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Figure 5: Improved deep embedded clustering learns quantitative morphological signatures for 3D shapes of
cells. We added a clustering layer to a trained DFN model to learn the shape clusters that exist in the dataset. (A)
Shows the kernel density approximation of the UMAP features extracted from the DFN after IDEC. The clustering
layer outputs a distribution of soft labels across the five shape classes. We show point cloud renders of the five exemplar
shape classes. (B) Hand-crafted measures of geometry were extracted for each cell. We described each shape cluster by
these measures. (C) Shows this density approximation of the UMAP projection of the features extracted from the DFN
after IDEC for Nocodazole-treated cells and (D) for Blebbistatin-treated cells. Each cell was assigned a 3DQMS, which
(in this case) is a five-dimensional vector that describes how similar a cell is to each shape cluster. We also show the
average similarity score of Blebbistatin-treated cells to the five shape modes. (E) Shows a radar chart of the 3DQMS
for Blebbistatin and Nocodazole-treated cells. (F) We standardised and averaged the 3DQMS for each treatment and
performed hierarchical clustering to reveal six classes of the treatment effects on cell shape. (G) Shows the radar chart
of the average standardised 3DQMS for each small-molecule treatment.
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Figure 6: A morphological drug discovery platform. (A) Cell shape features were extracted from cells treated with
RNAi. The average cell shape features of each RNAi were normalised and correlated to each other. The correlation
matrix was clustered into three and nine clusters using hierarchical clustering. (B) Each GEF and GAP was annotated
with its major protein domain and the GTPase it regulated. Enrichments of these annotations are shown in a cluster map.
(C) The shapes of the gene clusters were interpreted using hand-crafted features. (D) The RNAi dataset and proximal
cells from the treatment dataset were combined, and IDEC was performed. The four common shape modes and their
hand-crafted features are shown for interpretability. Differences in the 3DQMS of the RNAi’s from Blebbistatin and
Nocodazole were calculated using KL divergence. (E) Shows a scatter plot of each RNAi’s divergence from Nocodazole
(x-axis) and Blebbistatin (y-axis). Proteins that are suggested to promote actomyosin contractility are highlighted in a
green box, and proteins suggested to promote protrusions are highlighted in a red box. (F) Shows MIPs of ARHGEF35,
RHOA, and ARHGAP20, which are highlighted in green in (E). (G) Shows MIPs of MYO9B, ARHGAP23 and
STARD13 (highlighted in red in (E)). (H) Shows maximum intensity projections of MCF2L2, ARB, and SRGAP2,
which are neither similar to Blebbistatin nor Nocodazole. (I) Shows rendered point clouds of Blebbistatin-treated cells.
(J) Shows rendered point clouds of Nocodazole-treated cells.
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Rho GTPase activating proteins (RhoGAPs), and Rho family GTPases. This data set comprised over 35,000 single cells233

across 168 different treatment conditions (RNA interference (RNAi)). OPM was used to image the 3D shape of cells.234

Our DFN autoencoder without the clustering layer extracted 128 DL shape features from point cloud representations235

of each single cell. We normalised the shape features, and then calculated an average feature vector for each gene236

knockdown. Next, we calculated and clustered on a correlation matrix (Figure 6 A). We used publicly available datasets237

to annotate each knockdown with molecular features of the protein encoded by the gene, such as major protein domains238

and the specificity of each RhoGEF and RhoGAP 6 B). There existed 3 major shape clusters, with cluster 1 enriched for239

the depletion of RhoGAPs and clusters 2 and 3 enriched for the depletion of RhoGEFs. We interpreted these clusters by240

reference to classical features (Figure 6 C). Cells in cluster 1 (enriched for the depletion of RhoGAPs) tended to be241

larger and more protrusive. In contrast, cells in clusters 2 and 3 (enriched for the depletion of RhoGEFs) tended to be242

smaller and more spherical. Thus, this reveals that 3D morphology can be used to infer global protein activities, for243

example, whether RhoGAPs (cluster 1) or RhoGEFs (clusters 2 and 3) are ‘off’.244

Furthermore, clusters 2 and 3 could be weakly distinguished based on the particular protein domains that were enriched245

in the targets of knockdown. With Pleckstrin homology (PH) and Src homology 3 (SH3) domains being weakly enriched246

in cluster 2 (Figure 6 B). In addition, cluster 3 was weakly enriched in RhoGEFs that target RhoA (Figure 6 B). Thus,247

3D cell shape can reveal insight into the activation state of proteins at the domain level; that is, we can infer that PH/SH3248

domain-containing proteins are off in cluster 2 but more active in clusters 1 and 3.249

We then sought to determine if 3DQMS could predict the biological pathways targeted by different small-molecules250

by integrating data following small-molecule treatment and genetic perturbation (Figure 2 G and H). We extracted251

features for the cells in this combined dataset and performed k-means clustering on a range of different values for kc,252

which indicated that the optimal number of shape modes in this combined dataset was 4 (see Methods). The trained253

autoencoder and clustering layer revealed the four common shape modes in the dataset. Similar to methods used to254

generate Figure 5 E, we interpreted these shape modes by reference to classical measures of cell geometry (Figure 6 D).255

With the trained autoencoder and clustering layer, we extracted the 3DQMS for every cell and computed the average for256

each RNAi. Since this 3DQMS is a probability distribution of a treatment across shape modes, we compared each RNAi257

3DQMS to the 3DQMS of Nocodazole and the 3DQMS of Blebbistatin through a KL divergence (Figure 6 E). We258

selected Blebbistatin and Nocodazole as they were the treatments most different from the control and each other (Figure259

3. We expected the depletion of genes that promote contractility to have a high divergence from Nocodazole. Prominent260

amongst this set are RhoA and RhoC, activators of the ROCK-myosin activity and contractility [29] (green box in Figure261

6 E). In contrast, we expected the depletion of genes that ordinarily prevent contractility to have a high divergence262

from Blebbistatin. Indeed cells depleted for Myo9B, a microtubule-associated protein which normally functions to263

inhibit RhoGTPase-based contractility [30], are quantitatively similar to Nocodazole treatment but divergent from cells264

treated with Blebbistatin. Figure 6 F-H shows the maximum intensity projections of cells that have similar 3DQMS to265

Blebbistatin and different 3DQMS from Nocodazole (Figure 6 F), similar 3DQMS to Nocodazole and different 3DQMS266

from Blebbistatin (Figure 6 G), and different 3DQMS from both Nocodazole and Blebbistatin (Figure 6 H). It is evident267

that cells depleted for Rho-regulators that are suggested to promote actomyosin contractility are more protrusive (Figure268

6 F), whereas cells depleted for genes that are suggested to promote protrusions are rounder 6 G. The cells that are both269

different from Nocodazole and Blebbistatin tend to be neither round nor eccentric. (Figure 6 I and J) show examples270

of point cloud renders of Blebbistatin, and Nocodazole treated cells, respectively. Taken together, this shows that the271

similarity of 3D cell shape following gene depletion or small-molecule treatment can be used to infer the molecular272

targets of small molecules.273

Discussion274

Here, we demonstrated the utility of GDL to automatically learn 3D single-cell shape profiles, shape modes, and275

treatment distributions across these modes towards the goal of creating a phenotypic drug screening platform. We used276

these extracted features to distinguish between cancer cells treated with different small molecule treatments, 3D red277

blood cell shapes and diseased 3D blood vessels with accuracies greater than conventional methods and comparable278

with other supervised DL methods. We further defined a 3DQMS for each cell and each treatment class. This 3DQMS279

measures how similar the shape of each cell is to the shape modes found in the dataset and is an interpretable readout280

which describes a shift in cell shape distribution of treatments. We demonstrated how our methods could be used as a281

morphological drug discovery platform by combining our small molecule treatment dataset with a dataset of cells that282

had been depleted of most human RhoGEFs, RhoGAPs and RhoGTPases.283

Building a deep learning model requires design choices. The first decision is the representation choice of 3D input data.284

Since the creation of 3D object datasets such as ModelNet [3], the two broad approaches used to represent the input data285

are voxels (the 3D counterpart to pixels in 2D images) and point clouds. Recently point clouds have been the dominant286
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approach [31, 9, 32]. One reason for this is practical, and another is performance. Additionally, point cloud data is a287

straightforward representation of a 3D shape consisting of a 2D matrix of the positions of points along the surface. We288

had the choice of both voxel and point cloud representations and explored both approaches when representing human289

cells. For learning representations on 3D voxel grids, we utilised 3D ResNet architectures. Subsequently, we packaged290

our methods as a Python package called ‘cellshape-voxel’ for researchers to use freely. Using performance on291

classification tasks as a guide, we found that autoencoders using point cloud data were superior and have thus reported292

on these results (see supplementary material). Our choice of 2048 points was based on previous works [17, 6] and was293

tested and compared against three scales of sampling densities to ensure points along intricate cellular protrusions were294

captured while maintaining computational efficiency. Future work could explore methods of describing cells by either a295

few critical points or, alternatively, methods that could optimise the densities of points representing cells at different296

spatial resolutions. For example, a cell could be described by its centre of mass and points along its protrusions. While297

decreasing the detail by describing cells by much fewer points, computational efficiency would significantly increase.298

A second key design decision is the selection of an autoencoder. As previously discussed, geometric deep learning299

is the branch of deep learning that deals with graph or manifold (unstructured) data, such as graphs created on point300

clouds. Geometric deep learning has predominantly been used on point cloud data to produce state-of-the-art results301

for classification and representation learning tasks [31, 18]. Our model incorporated edge convolution as the primary302

operator in the encoder part of our autoencoder, as this has proved successful in representation learning tasks [32].303

FoldingNet is a folding-based decoder designed to assist representation learning on point clouds [17]. This decoder304

backbone has been used extensively in the literature primarily as it is simple and has shown promising results across305

several tasks [16, 18]. Thus, we incorporate a folding-based decoder in our model.306

A third important decision is a method to group unlabelled data. This is a challenging task with methods proposed307

for common 2D benchmark datasets [33, 34]. To solve this problem for biological cells, we took the approach of308

deep embedded clustering [21]. Deep embedded clustering is a way to simultaneously learn feature representations309

and cluster assignments or classes. This method involves clustering with Kullback–Leibler divergence on feature310

representations from an autoencoder [21]. This method can easily be incorporated into any autoencoder architecture311

and offers an interpretable output in the form of a soft label which describes the probability of assigning data input to312

each cluster class. This, in turn, allows the assignment of data input to be continuous across classes rather than discrete.313

Cell morphology is a continuous variable with no two cells being identical in shape, but rather similar to each other314

or similar to exemplar shapes [35]. Therefore, describing cell shapes by a continuous similarity score to exemplar315

shapes offers a more natural solution than discrete binning into certain shape classes [26]. Thus, we have opted for deep316

embedded clustering to learn cell shapes’ 3DQMS.317

A major component of our work is its accessibility to the wider biological and medical community. Packing our318

methods in open-source Python packages with ease of use allows further research on connecting 3D shapes to function319

across various domains. Our Python package offers adaptability and growth with the plan to implement new methods320

continuously.321

Methods322

Melanoma cell preparation323

Cells used in this study were WM266.4 harbouring CAAX-EGFP (donated from the Marshall lab), with the addition of324

an ERK-KTR-Ruby construct (addgene #90231) and a Histone2B-iRFP670 construct (Addgene #90237).325

Collagen preparation326

Collagen hydrogels were prepared to a final concentration of 2mg/mL. Briefly, hydrogel solutions of dH2O, 5xDMEM,327

HEPES (7.5 pH), and Rat Tail Collagen IV (Corning) were prepared on ice to a final collagen concentration of 2mg/mL.328

Cells were re-suspended in hydrogel solution at a concentration of 4 E4 cells per 100 µl, and 100 µl of this solution329

dispensed into each experimental well on a 96 well plate. After dispensing cells, the plates were incubated at 37 degrees330

Celsius for 1 hour, and 100 µl of DMEM was added to each well.331

Treatments and cell fixation332

Treatments were added to cells 24 hours after seeding in collagen hydrogels. After 6 hours of treatment, cells were333

fixed in 4 percent paraformaldehyde for 30 minutes at room temperature. Final concentrations for treatments were:334

Binimetinib (2 µM ), Palbociclib (2 µM ), MK1775 (1 µM ), Blebbistatin (10 µM ), H1152 (10 µM ), PF228 (2 µM ),335
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CK666 (100 µM ), Nocodazole (1 µM ) and DMSO 1 in 1000. Concentrations were calculated including the 100 µl336

volume of the collagen hydrogel. See supplementary materials for more information on these treatments.337

High throughput RNA interference screening on top of stiff material338

RNA interference (RNAi) screens were performed in 384-well Cell Carrier plates (PerkinElmer) to which 40 nL/well339

small interfering RNA (siRNA) (20 µM ) were plated using an Echo liquid handler (LabCyte). Prior to seeding cells,340

10 µL of OptiMEM (Invitrogen) containing 40 nL/well Lipofectamine RNAiMAX (Invitrogen) was added using a341

Multidrop Combi Reagent Dispenser (ThermoFischer) and plates were incubated for 30 minutes at room temperature.342

5000 cells per well were seeded in 20 µL of complete medium for all wells containing siRNA and a subset of control343

wells. After 48 hours, cells were fixed by adding 30 µL of pre-warmed 8% PFA (methanol free) (ThermoFischer),344

and incubated for 15 minutes at room temperature. After washing 3 times with phosphate-buffered saline (PBS), cells345

were permeabilised in 0.2% Triton X-100. Cells were blocked for 1 hour at room temperature with 0.5% bovine serum346

albumin (BSA) in PBS. After washing for three times with PBS, primary antibodies were added in 10 µL block solution,347

and plates were sealed and incubated overnight at 4◦C. Following three washes in PBS, secondary antibodies were348

added and incubated for 2 hours at room temperature. Plates were washed two times in PBS, incubated for 15 minutes349

with 5 µg/mL Hoechst, washed once with PBS, filled with 50 µ PBS, and sealed for imaging.350

Microscopy setup and image acquisition351

OPM imaging was performed on a modified version of the OPM system described in [2, 19]. The primary microscope352

objective was a 60X/1.2NA water immersion objective, and the secondary objective was a 50X/0.95NA air objective,353

and the tertiary objective was a 40x/0.6NA air objective. The OPM angle was 35 degrees.354

A single sCMOS camera (pco Edge) was used in Global Reset acquisition mode with 1280 × 1000 pixels. A motorised355

filter wheel (FW103H/M, Thorlabs) was used to switch between filters for multichannel imaging. An OPM volume was356

acquired for iRFP (642 nm excitation and 731/137 emission filter (Semrock Brightline)) before the stage returned to357

the start position before the acquisition of the EGFP volume (488 nm excitation and 550/49 emission filter (Semrock358

Brightline)). Finally, a collagen scattered light volume (488 nm illumination and no emission filter) was acquired from359

the same start position. The laser illumination and camera exposure time were both 4 ms. The stage velocity was 0.16360

µm/ms and image acquisition was triggered every 1.4 µm of stage travel. For each field of view, the x-y stage covered361

4000 µm, and three regions were imaged for each well. Before analysis, raw frames were compressed using jetraw362

compression software (jetraw, Dotphoton). Volumes were then de-skewed into standard xyz coordinates [2] and binned363

such that the final voxel size was 1x1x1 µm3. Image reslicing was performed using bi-linear resampling similar to the364

methods described in [19].365

Segmentation366

The OPM image acquisition produces a parallelepiped-shaped volume due to the light-sheet angle. Before segmentation,367

the tips of this parallelepiped were cropped out in the y direction. This process removed sections of the volume that368

were not imaged over the entire axial extent. The collagen channel was viewed manually prior to segmentation, and369

volumes, where the collagen was not present throughout the whole volume, were rejected.370

Two 3D segmentation methods were used in this paper to verify the robustness of our approach. These included Ostu’s371

thresholding and active contours. These methods calculate a binary mask of the region of interest with minimal user372

input. We used both methods to segment both cells and nuclei in 3D. Otsu’s thresholding was computed automatically373

for each field of view. The threshold for the nucleus was computed using Otsu’s method with a single-level (multithresh,374

Image 222 Processing Toolbox, MATLAB). There were cases in the data where brightly fluorescent cell membranes375

with dimly fluorescent protrusions existed. To include all these parts of the cell in the output segmentation, the376

lowest threshold found by a two-level Otsu method was used. For the active contours method, an initial guess of the377

segmentation mask was generated using a threshold value slightly above the intensity of the background (a value of 5).378

The final segmentation output was then calculated after 500 and 1000 iterations for nuclei and cells, respectively, of the379

active contours method using default parameters (Image Processing Toolbox, MATLAB).380

Touching nuclei were separated following a two-step process. First, a Euclidean distance transform of the inverse of the381

mask was calculated to determine the distance of each voxel to the edge of the 3D mask (bwdist, Image Processing382

Toolbox, MATLAB). Next, a watershed method (Image Processing Toolbox, MATLAB) was applied to the negative383

of the distance-transformed image. These steps separated nuclei based on regions where the masks began to narrow.384

Nuclei volumes less than 50 µm3 were rejected at this stage.385
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Any connected components in the cell binary mask which did not contain a nucleus were rejected. Touching cells were386

separated using a marker-based watershed approach. Here, the nuclei are set as the low points (value of 0), the cell387

cytoplasm is set as intermediate points (value of 1), and the background is set as high points (value of digital infinity).388

This watershed method finds the halfway point between the nuclei of touching cells. Following segmentation, cells389

touching the volume edges were removed. Cells with volumes less than 512 µm3 were removed. The nuclei of rejected390

cells and cells of rejected nuclei were removed. We further tested Cellpose [36], a deep learning-based segmentation391

method for a wide range of microscopy images. However, after manually inspecting the results, we found that our392

procedure involving Ostu’s thresholding and active contour with further pre- and post-processing worked better on393

our dataset. This was primarily due to the cases where there were brightly fluorescent cell membranes with dimly394

fluorescent protrusions.395

There were cases where our watershed algorithms failed and some region’s of interest (ROI) contained multiple cells.396

As an extra filtering step, we re-segmented the nuclei channel for each ROI. If there were more than one nucleus mask397

from our new segmentation that was in the same voxel locations as the cell mask from the first cell segmentation, we398

removed this ROI from the dataset entirely. The segmentations were manually checked for several "difficult" cells, and399

we are confident that our method is sufficiently robust.400

Outlier removal401

The three repeated experiments produced a segmented dataset of over 65000 single cells. Similar to [19], we removed402

cells and nuclei that expressed low CAAX-GFP transgene, as this caused inaccurate segmentation. We automatically403

removed cells with a maximum intensity less than the mean of all cell maximum intensities minus the standard deviation404

of all cell maximum intensities.405

After the above outlier removal and quality control, there was an additional round of quality control during the data406

analysis stage. Cells with a mean CAAX-GFP intensity of fewer than 70 units were removed from the study, and407

cells with a mean nuclear Histone-2B of fewer than five units were also removed from the study. The final dataset is408

represented in the supplementary material.409

Classical shape measurements410

Similar to our previous works [19], cell and nuclei classical shape measurements were calculated by the regionprops3411

function in MATLAB. Further measurements were derived from these outputs as described in [19].412

Point cloud generation413

Point cloud representations of 3D objects have been used extensively in 3D shape analysis using deep learning414

[37, 38, 39, 40, 41]. Point clouds are arguably one of the simplest forms of shape representation and are easily415

obtainable from mesh objects - which are a common output of segmentation methods. We followed a two-step416

procedure to create point cloud representations of cell and nuclei surfaces. First, we converted the 3D binary mask to a417

mesh object. We used the marching cubes algorithm [42] from scikit-learn [43, 44] to extract vertices, faces and normals418

from the 3D binary mask. The marching cubes algorithm typically produces meshes with poor triangular quality [45].419

When dealing with these meshes with poor triangular quality meshes, k-nearest neighbours graph constrictions may not420

give an equilateral representation of local features with irregular distances between vertices. This may adversely affect421

results through the topology of the 3D shape not being correct. We, therefore, used Laplacian smoothing [46] to obtain422

equilateral representations of local features. However, we found that this smoothing made decreased the predictive423

ability of our features for treatment classes (Supplementary Table 3). Trimesh [47] was used to form a mesh object424

from these vertices, faces and normals of cell and nuclei surfaces. Second, we sampled points from the surface of the425

mesh object to create a point cloud representing the shape of the cell or nuclei.426

The number of points used to represent our shape data is a chosen parameter of our methods that essentially represents427

the resolution of our shape data. Since there is a large size discrepancy across the cell population, we are aware that428

using the same number of points for all cells may lead to larger cells being under-sampled and smaller cells being429

over-sampled. Several works on 3D shape understanding have used datasets of point cloud representations of objects430

ranging in scales from chairs to aeroplanes which use the same number of points for all objects [6, 31, 48, 9]. A trade-off431

exists between the resolution of the input point cloud and the speed of training and inference of our deep learning model.432

We thus needed a suitable number of points representing the input data across scales and being computationally efficient.433

To this end, to represent each shape, we tested three different orders of magnitude of point sampling frequencies, i.e.,434

1024, 2048, and 4096 points. To compare the different sampling frequencies, we visually inspected the point clouds of435

cells to ensure intricate cellular protrusions were being captured (Figure 1 C). Furthermore, we compared the accuracies436
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of our classification tasks using features generated from shapes represented by all three scales of point densities to show437

that all sampling densities were similar in terms of classification accuracy. Ultimately, we found that 2048 points were438

sufficient in representing both large and small cells and were computationally efficient. We did not find cases where cell439

protrusions were missed with this sampling frequency. While it may be true that extremely fine details are overlooked440

by point cloud representations (details such as texture), global and local neighbourhood shapes are well represented by441

2048 points for our datasets.442

Functions from PyTorch Geometric [49] were used to uniformly sample points from the surface of the mesh object. We443

packaged our point cloud generation pipeline in a Python package called cellshape-helper for anyone to use.444

Dynamic graph convolutional foldingnet autoencoder445

The DFN autoencoder follows the design of the FoldingNet [17] with a dynamic graph convolutional neural network446

(DGCNN) as the encoder [6]. This encoder takes a 3D point cloud as input, constructs a local neighbourhood (k-nearest447

neighbour) graph on these points and applies convolution-like operations on the edges of connecting neighbouring point448

(EdgeConv). The authors [6] show translation-invariant properties of EdgeConv operations. [50] found that using the449

DGCNN encoder outperformed the original FoldingNet encoder regarding transfer classification accuracy, which is450

why we made the amendment.451

The choice of kg is a hyperparameter of the model architecture, and the original DGCNN paper [6] used a value of 20452

for kg when using 1024 points and a value of 40 when using 2048 points for the input point cloud representation of453

everyday objects from ModelNet40 [3]. A suitable value of kg was considered through experimentation. A value of kg454

too large would cause each point along the cell’s surface to be connected to too many neighbouring points, resulting in455

redundant information and a loss of local structure. Too small a value of kg will result in the model degenerating into a456

convolutional neural network. Furthermore, larger values for kg require longer training and inference times. We tested457

a range of different values for kg to find a value that was both computationally efficient and produced the best results on458

our classification tasks. We know that using a k-NN graph constructed on a point cloud representation of a cell shape459

may bridge multiple neighbouring protrusions. When using k = 20, we observed that there were very few cases where460

protrusions were bridged together. A render of a graph constructed on a protrusive cell is presented in Supplementary461

Figure 5 to demonstrate this.462

For our experiments, we chose kg = 20 for our graph construction. We replaced the final linear layer from the original463

DGCNN architecture with one that outputs a desired feature vector length. The decoder takes the feature vector, z, as464

input and concatenates it with “source points”. We offer the ability to use a range of different source points. These465

included points sampled from a 2D plane, a Gaussian distribution or a sphere in 3D space. For the work in this paper,466

we use points sampled from a 2D plane. The feature vector concatenated with the source points is then passed through a467

series of two folding operations (defined in [17]) to output a reconstructed point cloud. Our model outputs 2025 points.468

The number of reconstructed points does not need to be the same as the input number of points. The Chamfer distance469

(CD) [51] is commonly used to compare two PCs. We used the extended CD presented in [17] as our reconstruction470

error between input point cloud S and reconstructed point cloud Ŝ. The CD is defined in Equation 1.471

CD(S, Ŝ) = max
{

1
|S|

∑
x∈S minx̂∈Ŝ ∥x− x̂∥2

1

|Ŝ|

∑
x̂∈Ŝ minx∈S ∥x̂− x∥2

}
.

(1)

Initially, the DFN was trained on the ShapeNet dataset for 250 epochs. Then we continued training on our point cloud472

representations of both cells and nuclei for another 250 epochs using Adam optimiser with e−6 weight decay. We used473

a batch size of 16 with an initial learning rate of 0.0001 and an exponential learning rate decay scheduler. The DFN474

model was set to extract 128 features from each point cloud. All algorithms were implemented in PyTorch. We used475

code from [50, 18] and packaged our DFN into a Python package called cellshape-cloud.476

Deep embedded clustering477

Deep embedded clustering (DEC) [21] is a specialised clustering technique that simultaneously learns feature repre-478

sentations and cluster assignments using autoencoders. Our implementation of DEC learns autoencoder parameters θ479

which map the 3D shapes into embedded feature space Z as well as kc cluster centres {µj ∈ Z}kc

j=1 of the embedded480

feature space Z. This is done in two phases:481

1. parameter initialisation with an autoencoder (through our DFN model) and482
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2. parameter optimisation through simultaneous autoencoder reconstruction and minimisation of the Kullback-483

Leibler (KL) divergence between a target distribution and a distribution of soft labels.484

The second step is done by adding a clustering layer on the features to refine them by learning features that are optimised485

to represent the 3D shape as best as possible and grouping similar and separating dissimilar objects. This part of the486

model works by initialising cluster centres using the k-means clustering algorithm on the embedded feature space487

outputted from a pre-trained autoencoder in step 1. These cluster centres are kept as trainable parameters. The clustering488

layer then assigns soft labels (qij) to each input by mapping features to clusters based on the Student’s t-distribution as489

a kernel that represents the similarity between a feature vector (zi) and a cluster centre (µj):490

qij =

(
1 + ∥zi − µj∥2 /α

)−α+1
2

∑
j′

(
1 + ∥zi − µj′∥2 /α

)−α+1
2

. (2)

This can be interpreted as the probability of assigning input i to cluster j, hence why this is a soft assignment. Soft491

assignments with high probabilities are considered trustworthy; thus, DEC designs a target distribution, which raises492

this to the second power to place more emphasis on these confident assignments. Following DEC, we define the target493

distribution as follows:494

pij =
q2ij/

∑
i qij∑

j′ q
2
ij′/

∑
i qij′

. (3)

A clustering loss is defined as the Kullback–Leibler divergence between P and Q:495

L = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

. (4)

The features at cluster centres become representations of ‘example’ or ‘template’ shapes of each shape class. [21]496

proposed training an autoencoder in the first phase (parameter initialisation) and then abandoning the decoder in the497

second phase to only fine-tune the encoder through the clustering loss alone. Variants of DEC since then have shown498

that this fine-tuning may distort the embedded space and weaken its representativeness of the input [52, 53]. Thus, we499

followed the procedure in [27] and have added the decoder back to the second phase of training and optimised both the500

reconstruction loss and the clustering loss together with a final loss defined as:501

L = Lr + γLc, (5)

where γ ≥ 0 defines the magnitude that the clustering loss adds to the final loss. For all experiments, we used γ = 100.502

Similar to methods in [27], during training of the deep embedded clustering, we updated the target distribution p503

at regular step intervals, T . As the target distribution constantly updates, the algorithm will not converge; thus, we504

needed another metric to determine when to stop training. After T steps, we calculated the new target distribution and505

divergence, δ, from the previous update. This divergence is the proportion of data points or cells that have changed506

which cluster they belong to. We set a divergence tolerance, δtol, such that we stop training when δ < δtol. For all our507

experiments, we used δ = 0.001508

Predicting small molecule treatments, red blood cell shapes, and healthy blood vessels509

We used our extracted features to train a support vector machine (SVM). For all experiments, we used one-versus-one510

SVM classifiers with a radial basis function kernel and an L2 regularisation parameter (C = 5), balanced class weights,511

and intercept scaling during training. We used scikit-learn for these methods [43, 44]. For our drug-treated dataset we512

performed 10-fold cross-validation for each experiment and report the mean balanced accuracy and for the 3D red513

blood cell dataset, we used a 80/20 train and test set and the results on the test set. For the VesselMNIST3D dataset, we514

used the specified training and validation set to train our model and report on the unseen test set. For all experiments„515

we report the average class accuracy to account for class imbalances.516

Feature importance517

Extreme gradient boosting (XGBoost) is a machine learning algorithm which uses gradient-boosted decision trees for518

classification, and regression tasks [54]. A benefit of using gradient boosting is that it is relatively simple to explore519

which features are important for the task at hand. Importance provides a score that indicates how valuable each feature520
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was in constructing the boosted trees in the model. The more a feature is utilised to classify, the higher its importance.521

This is based on the number of times a feature is used in a tree. We used this to interpret which features were important522

for our classification tasks. We trained an XGBoost classification model to classify Blebbistatin and Nocodazole-treated523

cells based on the principal components of the cell shape features extracted using the DFN without the addition of the524

clustering layer. For methods involving XGBoost, we used the open-source Python package ‘xgboost’ [54].525

Aligning 3D shapes to a common axis526

As a step towards rotational invariance, we converted the point cloud representations of 3D red blood cells to their527

PCA-based canonical poses. PCA calculates three orthogonal bases or principal axis of point cloud data. This enables us528

to align original point clouds to the world Cartesian plane [55]. We briefly discuss how the canonical pose is calculated529

by following directly from [55]. We performed PCA on a given point cloud, S ∈ Rn×3, by:530

∑(
Si − S

) (
Si − S

)T
n

= EΛET , (6)

where Si ∈ R3 is the ith point of S,S ∈ R3 is the mean of S,E is the eigenvector matrix composed of eigenvectors531

(e1, e2, e3) (principal axes), and Λ = diag (λ1, λ2, λ3) are the corresponding eigenvalues. By aligning the principal532

axes to the three axes of the world coordinate, we obtain the canonical pose as Scan = SE.533

[55] proved the rotational invariant property of Scan. We calculated the canonical poses for each point cloud representa-534

tion of the only the 3D red blood cells in used this as input to our DFN.535

Normalisation cells to the plate control536

We normalised the shape features to the features of each plate’s control cells. This was done by calculating the mean537

and standard deviation of the shape features for the control cells of each plate. We subtracted the plate control mean for538

every single cell and divided this result by the plate control standard deviation.539

Selecting the number of clusters540

We used the elbow method on the sum of squared distances of each data point to its assigned cluster centre and the541

Kneedle algorithm [28]. This was implemented using the yellowbrick Python package [56].542

Combining the RNAi dataset with the drug-treated dataset543

We saw that cell shape depends on the environment, and the shape space of cells proximal to the coverslip differs from544

that of cells distal to the coverslip (Figure 2 G and H). Since our RNAi dataset is of cells on the coverslip (2D cell545

culture environment imaged in 3D), we combined this dataset with only the proximal cells from the drug-treated dataset.546

3D rendering547

3D renders of intensity images are generated as a 3D projection with trilinear interpolation by using the volume viewer548

2.01 Fiji plugin [57]. 3D renders of cell masks are presented as 3D surface representations using isosurfaces in napari549

[58]. Point cloud renderings of 3D cell shapes were done using Mitsuba2 [59] and adapted scripts from [60].550

Data availability551

Our data are available at https://sandbox.zenodo.org/record/1170226#.ZAs8w4DP3JU. The raw data of the552

regions of interest and the cell and nuclei mask data will be deposited in an online repository.553

Code availability554

The described software is available as a Python package which can be installed through pip, and the source code is555

available at https://github.com/Sentinal4D/cellshape. This is made up of four separate sub-packages for556

point cloud generation (cellshape-helper), graph-based representation learning (cellshape-cloud), deep embedded557

clustering (cellshape-cluster), as well as deep learning methods on 3D voxel input data (cellshape-voxel). Our data558

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2022.06.17.496550doi: bioRxiv preprint 

https://sandbox.zenodo.org/record/1170226#.ZAs8w4DP3JU
https://github.com/Sentinal4D/cellshape
https://doi.org/10.1101/2022.06.17.496550
http://creativecommons.org/licenses/by-nc-nd/4.0/


3D single-cell shape analysis using geometric deep learning A PREPRINT

collection code is available at https://github.com/ImperialCollegeLondon/cellshape-collection. The559

data collection code includes scripts for image acquisition by OPM and our 3D cell and nuclei segmentation methods.560
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