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When cancers or bacterial infections establish, small populations of cells have to free them-4

selves from homoeostatic regulations that prevent their expansion. Trait evolution allows5

these populations to evade this regulation, escape stochastic extinction and climb up the6

fitness landscape. In this study, we analyse this complex process and investigate the fate7

of a cell population that underlies the basic processes of birth, death and mutation. We8

find that the shape of the fitness landscape dictates a circular adaptation trajectory in the9

trait space spanned by birth and death rates. We show that successful adaptation is less10

likely for parental populations with higher turnover (higher birth and death rates). In-11

cluding density- or trait-affecting treatment we find that these treatment types change the12

adaptation dynamics in agreement with a geometrical analysis of fitness gradients. Treat-13

ment strategies that simultaneously target birth and death rates are most effective, but14

also increase evolvability. By mapping physiological adaptation pathways and molecular15

drug mechanisms to traits and treatments with clear eco-evolutionary consequences, we can16

achieve a much better understanding of the adaptation dynamics and the eco-evolutionary17

mechanisms at play in the dynamics of cancer and bacterial infections.18
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1. Introduction22

Cancer cells and bacterial pathogens show extensive adaptive potential, which helps them to establish23

even in unfavourable conditions and outgrow competitors and external pressures, for example by the24

immune system (Fridman et al., 2012; Winstanley et al., 2016). In healthy tissue or healthy micro-25

biomes, external regulation aims to maintain a constant population size, which together with stochastic26

fluctuations in the population dynamics of individual subpopulations results in a constant turnover27

characterized by the eventual stochastic extinction of a specific subpopulation and subsequent replace-28

ment by other subpopulations (Gallaher et al., 2019). This extinction can be prevented by adaptations29

that give an emerging subpopulation of cells a fitness advantage over the remaining population. The30

increased fitness reduces the subpopulation’s risk of extinction in a process often termed evolutionary31

rescue (Orr and Unckless, 2008; Alexander et al., 2014; Uecker et al., 2014; Marrec and Bitbol, 2020a).32

Accordingly, the onset of cancer is characterized by malignant cells breaking with the homoeostatic33

regulation of healthy tissue (Basanta and Anderson, 2013, 2017). Similarly, bacterial infections that34

either emerge from or invade an otherwise healthy microbiome have to develop mechanisms to out-35

grow the other community members and free themselves from regulative community interactions, for36

example by pathoadaptive mutations (Winstanley et al., 2016; Culyba and Tyne, 2021).37

Many individual mechanisms of how this fitness increase is realized have been identified. In a pro-38

gressing tumour, the net growth increase of subclones relative to their parental clones often indicates a39

continuing evolution towards higher net growth rates, often but not always driven by the accumulation40

of known driver mutations (Gruber et al., 2019). Biswas et al. (2004) suggest that NF-κB activation41

increases proliferation and decreases apoptosis rate in estrogen receptor-negative breast cancer cells.42

Lopez and Tait (2015) describe how apoptosis is avoided in cancer cells by upregulating anti-apoptotic43

BCL-2 proteins. Similary, also infectious bacteria must adapt during an ongoing infection (Faure et al.,44

2018; Culyba and Tyne, 2021). For example, Young et al. (2017) showed that formerly commensal45

constituents of the host microbiome accrue substantial adaptive genotypic changes as they become46

infective, and Both et al. (2021) documented the phenotypic changes during the adaptation to the47

host environment.48

These adaptations have led to the development of drugs that target many such mechanisms both in49

cancer and in bacterial infections. For example, BCL-2 inhibitors aim to counter decreased apoptosis50

rates in cancer cells (Montero and Letai, 2018), and NF-κB inhibition is investigated to lessen the51

inflammatory increase in proliferation (Yu et al., 2020). Anti-virulence therapy and microbiome mod-52

ulation have been proposed as options besides antibiotics to counter the adaptations of pathogenic53

bacteria (Hauser et al., 2016).54
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The diversity of these specific, experimentally well-characterized adaptations and potential treatments55

call for an abstraction to elucidate the eco-evolutionary mechanisms behind adaptations of cell pop-56

ulations in challenging environments. It is a priori unclear which functional traits of cancer cells or57

pathogenic bacteria would be targeted by adaptations. Similarly, it is not understood how treatment-58

induced perturbations to the adapting populations or their environments would affect the adaptation59

process. In order to generalize from the plethora of adaptive mutations or plastic responses of cancer60

cells and bacterial pathogens, we describe the population of evolving cells in a minimal model: Cells61

competitively grow, die and mutate. We speculate that many of the adaptive mechanisms described62

above can be classified as either increasing the birth rate or decreasing the death rate. Treatment63

approaches that try to contain or eradicate such adapting populations could then be grouped into two64

types: (i) They either directly decrease the population size of the target population, or (ii) indirectly65

decrease the population size by affecting their birth and death rates. In such a simplistic but general66

setting we investigate where adaptation will take the population in a trait space spanned by birth rate67

and death rate, and how treatment will affect the resulting adaptation trajectories.68

2. Methods69

2.1. Description of the underlying microscopic processes70

We represent the initial phases of tumour formation or the establishment of a bacterial infection as71

the spread of a population of cells in a harsh environment. In our model, this harshness manifests in72

similar birth and death rates and a decreasing birth rate as population size increases. The similarity73

of birth and death rates is supported by the high proportion of dead cells in tumours (Kerr and Lamb,74

1984; de Jong et al., 2000; Liu et al., 2001; Alenzi, 2004; Gallaher et al., 2019). While bacterial death75

rates in benign conditions are small (Koch, 1959; Stewart et al., 2005) the mortality from immune76

responses or nutrient scarcity may be considerable and the importance of bacterial death is probably77

underestimated (Frenoy and Bonhoeffer, 2018). Oxygen availability, space restriction and nutrient78

limitation are likely mechanisms for the density dependence of the birth rate. We assume that this79

density dependence restricts the birth rate β of cells by a logistic term with a carrying capacity80

K. We assume that death occurs at a constant rate δ. Upon each birth event mutations can give81

rise to lineages with trait combinations (βm, δm) that slightly deviate from those of their parental82

lineage. We assume that mutations in the two traits can occur independently and without correlation,83

and that mutational effects are purely additive. The birth and expansion of fitter mutants can shift84

the population average trait combination and thus cause the population to adapt by exploring its85

adaptive landscape (e.g. Patout et al., 2021). We can represent the adaptation of a population by the86
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Table 1 Reference parameter set. The parameters of the stochastic adaptive process are chosen
such that without treatment about half of the replicate simulations show successful adaptation. The
parameters of the deterministic model were set such that the time scales of the deterministic dynamics
would match the time scales of the stochastic model. Deviations from these values are reported where
applicable.

Parameter Biological meaning Value

β0 Birth rate of the first parental lineage 1
δ0 Death rate of the first parental lineage 1
K Carrying capacity for total cell population 20 000
∆ Absolute treatment effect in trait space 0.5
N0 Initial size of the first parental lineage 100

dt Time step for evaluation of stochastic dynamics 0.1
µ Mutation probability per cell division 0.005
σ Standard deviation of mutational trait changes 0.05

Gβ Genetic variance of birth rate 10−2.5

Gδ Genetic variance of death rate 10−2.5

c Trait change deceleration for small trait values 0.1

trajectory of the mean trait combination in the trait space spanned by birth rate β and death rate87

δ. Focussing on the initial phases of adaptation, we assume that the carrying capacity K remains88

constant. We will investigate treatment types that either target the density or the traits of the89

evolving population (Fig. 1). Density-affecting treatment types are modelled as instantaneous density90

reductions (bottlenecks) applied homogeneously to the whole population, similar to the resection of91

a tumour where cancerous tissue is surgically removed, or the voiding of the bladder during urinary92

tract infections where most non-attached pathogenic bacteria are flushed out (Cox and Hinman, 1961;93

Sobel, 1997). Trait-affecting treatment types are implemented by prolonged additive changes to either94

the birth or the death rates of the individual lineages. ‘Static’ drugs decrease the birth rate by ∆β95

(e.g. cytostatic chemotherapy or bacteriostatic antibiotics), ‘toxic’ drugs increase the death rate by96

∆δ (e.g. cytotoxic chemotherapy, immunotherapy or bactericidal antibiotics). Different trait-affecting97

treatment types can thus be represented by vectors (∆β, ∆δ) in trait space (Fig. 1). Accounting for98

treatment and logistic density dependence of birth rates the effective birth and death rates of lineage99

i with population size Ni are given by100

bi(t) = (βi −∆β(t))

(
1−

∑
j Nj(t)

K

)
di(t) = δi +∆δ(t)

(1)

We ensure that effective birth rates are always greater than or equal to zero, setting them to zero if101

they would be negative.102
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2.2. Stochastic model103

We use these microprocesses of birth, death and mutation to construct a discrete-time stochastic model104

(Eq. 2). We assume that the number of birth and death events per lineage i per time step dt, (Bi(t+dt)105

and Di(t+dt)) are Poisson-distributed around the expected numbers of birth events biNi dt and death106

events diNi dt, given the effective birth and death rates bi and di according to Eq. (1). The number107

of mutants Mi(t + dt) among the new-born cells is given by a binomial distribution with mutation108

probability µ.109

Bi(t+ dt) ∽ Poisson(bi(t)Ni(t) dt)

Di(t+ dt) ∽ Poisson(di(t)Ni(t) dt)

Mi(t+ dt) ∽ Binomial(Bi(t+ dt), µ)

Ni(t+ dt) = Ni(t) +Bi(t+ dt)−Di(t+ dt)−Mi(t+ dt)

(2)

Each newly mutated cell founds a new lineage with trait values drawn from a truncated Gaussian110

distribution with the parental trait values as the mean and a standard deviation of σ = 0.05. By111

setting the lower bound of the truncated Gaussian distribution to zero, we prevent the evolution of112

negative trait values. The upper bound was set to 1000, which is far beyond the trait values that are113

obtained in our simulations and thus does not affect our results. By assuming a truncated Gaussian114

distribution of mutational effects we draw the mutant trait values predominantly from the vicinity115

of the parental traits. Thus, we focus our investigation on an adaptive process where trait changes116

occur predominantly in small steps, either by plastic changes to the cell phenotypes or by mutations117

with small effects, albeit single large-effect jackpot events are also possible but much less likely. This118

represents the diversity of adaptive mechanisms in cancer and pathoadaptations in bacterial infections119

resulting from the multitude of stressors that adapting cell populations face in the human body.120

2.3. Deterministic model121

Defining the total population size as N(t) =
∑

iNi(t) and the population average traits as β(t) =122 ∑
i βiNi(t)/N(t) and δ(t) =

∑
i δiNi(t)/N(t), we can construct a deterministic model from the above123

microscopic model using a Quantitative Genetics approach (Lande, 1982),124

dN(t)

dt
=

(
(β(t)−∆β(t))

(
1− N(t)

K

)
− (δ(t) + ∆δ(t))

)
N(t)

dβ(t)

dt
= Gβ

∂φ(t)

∂β(t)
e−c/β(t)

dδ(t)

dt
= Gδ

∂φ(t)

∂δ(t)
e−c/δ(t)

(3)
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Here, the change in total population size is governed by the difference of logistic average birth rate and125

average death rate. Treatment affects the effective birth and death rates as in Eq. (1). The change in126

the average birth and death rates are assumed to be proportional to the gradient of a function φ(t)127

(defined below) that describes the fitness of individuals with proportionality constants Gβ and Gδ that128

describe the additive genetic variance in the traits (Lande, 1982). The factors e−c/β(t) and e−c/δ(t)
129

ensure decelerating trait changes close to the trait axis, thus preventing negative trait values (Abrams130

and Matsuda, 1997; Raatz et al., 2019). Note that also this deterministic model formulation assumes131

independence of the two traits. The system of ordinary differential equations Eq. 3 is numerically132

integrated using the LSODA implementation of the solve ivp function from the Scipy library (Virtanen133

et al., 2020) in Python (version 3.8). Standard initial conditions are N(0) = 100, β(0) = 1, δ(0) = 1134

(Tab. 1).135

Setting the temporal derivative of the population size to zero we can obtain the conditions for the136

manifold where the population change equals zero. On this manifold, the population size is given by137

the effective carrying capacity138

N∗(t) = K

(
1− δ(t) + ∆δ(t)

β(t)−∆β(t)

)
. (4)

Because of treatment, the effective carrying capacity could become negative. In our simulations,139

however, we ensure that the population size remains bounded by zero.140

2.4. Defining fitness141

Adaptation should increase fitness relative to competitors, but what exactly determines fitness in142

populations that have to adapt to unfavourable conditions? Generally, defining fitness measures is143

ambiguous (Doebeli et al., 2017; Kokko, 2021). One possible definition is lifetime-reproductive output,144

which itself is a composite measure that includes net growth rate, but also the probability that newly145

founded lineages survive stochastic population size fluctuations. Even in our simplified setting the146

determinants of fitness are a priori not trivial, particularly in a regime of high rates of stochastic147

extinction of lineages. An obvious choice may be the net growth of a lineage r, which determines how148

quickly that lineage grows out of this regime of probable stochastic extinction and outcompetes other149

lineages. Similarly, the survival probability of a newly founded lineage p may be selected for. Also, the150

importance of these two fitness components may change with population size, with survival probability151

being more important at small lineage size and net growth becoming more decisive for larger lineage152
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sizes. We define these two measures of fitness as153

ri(t) = (βi −∆β(t))

(
1− N(t)

K

)
− (δi +∆δ(t)) Lineage net growth (5)

pi(t) =


1− δi+∆δ(t)

(βi−∆β(t))
(
1−N(t)

K

) if δi+∆δ(t)

(βi−∆β(t))
(
1−N(t)

K

) ≤ 1

0 if δi+∆δ(t)

(βi−∆β(t))
(
1−N(t)

K

) ≥ 1

Survival probability of
newly founded lineage

(6)

The survival probability here follows from a simplified branching process under the assumption that154

during the potential establishment of a mutant lineage, the population size of the remaining population155

will stay approximately constant (see Supplementary Section A.1). Assuming a large carrying capacity156

K, the density dependence vanishes and the survival probability becomes equal to one minus the157

extinction probability for newly founded lineages as derived by others (Xue and Leibler, 2017; Coates158

et al., 2018; Marrec and Bitbol, 2020b).159

We numerically confirmed the agreement of the survival probability definition with simulations of our160

model for the case of no mutation (µ = 0) (Fig. S1). Note that the fraction of birth rate over death rate161

has also been proposed as a fitness measure for a model that is identical to ours, but lacks mutations162

(Parsons and Quince, 2007).163

Adaptation will either be driven by selection for the fittest lineage in the stochastic model or determined164

by the fitness gradient in the deterministic model. In both cases, adaptation manifests as a changing165

average population trait combination. The direction of adaptation in trait space should be determined166

by the gradients of the two fitness components in the absence of treatment. We can compute those167

gradients as168

∇ri =

 ∂ri
∂βi

∂ri
∂δi

 =

1−
∑

i Ni

K

−1

 (7)

∇pi =

 ∂pi
∂βi

∂pi
∂δi

 =
1

βi

(
1−

∑
i Ni

K

)
 δi

βi

−1

 (8)

In the deterministic model (Eq. 3) we explicitly prescribe whether adaptation should follow the net169

growth or the survival probability fitness gradient and thus substitute φ(t) by r(t) or by p(t). If170

adaptation is determined by net growth we obtain171 ∂φ(t)

∂β(t)
∂φ(t)

∂δ(t)

 =

 ∂r(t)

∂β(t)
∂r(t)

∂δ(t)

 =

(
1− N

K
−1

)
If adaptation is driven by survival probability we obtain172 ∂φ(t)

∂β(t)
∂φ(t)

∂δ(t)

 =

 ∂p(t)

∂β(t)
∂p(t)

∂δ(t)

 =
1

β(t)
(
1− N

K

) ( δ(t)

β(t)

−1

)
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Static Toxic Mixed Minimize
growth

Maximize
extinction

Trait-affecting 
treatment

Density-affecting 
treatment

Treatment 
vector 

components

Death	
rate

Birth rate

N/K=1N/K=0

Figure 1 Different treatment types can either affect the cell density directly (left) or
indirectly via changing the traits (right). Populations of cancer cells (yellow) or pathogenic
bacteria (green) can be targeted with different mechanisms. Density-affecting treatment applies a
bottleneck and reduces the population size instantaneously to a fraction f . Trait-affecting treat-
ment, e.g. chemotherapy, alters the traits for a prolonged time period (the treatment duration) and
displaces the population in trait space temporarily which results in population decline. Note that
M =

√
1 + max(0, 1−N(t)/K)2 is a normalization factor.

2.5. Treatment types173

Treatment can either immediately kill part of the population or rig the chances of a population to174

grow by decreasing birth rates or increasing death rates (Fig. 1). The first case, which affects density175

directly, causes a direct, instantaneous population size reduction. The second case, which affects176

traits, brings about an indirect, gradual population size decline where on average more death events177

than birth events occur. These two treatment types thus differ in their temporal structure. Whereas178

the first treatment occurs instantaneously, the latter treatment is applied for a defined time span,179

during which the treatment alters the effective birth and death rates of cells, similar to (Marrec and180

Bitbol, 2020b). We assume that the density-affecting treatment type targets all cells homogeneously,181

irrespective of their traits. The additive trait changes during trait-affecting treatment are also equally182

applied to all lineages, resulting in different relative trait changes, depending on the trait values of183

each lineage. We represent different trait-affecting treatment types as vectors of length ∆ in trait184

space with components given in Fig. 1. Besides the pure, static (affecting birth rates only, horizontal)185

or toxic (affecting death rates only, vertical) treatments, we account for the fact that the boundaries186
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between static or toxic treatment are often blurred. The same drug can be static or toxic, depending187

on the dose (Masuda et al., 1977), or treatment intentionally consists of two different drug types188

that each act more static or toxic (Coates et al., 2018; Jaaks et al., 2022). Thus, we include a mixed189

treatment where both treatment vector components ∆β and ∆δ have the same length. Additionally, we190

propose two treatment types that also combine static and toxic components but additionally account191

for the shape of the fitness landscape. The minimizing growth treatment counters the net growth rate192

fitness gradient (Eq. 7) and has vector components (∆β, ∆δ) ∝ ∇r(t) where r(t) is the average net193

growth rate of the population at time t. The maximizing extinction treatment counters the survival194

probability fitness gradient (Eq. 8) and has vector components (∆β, ∆δ) ∝ ∇p(t) where p(t) is the195

average survival probability of the population at time t. The minimizing growth treatment components196

are density-dependent, the maximizing extinction treatment components are trait-dependent, i.e. a197

function of the population average trait combination (Fig. 1).198

3. Results199

3.1. Trajectories of adaptation in untreated populations200

When suddenly faced with challenging environments, rapidly proliferating cell populations can quickly201

adapt by acquiring mutations, often resulting in continuing population growth. We represent the202

resulting phenotypic changes as changed trait values of offspring lineages relative to the trait values203

of their parental lineages. Such phenotypic adaptations allow for population size increases and realize204

a continuously changing average population trait combination (Fig. 2). The population size increases205

are characterized by a succession of fitter and fitter lineages that raise the effective carrying capacity206

N∗ (Eq. 4), which allows the population size to increase further. Thus trait adaptation acts as a207

rubber band here that is extended by adaptive steps and contracts as growth closes the gap between208

population size and effective carrying capacity. The adaptive steps form a trait space trajectory that209

travels from the trait combination of the initial parental lineage to smaller death rates and larger birth210

rates.211

We hypothesize that this trajectory is the outcome of the stochastic exploration of trait space that212

climbs up a fitness landscape, with fitter lineages out-competing less fit lineages. This fitness landscape213

can be characterized by fitness gradients and we propose net growth rate and survival probability as214

potential fitness components that generate these gradients. For our model, we see that the gradients215

of these two fitness components are not necessarily aligned. The vector representations of the net216

growth rate fitness gradient are parallel throughout trait space, indicating higher net growth rates for217

high birth rates and low death rates, resulting in a unidirectional, trait-independent fitness gradient218
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Figure 2 Exemplary population and trait dynamics for adaptation in challenging envi-
ronments. (a) Starting from small initial numbers (N0/K = 0.01) the total population size (grey
line) relative to the carrying capacity, N(t)/K, increases in a succession of fitter and fitter lineages
(depicted by the blue-to-red colors indicating the order of appearance). For clarity, we show here only
those lineages that persist for more than 10 time units. The dashed line shows the effective carrying
capacity where population change is zero in the deterministic model (Eq. 4). The appearance of fitter
lineages increases the effective carrying capacity and allows for a further increase in population size.
(b) The trait combination of each lineage in panel (a) is shown here with the same color coding, with
the grey line now depicting the population average. The point size is determined by the persistence
time of a lineage relative to the longest persistence time. Starting from challenging conditions of birth
rate β0 = 1 and death rate δ0 = 1 the population average trait combination (grey line) travels through
trait space describing the trait space trajectory of adaptation. The dotted grey lines represent the
net growth fitness gradient at small population sizes (straight line) and the survival probability fitness
gradient (circular line).

(Fig. 3a). The vector representations of the survival probability fitness gradient form a circular vector219

field, indicating a trait-dependent fitness gradient with higher survival probability for high birth rates220

and low death rates (Fig. 3b).221

The direction of the gradient of net growth ∇r is density-dependent, i.e. it changes with population222

size (Eq. 7). The direction of the gradient of survival probability ∇p does not depend on population223

size but is trait-dependent (Eq. 8). Interestingly, we find that both fitness gradients are parallel224

as soon as the manifold of zero population size change is reached and the population size equals225

the effective carrying capacity, N(t) = N∗ (Eq. 4, Fig. 3). Therefore, only in the initial phases of226

adaptation (Fig. 2a), or during and short after treatment when the population size deviates from N∗
227

the two fitness components may have non-parallel directions and thus differently affect the direction228

of adaptation steps. As soon as the total population size reaches N∗, the effects of the two fitness229

components cannot be disentangled, leaving us to conclude that they together dictate the trajectory230

of trait adaptation.231

Successful adaptation in unfavourable conditions is a stochastic event. When starting with an initial232
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Figure 3 Predicted adaptation directions in trait space. (a) The direction of the net growth
gradient is density-dependent, but trait-independent (Eq. (7)). (b) The direction of the survival
probability gradient is density-independent, but trait-dependent and has a circular shape (Eq. (8)).
At the effective carrying capacity N∗, depicted by the red arrows in panel (a), the net growth fitness
gradient is parallel to the survival probability fitness gradient. Note that the effective carrying capacity
depends on the traits, this causes the apparent trait dependence of the net growth gradient at effective
carrying capacity. Given these gradients and initial parental lineages starting from β0 = δ0 = 1
the trait trajectories are moving mainly within the region of trait space enclosed by the grey dashed
rectangle. Therefore, we zoom in on this region when visualizing trait space trajectories such as in
Fig. 2.

wildtype population size of N0 > 0 and equal birth and death rate, the net growth rate is negative233

and the survival probability is zero (Eqs. 5, 6). Thus, the wildtype lineage inevitably goes extinct234

in our model, and population survival can only be achieved by adaptation and the succession of235

fitter lineages as described above, i.e. evolutionary rescue. The success of this adaptive process and236

its average trajectory can be depicted by combining a large number (1000) of independent replicates237

(Figs. 4, 5). We find that moving the trait combination of the first parental lineage further to the upper238

right corner of trait space, and thus increasing both the initial birth and death rate equally, increases239

the number of extinct replicate populations, indicating a lower probability of successful adaptation240

and evolutionary rescue. As expected, we find that a larger initial parental population and a higher241

mutation probability per birth event increase the rescue probability as this increases both the pool242

from which new lineages can emerge and rate at which they appear (Figs. 4, S2).243

In those replicates where the population does not go extinct, we see that the ensemble average popula-244

tion size tracks the effective carrying capacity N∗ of the ensemble and approaches the carrying capacity245

K in a sigmoidal fashion (Fig. 5). The corresponding ensemble trajectory of untreated trait adaptation246

describes a circular shape in trait space, as predicted by both the survival probability fitness gradient247
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Figure 4 Probability of evolutionary rescue. First parental populations with higher turnover as
characterized by higher levels of equal birth and death rate are less likely to successfully adapt and
escape extinction. Rescue probability is here defined as the fraction of non-extinct replicate populations
after t = 500, which allows non-extinct populations to move far into trait space regions of high net
growth rate and high survival probability (see for example Fig. 2). Simulations are started from the
initial parental population size N0 using 1000 replicates.

and, if the population size equals the effective carrying capacity, the net growth fitness gradient.248

3.2. Trajectories of adaptation in treated populations249

For both plausible fitness gradients we can construct geometrical hypotheses about the effect of treat-250

ment on the adaptation trajectory. Visualizing the fitness isoclines (the lines of equal fitness) in trait251

space as the rectangular bases for the fitness gradient vectors helps to work out this effect (Fig. 6). We252

consider treatment types that either target the population size directly, or indirectly by additively shift-253

ing the traits of the cells which subsequently decreases population size. Both the direct as well as the254

indirect effect on population size induce a density-mediated rotation in the net growth fitness isoclines255

(Fig. 6a). This causes a less vertical predicted adaptation direction with a larger birth rate component256

from the net growth fitness component. The trait-affecting treatment types temporally displace the257

population in trait space but have no direct effect on the net growth fitness component due to the258

parallel fitness isoclines (Fig. 6b). Similarly, the survival probability fitness component is independent259

of population size and thus not affected by density changes (Fig. 6c). However, when the population260

is displaced in trait space the circular shape of the survival probability fitness component changes the261

predicted adaptation direction to become less vertical under trait-affecting treatment (Fig. 6d). Thus,262

we hypothesize that both treatment types would drive less vertical adaptation trajectories.263

We investigate the effect of treatment on the adaptation trajectory by periodically applying the dif-264
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Figure 5 Ensemble population size dynamics and trait trajectories without treatment.
(a) The population size N increases to the carrying capacity K in those replicate populations (light
grey) that do not go extinct. The solid blue line represents the ensemble average of the surviving
populations, the dashed blue line is the effective carrying capacity N∗ of these replicates. (b) The
trait trajectories (light grey) of all replicates on average describe a circular shape (blue line). To
characterize the ensemble, we consider 1000 replicates of the simulation in Fig. 2.

ferent treatment types on populations that grow from small population sizes and ascend the fitness265

gradient (Fig. 7). If the replicate populations escape extinction, they increase in population size and266

reach the carrying capacity K. The density-affecting treatment type reduces the population size of267

each lineage by a bottleneck factor f . This decreases competition and allows surviving lineages to268

achieve higher net growth rate. This competitive release causes the population size to recover to269

higher levels after the first treatments than in the untreated control (Fig. 7a). However, newly estab-270

lished, fitter lineages are especially prone to extinction when the bottleneck treatment reduces lineage271

sizes to small fractions, which limits the exploration of trait space and hinders a rapid adaptation272

towards faster net growth rates and higher survival probabilities. Therefore, the populations that273

undergo stronger bottleneck treatments approach the carrying capacity slower and have shorter trait274

trajectories (Fig. 7a,b). The trait-affecting treatment types also show the competitive release pattern275

of recovery to population sizes higher than the untreated control. Here, the population sizes repeatedly276

recover to higher values after treatment and the carrying capacity is approached faster than in the un-277

treated control (Fig. 7c,d). Similar to the untreated population size time series, also under treatment278

the population size is tracking the effective carrying capacity N∗. We find that the trait trajectories of279

treated populations deviate from the untreated controls as predicted from our geometrical hypotheses280

(Fig. 6). We observe that the deviations are caused by more horizontal adaptation steps right after281

the density-affecting treatment or during the trait-affecting treatment (Figs. S7, S8). This results in282

longer adaptation trajectories that are elongated towards higher birth rates. The traits change in a283
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Figure 6 Density-mediated and trait-mediated treatment effects predict less vertical trait
adaptation trajectories. The fitness isoclines (contours of equal fitness in trait space) are by
definition perpendicular to the fitness gradient vectors for a given point in trait space. Fitness isoclines
in the absence of treatment are depicted by dashed grey lines, fitness isoclines affected by treatment
are shown as solid, dark grey lines. Similarly, realized trait combinations that include the effect of
treatment are shown by dark grey points. They deviate from their light grey, untreated counterparts
in the case of trait-affecting treatment. Potential changes in the adaptation direction are indicated
by a difference between untreated (light grey) and treated (dark grey) fitness gradient vectors, and
corresponding fitness isoclines with different angles relative to the axes.

step-wise pattern over time for the density-affecting treatment, with large adaptive steps immediately284

after the treatment time points (Fig. 8a). Trait-affecting treatment increases the rate of trait change285

which results in a ramp-like pattern of the traits over time Fig. 8b).286

We find that the dynamics of those trait-affecting treatment types that contain toxic components are287

similar both in the population size and the trait dynamics. The purely static treatment, however, differs288

considerably. As the population size approaches the carrying capacity, the effect of the static treat-289

ment is reduced as its net growth reduction is density dependent and proportional to 1−N/K (Eq. 1).290

This manifests in decreasing density reductions during treatment phases (Fig. 7c). Accordingly, after291

similar initial trajectories, the adaptation trajectory under purely static treatment later deviates from292

the adaptation trajectories for the other treatment types that contain also density-independent toxic293

components (Fig. 7d). We observe similar patterns also in the deterministic description of the adap-294
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tive process using a quantitative genetics approach where we explicitly specify the gradient of trait295

adaptation (Eq. 3, Figs. S9, S10).296
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Figure 7 Ensemble population size dynamics and trait trajectories under treatment. (a)
Density-affecting treatment applies regular bottlenecks and instantaneously decreases the population
size of each lineage to a small fraction at time points indicated by the black points. The treatment
strength is varied by decreasing the remaining fraction of each lineage after treatment (different colors).
The population size dynamics track the effective carrying capacity (Eq. 4, dashed lines). (b) The
density-affecting treatment affects the ensemble trait trajectory by triggering sudden trait changes.
(c) Trait-affecting treatment types result in prolonged phases of reduced population size (indicated
by the black bars). Again, the dashed lines depict the effective carrying capacity dynamics. (d)
The ensemble average trait trajectories under trait-affecting treatment deviate from the no treatment
reference and reach higher birth rates. Exemplary population size time series and trait trajectories for
bottleneck, static and toxic treatment are shown in Figs. S4-S6. As before we performed 1000 replicate
simulations and computed ensemble averages from the surviving replicates.

These fundamental effects of different treatment types on population dynamics and trait adaptation297

trajectory translate to treatment efficiency and the possibility for the populations to escape the treat-298

ment, i.e. evolve treatment tolerance. In our model and for the chosen parameters, approximately half299

of the replicates go extinct without any treatment due to stochastic extinction in the initial phases300

of adaptation. This pattern is caused by the initially equal birth and death rates. Equal birth and301

death rates imply zero net growth and thus inevitable extinction due to stochastic population size302

fluctuations. The adapting populations depart from this. Applying treatment increases the fraction303

of extinct replicates, which we use as a measure to quantify the treatment success rate (Fig. 9). As304
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Figure 8 Trait dynamics under treatment depict the speed of adaptation. (a) Density-
affecting treatment causes short spikes in adaptation speed that manifest in step-wise changes of the
ensemble trait average. (b) Trait-affecting treatment temporarily accelerates the changes in ensemble
trait averages leading to ramp-like trait changes. The different colors refer to the treatment types, the
solid and dashed lines represent birth and death rates, respectively.

expected, a higher treatment strength that removes a larger proportion of cells per lineage increases305

the success rate of the density-affecting treatment type. Among the trait-affecting treatment types,306

pure static and toxic treatments achieve a similar success rate. Interestingly, combining static and307

toxic treatment components results in a considerably higher success rate. Here, the success rate of308

treatment types that counter either the net growth fitness gradient or the survival probability fitness309

gradient is slightly higher than the ’Mixed’ treatment type that non-adaptively blends the static and310

toxic components in equal proportion.311

An interesting pattern emerges for the overall number of lineages that are eventually created during the312

adaptation from one parental lineage, which relates to the evolutionary potential of the population.313

We find that treatments that particularly increase mortality while not decreasing birth rates lead314

to a higher number of created lineages. The higher mortality decreases the density limitation of315

birth rates, which enables high net birth rates and accordingly high mutation rates. Particularly the316

stronger density-affecting treatments and the purely toxic treatment result in the creation of more317
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Figure 9 Treatment effects for density-affecting (left column) and trait-affecting (right
column) types. Panels (a) and (b) show treatment success rate measured as the fraction of extinc-
tion among the 1000 replicate populations at t = tf . Panels (c) and (d) show the number of lineages
that have been created by mutations in each non-extinct replicate population. Panels (e) and (f) show
the distance between the first parental trait combination and the last average trait combination of
each non-extinct replicate population. In panels (c)-(f), the same lower-case letters above two treat-
ments indicate that the two sets of data points could have been generated from the same underlying
distribution. Differing lower-case letters thus indicate differences between treatments. Unique letters
indicate treatments that are statistically different from all other treatments. The grouping into statis-
tically different groups was determined using the Tukey’s HSD implementation from the statsmodels
module (v0.13.0) in Python 3.8 and assigned with the pairwisecomp letters function written by Philip
Kirk (https://github.com/PhilPlantMan/Python-pairwise-comparison-letter-generator). A
treatment can be part of multiple groups by being indifferent to each one of them and thus receive
multiple letters.

mutant lineages. Whether these lineages are expanding successfully and thus shift the population318

average trait combination depends on the survival of the newly created lineages. Accordingly, we319

find a reduced exploration for the strongest density-affecting treatment measured by the distance320

between the first parental trait combination and the population average trait combination at the end321

of our simulations. For the trait-affecting treatment types, we find an opposite correlation. Here,322

more lineages also enable a further trait space exploration. Newly created lineages are in general more323

endangered by extinction than established lineages, simply because of their smaller cell numbers, which324
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makes a stochastic crossing of the extinction boundary more likely. During bottleneck treatment the325

relative effects of treatment on the extinction risk for newly created, fitter lineages versus established,326

less fit lineages are equal, whereas the absolute effects are different as it is more likely for small lineages327

to be driven to population sizes below a single cell. During trait-affecting treatment, the relative effect328

of treatment is smaller for smaller, but fitter lineages than for established, less fit lineages, whereas329

the absolute effects are equal. This may explain the observed differences in the correlation of number330

of lineages and evolved trait distance. It is interesting to note that treatments with higher success rate331

were also found to induce faster trait changes (Fig. 8), pointing out a potential trade-off of treatment332

success versus driving tolerance evolution.333

3.3. Which fitness component is more important?334

We found that treatment types that counter the potential fitness gradients achieve the highest success335

rates. However, we have not conclusively answered whether the net growth fitness gradient or the336

survival probability fitness gradient are more decisive for the eco-evolutionary dynamics in our model.337

To gather more evidence on this, we sampled the initial adaptation direction from different initial trait338

combinations to visualize the realized fitness gradient that acts on the adapting populations in trait339

space (Fig. S11). We indeed find that the realized fitness gradients are non-parallel in trait space,340

indicating that for larger birth rates and smaller death rates adaptation is driven by decreasing death341

rate, and increasing birth rate becomes less important. The visual similarity of this pattern to the342

survival probability fitness gradient hints at a larger importance of the survival probability fitness343

gradient at first glance. However, also the net growth rate becomes larger for larger birth rates and344

smaller death rates, which speeds up the population size increase during the short observation window345

of initial adaptation. Because of the density-dependence, these larger population sizes turn the net346

growth fitness gradient to be more vertical (see Fig. 3a). Also, we observe that the initial adaptation347

direction is largely parallel along the diagonals in trait space, which correspond to the net growth348

fitness isoclines for small population sizes, which favours the net growth fitness gradient to be more349

important.350

To investigate whether the differences in initial adaptation direction are indeed caused by the density-351

dependence of the net growth fitness gradient, we again investigated the initial steps of adaptation352

with parameters that minimize the density change within our observation window. We decreased the353

initial population size and time span and increased the carrying capacity and find that the adaptation354

direction indeed becomes more horizontal, indicating a larger importance of the net growth fitness355

gradient than the survival probability fitness gradient. If the survival probability fitness gradient356

would be predominantly driving the adaptation, we would expect that the initial steps of adaptation357
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change along the net growth fitness isoclines (except for the diagonal passing through the origin) and358

we would not expect a density dependence.359

In the deterministic model (Eq. 3), we are explicitly prescribing the fitness measure that determines360

the direction of trait adaptation. If we choose the net growth as the determining fitness measure361

we find trait trajectories that change with treatment and reproduce the trajectories obtained from362

simulations (Fig. S9). However, if we set the survival probability as the determining fitness measure363

in the deterministic model the trait trajectories under density-affecting treatment do not deviate from364

the trajectories without treatment, thus contrasting the observation in the simulations (Fig. S10).365

Therefore, more evidence points towards net growth rate maximization as the determinant of trait space366

adaptation trajectories in our simulations, even though we cannot falsify that the survival probability367

fitness gradient could also play an important part.368

4. Discussion369

During the onset of cancer establishment and the spread of pathogens from a chronic infection, popu-370

lations of small size have to break with homoeostatic regulations that aim to prevent their expansion.371

Adaptation by trait evolution allows them to climb up the fitness landscape and eventually escape372

stochastic extinction, that would be unavoidable without adaptation. In this study, we reduced the373

complexity of cancer cells and pathogenic bacteria to the three basic processes of birth, death and374

mutation, and investigated i) the shape of the fitness landscape, ii) the adaptive trajectories of trait375

evolution and iii) how these trajectories are altered by treatment. We proposed net growth rate and376

survival probability as possible fitness measures that are increased by evolution. We found that both377

of these measures motivate a circular adaptive trajectory in the trait space spanned by birth rate and378

death rate (Fig. 3). Indeed, this circular trajectory is recovered in stochastic simulations (Fig. 5) and379

altered by treatment in agreement with geometrically derived hypotheses (Figs. 6, 7). Interestingly,380

we find that adaptive steps that maximize net growth rate or survival probability always have parallel381

components, indicating no strong conflict between optimizing for either of the two plausible fitness382

measures.383

In this study, we deliberately chose parameters that would result in occasional extinction of replicate384

populations to represent the stochastic nature of the establishment of cancer or bacterial infections385

and the stochasticity in treatment response (Coates et al., 2018; Alexander and MacLean, 2020).386

This results in a setting where evolutionary rescue is required for the populations to prevent their387

extinction. In our model, the population dynamics are captured by the dynamics of the effective388

carrying capacity which is the target population size that the total population size is tracking over389
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time. If birth rates and death rates are equal, the effective carrying capacity is zero and the population390

goes extinct deterministically. The effective carrying capacity becomes positive only if the death rate391

becomes smaller than the birth rate by trait adaptation, thus also increasing the chances of population392

establishment.393

The shape of the fitness landscape has important implications for the effect of turnover on the rescue394

probability in the cancer or bacterial cell population, which we can again address using geometrical395

arguments of the fitness isoclines. A faster turnover implies that birth rates and death rates of the396

associated cells are higher. This puts fast-turnover cells in the upper right corner of our birth-death397

trait space, and slow-turnover, quasi-dormant cells in the lower left. The circular fitness gradient vector398

field of survival probability implies radial fitness isoclines, resulting in an increasing distance between399

isoclines going from slow to fast turnover. Therefore, the same adaptation step in trait space gains400

a smaller increase in the survival probability of fast-turnover cells than in slow-turnover cells. This401

implies that evolutionary rescue is less likely in populations of fast-turnover cells, which we indeed find402

when comparing the fractions of surviving replicates for different initial parental trait combinations403

of equal birth and death rates. Interestingly, Kuosmanen et al. (2022) come to similar conclusions404

in a slightly different model. Importantly, this pattern can be affected by the assumptions on the405

mutational effect sizes. Throughout this study we have assumed additive mutational effects where406

the adaptation step sizes are independent of the trait values. If, however, the mutational effects were407

dependent on the trait values, as for example in the case of multiplicative mutational effects (Fig. S3),408

this pattern will change. Accordingly, we find that multiplicative mutational effects compensate for the409

increasing distance of radial fitness isoclines at larger birth and death rates and the rescue probability410

becomes largely independent of turnover.411

Besides the shape of the fitness landscape, the declining rescue probability for faster turnover may412

also be explained with the higher rate at which the initial parental lineage declines. At equal birth413

and death rate, the logistic competition term results in a deterministic rate of population decline of414

−β0N0(t)
2/K in our model, which increases proportional to the birth rate. As this initial parental415

lineage is the source from which offspring lineages are created, a faster decline shortens the time window416

during which fitter lineages can emerge and impedes the race against extinction (Orr and Unckless,417

2008, 2014; Carlson et al., 2014; Marrec and Bitbol, 2020a). On the other hand, in fast-turnover cells418

mutations occur more frequently because of the higher birth rate, which could speed up the ascend of419

the survival probability fitness gradient. Our results show that the higher realized mutation rate cannot420

compensate for the two detrimental effects of faster turnover firstly requiring larger trait changes for421

the same gain in survival probability and secondly leading to a faster decline in the initial parental422

lineage.423
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Cancer cell populations as well as bacterial biofilms in chronic infections possess a considerable geno-424

typic and phenotypic heterogeneity (Caiado et al., 2016; Gay et al., 2016; Winstanley et al., 2016;425

Dhar et al., 2016). In a heterogeneous population consisting of lineages with different turnover but426

individually equal birth and death rates our results imply that those lineages with smaller turnover427

would persist longer. Evolutionary rescue would thus be achieved on average from those lower-turnover428

lineages hinting at a selective advantage of low turnover in heterogeneous populations in challenging429

environments, which may explain the therapeutic challenges posed by dormant subpopulations both430

in cancer (Yeh and Ramaswamy, 2015; Ammerpohl et al., 2017) and bacterial infections (Wood et al.,431

2013). Birth (proliferation) and death (apoptosis) are partly interlinked in their regulation (Alenzi,432

2004) and measuring their rates in eukaryotic cells is possible in vitro and in vivo (Lyons and Parish,433

1994). Different tissue types were shown to have intrinsically different turnover rates (Sender and434

Milo, 2021) and turnover can be altered experimentally (Casey et al., 2007). Several studies reported435

a positive correlation of proliferation and apoptosis in breast cancer (de Jong et al., 2000; Liu et al.,436

2001; Archer et al., 2003), which suggests a positive correlation of birth and death rate. Prognosis was437

found to be worse for higher birth rate (Liu et al., 2001). Our model proposes that such aggressive,438

quickly growing tumours with a high cell death rate are actually less likely to persist than tumours439

with lower turnover as the probability for evolutionary rescue decreases with turnover. This apparent440

dichotomy indicates that the evolutionary rescue probability of a tumour not necessarily translates441

into its prognosis and that clinically we tend to only observe the few high-turnover tumours that have442

managed to escape homeostatic regulation, while remaining blind to those with lower turnover. Also in443

the context of chronic bacterial infections there exist methods to assess turnover in bacterial pathogen444

populations in vitro (Stewart et al., 2005; Wang et al., 2010). They are currently developed for in vivo445

settings (Myhrvold et al., 2015; Mahmutovic et al., 2021) and will soon elucidate the different intrinsic446

birth and death rates of bacterial strains and species, sometimes even working out spatial parameter447

heterogeneity within the body (Gillman et al., 2021). It will be interesting to see whether indeed448

lower-turnover regions of the birth-death trait-space are found to be more populated and whether449

trait evolution indeed proceeds along the circular trajectory predicted by our model.450

Fitness landscapes of mutational changes can be constructed from data (Watson et al., 2020) and used451

in treatment via evolutionary steering (Nichol et al., 2015; Acar et al., 2020). Accounting for their452

temporal variability (e.g. under the effect of treatment), then sometimes referring to them as fitness453

seascapes, has important consequences for the understanding of adaptation, such as resistance evolution454

(Lässig et al., 2017; King et al., 2022). For example, Hemez et al. (2020) found in a simulation study455

that the drug mode of action (bacteriostatic vs. bactericidal) was changing the shape of the fitness456

landscape. In line with this, we have found that both density-affecting and trait-affecting treatment457
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types alter trait adaptation trajectories. The density-mediated effect of treatment rotates the fitness458

landscape, the trait-mediated treatment effect relocates populations to other trait combinations in459

trait space. Both of these effects increase the birth rate component of adaptive steps which causes460

treated trait adaptation trajectories to depart from untreated trajectories.461

We found profound patterns of competitive release in the population dynamics of successfully adapting462

populations (Wargo et al., 2007). In the off-treatment phases, the treated and non-extinct populations463

quickly recover to population sizes up to twice as large as in the untreated reference. The competitive464

release is particularly strong for the trait-affecting treatment types. This is in line with the fact that465

the trait-affecting treatment exerts a higher relative penalty on less fit lineages than on fitter lineages466

as we assumed additive treatment effects and thus the mortality during treatment is higher for less467

fit lineages. In our model the effect of static drugs decreases as the population size approaches the468

carrying capacity where the effective birth rate tends to zero even without treatment and thus can not469

be reduced further by treatment. Contrastingly, the sustained mortality exerted by toxic treatment470

also at population sizes close to the carrying capacity leads to a continuing competitive release. This471

creates additional transient phases of population recovery after treatment phases during which birth472

and mutation rates are high, resulting in faster adaptation. This potentially negative effect of toxic473

treatment is in agreement with findings by Anttila et al. (2019) and Marrec and Bitbol (2020b) and474

similar to the paradoxic negative effects of apoptosis during tumour development (Labi and Erlacher,475

2015). This finding also resonates with the rational behind tumour containment treatment strategies476

that aim at preserving sensitive subpopulations as competitors, and thus suppressors, of resistant477

subpopulations (Gatenby et al., 2009; Viossat and Noble, 2021).478

Time-resolved surveillance of treatment responses in both cancer and bacterial infections promises to479

prevent resistance evolution, but is technically and practically challenging. Accordingly, the quest for480

personalized, resistance-proof treatment approaches remains one to be fulfilled. In a recent paper, we481

found that increasing the temporal frequency of surveillance has diminishing returns and also more482

coarse-grained surveillance patterns could achieve large treatment improvements (Raatz et al., 2021).483

Interestingly, in the present study we find that the mixed treatment which is agnostic to real-time484

information performs almost as good as the treatment types that counter the fitness gradient and thus485

necessitate ongoing temporal information on the population trait average. This again suggests that486

large treatment improvements can be achieved already with low surveillance effort. The high efficiency487

of static and toxic treatment combinations is in agreement with theoretical predictions (Lorz et al.,488

2013) and recently explored approaches in cancer treatment, such as the combination of navitoclax,489

a drug that increases the apoptosis rate, and cytostatics such as gemcitabine or brentuximab which490

decrease the birth rate (Cleary et al., 2014; Ju et al., 2016; Montero and Letai, 2018). Also in bacteria,491
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recent findings suggest that a combination of bacteriostatic drugs (or nutrient deprivation) and bacte-492

ricidal drugs indeed increase the extinction probability of bacterial microcolonies (Coates et al., 2018).493

However, awareness of the mechanisms of action and the interactive effects is essential, as treatment494

efficiency can also be reduced in combination treatments, for example if the bactericidal drug relies495

on cell growth that is reduced by the bacteriostatic drug (Bollenbach et al., 2009; Bollenbach, 2015;496

Coates et al., 2018). An additional advantage of combination therapies that was not considered in497

our study is that resistance is less likely to evolve in parallel against two independently active drugs.498

Consequently, drug interactions have important consequences not only for treatment efficiency but also499

for resistance evolution (Roemhild et al., 2018; Roemhild and Schulenburg, 2019; Batra et al., 2021;500

Jaaks et al., 2022).501

In this study, we have abstracted from the physiological details of different adaptation pathways in502

evolving cell populations and the molecular mechanisms of the drugs used to counter these adapta-503

tions. By mapping these details to traits with clear eco-evolutionary consequences we achieved an504

understanding of the adaptation dynamics, identified relevant fitness components and showed the high505

efficiency of trait-aware treatment strategies. Current experimental and diagnostic advancements en-506

able the identification of traits, such as birth and death rates, at realistic scales to allow for a translation507

between mechanistic models such as ours and experimental and clinical observations. This will further508

the understanding of the eco-evolutionary mechanisms at play in the dynamics of cancer and bacterial509

infections and sprout improved, personalized and adaptive treatment strategies.510
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F. Patout, R. Forien, M. Alfaro, J. Papäıx, and L. Roques. The emergence of a birth-dependent mu-
tation rate in asexuals: causes and consequences. bioRxiv, 2021.06.11.448026, ver. 3 peer-reviewed
and recommended by Peer Community in Mathematical and Computational Biology., June 2021. doi:
10.1101/2021.06.11.448026. URL https://doi.org/10.1101/2021.06.11.448026.

M. Raatz, E. van Velzen, and U. Gaedke. Co-adaptation impacts the robustness of predator–prey
dynamics against perturbations. Ecology and Evolution, 9(7):3823–3836, 2019. doi: 10.1002/ece3.
5006.
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A. Supplement

A.1. Derivation of survival probability fitness component

Recently, Xue and Leibler (2017) derived the extinction risk for a population founded by a small number

of individuals. Their model contained also a density-dependent death rate, which makes it slightly

different from ours. They set up a master equation and solved it with a generating function approach.

For a single initial individual with birth rate β and death rate δ they obtain a density-independent

extinction risk of

q =
δ

β

from which the survival probability for a new lineage follows as

pXue2017 = 1− q = 1− δ

β
(S1)

Assuming that changes in the population size of the parental lineage are small on the time scale during

which the fate of a mutant is decided, i.e. whether it escapes extinction from stochastic drift or not,

allows us to fix the total population size to its value when the mutant occurred at time T . Thus, we

can include the density dependence of our model in the survival probabilty (Eq. S1) by substituting

β → β
(
1− N

K

)
. This results in a density-dependent survival probability

p(T ) = 1− δ

β
(
1− N(T )

K

)
Including trait-affecting treatment effects and restricting the survival probability to the range between

zero and one results in Eq. 6.

A similar derivation uses branching process techniques and arrives at an integral for the fixation prob-

ability of a mutant individual on the background of the parental population (Uecker and Hermisson,

2011)

pfix(T ) =
2

1 +
∞∫
T

(
β
(
1− N(t)

K

)
+ δ
)
exp

(
−

t∫
T

β
(
1− N(τ)

K

)
− δ dτ

)
dt

Using the same assumption of N(t) = N(T ) = const. as above, this reduces to

pfix(T ) = 1− δ

β
(
1− N(T )

K

) . (S2)
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A.2. Supplementary Figures
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Figure S1 Numerical simulations of a birth-death process without mutation (µ = 0).
Starting from β0 = 1.25 per time unit and δ0 = 1.0 per time unit we find good agreement of the observed
survival probability with our survival probability definition. Grey lines are individual replicates, the
blue line is the average over the surviving replicates. We used 1000 replicates, dt = 0.1, N0 = 1 and
K = 20000.
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Figure S2 Effect of mutation rate on the probability of evolutionary rescue. Smaller
mutation rates reduce the rescue probability. Plot parameters are identical to Fig. 4.
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Figure S3 Probability of evolutionary rescue (multiplicative mutational effect). Parallel to
Fig. S2 we tested the effect of multiplicative mutational effects on birth an death rates. The mutant
lineages’ birth rates here are determined by βmutant = βparental (1 + s), s ∼ N (0, σ), and death rates
are independently determined as δmutant = δparental (1 + s), s ∼ N (0, σ). Under these assumptions,
the rescue probability of initial parental populations is largely independent of turnover.
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Figure S4 Exemplary dynamics for bottleneck treatment. Plot details and parameters as in
Fig. 2. Black dots depict the times when the bottleneck instantaneously reduces the population size
by a factor f = 0.1.
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Figure S5 Exemplary dynamics for static treatment. Plot details and parameters as in Fig. 2.
Black bars depict the times when ∆β = 0.5. During treatment the effective carrying capacity can
reduce to negative values. The population sizes, however, must be non-negative and thus approach
zero when the effective carrying capacity becomes negative.
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Figure S6 Exemplary dynamics for toxic treatment. Plot details and parameters as in Fig. 2.
Black bars depict the times when ∆δ = 0.5. During treatment the effective carrying capacity can reduce
to negative values. The population sizes, however, must be non-negative values and thus approach
zero when the effective carrying capacity becomes negative.
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Figure S7 Trajectories of trait adaptation under density-affecting treatment. Grey lines
represent the 1000 individual replicates. The thick lines show the ensemble average, blue stretches are
treatment-off phases, black dots indicate the application of density-affecting treatment.
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Figure S8 Trajectories of trait adaptation under trait-affecting treatment. Grey lines rep-
resent the 1000 individual replicates. The thick lines show the ensemble average, blue stretches are
treatment-off phases, black stretches indicate treatment-on phases.
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Figure S9 Deterministic adaptation dynamics under treatment - Net growth fitness gra-
dient. Choosing the net growth gradient (Eq. (7)) as the fitness gradient in the deterministic model
(Eq. 3) and parameter values from Tab. 1, we obtain adaptation dynamics that are similar to those
presented for the stochastic model (Fig. 7).
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Figure S10 Deterministic adaptation dynamics under treatment - Survival probability
fitness gradient. Choosing the survival probability gradient (Eq. (8)) as the fitness gradient in
the deterministic model (Eq. 3) and parameter values from Tab. 1, we obtain adaptation dynamics
that are similar to those presented for the stochastic model (Fig. 7). However, the density-affecting
treatment type has no effect on the trait trajectory as the survival probability fitness gradient is
density-independent.
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Figure S11 Observed initial steps of adaptation. Shown is the average direction of the adaptation
trajectories in trait space until time tf for different combinations of observation window tf , carrying
capacity K and initial population size N0. Other parameters are chosen as given by Tab. 1. If the
net growth was determining the adaptation trajectory, we expect adaptation steps that have a higher
birth-rate component for decreasing density limitation (which can be realized by shorter observational
window (blue arrows), higher carrying capacity (green arrows), smaller initial population size (yellow
arrows) or all combined (red arrows)). If survival probability (grey arrows) was driving the adaptation
we would expect the adaptation direction to not be affected by changes to tf , K or N0.
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