of 20% at the present time. (A,C,E) pulse from population 1
to population 2. (B,D,F) pulse from population 2 to population 1, forward in time. (A,B)
Simulated local effective population sizes and ordinary effective population sizes calculated
according to equation 6. (C,D) True ordinary effective population size from A,B, and
estimated by PSMC. (E,F) True local population sizes from A,B, and estimated by MiSTI.
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Figure 4: Matrices representing the (empirical or estimated) probability of transitions from
one coalescence time to another along a sequence. (A) Transition matrix from simulated
data from a population receiving migrants (population two of Figure 2B). (B) Transition
matrix estimated by PSMC. (C) Transition matrix from simulated data from a single
population (no migration) with historical effective population size equal to population two
of Figure 2B. (D) Difference between matrices A and B. (E) Difference between matrices
A and C.
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transition matrix also fits the best stationary distribution, but in this case, the best fit of
a panmictic transition matrix by PSMC leads to a very different stationary distribution.

We also note that the single population model assumed by PSMC differs from the
structured model with migration in the way that recombination rate scales with effective
population size through time. In a single population model, an increase in effective popu-
lation size (N) increases the effective recombination rate (ρ = 4Nr, where r is the rate of
recombination per locus per generation). In a model with two populations, an increase in
effective population size that is due to migration would decrease the effective recombination
rate, since two lineages can only recombine when they are in the same population. In other
words, in a model with a single population, the effective recombination rate scales with the
effective population size, while it is not necessarily true in a model with two populations
and migration, where it can in fact scale inversely with effective population size.

3.3 Correcting European effective population size for the Neanderthal
component

In this section, we show an application of the MiSTI correction of PSMC curves using
known split time and admixture rates.

Non-African human populations admixed with Neanderthals 52-58 thousand years ago
[Prüfer et al., 2014]. Villanea and Schraiber [2019] recently reported that it is likely that
there were multiple admixture events, but for simplicity we consider the case of a single
pulse admixture event. This admixture would result in a number of very old coalescences
which would increase the overall estimate of effective population size. In order to estimate
the local effective population sizes of non-African populations, we need to correct for this
admixture. One way of doing that is to call and mask the Neanderthal introgressed regions
in a modern genome before running PSMC. Alternatively, one can estimate the propor-
tion of Neanderthal ancestry in a modern genome, and use MiSTI to correct its PSMC
trajectory for that admixture proportion. We compare these two approaches to verify that
MiSTI’s correction of effective population size is consistent with masking of known tracts
of introgression.

We removed the Neanderthal tracts in an European genome (CEU population) and
confirmed that the PSMC trajectory inferred from the Neanderthal-masked genome has
lower effective population sizes than the non-masked, original genome (Figure 5). Next,
we used MiSTI to correct the PSMC trajectories of the non-masked European genomes
assuming 1.5% Neanderthal introgression, which has been reported by Steinrücken et al.
[2018], and 3.0%, which was the previously reported estimate [Green et al., 2010] (Figure
5). Correcting the CEU PSMC trajectory for 1.5% Neanderthal admixture using MiSTI
gives very similar estimates of local effective population size as masking the known regions
of Neanderthal ancestry from that same genome. This suggests that MiSTI, at least in this
case, correctly recovers the effective population size of parental populations, when applied
to real data.
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Figure 5: (A) MiSTI correction of PSMC effective population size trajectory of a genome
from the CEU population assuming 1.5% introgression and (B) 3% introgression from
Neanderthals.

In the Appendix B, we show another application of MiSTI to obtain local effective
population size by correcting PSMC curves for the effect of migration, using known pa-
rameters from Puma concolor populations, and we discuss limitations of applying MiSTI
to that case.

3.4 Estimating split time in human-like simulations

Most often, split times and migration rates are unknown, and MiSTI can be used to
estimate these parameters from PSMC curves combined with a joint (2D) site frequency
spectrum for the pair of samples. In this section, we estimate split times from simulations
replicating effective population size trajectories similar to those of human populations.

We simulated populations approximating the historic effective population size of human
populations (Dinka, San, Sardinian, French and Han) (see ”Simulations” in Appendix A).
Briefly, we simulated historic effective population size similar to the estimated by PSMC for
each of those populations (Figures 6A,7A,8A). We simulated population splits at various
times, with no migration following the split. We then estimate these split times using
MiSTI and the TT-method [Sjödin et al., 2021] (Figures 6B, 7B, 8B). We found that the
TT method estimates negative split time in simulations where the split time happens during
or immediately at the end of the bottleneck (Figure 8B), as has been previously described
[Sjödin et al., 2021]. In other scenarios of intermediate split times, the TT method largely
overestimates the split times, due to violations of the assumption of constant effective
population sizes in the ancestral population [Sjödin et al., 2021]. In contrast, MiSTI
provides substantially less biased estimates.
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Figure 6: Simulations of San-Dinka split, no migration. (A) Continuous lines show effective
population size inferred by PSMC from real data, dotted lines show simulated population
sizes that approximate the inferred trajectory. (B) Inferences from MiSTI and the TT
method for ten replicate simulations of each split time. 3728 generations was the split time
inferred by MiSTI from real data; 8556 was the split time inferred by the TT method (see
Table 2) - note that when we simulate 3728 generations, the TT method infers close to
8556 generations.

Figure 7: Simulations of Dinka-Sardinian split, no migration. (A) Continuous lines show
effective population size inferred by PSMC from real data, dotted lines show simulated
population sizes that approximate the inferred trajectory. (B) Inferences from MiSTI and
the TT method for ten replicate simulations of each split time. 3960 generations was the
split time inferred by MiSTI from real data; 2560 was the split time inferred by the TT
method (see Table 3).
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Figure 8: Simulations of Han-French split, no migration. (A) Continuous lines show ef-
fective population size inferred by PSMC from real data, dotted lines show simulated
population sizes that approximate the inferred trajectory. (B) Inferences from MiSTI and
the TT method for ten replicate simulations of each split time. 1504 generations was the
split time inferred by MiSTI from real data; -3566 was the split time inferred by the TT
method (see Table 1).

3.5 Estimating split time and migration rates from human data

Here, we estimate split times and migration rates from real data from the same populations
we simulated in the previous section. We used MiSTI to estimate split-times and migration
rates between the Han Chinese and French (Table 1), Dinka and Sardinian (Table 3),
San and Dinka (Table 2) and San and Sardinian (Table 4) populations. From MiSTI,
we recorded the maximum composite likelihood values of three models: no migration,
unidirectional migration in each direction, and bidirectional migration. In all models with
migration, we assumed a constant rate of migration between the split time and the present.

For Han-French divergence, the model with the highest composite likelihood was one
with a split time of 1505 generations (i.e. 43,645 years ago assuming 29 years per genera-
tion) and a mostly unidirectional migration rate of 2.92 from Han to French (Table 1). We
also replicate the results from Sjödin et al. [2021], in which the TT method infers nonsen-
sical negative split times between Han and French. The unidirectional migration inferred
from Han to French is in line with current models of the peopling of Europe through waves
of farmers coming from central Eurasia [Haak et al., 2015].

The best fit model for the San-Dinka population pair includes a split time of 3729
generations ago (i.e. 108,141 years ago assuming 29 years per generation), and mostly
unidirectional migration from Dinka to San. For the same data, the TT method infers a
much larger split time (over 8500 generations ago) (Table 2, see also Appendix C for a
validation of this result with simulations).

The Dinka-Sardinian split time inferred by MiSTI is approx. 3963 generations ago,
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Table 1: MiSTI estimates of split times and migration rates between the Han Chinese
and French populations in models with bidirectional migration (top row), unidirectional
migration, or no migration (bottom row).

MiSTI TT
m1 m2 split time split time

French to Han Han to French (generations) log(lik) (generations)

8.37× 10−9 2.92 1505 -2331 -
- 2.92 1505 -2331 -

3.84 - 1505 -2373 -

- - 1505 -2787
T1 = -3587
T2 = -3545

Table 2: MiSTI estimates of split times and migration rates between the San and Dinka
populations in models with bidirectional migration (top row), unidirectional migration, or
no migration (bottom row).

MiSTI TT
m1 m2 split time split time

Dinka to San San to Dinka (generations) log(lik) (generations)

2.5 2.03× 10−9 3729 -4381 -
2.5 - 3729 -4381 -
- 1.49 3210 -4582 -

- - 3001 -4607
T1 = 8582
T2 = 8527
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Table 3: MiSTI estimates of split times and migration rates between the Dinka and Sar-
dinian populations in models with bidirectional migration (top row), unidirectional migra-
tion, or no migration (bottom row).

MiSTI TT
m1 m2 split time split time

Sardininan to Dinka Dinka to Sardinian (generations) log(lik) (generations)

2.63 9.96 3963 -5337 -
6.92 - 3484 -5819 -
- 14.40 2286 -10877 -

- - 2264 -13166
T1 = 2529
T2 = 2577

Table 4: MiSTI estimates of split times and migration rates between the San and Sardinian
populations in models with bidirectional migration (top row), unidirectional migration, or
no migration (bottom row).

MiSTI TT
m1 m2 split time split time

Sardininan to San San to Sardinian (generations) log(lik) (generations)

1.68 7.2× 10−9 4484 -3377 -
1.22 - 3963 -3497 -
- 1.59 3484 -4359 -

- - 3483 -4604
T1 = 8269
T2 = 8253

with bidirectional migration between these populations. The migration rate detected from
Dinka to Sardinian is in line with previous results indicating migration from sub-Saharan
Africa to South Europe [Moorjani et al., 2011]. In this case, in contrast to the previous
case, the TT method infers a more recent split time than MiSTI (2550 generations ago, see
Table 3). The split time between San and Sardinian is older (approx. 4484 generations ago,
see Table 4). We notice that these estimates are not strictly compatible with a population
tree, which likely is a consequence of complex ancestral population structure and migration
between populations that is not modeled here, including archaic admixture into Sardinians.
We note that archaic admixture will tend to inflate divergence time estimates, so the true
divergence times might be smaller than our estimates, particularly for the splits between
Sardinians and the two African populations.
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4 Discussion

4.1 The MiSTI method

The coalescent effective population size, defined as the reciprocal of the coalescence rate, is
proportional to the census population size in a panmictic model, but can be very different
from it when there is migration. The idea of disentangling the effect of migration on
effective population size has been explored before. For example, Wang and Whitlock [2003]
introduced methods to jointly estimate the local effective population size and migration
rates from samples taken over time and space. Here, we are motivated by the same idea
of disentangling migration and effective population size, and we do so in the context of
inferring changes in effective population size through time from present-day samples of
different populations, with methods such as PSMC [Li and Durbin, 2011].

We defined the ordinary effective population size of an admixed population as a func-
tion of the local effective population size of its parental populations. The local effective
population size corresponds to the effective population size of unadmixed individuals from
the parental populations. We developed a method, MiSTI, that uses the ordinary effective
population sizes (e.g. estimated by PSMC [Li and Durbin, 2011]) of two samples from
different populations that exchanged migrants, together with their joint SFS, to estimate
the local effective population sizes and migration rates.

We note that MiSTI depends on the results of PSMC, and will be subject to its biases.
MiSTI relies on a model of a population split possibly followed by migration, which itself
violates the assumption of panmixia made in PSMC and similar methods. We have shown
that PSMC estimates are particularly sensitive to this violation when there is asymmetric
migration (Figure 2D). In other scenarios, us (Figures 2C,3C,D) and others [Chikhi et al.,
2018] have shown that PSMC provides good estimates of historical effective population size
in the presence of population structure. Other studies have shown, using simulations, that
estimates from PSMC and other methods can be biased even in the absence of population
structure [Spence et al., 2018]. We have not extensively explored those biases here, but we
note that as less biased methods are developed, MiSTI can be adapted to use those and
thus improve its inference of local effective population size, split times and migration rates.

When applied to infer population split times and migration rates in human populations,
MiSTI helps settle a previous controversy. Schlebusch et al. [2017] found surprisingly deep
divergence times for some Southern African populations, including the San. Their estimate
for the split time between Dinka and San is 255 ± 5 years ago (Figure 3C in Schlebusch
et al. [2017]). We applied the TT method used in Schlebusch et al. [2017] to estimate the
San-Dinka split time in our data and we found a similar result (split time 8554 generations
ago, or 248 thousand years with 29 years per generation, Table 2), replicating their results.
However, with MiSTI, we estimate a much more recent split time around 3729 generations
ago (108 thousand years ago with 29 years per generation, Table 2). Our estimate is similar
to the estimates of the earliest population divergence among modern human populations
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obtained with methods such as MSMC [Pagani et al., 2016, Fan et al., 2019], and momi2
[Kamm et al., 2020] (see Bergström et al. [2021] Figure 2C for a synthesis of estimates from
various studies).

The TT method makes a strong assumption that there are no changes in population
size in the ancestral population, before the population split [Schlebusch et al., 2017, Sjödin
et al., 2021]. We simulated historical effective population size similar to the one estimated
by PSMC for San-Dinka, and showed that the TT method strongly overestimates split times
in this scenario (Figure 6). Notably, when we simulated data assuming a split time of 3728
generations ago (as inferred by MiSTI), the TT method estimated a split time close to the
one it estimated from the real data (8556 generations ago), showing that the previously
reported deep split time estimated by the TT method is in fact likely an estimation artifact.
The TT method can be highly biased because of the assumption of constant population size
and should not be applied to populations that may have experienced changes in effective
population size over time.

The application of MiSTI to human data also illustrates the importance of including
migration a the model is used to infer split times. In all cases (Tables 1-4), composite
likelihoods were higher in models that allowed migration, and a difference of 1000 or more
generations is seen in some split times inferred with models that include migration (Tables
3-4). Inferring asymmetric migration is also an interesting feature of MiSTI aimed at
determining the direction of gene-flow.

4.2 Why estimate local effective population size?

Finally, we would like to highlight the broader relevance of disentangling the effect of mi-
gration on effective population size. The ordinary effective population size is important for
understanding patterns of neutral genetic variability. It is a good predictor of summary
statistics of neutral genetic variation such as the expected heterozygosity and average num-
ber of pairwise differences. However, for questions related to the efficacy of selection or
genetic drift, the effective population size defined in terms of the number of individuals
and their variance in offspring number is what matters most, not the effective popula-
tion size inflated by migration. Since the ordinary effective population size is generally
increased by migration, recovering the local effective population size after accounting for
the effect of migration will recover values that are more informative for selection dynamics
and predictions regarding the efficacy of selection, such as the rate of purging of deleterious
alleles.

Local effective population size is also often more relevant for conservation genetics than
the ordinary effective population size, which reflects overall genetic diversity of a meta-
population. For example, a meta-population of an endangered species which occupies a
fragmented habitat might have increased effective population size if considered as a whole.
Their apparent high levels of neutral genetic diversity might be misleading regarding their
fragile conservation status. If there is weak migration between isolated subpopulations,
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the ordinary effective population size of each subpopulation will be inflated by migration
and will not be representative of the actual size of the local population. Correcting for the
effect of population structure and migration provides measures of local effective population
size that are closer to the effective number of breeding individuals in the population and
thus more informative for conservation efforts.
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A Supplementary Methods

A.1 Markov process describing state of lineages in a coalescence tree
with four tips

Let us encode a lineage state at time t by (k, l, i), where k, l ∈ {0, 1, 2}, k + l > 0 are the
number of descendants of this lineage that were sampled (at time t = 0) from populations
1 and 2 respectively, and i ∈ {1, 2} is the population where the lineage is at time t. We do
not consider equations corresponding to states with a single lineage, i.e. before the most
recent common ancestor of the 4 samples ({2, 2, i}, i = 1, 2), because they do not contribute
to variable sites.

Before split time there is one single ancestral population, so a similar approach holds
but the last index i is not needed to encode a lineage. So, there are only 8 possible states
of the Markov process, and an additional absorbing state (2, 2) which does not contribute
to SFS. We proceed with the derivation of the case of two ancestral populations, as it is a
more complex one.

Every Markov state {(kj , lj , ij)} is a set of lineages (enumerated with the index j,
1 < j ≤ 4) with the condition

∑
j kj =

∑
j lj = 2. At the time of observation t = 0 the

initial state is {(1, 0, 1), (1, 0, 1), (0, 1, 2), (0, 1, 2)}. Two lineages (k1, l1, i1) and (k2, l2, i2)
can coalesce only if i1 = i2, and the resulting lineage is (k1 + k2, l1 + l2, i1).

Let us consider the state L = {(1, 1, 1), (1, 0, 1), (0, 1, 2)}, and write the equation for
the derivative PL(t) which is the change in the probability of the Markov process being in
state L at time t.

Transitions into state L are possible from the following four states

• L1 = {(1, 0, 1), (1, 0, 1), (0, 1, 1), (0, 1, 2)} through coalescence of any of two lineages
(1, 0, 1) and the lineage (0, 1, 1) with the total rate of coalescence 2/NL1,

• L2 = {(1, 1, 2), (1, 0, 1), (0, 1, 2)} through migration of the lineage (1, 1, 2) from pop-
ulation 2 into population 1 with the migration rate m21,
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• L3 = {(1, 1, 1), (1, 0, 2), (0, 1, 2)} through migration of the lineage (1, 0, 2) with the
rate m21,

• L4 = {(1, 1, 1), (1, 0, 1), (0, 1, 1)} through migration of the lineage (0, 1, 1) with the
rate m12.

Transitions from state L are possible into four states

• L5 = {(2, 1, 1), (0, 1, 2)} through coalescence of the lineages (1, 1, 1) and (1, 0, 1) with
the coalescence rate 1/NL1,

• L2 = {(1, 1, 2), (1, 0, 1), (0, 1, 2)} through migration of the lineage (1, 1, 1) from pop-
ulation 1 into population 2 with the migration rate m12,

• L3 = {(1, 1, 1), (1, 0, 2), (0, 1, 2)} through migration of the lineage (1, 0, 1) with the
rate m12,

• L4 = {(1, 1, 1), (1, 0, 1), (0, 1, 1)} through migration of the lineage (0, 1, 2) with the
rate m21.

So, the corresponding equation is

P ′
L(t) = −

(
1

NL1
+ 2m12 +m21

)
PL(t)+

2

NL1
PL1(t)+m21PL2(t)+m21PL3(t)+m12PL4(t).

Mutation on a lineage (k, l, i) contributes to the fk,l entry of the SFS. More specifically,
fk,l is proportional to the total probability (from t = 0 to infinity) of lineages (k, l, 1) and
(k, l, 2).

Assume that in the matrix form the equation has the form

P ′(t) = M(t)P (t),

where P is the vector of probabilities of states, and M is a transition matrix depending
on coalescence and migration rates. In order to calculate SFS, we need to compute the
corresponding integrals

∫∞
0 P (t)dt of the time spent in each of the states. We assume that

the local effective population sizes and migration rates are picewise constant, hence M is
piecewise constant too. On each time interval [t0, t1] the solution of the matrix equation is
P (t) = exp(Mt)P (t0), and the integral∫ t1

t0

P (t)dt = −M−1(exp(M(t1 − t0))− E)P (t0),

where exp is the matrix exponent and E is the identity matrix.
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A.2 Simulations

Simulations were done with the softwarems [Hudson, 2002] and using GNU parallel [Tange,
2011] to run replicates and explore parameter values. First, we simulated two types of
populations: Population 1 remained with constant intermediate size, while population 2
underwent a bottleneck followed by expansion, similar to the scenario simulated in Figure
2 of Li and Durbin [2011]. The exact ms command line for simulating size changes of
populations 1 and 2 is the following: “4 100 -t 15000 -r 1920 30000000 -l -I 2 2 2 -n 1 1.5
-n 2 3.0 -en 0.025 2 0.2 -en 0.175 2 1.5 -ej 0.625 2 1 -eN 3 3”.

We added continuous migration using the -em flag in ms, and pulse migration was
included using -es to split the receiver population into a third population, followed by -ej
to merge the third population into the donor population at the exact same time.

To simulate a single panmictic population with the same historical ordinary effective
population size as population 2 (used for Figure 4C,E), we used the following ms command
line: “2 10000 -T -t 15000 -r 1920 30000000 -l -eN 0.0 3.233 -eN 0.01 3.69 -eN 0.02 3.996
-eN 0.025 0.311 -eN 0.03 0.359 -eN 0.04 0.436 -eN 0.05 0.531 -eN 0.06 0.644 -eN 0.07 0.777
-eN 0.08 0.926 -eN 0.09 1.088 -eN 0.1 1.369 -eN 0.125 1.723 -eN 0.15 1.928 -eN 0.175 2.274
-eN 0.2 2.049 -eN 0.25 1.859 -eN 0.3 1.703 -eN 0.4 1.597 -eN 0.5 1.545 -eN 0.625 1.5 -eN
3.0 3.0”.

We also simulated past population size changes that closely approximate those inferred
by PSMC for human populations. An approximation of the Han-French effective popu-
lation size trajectories, was simulated using the command: “4 1000 -t 1500 -r 192 3000000
-l -I 2 2 2 -n 1 6.3 -n 2 2.4 -ej x 2 1 -eN 0.0225 0.3 -eN 0.15 2.7 -eN 0.5 1.3 -eN 2.5 2.9 -eN
5 2.7”, using the following values of the split times (x): 0.0225 (900 generations, the end of
the bottleneck), 0.043 (1714 generations, the split time inferred by MiSTI, within the bot-
tleneck), 0.15 (6000 generations, right before the bottleneck) and 0.575 (23000 generations,
before the expansion that precedes the main bottleneck).

An approximation of the San-Dinka effective population size trajectories, was simu-
lated using the command: ”4 1000 -t 1500 -r 192 3000000 -l -I 2 2 2 -n 1 1 -n 2 1 -ej x
2 1 -en 0.05 1 2 -en 0.11 1 3 -en 0.15 2 2.7 -eN 0.5 1.3 -eN 2.5 2.9 -eN 5 2.7”, using the
following values of the split times (x): 0.05 (2000 generations), 0.09 (3728 generations, the
split time inferred by MiSTI), 0.21 (8554 generations, the split time inferred by TT), 0.25
(10000 generations) and 0.5 (20000 generations).

An approximation of the Dinka-Sardinian effective population size trajectories, was
simulated using the command: ”4 1000 -t 1500 -r 192 3000000 -l -I 2 2 2 -n 1 1 -n 2 1 -ej
x 2 1 -en 0.0225 2 0.3 -eN 0.15 2.7 -eN 0.5 1.3 -eN 2.5 2.9 -eN 5 2.7”, using the following
values of the split times (x): 0.0225 (900 generations, the end of the bottleneck), 0.064
(2553 generations, the split time inferred by TT), 0.099 (2963 generations, the split time
inferred by MiSTI), 0.25 (10000 generations) and 0.5 (20000 generations).

Times in the ms command lines are given in ms units, i.e. generations/(4×N0), where
N0 = 10000.
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A.3 Data processing

We applied MiSTI to datasets from human and puma populations. MiSTI takes as input
PSMC results for one individual from each population. If estimation of migration rates
is desired, a joint site frequency spectrum of both genomes is also required. The joint
site frequency spectrum can be generated with ANGSD [Korneliussen et al., 2014], and a
Python program is provided with MiSTI to convert ANGSD 2D site frequency spectrum
format to MiSTI input format. For both humans and pumas, we applied filters to keep only
sites with mapping quality above 30 and coverage between one third and twice the average
genomewide coverage. In all analyses of human data, we applied the 1000 Genomes strict
accessibility genome mask, and a filter for positions where the ancestral state was conserved
among three species of great apes (Chimpanzee, Gorilla and Orangutan). The accessibil-
ity mask file can be downloaded from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/supporting/accessible_genome_masks/20140520.strict_mask.autosomes.

bed, and the ancestral state data was downloaded from https://zenodo.org/record/

4441887. We ran PSMC with parameters -N25 -t15 -r5 -p ”4+25*2+4+6” for both species.
For humans, we used a mutation rate of 1.25×10−8 per base pair per generation, and gen-
eration time of 29 years. For pumas, we used mutation rate of 5× 10−9 per base pair per
generation, and generation time of 5 years [Saremi et al., 2019].

For the analysis of human data, we downloaded a modern European genome (in bam
format) from the CEPH/UTAH (CEU) population from the European Nucleotide Archive
(ENA), accession number ERR194158. Neanderthal tracts specific for that individual were
obtained from Steinrücken et al. [2018]. The Neanderthal bam file was downloaded from
http://cdna.eva.mpg.de/neandertal/altai/AltaiNeandertal/bam/. Bam files from
one Han Chinese sample (HGDP00778), one French sample (HGDP00521), one San sample
(HGDP01029) and one Dinka sample (DNK02) and one Sardinian sample (HGDP00665)
were downloaded from http://cdna.eva.mpg.de/denisova/BAM/human/. When inferring
migration from real data, we allowed it to start from the 4th PSMC interval and going
until the split time, to avoid using the first PSMC intervals that have a lot of uncertainty.

We ran PSMC on the CEU genome before and after masking its tracts of Neanderthal
ancestry, and we used MiSTI to correct the PSMC of the unmasked CEU genome, assuming
1.5% and 3% of pulse admixture from Neanderthals. The split time was set to 662 kya,
considering that the average archaic-modern human split time inferred in Prüfer et al.
[2014] is 570 thousand years, with a mutation rate of 5 × 10−10 per base pair per year,
and adjusting for the mutation rate we use here (which translates to 4.3× 10−10 per year).
The pulse migration time was set to 60 kya, and the sample age was set to 50 kya, using
MiSTI’s –sdate parameter.

For the analysis of puma data, we obtained bam files and masks for runs of homozygosity
(due to recent inbreeding) from the authors of Saremi et al. [2019]. We focused on one
sample from Florida (EVG21) that showed an inflated PSMC trajectory in Saremi et al.
[2019], likely due to its known history of admixture with Central American pumas, and
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another sample from Florida that does not have Central American ancestry (CYP47). We
masked the runs of homozygosity from these genomes and we ran PSMC on them. We
used MiSTI to correct the inferred effective population size trajectories for a plausible
scenario of continuous migration and recent pulse admixture from Central America to
Florida, based on the known history of this species. Saremi et al. [2019] inferred that
the split time between the Florida pumas and Brazilian pumas was 300 thousand years
ago. We have assumed a more recent split time of 200 thousand years between the Florida
pumas and the Central American pumas that were ancestors of EVG21, which is the
time when PSMC trajectories of CYP47 and EVG21 diverge. The resulting trajectory of
the admixed individual, after correcting for its Florida ancestry component, is a putative
effective population size trajectory for Central American pumas, that were not sampled.

A.4 Running MiSTI

To run MiSTI with parameter optimization, we recommend starting with inference of split
times without migration. Once the best split time for this model (T ∗) is found, the user
can optimize the migration rates in each direction under split times equal to or larger than
T ∗. The user can run the migration rate optimization from different starting values, and
we recommend using gnu-parallel [Tange, 2011] to provide the starting values to MiSTI.

A.5 Time discretization

MiSTI merges time points from two PSMC files, so that effective population size of both
populations are constant on each time interval. This discretization is the principal time
scale for MiSTI, and the default search of the split time is performed at the nodes of this
discretization. If more precision is needed, one may use -d N key to split all the intervals
in the search range into N equal parts.

A.6 Effective population size before split

Of course, when we choose a split time point, the estimated values for the effective popula-
tion size before the split do not necessary coincide. So, we need to find a consensus effective
population size from two estimates. The consensus effective population size before the split
time is computed so that the expected number of coalescences for two haplotypes be the
same as the sum of expected number of coalescence for the first and for the second genomes.
More formally, let P1 and P2 be the probabilities of lineages sampled from populations 1
and 2 respectively not to coalesce before given time interval based on their corresponding
distributions of effective population size. The probability not to coalesce within the time
interval of length t and with estimated effective population sizes N1 (from the first genome)
and N2 (from the second genome) is

Pnc =
P1e

−t/N1 + P2e
−t/N2

P1 + P2
.
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The consensus value for effective population size N at this time interval is

N = − t

logPnc
. (7)

B Limitations of MiSTI: an analysis of likelihood surfaces

B.1 The demographic history of a recently admixed puma

In Florida, USA, there is a population of pumas (or mountain lions, Puma concolor) known
as the Florida Panther. These pumas have a series of morphological signs of inbreeding
depression. Interestingly, in the Everglades National Park (EVG), a population does not
present these typical signs, likely because of an influx of genetic diversity brought by the
introduction of individuals with Central American ancestry O’Brien et al. [1990]. The
PSMC trajectory from one of these individuals (EVG21) shows larger effective population
sizes than other Florida panthers, as expected due to its admixed ancestry Saremi et al.
[2019].

We have corrected the PSMC trajectory of this admixed individual with MiSTI, mod-
eling it is a Central American puma that received admixture from a Florida Panther. We
use a sample from the Big Cypress National Preserve (CYP47) as the unadmixed Florida
Panther. This population is partially isolated from the EVG population and does not show
inflated effective population size like EVG21.

Even though we do not have data from Central American pumas, by using MiSTI to
correct the PSMC trajectory of EVG21 for the Florida admixture component (CYP47), we
aimed to recover the effective population size trajectory of the unsampled Central American
puma.

When we model a split time of 200ky between Central American and Florida panthers,
and a single pulse admixture event very close to the present, we can fit a pulse of 0.30
from Florida to Central American. Under this model, we infer that the Central American
population had more constant effective population size through time than other puma
populations (Figure 9).
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Figure 9: MiSTI correction of the PSMC curve of the admixed puma sample EVG21 with
a single pulse of 0.30 admixture from CYP47 at the most recent time interval. Split time
(200 thousand years) is indicated by a vertical gray bar.

The range of Puma concolor used to be connected from East to West of North America
until a great population decline started in the 1800s, when these animals suffered extreme
habitat loss and were hunted almost to extinction. Therefore, it is likely that there has
been some degree of continuous migration between Florida Panthers and Central American
pumas until historical times. Allowing for continuous migration, the model fits the data
better (llh=-131360 instead of llh= -172712). This model includes continuous migration
(migration rate from Central America to Florida of 1.0, and 0.65 in the other direction)
and the same 0.30 recent pulse migration from Florida to Central America. Under this
model, we also infer that the Central American puma population had relatively constant
effective population size through time, and that both populations had smaller local effective
population size than the ancestral effective population size inferred by PSMC (Figure 10).
We note that the original PSMC effective population sizes are very high (over 600 thousand
individuals), and likely unrealistic for a population of large carnivores. This is likely a
consequence of some degree of population structure and continuous migration across the
range of pumas until recent times.
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Figure 10: MiSTI correction of the PSMC curve of the admixed puma sample EVG21 with
continuous migration allowed since the split time, and a single pulse of 0.30 admixture
from CYP47 at the most recent time interval. Split time (200 thousand years) is indicated
by a vertical gray bar.

We note, however, that the composite likelihood surface for the split time and pulse of
migration used as a model for the Pumas is not smooth (Figure 11). The empty area of
the composite likelihood surface indicates rates of continuous migration that are incompat-
ible with the PSMC trajectories. For those values of migration rates, the corrected local
effective population size would become negative, which is nonsensical. The fact that the
highest composite likelihoods are at the border of the likelihood surface and next to these
incompatible values of migration rates indicates that the data does not fit well with the
MiSTI model of pulse and continuous migration we used. This uneven composite likelihood
surface could also be due to some issue in the PSMC inference step. One possible source of
problems is that there is large uncertainty in the PSMC inference at the most recent time
intervals, which is when we model the pulse of migration in the Pumas.
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Figure 11: Composite likelihood surface for the model of Florida panther split time 200 kya,
pulse of migration at the most recent time interval, and a range of continuous migration
rates.

B.2 Likelihood surfaces of inferred models of split and migration be-
tween pairs of human populations

Here we show the composite likelihood surfaces for a range of migration rates under the
best inference of split time for pairs of human populations discussed in the main text.
These composite likelihood surfaces differ from the puma case above in that their peak is
not near the steep drop in composite likelihood.

Figure 12: Composite likelihood surface from MiSTI for the inferred split time between
Han and French (1505 generations ago), for different values of migration rates.
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Figure 13: Composite likelihood surface from MiSTI for the inferred split time between
San and Dinka (3729 generations ago), for different values of migration rates.

Figure 14: Composite likelihood surface from MiSTI for the inferred split time between
Dinka and Sardinian (3963 generations ago), for different values of migration rates.

C Simulations of the San-Dinka split time with migration

Here we show simulations of the best inference of split time and migration rates for the San-
Dinka pair. We did ten replicate simulations with the effective population size trajectories
inferred from the data with PSMC, and with split time 3729 generations ago, and migration
rate of 2.5 from Dinka to San (Table 2). We applied both the TT method and MiSTI to
infer split times in each simulation. The TT method largely overestimated the split time
in all cases, while MiSTI underestimated the split time when no migration is allowed in
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the model (left most column, Figure 15). When migration in the direction simulated (from
Dinka to San) is allowed, MiSTI estimates split times closer to the simulated values, and
migration rates are also estimated in the correct direction (columns 2 and 4, Figure 15).
When migration is only allowed in the direction opposite to the simulated, it is largely
overestimated, and the split time is underestimated (third column of Figure 15).

Figure 15: Ten simulations of the split time and migration rates between San and Dinka
inferred by MiSTI (split 3729 generations ago, m1=2.5 and m2=0, shown in the main
text Table 2). In the top panel, we show split times inferred using the TT method and
MiSTI. Middle and bottom panels shows values of inferred migration rates. In MiSTI, we
inferred split times and migration rates for 4 models: no migration, m1 only, m2 only and
bidirectional migration.
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P Sjödin, I Kaj, S Krone, M Lascoux, and M Nordborg. On the mean-
ing and existence of an effective population size. Genetics, 169(2):1061–
70, 2 2005. ISSN 0016-6731. doi: 10.1534/genetics.104.026799. URL
http://www.ncbi.nlm.nih.gov/pubmed/15489538http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC1449138.

John Wakeley and Ori Sargsyan. Extensions of the coalescent effective population size.
Genetics, 181(1):341–5, 1 2009. ISSN 0016-6731. doi: 10.1534/genetics.108.092460.
URL http://www.ncbi.nlm.nih.gov/pubmed/19001293http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=PMC2621185.

Heng Li and Richard Durbin. Inference of human population history from individual
whole-genome sequences. Nature, 475(7357):493–496, 7 2011. ISSN 0028-0836. doi:
10.1038/nature10231. URL http://www.nature.com/articles/nature10231.

Gilean A T McVean and Niall J Cardin. Approximating the coalescent with recom-
bination. Philosophical transactions of the Royal Society of London. Series B, Bi-
ological sciences, 360(1459):1387–93, 2005. ISSN 0962-8436. doi: 10.1098/rstb.
2005.1673. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

1569517&tool=pmcentrez&rendertype=abstract.

Asger Hobolth, Ole F Christensen, Thomas Mailund, and Mikkel H Schierup. Genomic
Relationships and Speciation Times of Human, Chimpanzee, and Gorilla Inferred from

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2022. ; https://doi.org/10.1101/2022.06.17.496540doi: bioRxiv preprint 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3497766&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3497766&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091%7B&%7Dtool=pmcentrez%7B&%7Drendertype=abstract http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1201091&tool=pmcentrez&rendertype=abstract
https://www.jstor.org/stable/3213548
http://www.ncbi.nlm.nih.gov/pubmed/15489538 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1449138
http://www.ncbi.nlm.nih.gov/pubmed/15489538 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1449138
http://www.ncbi.nlm.nih.gov/pubmed/19001293 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2621185
http://www.ncbi.nlm.nih.gov/pubmed/19001293 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC2621185
http://www.nature.com/articles/nature10231
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569517&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1569517&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1101/2022.06.17.496540
http://creativecommons.org/licenses/by-nc-nd/4.0/


a Coalescent Hidden Markov Model. PLOS Genetics, 3(2):1–11, 2007. doi: 10.1371/
journal.pgen.0030007. URL https://doi.org/10.1371/journal.pgen.0030007.

Julien Y. Dutheil, Ganesh Ganapathy, Asger Hobolth, Thomas Mailund, Marcy K.
Uyenoyama, and Mikkel H. Schierup. Ancestral population genomics: The coalescent
hidden Markov model approach. Genetics, 183(1):259–274, 2009. ISSN 00166731. doi:
10.1534/genetics.109.103010.

Sara Sheehan, Kelley Harris, and Yun S Song. Estimating variable effective pop-
ulation sizes from multiple genomes: a sequentially markov conditional sam-
pling distribution approach. Genetics, 194(3):647–62, 7 2013. ISSN 1943-
2631. doi: 10.1534/genetics.112.149096. URL http://www.ncbi.nlm.nih.

gov/pubmed/6628982http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=PMC1202167http://www.ncbi.nlm.nih.gov/pubmed/23608192http:

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3697970.

Stephan Schiffels and Richard Durbin. Inferring human population size and separation
history from multiple genome sequences. Nature genetics, 46(8):919–25, 2014. ISSN
1546-1718. doi: 10.1038/ng.3015. URL http://dx.doi.org/10.1038/ng.3015.

Jonathan Terhorst, John A Kamm, and Yun S Song. Robust and scalable inference of
population history from hundreds of unphased whole genomes. Nature Genetics, 49(2):
303–309, 2017. ISSN 1061-4036. doi: 10.1038/ng.3748. URL http://www.nature.com/

doifinder/10.1038/ng.3748.

Jeffrey P. Spence, Matthias Steinrücken, Jonathan Terhorst, and Yun S. Song. Inference
of population history using coalescent HMMs: review and outlook. Current Opinion in
Genetics and Development, 53:70–76, 2018. ISSN 18790380. doi: 10.1016/j.gde.2018.07.
002.

Rasmus Heller, Lounes Chikhi, and Hans Redlef Siegismund. The Confounding Effect of
Population Structure on Bayesian Skyline Plot Inferences of Demographic History. PLoS
ONE, 8(5):e62992, 5 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0062992. URL
https://dx.plos.org/10.1371/journal.pone.0062992.
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