
1 
 

IMPPAT 2.0: an enhanced and expanded phytochemical atlas of Indian 

medicinal plants 

R. P. Vivek-Anantha,b, Karthikeyan Mohanraja,$, Ajaya Kumar Sahooa,b, Areejit Samala,b,* 

a The Institute of Mathematical Sciences (IMSc), Chennai 600113, India 

b Homi Bhabha National Institute (HBNI), Mumbai 400094, India 

$ Present address: Institute for Clinical Chemistry and Laboratory Medicine, Technische 

Universität Dresden, Dresden 01307, Germany 

* Corresponding author: asamal@imsc.res.in 

Address for correspondence:  

Areejit Samal  

Computational Biology Group,  

The Institute of Mathematical Sciences (IMSc), 

CIT Campus, Taramani,  

Chennai 600113 India 

Phone: +91-44-22543219  

Fax: +91-44-22541586  

Email: asamal@imsc.res.in 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496609


2 
 

Abstract 

Compilation, curation, digitization and exploration of the phytochemical space of Indian 

medicinal plants can expedite ongoing efforts toward natural product and traditional 

knowledge based drug discovery. To this end, we present IMPPAT 2.0, an enhanced and 

expanded database, compiling manually curated information on 4010 Indian medicinal plants, 

17967 phytochemicals, 1095 therapeutic uses and 1133 traditional Indian medicinal 

formulations. Notably, IMPPAT 2.0 compiles associations at the level of plant parts, and 

provides a FAIR compliant non-redundant in silico stereo-aware library of 17967 

phytochemicals from Indian medicinal plants. The phytochemical library has been annotated 

with several useful properties to enable easier exploration of the chemical space. We also 

filtered a subset of 1335 drug-like phytochemicals of which majority have no similarity to 

existing approved drugs. Using cheminformatics, we have characterized the molecular 

complexity and molecular scaffold based structural diversity of the phytochemical space of 

Indian medicinal plants, and performed a comparative analysis with other chemical libraries. 

Altogether, IMPPAT is the largest phytochemical atlas of Indian medicinal plants which is 

accessible at: https://cb.imsc.res.in/imppat/. 
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Introduction 

Medicinal plants have been used for centuries to treat human ailments in different 

systems of traditional medicine across the world. Phytochemicals are the chemical factors 

behind the therapeutic action of such plants and the medicinal formulations prepared from 

them1,2. Consequently, significant research has been directed towards the identification of 

phytochemicals of medicinal plants3–6 to discover novel and biologically relevant molecules. 

Furthermore, phytochemicals along with other natural products represent a biologically 

relevant chemical space, produced by diverse organisms which have evolved to attain high 

level of fitness under varied selective pressures7. These aspects have rendered the natural 

product space as a key player in the identification and development of drugs against several 

diseases. This fact is cemented by the recent analysis by Newman et al.8 wherein the authors 

report that 34% of the small molecule approved drugs in the last four decades are either 

natural products, or natural product derived, or botanical drugs8. Still much of the natural 

product space remains largely unexplored providing significant scope for the identification of 

novel molecular scaffolds and fragments for the development of new drugs8. 

Indian medicinal plants and their formulations have been used for ages in traditional 

Indian systems of medicine like Ayurveda and Siddha to treat a variety of human diseases9. 

These medicinal plants are a rich source of novel phytochemicals which can enrich and 

expand the natural product space. Much of the traditional knowledge on Indian medicinal 

plants, still largely remains buried in books and monographs. The non-digital nature of this 

information limits its complete and effective use in drug discovery research. Further, 

molecular mechanisms behind the therapeutic action of medicinal plants used in traditional 

Indian medicine remain largely undiscovered. This poses a significant challenge towards 

turning a largely experience-based enterprise to evidence-based practice, leading to 

modernization of traditional Indian medicine. In a nutshell, creation of a comprehensive 
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database on Indian medicinal plants, their phytochemicals, their therapeutic uses and their 

traditional medicinal formulations will be of immense use in natural product and traditional 

knowledge based drug discovery.  

Towards this goal, we had earlier built the manually curated database, IMPPAT 

(version 1.0)10, containing 1742 Indian Medicinal Plants, their 9596 Phytochemicals, And 

their Therapeutic uses. Importantly, IMPPAT 1.0 compiled two dimensional (2D) and three 

dimensional (3D) chemical structures of the 9596 phytochemicals in the database, along with 

their physicochemical, drug-likeness, and absorption, distribution, metabolism, excretion and 

toxicity (ADMET) properties. In short, IMPPAT 1.0 is the largest phytochemical atlas 

specific to Indian medicinal plants10,11 to date. Subsequent to publication, the IMPPAT 

phytochemical library has enabled several computer-aided drug discovery studies, including 

research on the identification of anti-SARS-CoV-2 drugs12–17. 

Given the widespread use of IMPPAT 1.0, we have built IMPPAT 2.0, an enhanced 

and expanded phytochemical atlas of Indian medicinal plants (Figure 1). The latest update, 

IMPPAT 2.0, has built upon the published data of earlier version10, and now compiles 

information on 4010 Indian medicinal plants, 17967 phytochemicals, 1095 therapeutic uses 

and 1133 traditional Indian medicinal formulations (Table 1). We have highlighted the key 

features of IMPPAT 2.0 in Figure 1. Firstly, in IMPPAT 2.0, the coverage of the Indian 

medicinal plants is more than doubled, and the phytochemical and therapeutic use 

associations of the Indian medicinal plants have increased more than 5-fold in comparison 

with IMPPAT 1.0. Secondly, IMPPAT 2.0 now provides the phytochemical composition, 

therapeutic uses, and traditional medicinal formulations of Indian medicinal plants at the 

level of plant parts such as stem, root or leaves. Thirdly, through extensive manual curation 

and standardization, IMPPAT 2.0 provides a FAIR18 compliant non-redundant in silico 

stereo-aware library of 17967 phytochemicals with 2D and 3D chemical structures. Fourthly, 
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we have characterized the molecular complexity and the molecular scaffold based structural 

diversity of the phytochemical space of IMPPAT 2.0, and thereafter, compared with other 

chemical libraries. Fifthly, we have also filtered a subset of 1335 drug-like phytochemicals 

using multiple drug-likeness rules. Finally, we have compared the phytochemicals in 

IMPPAT 2.0 with phytochemicals from Chinese medicinal plants. From our cheminformatics 

analysis, we find that phytochemicals in IMPPAT 2.0 are more likely enriched with specific 

protein binders rather than promiscuous binders, have scaffold diversity similar to many 

larger natural product libraries, and share minimum overlap with the phytochemical space of 

Chinese medicinal plants. These results highlight the uniqueness, utility and complementary 

nature of the phytochemical space of Indian medicinal plants captured in IMPPAT 2.0. 

IMPPAT 2.0 is accessible without any login or registration requirement via a user friendly 

web-interface at: https://cb.imsc.res.in/imppat/.  

Results 

Enhancement and expansion of IMPPAT 

Previous version 1.0 of IMPPAT10 released in January 2018, is the largest online 

resource on phytochemicals of Indian medicinal plants. Here, we present the updated version 

2.0 of IMPPAT, which is a significant enhancement and expansion over the previous version 

1.0 (Table 1). This update was realized through extensive manual curation and addition of 

several new features to IMPPAT (Figure 1; Table 1). Figure 1 summarizes the important 

features including enhancements accomplished in IMPPAT 2.0.  

Increase in coverage of Indian medicinal plants 

 IMPPAT 2.0 compiles curated information on phytochemicals and therapeutic uses of 

4010 Indian medicinal plants. The updated database achieves more than 2-fold increase in the 

coverage of medicinal plants with respect to the previous version (Table 1). During data 
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collection from various sources, we encountered extensive use of synonymous plant names in 

published literature reporting information on phytochemicals and therapeutic uses of 

medicinal plants. This use of synonymous plant names can create difficulties while choosing 

the correct plant for phytochemical extraction or preparation of pharmaceutical formulations 

as prescribed in traditional medicine pharmacopoeia. For this reason, IMPPAT 2.0 provides 

the compiled information for a non-redundant list of 4010 Indian medicinal plants. This non-

redundant list was created via an extensive manual curation effort as follows. First, we 

compiled a list of more than 7000 synonymous names corresponding to Indian medicinal 

plants for which the phytochemical information was collected from published literature in 

IMPPAT 1.0 or during this update. Second, The Plant List database 

(http://www.theplantlist.org/) was used to identify the accepted scientific names for the 

compiled plant names. Third, the synonymous names were merged using the accepted 

scientific names.  

Further, the Indian medicinal plants covered in IMPPAT 2.0 have been annotated with 

information on their taxonomic classification, their use in traditional Indian systems of 

medicine, their synonymous names, and their present category in the IUCN Red list of 

threatened species19 (Methods). The 4010 Indian medicinal plants in IMPPAT 2.0 belong to 

244 taxonomic families, and Figure 2a shows the families with more than 50 Indian 

medicinal plants in our database. In particular, Leguminosae is the largest family with more 

than 350 plants in IMPPAT 2.0. This is expected as Leguminosae, commonly known as 

legume, pea or bean family, is a large and medicinally important family of flowering plants20. 

The next two large families in IMPPAT 2.0 are Compositae and Lamiaceae, both of which 

are again families of flowering plants. Flowering plants or Angiosperms constitute 96% of 

the plants in IMPPAT 2.0. The remaining plants are Gymnosperms (2%) which include 

conifers and cycads, and Pteridophytes (2%) which include ferns and fern allies (Figure 2b). 
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The medicinal plants captured in IMPPAT 2.0 are used in one or more traditional Indian 

systems of medicine such as Ayurveda, Siddha, Unani, Sowa-Rigpa and Homeopathy. In 

particular, 1328 plants in IMPPAT 2.0 are used in Ayurveda, followed by 1151 plants used in 

Siddha (Figure 2c). Precariously, we find many of the Indian medicinal plants require 

extensive conservation effort as 72, 50, 40, 11 and 3 plants are categorized in the IUCN Red 

list of threatened species19 as vulnerable (VU), near threatened (NT), endangered (EN), 

critically endangered (CR), and extinct in the wild (EW), respectively (Figure 2d). 

Information at the level of plant parts 

 Unlike previous version 1.0, IMPPAT 2.0 provides information on plant – 

phytochemical, plant – therapeutic use, and plant – traditional medicinal formulation 

associations at the level of plant parts (Table 1). For instance, the updated database compiles 

published information on the phytochemical composition for any Indian medicinal plant at 

the level of plant parts such as stem, root or leaves. Since it is common knowledge that 

phytochemical composition can significantly vary across different plant parts, this 

enhancement in IMPPAT 2.0 will facilitate researchers in phytochemistry and 

pharmacognosy to choose the appropriate protocol for extraction of the phytochemical of 

their interest for drug discovery studies. Moreover, traditional Indian systems of medicine, 

such as Ayurveda and Siddha, use specific plant parts for preparation of medicinal 

formulations used to treat various diseases. This further underscores the importance of 

compiled information in IMPPAT 2.0 on therapeutic use and traditional medicinal 

formulation at the level of plant parts. 

Increase in coverage of phytochemicals 

Among the major enhancements in IMPPAT 2.0 is the creation of a non-redundant 

stereo-aware natural product library of 17967 phytochemicals specific to Indian medicinal 
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plants. This represents a nearly 2-fold expansion in the size of the phytochemical library in 

comparison to the previous version 1.0 (Table 1).  

Building upon the published methodology and extensive data compiled in IMPPAT 

1.010, we expanded the phytochemical associations in IMPPAT 2.0 as follows. First, the bulk 

of the plant – part – phytochemical associations for Indian medicinal plants were manually 

collected, curated and digitized from 70 specialized books (Supplementary Table S1). Only 9 

out of these 70 books were covered in IMPPAT 1.0. Importantly, the remaining 61 books 

covered in IMPPAT 2.0 include: (a) 5 volumes of The Wealth of India published by the 

Council of Scientific and Industrial Research, Government of India, (b) 14 volumes of 

Ayurvedic, Siddha and Unani pharmacopoeias of India published by the Ministry of AYUSH, 

Government of India, and (c) 18 volumes of the Reviews of Indian medicinal plants 

published by the Indian Council of Medical Research (ICMR), Government of India. These 

valuable yet non-digitized book sources on Indian medicinal plants are known for their 

comprehensiveness and accuracy21. Second, aside from the books, all the plant – 

phytochemical associations compiled from various sources in the previous version IMPPAT10 

1.0 were manually revisited to additionally gather and curate phytochemical information at 

the level of plant parts. This last step also involved manual curation of more than 7000 

research articles covered in IMPPAT 1.0 to gather additional information at the level of plant 

parts. Third, we incorporated data from a published database22 providing phytochemical 

information for the Indian medicinal plant Rauvolfia serpentina.  

A major challenge during compilation, curation and digitization of the phytochemical 

composition of Indian medicinal plants is the large-scale use of non-standard and 

synonymous names for phytochemicals in books and research articles. Therefore, to create a 

non-redundant list of phytochemicals, we have standardized the phytochemical names 

fetched from diverse sources as follows. First, we mapped the chemical names to identifiers 
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in standard databases such as PubChem23 and retrieved the associated two-dimensional (2D) 

and three-dimensional (3D) structures. Second, we compared the phytochemicals based on 

their structural similarity. Third, we manually checked the stereochemistry of the 

phytochemicals using the InChI. These steps led to the creation of a non-redundant stereo-

aware chemical library of 17967 phytochemicals which are produced by 4010 Indian 

medicinal plants with therapeutic uses. Thus, the phytochemical atlas will aid ongoing efforts 

towards the identification of novel bioactive and therapeutic molecules.  

Overall, there are 189386 non-redundant plant – part – phytochemical associations in 

IMPPAT 2.0 spanning 4010 Indian medicinal plants and 17967 phytochemicals. At the level 

of plant – phytochemical associations (after ignoring the plant parts), there is a 5-fold 

increase in IMPPAT 2.0 (Table 1). Figure 3a shows the occurrence of phytochemicals across 

4010 Indian medicinal plants in IMPPAT 2.0. It can be seen that a majority of the 

phytochemicals (15335) have been reported to be produced by < 5 Indian medicinal plants, 

while a minority of the phytochemicals (114) are produced by > 200 Indian medicinal plants. 

In IMPPAT 2.0, Psidium guajava (468), Citrus sinensis (457), Catharanthus roseus (427), 

Coriandrum sativum (403), Artemisia annua (393), Rosmarinus officinalis (391), Daucus 

carota (391), Origanum vulgare (366), Citrus reticulata (364) and Salvia officinalis (363) are 

the top ten plants in terms of the compiled information on the number of phytochemicals 

produced by them.  

Enhanced annotation to enable exploration of the phytochemical space 

We have significantly enhanced the additional information on phytochemicals in 

IMPPAT 2.0, and we now describe some of these new features in the updated database.  

To make the phytochemical library of IMPPAT 2.0 compliant with Findable, 

Accessible, Interoperable, and Reusable (FAIR) principles, we assign unique IMPPAT 
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identifiers to phytochemicals in the database, and thereafter, the identifiers are annotated with 

chemical names, structural features, and external links to standard chemical databases. 

Moreover, we provide the 2D and 3D chemical structures of phytochemicals in five different 

file formats (Methods).   

Molecular scaffold represents the core structure of a molecule and is a key concept 

with wide applications in medicinal chemistry. In IMPPAT 2.0, we used the definition by 

Lipkus et al.24,25 to compute and provide the molecular scaffolds for phytochemicals at three 

levels (Methods). This scaffold information can be used by a chemist to group and retrieve 

phytochemicals with the same core structure to further build upon them. In IMPPAT 2.0, we 

also used the definition by Peter Ertl26 to provide the functional groups present in 

phytochemicals. This functional group information can also facilitate the exploration of the 

phytochemical space by chemists. Further enhancement of phytochemical annotation in 

IMPPAT 2.0 include new information such as DeepSMILES27 which is an adaptation of 

SMILES for use in machine learning, natural product specific chemical classification from 

NP classifier28, and natural product likeness (NP-likeness)29 score.  

Molecular descriptors capture important structural features and are useful in machine 

learning based classification and regression analysis such as Quantitative Structure Activity 

Relationship (QSAR). In IMPPAT 2.0, we provide 1875 2D and 3D chemical descriptors for 

each phytochemical. Lastly, drug-likeness scores can enable selection of chemicals with 

favourable properties as drug lead molecules. In IMPPAT 2.0, we also evaluated the drug-

likeness of phytochemicals based on multiple scores computed using in-house scripts 

(Methods). 

 Figure 3c-h shows the distribution of six important physicochemical properties for the 

17967 phytochemicals in IMPPAT 2.0. Based on chemical classification obtained by 

ClassyFire30, the 17967 phytochemicals have been hierarchically categorized into 20 
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superclass, 250 class and 410 subclass. Among the 20 superclass, Lipids and lipid-like 

molecules, Phenylpropanoids and polyketides, and Organoheterocyclic compounds are the 

top three with 6904, 3007, and 2202 phytochemicals, respectively (Figure 4a). Further, using 

NP classifier28, the 17967 phytochemicals have been classified into one of seven biosynthetic 

pathways for natural products. Terpenoids, Shikimates and Phenylpropanoids, and Alkaloids 

are the top three biosynthetic pathways with 6049, 4206, and 2446 phytochemicals, 

respectively (Figure 4b).  

NP-likeness29 score is a measure to quantify the similarity of a given chemical 

structure to the natural product space. This score ranges from -5 to 5; the higher the score, 

more likely the molecule is a natural product31. Previous studies have shown that the NP-

likeness of natural product libraries is predominantly positive, and moreover, is different 

from synthetic libraries which is predominantly negative32,33. On expected lines, 

phytochemicals in IMPPAT 2.0 have a predominantly positive NP-likeness score (>93%). 

Further, the distribution of the NP-likeness scores for phytochemicals in IMPPAT 2.0 is 

found to be similar to other natural product libraries (Figure 4c).  

Lastly, IMPPAT 2.0 compiles information on 27365 predicted interactions between 

phytochemicals and human target proteins from STITCH34 database. These 27365 

interactions involve 1294 phytochemicals and 5042 human target proteins. 

Increase in coverage of therapeutic uses 

Building upon the compiled information in IMPPAT 1.010, we enhanced the 

therapeutic use information in IMPPAT 2.0 to the level of plant parts and expanded to cover 

the 4010 Indian medicinal plants in the updated database. This information on therapeutic use 

of Indian medicinal plants was compiled from 146 books on traditional medicine 

(Supplementary Table S2). Only 9 out of these 146 books were covered in IMPPAT 1.0. 
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Further, there are 56 books common to the set of 70 books from which phytochemical 

information was compiled and the set of 146 books from which therapeutic use information 

was compiled (Supplementary Tables S1-S2). 

Since the therapeutic use of medicinal plants is reported using synonymous terms 

across different books, we undertook a manual curation effort to standardize the therapeutic 

use terms in IMPPAT 2.0. Specifically, we mapped the therapeutic use terms compiled from 

different books to standardized terms from Medical Subject Headings (MeSH; 

https://meshb.nlm.nih.gov/), International Classification of Diseases 11th Revision (ICD-11; 

https://icd.who.int/browse11/), Unified Medical Language System (UMLS; 

https://uts.nlm.nih.gov/uts/umls) and Disease Ontology (https://disease-ontology.org/). In the 

end, this effort to map the ethnopharmacological information on Indian medicinal plants to 

the standard vocabulary used in modern medicine led to a non-redundant list of 1095 

standardized therapeutic use terms in IMPPAT 2.0. 

Overall, there are 89733 non-redundant plant – part – therapeutic use associations in 

IMPPAT 2.0 spanning 4010 Indian medicinal plants and 1095 standardized therapeutic uses. 

At the level of plant – therapeutic use associations (after ignoring the plant parts), there is a 5-

fold increase in IMPPAT 2.0 (Table 1). Figure 3b shows the histogram of the number of 

therapeutic uses per Indian medicinal plant in IMPPAT 2.0. While 21% of the Indian 

medicinal plants (851) in IMPPAT 2.0 have > 20 therapeutic uses, the majority of Indian 

medicinal plants (2488) have < 10 therapeutic uses. 

Increase in coverage of traditional medicinal formulations 

Finally, IMPPAT 2.0 also compiles information on 7815 plant – part – traditional 

medicinal formulation associations which encompass 569 Indian medicinal plants and 1133 

traditional Indian medicinal formulations (Table 1). This information was compiled using 
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1250 openly accessible formulations in Traditional Knowledge Digital Library (TKDL; 

http://www.tkdl.res.in) database. Further, the 1133 traditional Indian medicinal formulations 

in IMPPAT 2.0 belong to four systems of medicine, namely, Ayurveda (470), Unani (441), 

Siddha (187), and Sowa-Rigpa (35).  

Web design and data accessibility 

The webserver for the previous version IMPPAT 1.0 enabled users to easily access 

the compiled information on Indian medicinal plants. Also, IMPPAT 1.0 webserver enabled 

cheminformatics analysis such as filtering phytochemicals based on their physicochemical 

properties, drug-likeness scores and chemical similarity. For the latest release, IMPPAT 2.0, 

we have completely redesigned the associated website: https://cb.imsc.res.in/imppat. While 

incorporating all the features of the previous version, the web-interface of IMPPAT 2.0 has 

multiple new features to facilitate the ease-of-use and exploration of the phytochemical space 

of Indian medicinal plants. This section describes some of the salient features of the IMPPAT 

2.0 website. Users can access the compiled information in IMPPAT 2.0 via its web-interface 

by three means namely, browse, basic search and advanced search.  

Browse 

In the web-interface, users can browse the compiled information in three different 

ways: (a) Phytochemical association, (b) Therapeutic use, and (c) Traditional medicinal 

formulation.  

The phytochemical association section within browse enables a user to choose either 

an Indian medicinal plant, or a phytochemical, or a chemical superclass of phytochemicals, to 

retrieve compiled information in IMPPAT 2.0 on plant – part – phytochemical associations 

along with literature references. If a specific plant is chosen, the user is redirected to a new 

page containing plant-specific information along with a table listing the phytochemical 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496609


14 
 

constituents for the plant at the level of plant parts (Figure 5a). The page also displays a 

network visualization of the plant – phytochemical associations enabling the user to visually 

explore the phytochemical space of the chosen plant. If instead of choosing a specific plant in 

the phytochemical association section, the user chooses a phytochemical or a chemical 

superclass of phytochemicals, the user is redirected to a new page containing a table listing 

the plant – part – phytochemical associations for the chosen phytochemical or for the 

phytochemicals belonging to the chosen chemical superclass. 

Similar to the phytochemical association section within browse, the therapeutic use 

association section enables users to retrieve compiled information in IMPPAT 2.0 on the 

plant – part – therapeutic use associations with literature references by choosing either an 

Indian medicinal plant, or a therapeutic use term (Figure 5a). The users can also retrieve 

compiled information in IMPPAT 2.0 on the plant – part – traditional medicinal formulation 

associations by choosing either an Indian medicinal plant, or a TKDL traditional medicinal 

formulation identifier, or a traditional Indian system of medicine such as Ayurveda, Siddha, 

Sowa-Rigpa, and Unani.  

Basic search 

 In the web-interface, users can perform text-based searches in the basic search section 

to retrieve compiled information. The basic search section has three tabs: (a) Phytochemical 

association, (b) Therapeutic use, and (c) Traditional medicinal formulation. 

 In the phytochemical association tab, a user can perform text-based search using 

complete or partial name of the plant, or IMPPAT phytochemical identifier, or complete or 

partial name of the phytochemical, to retrieve compiled information in IMPPAT 2.0 on plant 

– part – phytochemical associations. Upon submitting the text query, the user is presented 

with a table on the same page listing the relevant plant – part – phytochemical associations 
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with literature references. In this table, the user can click any phytochemical name or 

identifier to view the page with detailed information on the phytochemical. 

Similarly, in the therapeutic use tab, a user can perform text-based search using 

complete or partial name of the plant, or therapeutic use term, to retrieve compiled 

information in IMPPAT 2.0 on plant – part – therapeutic use associations with literature 

references as a table on the same page. Likewise, in the traditional medicinal formulation tab, 

a user can perform text-based search using complete or partial name of the plant, or TKDL 

formulation identifier, to retrieve compiled information in IMPPAT 2.0 on plant – part – 

traditional medicinal formulation associations as a table on the same page. In this table, on 

clicking the TKDL formulation identifier, the user is redirected to the corresponding 

formulation page in TKDL with additional information on the medicinal formulation.  

Advanced search 

 In the web-interface, the advanced search section enables a user to filter and retrieve 

a subset of phytochemicals compiled in IMPPAT 2.0 based on their physicochemical 

properties, drug-likeness, chemical similarity, and molecular scaffolds. The physicochemical 

filter tab provides a user with the option to retrieve phytochemicals of interest based on 

molecular weight, log P, topological polar surface area, hydrogen bond acceptors, hydrogen 

bond donors, number of heavy atoms, number of heteroatoms, number of rings, number of 

rotatable bonds, stereochemical complexity and shape complexity. Similarly, the drug-like 

filter tab enables a user to filter phytochemicals based on multiple drug-likeness scoring 

schemes.  

The chemical similarity filter tab enables identification of phytochemicals in IMPPAT 

2.0 that are structurally similar to a user submitted query compound. To submit a query 

compound, the user can either use the molecular editor to draw its chemical structure, and 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496609


16 
 

thereafter, search the corresponding SMILES, or directly enter the SMILES to perform the 

search. Upon submitting the SMILES of a query compound, the webserver will display a 

table listing the top 10 phytochemicals in IMPPAT 2.0 which are structurally similar based 

on Tanimoto coefficient (Tc)35, a standard measure to quantify the extent of chemical 

similarity (Methods). The scaffold filter tab enables a user to retrieve phytochemicals based 

on shared molecular scaffold. A user can select one of the three types of scaffold namely, 

graph/node/bond (G/N/B) level, or graph/node (G/N) level, or graph level (Methods), and 

thereafter, select the desired scaffold from the dropdown menu, to view the list of 

phytochemicals in the database having the desired scaffold. Overall, the advanced search 

page of IMPPAT 2.0 enables cheminformatics based exploration of the phytochemical space 

of the Indian medicinal plants towards natural product based drug discovery.  

Detailed information on phytochemicals 

In the web-interface, a user is redirected to a dedicated page containing detailed 

information on a specific phytochemical upon clicking the corresponding phytochemical 

identifier or name in the tables fetched via browse or basic search or advanced search 

options. The dedicated page provides detailed information for a phytochemical in six tabs: (a) 

summary, (b) physicochemical, (c) drug-likeness, (d) ADMET, (e) descriptors, and (f) 

predicted human target proteins (Figure 5b). The summary tab provides basic information 

such as the chemical name, chemical classification, 2D and 3D chemical structures, 

molecular scaffolds, for the phytochemical. The remaining five tabs give the physicochemical 

properties, drug-likeness scores, predicted ADMET properties, molecular descriptors and 

predicted human target proteins from STITCH34 database, respectively, for the 

phytochemical. The predicted human target proteins tab also provides a network visualization 

of the phytochemical – predicted human target protein associations.  

Molecular complexity comparison with other collections of small molecules 
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Small molecules which are selective and specific binders of a target protein are 

preferable for drug development over promiscuous binders which can interact with both 

primary target and off-target proteins. Several molecular complexity metrics have been 

shown to correlate with the selectivity or promiscuity of small molecules36,37. In particular, 

Clemons et al.38 have shown that stereochemical complexity and shape complexity are 

excellent indicators of target protein specificity of small molecules.  

In their work, Clemons et al.38 correlated the distribution of stereochemical and shape 

complexity with protein binding specificity of three different representative small molecule 

collections namely, commercial compounds (CC), diversity-oriented synthesis compounds 

(DC’) and natural products (NP) (Methods). Clemons et al.38 found that CC, DC’ and NP 

molecules on an average have low, intermediate and high values, respectively of both 

stereochemical and shape complexity. Thereafter, Clemons et al.38 correlated the two 

molecular complexities to protein binding specificities to find that CC molecules with low 

complexity are enriched in promiscuous binders and depleted in specific binders, while in 

comparison DC’ molecules with intermediate complexity and NP molecules with high 

complexity are more enriched in specific binders and depleted in promiscuous binders. 

Lastly, NP molecules were found to be more depleted in promiscuous binders in comparison 

to DC’ molecules38. 

Previously10, we compared the stereochemical and shape complexity of the CC, DC’ 

and NP molecules with 9596 phytochemicals in IMPPAT 1.0 from Indian medicinal plants 

and 10140 phytochemicals in TCM-Mesh39 from Chinese medicinal plants. In a nutshell, we 

showed conclusively that phytochemicals in both IMPPAT 1.0 and TCM-Mesh are similar to 

NP collection in terms of their distributions of stereochemical and shape complexity. Due to 

significant increase in the number of phytochemicals in IMPPAT 2.0, we compared the 

distribution of stereochemical and shape complexity of CC, DC’ and NP molecules with 
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phytochemicals in IMPPAT 1.0 and IMPPAT 2.0 (Figure 6a). We find that the distributions 

of stereochemical and shape complexity for phytochemicals in IMPPAT 2.0 are very similar 

to IMPPAT 1.0, and closer to NP rather than DC’ or CC collections (Figure 6a). 

In another study, Clemons et al.40 have shown that CC, DC’ and NP occupy different 

regions in the physicochemical space defined by six properties namely, molecular weight, log 

P, topological polar surface area, number of hydrogen bond donors, number of hydrogen 

bond acceptors, and number of rotatable bonds. In terms of these six physicochemical 

properties, we also find that phytochemicals in IMPPAT 2.0 are very similar to IMPPAT 1.0, 

and closer to NP and DC’ rather than CC collection (Figure 6b). 

Overall, our analysis of the molecular complexities of the phytochemicals in IMPPAT 

2.0 finds that the phytochemical space of Indian medicinal plants has many similarities with 

other natural product spaces. Notably, the phytochemical space is likely to be enriched in 

specific protein binders, and therefore, a valuable space for ongoing efforts in drug discovery.  

Molecular scaffold based structural diversity  

Analysis of the structural diversity of a chemical space has significance for the 

discovery of new and novel small molecule entities. The concept of molecular scaffolds has 

emerged as one of the reliable ways to quantify the structural diversity41 of chemical libraries. 

One way to define the molecular scaffold is via the core structure of a molecule with all its 

ring system and all chain fragments connecting the rings41,42. Previously, Lipkus et al.24,25 

have analyzed the scaffold diversity of organic compounds compiled in Chemical Abstracts 

Service (CAS) database to find that the frequency distribution of scaffolds is uneven, with 

most scaffolds occurring in a small number of molecules and few scaffolds occurring in a 

very large number of molecules. To quantify the scaffold diversity of the phytochemicals in 

IMPPAT 2.0, we followed Lipkus et al.24,25 to compute the molecular scaffold at three levels, 
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namely, graph/node/bond (G/N/B) level, graph/node (G/N) level and graph level (Methods). 

Among the phytochemicals in IMPPAT 2.0, we find 5179 scaffolds at G/N/B level, 4072 at 

G/N level and 3434 at graph level.  

Thereafter, we compared the scaffold diversity of IMPPAT 2.0 with seven other 

natural product libraries (CMAUP43, COCONUT44, NANPDB45, NPATLAS46, SuperNatural-

II47, TCM-Mesh39 and UNPD), approved drugs obtained from Drugbank48, and more than 

100 million organic compounds from PubChem23 (Table 2). Focusing solely on scaffolds at 

the G/N/B level, we find that phytochemical space of IMPPAT 2.0 is the third highest among 

the seven natural product libraries in terms of the fraction of scaffolds per molecule (N/M) 

and the fraction of singleton scaffolds per molecule (Nsing/M), after TCM-Mesh and 

NANPDB (Table 2).   

Figure 7a,b show the distribution of the number of rings and number of heteroatoms 

across the 5179 scaffolds at G/N/B level found in phytochemicals of IMPPAT 2.0. While 

more than 74% of the 5179 scaffolds are relatively small with ≤ 5 rings in them, only 2.5% of 

the scaffolds have ≥ 10 rings (Figure 7a). Notably, 231 scaffolds (4.5%) are single ring 

system, and this indicates high degree of ring diversity in phytochemicals of IMPPAT 2.0. 

We also find 49.7% of the 5179 scaffolds have two or three or four heteroatoms, and only 

0.4% of the scaffolds contain ≥ 20 heteroatoms (Figure 7b). Further, 518 scaffolds (10%) are 

completely composed of carbon atoms. Figure 7a,b also show that the distributions of number 

of rings and number of heteroatoms in scaffolds found in phytochemicals of IMPPAT 2.0 are 

similar to respective distributions for other natural product libraries, approved drugs, and 

organic compounds from PubChem.  

To further understand and compare the structural diversity of the phytochemical space 

of IMPPAT 2.0 with other chemical libraries, cyclic system retrieval (CSR) curves24,25,49,50 

were plotted for scaffolds computed at G/N/B level (Figure 7c), G/N level (Figure 7d) and 
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graph level (Figure 7e). CSR curves were generated by plotting the percent of scaffolds on 

the x-axis and the percent of compounds that contain those scaffolds on the y-axis. From the 

CSR curves, metrics such as area under the curve (AUC) and percent scaffolds required to 

retrieve 50% of the compounds (P50) were computed. Notably, several studies have used the 

above metrics to quantify and compare scaffold diversity of chemical libraries24,25,49–51. In an 

ideal distribution with maximum scaffold diversity wherein each compound has a unique 

scaffold, the CSR curve will be the diagonal line with AUC value of 0.5. It is seen that the 

CSR curves for phytochemicals in IMPPAT 2.0 (red) and other chemical libraries rise steeply 

and then levels off (Figures 7c-e). As we move from scaffolds at G/N/B level (least 

abstraction) to G/N level to graph level (high abstraction), the scaffold diversity reduces 

across all the chemical libraries, with CSR curves shifting up away from the diagonal 

(Figures 7c-e).  

Importantly, the scaffold diversity of phytochemicals in IMPPAT 2.0 (red) and other 

natural product libraries lie in between the scaffold diversity of 100 million organic 

compounds from PubChem (low diversity) and approved drugs (high diversity) (Figure 7c-e). 

Table 2 lists the AUC and P50 from CSR curves of scaffolds at G/N/B level for the 

phytochemicals in IMPPAT 2.0 and other chemical libraries. In line with expectation, the 

approved drug library was found to be most diverse with AUC of 0.69 and P50 of 17.93% 

(Table 2). Interestingly, the scaffold diversity of phytochemicals in IMPPAT 2.0 was found 

to be greater than the entire organic compound library from PubChem, and moreover, it is the 

third or fourth most diverse library among the eight natural product libraries based on AUC 

of 0.79 and P50 of 6.58%, respectively (Table 2). Further, 64.5% of the 5179 scaffolds at 

G/N/B level found in phytochemicals of IMPPAT 2.0 are singletons which are present in 

only one compound (Table 2). In contrast, 217 scaffolds present in 10 or more 

phytochemicals cumulatively account for 43.6% of the phytochemicals in IMPPAT 2.0, and a 
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molecule cloud visualization52,53 of these scaffolds is shown in Figure 8 (after excluding 

benzene ring scaffold). In sum, these results highlight that the phytochemical space of 

IMPPAT 2.0 is structurally diverse with high scaffold diversity in comparison with the 

organic compounds from PubChem, and moreover, has similar scaffold diversity as other 

large natural product libraries.  

Drug-like phytochemical space 

Natural products have been an important source of approved drugs8,54. To predict the 

subset of drug-like phytochemicals in IMPPAT 2.0, we used six scoring schemes namely, 

Lipinski’s rule of five (RO5)55, Ghose rule56, Veber rule57, Egan rule58, Pfizer 3/75 rule59 and 

GlaxoSmithKline’s (GSK) 4/400 rule60. Figure 9a is an UpSet61 visualization of the set 

intersections of phytochemicals that pass one or more of these six rules. Majority of the 

phytochemicals pass RO5 (14847), followed by Veber (13574) and Egan (12390) rules. 

Pfizer 3/75 was found to be the most restrictive rule, with 4924 phytochemicals passing it. A 

drug-like subset of 1335 phytochemicals is identified based on the stringent criteria of 

passing all six rules (Figure 9a; Supplementary Table S3).  

The top 5 plants in IMPPAT 2.0 based on associated drug-like phytochemicals are 

Senna obtusifolia (22), Artemisia annua (21), Ailanthus altissima (19), Catharanthus roseus 

(19) and Senna tora (19). Figure 9b shows the chemical classification for the 1335 drug-like 

phytochemicals obtained using ClassyFire30. The top 3 chemical superclasses namely, 

Phenylpropanoids and polyketides, Lipids and lipid-like molecules, and Organoheterocyclic 

compounds account for 486, 253, and 245 drug-like phytochemicals, respectively.  

Weighted quantitative estimate of drug-likeness (QEDw) score can also be used to 

assess drug-likeness of small molecules, and this measure can take values between 0 (least 

drug-like) to 1 (most drug-like)62. For the 1335 drug-like phytochemicals, Figure 9c shows 
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the distribution of QEDw scores with a mean of 0.60 and a standard deviation of 0.14. 

Notably, 104 of the drug-like phytochemicals have a high QEDw score ≥ 0.80. 

We also compared the 1335 drug-like phytochemicals in IMPPAT 2.0 with the drugs 

approved by United States Federal Drug Administration (US FDA). A set of 2567 approved 

drugs were obtained from DrugBank48 version 5.1.9. Based on chemical similarity (Tc ≥ 

0.50; Methods), we find 130 drug-like phytochemicals to be similar to one or more approved 

drugs. Interestingly, 11 drug-like phytochemicals in IMPPAT 2.0 are already US FDA 

approved drugs.  

To assess the overlap in core chemical structure, we next computed the molecular 

scaffolds for the 1335 drug-like phytochemicals and 2567 approved drugs. At the G/N/B, 

G/N and graph levels, the 1335 drug-like phytochemicals were found to have 504, 444 and 

393 scaffolds, respectively, while the 2567 approved drugs have 1255, 1171 and 893 

scaffolds, respectively. Importantly, the drug-like phytochemicals and approved drugs share 

only 49, 60 and 66 scaffolds at G/N/B, G/N and graph levels, respectively (Figure 9d). Thus, 

the drug-like phytochemicals in IMPPAT 2.0 presents a unique chemical scaffold space with 

minimal overlap with approved drugs. These results highlight the potential of our database in 

aiding the ongoing hunt for new bioactive molecules. 

By constructing a chemical similarity network (CSN), we next analyzed the structural 

diversity of the drug-like space of 1335 phytochemicals (Methods). Figure 10a shows the 

drug-like CSN wherein nodes correspond to phytochemicals and an edge exists between any 

pair of phytochemicals if Tc ≥ 0.5. The drug-like CSN is very sparse with graph density of 

0.01, and it can be partitioned into 90 connected components (with at least 2 nodes each) and 

210 isolated nodes. In Figure 10a, the top 12 connected components in terms of the number 

of constituent nodes are labeled. For instance, the connected component labeled 9 consists of 

16 phytochemicals of which 2 phytochemicals (Colchicine and its metabolite Colchiceine) 
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are approved drugs and remaining phytochemicals are similar to them. For each of the top 12 

components, the maximum common substructure (MCS) is shown in Figure 10b; the 

substructures confirm the structural uniqueness of the different connected components 

(Methods). In sum, the CSN highlights the chemical dissimilarity, and hence, the structural 

diversity of the drug-like space of 1335 phytochemicals.  

Comparison with the phytochemical space of Chinese medicinal plants  

Previously10, a comparison of the 9596 phytochemicals in IMPPAT 1.0 with the 

10140 phytochemicals in TCM-Mesh39 revealed that less than 25% phytochemicals (2305) in 

IMPPAT 1.0 are present in the TCM-Mesh. Notably, TCM-Mesh is a large-scale database 

compiling information on 10140 phytochemicals produced by 6235 Chinese medicinal 

plants39. We also performed a comparison of the 17967 phytochemicals in IMPPAT 2.0 with 

the 10140 phytochemicals in TCM-Mesh. Though the number of phytochemicals common to 

IMPPAT 2.0 and TCM-Mesh has increased to 3342, the percentage of the phytochemical 

space of IMPPAT 2.0 which is shared with TCM-Mesh has decreased to 18.6% (Figure 11a). 

Further, we compared the drug-like subset of 1335 phytochemicals in IMPPAT 2.0 

with the corresponding drug-like subset in TCM-Mesh (Methods). Specifically, a subset of 

938 drug-like phytochemicals was obtained in TCM-Mesh based on the six rules (Figure 

11b). Further, Figure 11c shows the distribution of QEDw scores for the 938 drug-like 

phytochemicals in TCM-Mesh, and this distribution has a mean value of 0.59 and standard 

deviation of 0.14, similar to the distribution for the 1335 drug-like phytochemicals in 

IMPPAT 2.0. Lastly, there is a minor overlap of 338 phytochemicals between the subsets of 

drug-like phytochemicals in IMPPAT 2.0 and TCM-Mesh. These analyses attest to the 

uniqueness of the phytochemical spaces of Indian herbs and Chinese herbs, and therefore, the 

phytochemical atlas IMPPAT 2.0 is expected to further enrich the space of natural products. 
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Discussion 

In this contribution, we present IMPPAT 2.0, an enhanced and expanded database, 

compiling information via extensive manual curation on Indian medicinal plants, their 

phytochemicals, therapeutic uses and traditional medicine formulations. IMPPAT 2.0 is by 

far the largest phytochemical atlas specific to Indian medicinal plants to date.  

In the updated database, we have more than doubled the coverage of Indian medicinal 

plants and nearly doubled the size of the phytochemical space. Further, we compile the 

phytochemicals, therapeutic uses and traditional medicinal formulations of the Indian 

medicinal plants at the level of plant parts. At the level of associations, IMPPAT 2.0 compiles 

189386 plant – part – phytochemical, 89733 plant – part – therapeutic use, and 7815 plant – 

part – traditional medicinal formulation associations. Importantly, IMPPAT 2.0 provides a 

FAIR18 compliant non-redundant in silico stereo-aware library of 17967 phytochemicals. The 

phytochemical library has been annotated with several features including 2D and 3D 

chemical structures, molecular scaffolds, predicted human target proteins, physicochemical 

properties, drug-likeness scores and predicted ADMET properties. This will enable the 

effective use of the phytochemical library for screening efforts towards drug discovery. Also, 

the 1095 standardized therapeutic use terms in IMPPAT 2.0 are mapped to standard terms 

such as MeSH (https://meshb.nlm.nih.gov/), ICD-11 (https://icd.who.int/browse11/), UMLS 

(https://uts.nlm.nih.gov/uts/umls) and Disease Ontology (https://disease-ontology.org/) used 

in western medicine. Further, IMPPAT 2.0 web-interface has been completely redesigned to 

facilitate ease of use and to serve as a cheminformatics platform for exploring the 

phytochemical space of Indian medicinal plants. For instance, the advanced search page now 

enables the user to draw the chemical structure using a visual molecular editor to search for 

similar phytochemicals in the database and also allows the user to select the phytochemicals 

based on molecular scaffolds. 
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The cheminformatics analysis of the phytochemicals in IMPPAT 2.0 revealed that 

their stereochemical complexity and shape complexity is similar to the other natural products. 

Our analysis suggests that, like the library in IMPPAT 1.0, the phytochemicals in IMPPAT 

2.0 are also more likely to be enriched with specific protein binders rather than promiscuous 

binders. The structural diversity analysis using molecular scaffolds has shown that the 

phytochemicals in IMPPAT 2.0 are structurally diverse with scaffold diversity similar to 

large natural product databases. Also, we find that the scaffold diversity of natural product 

libraries including IMPPAT 2.0 lies in between the scaffold diversity of more than 100 

million organic compounds from PubChem (low diversity) and approved drugs (high 

diversity). This highlights the utility of our phytochemical library for the identification of 

biologically active new chemical entities with novel scaffolds. Using six drug-likeness 

scores, we identified a subset of 1335 drug-like phytochemicals which pass all six rules 

considered here. We find that only 11 of the drug-like phytochemicals are already approved 

drugs. Also, the drug-like phytochemicals and approved drugs have very few common 

scaffolds, revealing the pool of scaffolds present in drug-like phytochemicals in IMPPAT 2.0 

but not present in approved drugs. Further, the chemical similarity network of the drug-like 

phytochemicals highlights the structural diversity of the drug-like space in IMPPAT 2.0. 

Finally, the comparison with the phytochemicals from Chinese medicinal plants shows that 

there is minimal overlap with the phytochemicals from Indian medicinal plants compiled in 

IMPPAT 2.0. These results show the uniqueness of the phytochemical space of IMPPAT 2.0 

and its potential to further enrich the natural product chemical space.  

In conclusion, IMPPAT 2.0 is a unique database enabling computational and 

experimental research in the area of natural product and traditional knowledge based drug 

discovery. In future, we will continue to expand, enhance and develop this unique platform to 

explore the phytochemical space of Indian medicinal plants.   
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Methods 

Plant annotation 

For the 4010 Indian medicinal plants in IMPPAT 2.0, the taxonomic information on 

kingdom, family and group was compiled using The Plant List database 

(http://www.theplantlist.org/). The common names of the Indian medicinal plants were 

obtained from the Flowers of India database (http://www.flowersofindia.net/), which 

compiles information for more than 6000 Indian plants. The IUCN Red List of Threatened 

species19 (https://www.iucnredlist.org/) is the most comprehensive resource on global 

conservation status of animals, fungi and plant species, and this list was used to ascertain the 

extinction risk of Indian medicinal plants. The usage of Indian medicinal plants in different 

traditional Indian systems of medicine such as Ayurveda, Siddha, Unani, Sowa-Rigpa and 

Homeopathy was manually compiled from pharmacopoeias published by Government of 

India and Traditional Knowledge Digital Library (TKDL; http://www.tkdl.res.in) of the 

Council of Scientific and Industrial Research, Government of India.  

For the Indian medicinal plants in IMPPAT 2.0, we provide cross-reference links to 

associated information in other standard databases such as The Plant List, Tropicos 

(https://www.tropicos.org/), Encyclopedia of Indian medicinal plants from FRLHT 

(http://envis.frlht.org/), Medicinal Plants Names Service (MPNS; 

https://mpns.science.kew.org/), International Plant Names Index (IPNI; 

https://www.ipni.org/), Plants of the World Online (POW; https://powo.science.kew.org/), 

World Flora Online (WFO; http://www.worldfloraonline.org/) and Gardeners’ World 

(https://www.gardenersworld.com/). 

Phytochemical information 
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 The 2D chemical structures of phytochemicals were converted to SDF, MOL and 

MOL2 file formats using OpenBabel63. The images of the 2D structures of phytochemicals 

were generated using RDKit64. The 3D chemical structures of phytochemicals were retrieved 

from PubChem23. If the 3D structure for a phytochemical was not available in PubChem, the 

3D structure was generated from its 2D structure using RDKit by first embedding the 2D 

structure using ETKDG method and thereafter energy minimizing the structure using 

MMFF94 force field64. The 3D structures of phytochemicals were converted to SDF, MOL, 

MOL2, PDB and PDBQT file formats using OpenBabel63. Note that IMPPAT 2.0 provides 

3D structures for 17910 phytochemicals as the generation of 3D structures failed for the 

remaining 57 phytochemicals in the database. Lastly, chemical structure of each 

phytochemical in SMILES, InChI and InChIKey formats was also generated using 

OpenBabel63. 

Using ClassyFire (http://classyfire.wishartlab.com/)30, the chemical classification for 

each phytochemical into hierarchical levels namely, kingdom, superclass, class and subclass, 

was predicted. Further, using NP classifier (https://npclassifier.ucsd.edu/)28, a natural product 

specific chemical classification for each phytochemical into biosynthetic pathway, superclass 

and class was predicted. For each phytochemical in our database, external links to other 

standard chemical databases are provided using UniChem65. Lastly, the natural product 

likeness or NP-Likeness score for each phytochemical was computed using a custom RDKit 

script29,31. 

For each phytochemical in our database, the physicochemical properties and drug-

likeness scores were computed using in-house custom RDKit scripts. Further, the Absorption, 

Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of the 

phytochemicals were predicted using SwissADME (http://www.swissadme.ch/)66. Since the 

SwissADME restricts the input molecules based on their length of SMILES, therefore, 
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ADMET predictions could not be obtained for 493 phytochemicals in our database. Finally, 

we computed 1875 molecular descriptors, both 2D and 3D descriptors, for each 

phytochemical in our database using PaDEL67 software. 

The predicted human target proteins of phytochemicals were obtained from the 

STITCH database (www.stitch.embl.de)34. Only high confidence phytochemical - human 

target protein interactions with a score of at least 700 were retrieved from the STITCH 

database. Further, the genes corresponding to the target human proteins were mapped to the 

HUGO Gene Nomenclature Committee (HGNC) symbols and identifiers68. 

Phytochemicals with published experimental evidence of acting as covalent inhibitors 

were identified and compiled from CovalentInDB (http://cadd.zju.edu.cn/cidb/)69 and 

CovPDB (http://drug-discovery.vm.unifreiburg.de:8000/covpdb/)70 via a comparison of the 

chemical structures followed by manual verification. 

Molecular complexity  

Molecular complexity of the phytochemicals in IMPPAT 2.0 was compared with four 

chemical spaces namely, phytochemicals in IMPPAT 1.0 and three collections of small 

molecules obtained from Clemons et al.38 corresponding to 6152 commercial compounds 

(CC), 5963 diversity-oriented synthesis compounds (DC’) and 2477 natural products (NP). 

For each compound in the above-mentioned five chemical spaces, we computed using 

RDKit64 two size-independent metrics namely, stereochemical complexity which is the 

fraction of stereogenic carbon atoms in a compound, and shape complexity which is the ratio 

of sp3-hybridized carbon atoms to the total number of sp2- and sp3-hybridized carbon atoms 

in a compound, and six other physicochemical properties namely, molecular weight, log P, 

topological polar surface area, number of hydrogen bond donors, number of hydrogen bond 

acceptors, and number of rotatable bonds. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496609


29 
 

Molecular scaffold 

Based on definition by Lipkus et al.24,25, molecular scaffolds were computed at three 

levels namely, graph/node/bond (G/N/B) level, graph/node (G/N) level, and graph level using 

RDKit71. Scaffolds were computed by modifying the MurckoScaffold.py from RDKit71. 

Scaffold at G/N/B level has connectivity, element and bond information, at G/N level has 

connectivity and element information but ignores bond information, and at graph level has 

only connectivity information24,25.  

Quantifying and visualizing chemical similarity 

Chemical structure similarity between any two molecules is quantified using the 

widely-used metric, Tanimoto coefficient (Tc)35, which was computed using Extended 

Circular Fingerprints (ECFP4) as implemented in RDKit71. Chemical similarity network 

(CSN) consists of nodes corresponding to phytochemicals and edges connecting pairs of 

nodes with Tc ≥ 0.5. The value of Tc for a pair of molecules in the CSN gives the extent of 

chemical similarity between them, and this is captured by the thickness of the corresponding 

edge (Figure 10a). The maximum common substructure (MCS) for phytochemicals in a 

connected component of the CSN was computed using FindMCS function in RDKit71. The 

SMARTS for a MCS was visualized using SMARTSview webserver72,73 

(https://smartsview.zbh.uni-hamburg.de/).  

Web-interface and database management 

IMPPAT 2.0 database has a user-friendly web-interface and can be accessed at 

https://cb.imsc.res.in/imppat. The website is also mirrored at https://www.imppat.com/ and 

https://www.imppat.in/. The website is hosted on a local Apache (https://httpd.apache.org/) 

server running on Debian 9.1.3 Linux operating system. The association tables are stored in 

SQL format created using the open source relational database management system MariaDB 
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(https://mariadb.org/). The front-end of the website was created using the open source CSS 

framework Bootstrap 4.1.3 (https://getbootstrap.com), customized with in-house HTML, PHP 

(http://php.net/), CSS, JavaScript and jQuery (https://jquery.com/) scripts. Further, 

Cytoscape.js (http://js.cytoscape.org/) is incorporated for visualizing networks, and jQuery 

plug-in DataTables (https://datatables.net/) for displaying tables. Also, JSME Molecule 

Editor74 is incorporated to enable drawing of chemical structures and JSmol 

(http://jmol.sourceforge.net/) to visualize 3D chemical structures. 

Data availability 

IMPPAT 2.0 database on phytochemicals of Indian medicinal plants is accessible via 

the associated website: https://cb.imsc.res.in/imppat. The compiled information in IMPPAT 

2.0 is made available under a Creative Commons Attribution-NonCommercial 4.0 (CC BY-

NC 4.0) International License (http://creativecommons.org/licenses/by-nc/4.0/). 

Code availability 

The computer codes used to analyze the phytochemical space of IMPPAT 2.0 are 

available via the associated GitHub repository: https://github.com/asamallab/imppat2. 
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Figures 

 

Figure 1:  Schematic overview of the important features including enhancements and 

expansion realized in IMPPAT 2.0.  
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Figure 2: Coverage of Indian medicinal plants in IMPPAT 2.0. (a) Top taxonomic families 

of Indian medicinal plants in IMPPAT 2.0. Note only families with more than 50 Indian 

medicinal plants in the database are shown. (b) Classification of the Indian medicinal plants 

in IMPPAT 2.0 into major plant groups: Angiosperms (Flowering plants), Gymnosperms 

(Conifers, cycads and allies) and Pteridophytes (Ferns and fern allies). (c) Use of Indian 

medicinal plants in IMPPAT 2.0 in traditional Indian systems of medicine such as Ayurveda, 

Siddha, Unani, Sowa-Rigpa and Homeopathy. Note that a given Indian medicinal plant can 

be used in multiple systems of medicine. (d) Present category according to conservation 

status of the Indian medicinal plants in IMPPAT 2.0. LC – Least concern, VU – Vulnerable, 

NT – Near threatened, EN – Endangered, CR – Critically endangered, EW – Extinct in the 

wild. 
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Figure 3: Basic statistics and distribution of the physicochemical properties for 

phytochemicals in IMPPAT 2.0. (a) Histogram of the number of Indian medicinal plants that 

produce a given phytochemical in IMPPAT 2.0. (b) Histogram of the number of therapeutic 

uses per Indian medicinal plant in IMPPAT 2.0. Distribution of six important 

physicochemical properties for 17967 phytochemicals, namely, (c) Molecular weight (g/mol), 

(d) log P, (e) Topological polar surface area (Å2), (f) number of hydrogen bond (H-bond) 

donors, (g) number of hydrogen bond (H-bond) acceptors, and (h) number of rotatable bonds. 
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Figure 4: Chemical classification, biosynthetic pathways and natural product likeness of 

phytochemicals in IMPPAT 2.0. (a) Chemical superclass of phytochemicals predicted by 

ClassyFire30. (b) Biosynthetic pathways for phytochemicals predicted by NP classifier28. (c) 

Distribution of the NP-likeness scores for phytochemicals in IMPPAT 2.0 and other natural 

product libraries. 
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Figure 5: The web-interface of the IMPPAT 2.0 database. (a) Snapshots of the results of 

queries for a phytochemical or a therapeutic use of an Indian medicinal plant. In this 

example, we show from IMPPAT 2.0 for Piper betle the snapshots of the plant information, 

plant – part – phytochemical association table, plant – part – therapeutic use association table, 

and network visualization of plant – phytochemical associations and plant – therapeutic use 

associations. (b) Screenshot of the dedicated page containing detailed information for the 

phytochemical Safrole. 
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Figure 6: Comparison of the molecular complexity of chemical libraries. (a) Distribution of 

the stereochemical complexity, and (b) the shape complexity for small molecules in five 

chemical libraries, namely, CC, DC’, NP, IMPPAT version 1.0 and IMPPAT 2.0. Note that 

the lower end of the box plot is the first quartile, upper end is the third quartile, brown line 

inside the box is the median, green line is the mean of the distribution. Also, the median, 

mean and standard deviation (SD) of the distribution is shown below the box plot. (c) 

Median, mean and SD for six physicochemical properties, namely, Molecular weight (g/mol), 

log P, topological polar surface area (TPSA) (Å2), number of hydrogen bond donors, number 

of hydrogen bond acceptors, and number of rotatable bonds, for small molecules in five 

chemical libraries. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496609doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496609


45 
 

 

 

Figure 7: Analysis of the scaffold diversity of phytochemicals in IMPPAT 2.0 with seven 

other natural product libraries, approved drugs, and organic compounds from PubChem23. 

Distribution of (a) the number of ring systems and (b) the number of heteroatoms, in 

scaffolds at graph/node/bond (G/N/B) level. Cyclic system retrieval (CSR) curves for 

scaffolds at: (c) G/N/B level, (d) graph/node (G/N) level, and (e) graph level. 
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Figure 8: Molecular cloud visualization52,53 of the top scaffolds at G/N/B level present in 

phytochemicals of IMPPAT 2.0. The top constitute the 217 scaffolds at G/N/B level that are 

present in ≥ 10 phytochemicals in IMPPAT 2.0. In this figure, 216 of these top scaffolds are 

shown after excluding the benzene ring (which is the most frequent scaffold in all large 

chemical libraries). Here, the size of the structure is proportional to the frequency of 

occurrence of the scaffold in phytochemicals of IMPPAT 2.0. 
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Figure 9: Drug-likeness analysis of phytochemicals in IMPPAT 2.0. (a) UpSet plot 

visualization of the set intersections of phytochemicals that pass one or more of the six drug-

likeness rules. The horizontal bars show the number of phytochemicals which pass the 
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different drug-likeness rules. The vertical bars show the set intersections between 

phytochemicals that pass different drug-likeness rules. The green bar shows the 1335 

phytochemicals which pass all six drug-likeness rules. This plot was generated using UpSetR 

package61. (b) Chemical superclass of the 1335 drug-like phytochemicals as predicted by 

ClassyFire. (c) Distribution of QEDw scores for the 1335 drug-like phytochemicals. (d) 

Common scaffolds at the graph/node/bond (G/N/B) level and the graph level between the 

space of 1335 drug-like phytochemicals and approved drugs. 
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Figure 10: (a) Chemical similarity network (CSN) of the 1335 drug-like phytochemicals in 

IMPPAT 2.0. The degree sorted circle layout in Cytoscape75 is used to visualize the CSN. 

Cyan nodes correspond to drug-like phytochemicals that are not similar to any approved drug 

and pink nodes to those that are similar to at least one approved drugs. Edge thickness is 

proportional to the chemical similarity between the pair of drug-like phytochemicals. (b) 
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Visualization of the SMARTS corresponding to the maximum common substructure (MCS) 

for the top 12 connected components obtained using SMARTSview webserver72,73. 

 

Figure 11: Comparison of the phytochemical space of Indian medicinal plants and Chinese 

medicinal plants. (a) Venn diagram shows the overlap between the phytochemicals in 

IMPPAT 2.0 and TCM-Mesh. (b) UpSet plot visualization of the set intersections of 
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phytochemicals in TCM-Mesh that pass one or more of the six drug-likeness rules. The 

horizontal bars show the number of phytochemicals which pass the different drug-likeness 

rules. The vertical bars show the set intersections between phytochemicals that pass different 

drug-likeness rules. The green bar shows the 938 phytochemicals which pass all six drug-

likeness rules. (c) Distribution of QEDw scores for the 938 drug-like phytochemicals in 

TCM-Mesh. (d) Venn diagram shows the overlap between the drug-like phytochemicals in 

IMPPAT 2.0 and TCM-Mesh. 
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Tables 

Table 1: Comparison of the updated version IMPPAT 2.0 with the previous version 1.0. 

Feature IMPPAT 2.0 IMPPAT 1.0 

Number of Indian medicinal plants 4,010 1,742 

Number of Phytochemicals 17,967 9,596 

Number of Plant - Part - Phytochemical associations 189,386 Not available 

Number of Plant - Phytochemical associations 124,995 27,074 

Number of Therapeutic uses 1,095 1,124 

Number of Plant - Part - Therapeutic use associations 89,733 Not available 

Number of Plant - Therapeutic use associations 60,732 11,514 

Number of Traditional medicinal formulations 1,133 974 

Number of Plant - Part – Traditional medicinal formulation 

associations 
7,815 Not available 

Number of Plant - Traditional medicinal formulation associations 6,317 5,069 
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Table 2: Scaffold diversity of phytochemicals in IMPPAT 2.0, and comparison with other 

chemical libraries. The molecular scaffolds are computed at graph/node/bond (G/N/B) level. 

Here, M is number of molecules with scaffold and this number is less than the library size as 

linear molecules with no ring system have no scaffolds. Further, N is the number of scaffolds, 

Nsing is the number of singleton scaffolds, AUC is the area under the curve, and P50 is the 

percentage of scaffolds that account for 50% of the chemical library. 

Chemical library M N Nsing N/M Nsing/M Nsing/N AUC P50 

Approved drugs 2097 1255 1012 0.6 0.48 0.81 0.69 17.93 

TCM-Mesh 9417 3946 2626 0.42 0.28 0.67 0.75 11.02 

NANPDB 4645 1762 1093 0.38 0.24 0.62 0.76 10.67 

IMPPAT 2.0 15226 5179 3338 0.34 0.22 0.64 0.79 6.58 

NPATLAS 31099 10227 5947 0.33 0.19 0.58 0.79 8.35 

COCONUT 385926 109024 65963 0.28 0.17 0.61 0.82 4.82 

CMAUP 43987 11105 6151 0.25 0.14 0.55 0.82 5.15 

UNPD 215585 44281 22514 0.21 0.1 0.51 0.85 3.39 

SuperNatural II 308998 62125 30453 0.2 0.1 0.49 0.85 3.61 

PubChem 101452728 12493379 7059386 0.12 0.07 0.57 0.91 0.22 
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Supplementary Information 

Supplementary Table S1: The table gives the list of 70 books from which Plant - Part - 

Phytochemical associations for Indian medicinal plants in IMPPAT 2.0 were obtained. 

Supplementary Table S2: The table gives the list of 146 books from which Plant - Part - 

Therapeutic use associations for Indian medicinal plants in IMPPAT 2.0 were obtained. 

Supplementary Table S3: The table provides the IMPPAT Phytochemical identifier, 

Chemical name, SMILES, InChI and QEDw score for the 1335 drug-like phytochemicals in 

IMPPAT 2.0 identified in this study. 
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