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Abstract 12 

Recent studies have suggested that the human germline mutation rate and spectrum 13 
evolve rapidly. When and why these changes occurred remains unclear, however. We 14 
develop a framework to characterize temporal changes in polymorphisms within and 15 
between human populations, while controlling for the effects of selection and biased gene 16 
conversion. Applying this approach to high-coverage, whole genome sequences from the 17 
1000 Genomes Project, we detect significant changes in the mutation spectrum of alleles 18 
of different ages, notably two independent changes that arose after the split of the 19 
ancestors of African and non-African populations. We also find that the mutation spectrum 20 
differs significantly between populations sampled in and outside of Africa at old 21 
polymorphisms that predate the out-of-Africa migration; this seemingly contradictory 22 
observation is likely due to mutation rate differences in remote ancestors that contributed 23 
to varying degrees to the ancestry of contemporary human populations. Importantly, by 24 
relating the mutation spectrum of polymorphisms to the parental age effects on de novo 25 
mutations, we show that plausible changes in the age of reproduction over time cannot 26 
explain the joint patterns observed for different mutation types. Thus, other factors––27 
genetic modifiers or environmental exposures––must have had a non-negligible impact 28 
on the human mutation landscape. 29 

  30 
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Introduction 31 

Recent advances in high throughput sequencing have enabled large-scale surveys of genetic 32 
variation in thousands of humans, providing a rich resource for understanding the source and 33 
mechanisms shaping the mutation landscape over time. Comparisons of polymorphism patterns 34 
across geographic population samples have uncovered numerous differences in the mutation 35 
rates and spectra (i.e., relative proportions of different types of mutations) (Hwang and Green 36 
2004; Harris 2015; Moorjani, Amorim, et al. 2016; Harris and Pritchard 2017; Mathieson and Reich 37 
2017; Narasimhan et al. 2017; Goldberg and Harris 2022; DeWitt et al. 2021; Speidel et al. 2019). 38 
A notable signal in humans is the enrichment of TCC>TTC variants in polymorphism data from 39 
Europeans relative to Africans and Asians (Harris and Pritchard 2017). Many other subtle but 40 
statistically significant signals have also been detected; given the recent common ancestry of 41 
human populations, this finding indicates that the mutational spectrum in humans has been 42 
evolving rapidly. 43 
 44 
Several genetic and non-genetic factors have been implicated as affecting mutation rates and 45 
acting as potential drivers of observed inter-population differences in the mutation spectrum of 46 
polymorphisms. First, some environmental exposures can increase mutation rates, especially of 47 
particular types. As humans in different geographic locations and environments may have 48 
experienced differential exposures over the past 50,000-100,000 years since the out-of-Africa 49 
(OOA) migration, rates of specific mutation types could have diverged between populations 50 
(Harris 2015; Mathieson and Reich 2017). Second, genetic modifiers of mutation rates such as 51 
variants in genes that copy or repair DNA could segregate at different frequencies across 52 
populations. Despite the deleterious effects of mutator alleles, in recombining species, they could 53 
be nearly neutral and maintained for a long time, leading to genome-wide differences across 54 
populations (Seoighe and Scally 2017; Milligan, Amster, and Sella 2021).  55 
 56 
In addition, direct sequencing of human pedigrees has revealed the effects of the parental ages 57 
at reproduction on the relative fractions of mutation types (Goldmann et al. 2018; Jónsson et al. 58 
2017). For example, as parents age, fathers pass on disproportionally more T>C mutations, and 59 
mothers contribute a higher fraction of C>G mutations (Jónsson et al. 2017). Thus, differences in 60 
the average reproductive ages, or equivalently “generation times”, across populations alone can 61 
lead to differences in mutation spectrum and indeed, these have been suggested to explain a 62 
large fraction of observed variation in types of polymorphisms among population samples (Macià 63 
et al. 2021).  64 
 65 
The joint distribution of mutation type and frequency of polymorphisms, however, not only 66 
depends on the mutational input, but also on other evolutionary forces such as natural selection, 67 
biased gene conversion, and demography. In particular, natural selection distorts the allele 68 
frequency distribution and fixation probability of non-neutral variants, and the average effect of 69 
natural selection can differ across mutation types (Wakeley 2010). As an example, genic regions 70 
tend to be more GC-rich, so mutations at G:C base pairs may be subject to stronger purifying or 71 
background selection compared to mutations at A:T base pairs (McVicker et al. 2009; Lander et 72 
al. 2001). GC-biased gene conversion (gBGC) is another process that exerts differential effects 73 
across mutation types by effectively acting like positive selection favoring mutations from weak 74 
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alleles (A or T) to strong alleles (C or G) and negative selection against mutations from strong to 75 
weak alleles (Duret and Galtier 2009). The strengths of selection and gBGC depend on the 76 
effective population size and thus on the demographic history of a population. Moreover, a 77 
challenge in interpreting previous studies, notably to learn about when changes in mutational 78 
processes may have occurred, is the reliance on allele frequencies (Harris and Pritchard 2017; 79 
Mathieson and Reich 2017). While frequencies are informative of the age of alleles (Kimura 1969), 80 
demographic history shapes the relationship between allele frequency and age. Thus, mutations 81 
of the same frequency can have drastically different distributions of ages in distinct populations 82 
(e.g., doubletons in Africans are substantially older than doubletons in Europeans or Asians) 83 
(Mathieson and McVean 2014) .  84 
 85 
Beyond the biological processes that shape polymorphism data, the characterization of the 86 
spectrum can also be biased by many technical issues. For instance, a recent study showed that 87 
some inter-population differences discovered in low coverage 1000 Genomes data may be driven 88 
by cell line artifacts or errors in PCR amplification (Anderson-Trocmé et al. 2020). Further, 89 
comparisons of mutation patterns across datasets are sensitive to differences in the accessible 90 
genomic regions across studies. Because there is large variation in mutation rates and base pair 91 
composition across genomic regions, differences in the regions sequenced across studies can 92 
have a non-negligible impact on comparisons of mutation spectrum across datasets (Seplyarskiy 93 
et al. 2021; Monroe et al. 2022). In addition, the number of genomes surveyed, in combination 94 
with the specific population demographic history, influences the chance of observing repeated 95 
mutations at the same site, and thus the observed polymorphism patterns (Lek et al. 2016). Given 96 
these challenges, it thus remains unclear if the numerous observed differences across human 97 
populations stem from rapid evolution of the mutation process itself, other evolutionary processes, 98 
or technical factors.  99 
 100 
We therefore propose a new framework to compare the mutation spectrum within and across 101 
human populations. First, we infer the age of each derived allele observed in a population using 102 
a newly developed approach, Relate, to reconstruct local genealogies and estimate allele ages 103 
(Speidel et al. 2019). This approach allows us to perform more reliable comparisons across 104 
populations as well as to investigate changes in mutation processes at deeper timescales, beyond 105 
the split of contemporary human populations. Next, we minimize confounding effects of selection 106 
by removing constrained regions and known targets of selection in the genome. Finally, we control 107 
the effects of biased gene conversion by focusing on comparison of pairs of mutations (e.g., T>C 108 
and T>G) that are subject to similar effects of gBGC. This pairwise comparison further mitigates 109 
the issue of interdependencies in comparing mutation fractions (i.e., an increased fraction of one 110 
mutation type necessarily lowers the fractions of other mutation types). Based on this new 111 
framework, we re-evaluate the evidence for evolution of the mutation spectrum in human 112 
populations and investigate when, how, and in which populations significant changes have 113 
occurred over evolutionary time. Finally, by relating parental age effects on the mutation spectrum 114 
estimated in contemporary pedigrees to the observed patterns of polymorphisms of varying ages, 115 
we evaluate the role of generation time changes versus other biological factors in shaping the 116 
human mutation landscape. 117 
 118 
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Results 119 

Variation in the spectrum of human polymorphisms over time  120 

We analyzed single nucleotide polymorphisms (SNP) identified in  high-coverage whole-genome 121 
sequencing data from the 1000 Genomes Project, including 178 individuals of West African 122 
ancestry living in Ibadan, Nigeria (YRI), 179 individuals of Northern European ancestry living in 123 
the United States (CEU), and 103 individuals of East Asian ancestry living in Beijing, China (CHB) 124 
(Byrska-Bishop et al., 2021). To focus on putatively neutral mutations, we removed exons and 125 
phylogenetically conserved regions (see Materials and Methods). To perform reliable comparison 126 
between datasets in downstream analysis and to ensure the results are not driven by local 127 
genomic differences in mutation rate, we focused on regions that were accessible in both 128 
population and pedigree datasets (Materials and Methods; hereafter, referred to as “commonly 129 
accessible regions”).  130 
 131 
We inferred the age of each derived variant (polarized to the human ancestral allele) in YRI, CEU 132 
and CHB using Relate, a method to reconstruct local genealogies based on phased haplotype 133 
sequences (Speidel et al. 2019). We then divided all SNPs into 15 roughly equal-sized bins based 134 
on the ages of the derived allele inferred by Relate, accounting for uncertainty in the inferred 135 
mutation age by assuming uniform distribution of age between the inferred lower and upper 136 
bounds for each variant (Materials and Methods). We classified each SNP into six disjoint classes 137 
based on the type of base pair substitution: T>A, T>C, T>G, C>A, C>G, and C>T (each including 138 
the corresponding substitution on the reverse complement strand, such that, e.g., T>C includes 139 
both T>C and A>G substitutions). Given the well-characterized hypermutability of methylated 140 
CpG sites (Duncan and Miller 1980; Kong et al. 2012), we further divided C>T SNPs into sub-141 
types occurring in CpG and non-CpG contexts by considering the flanking base pair on either side 142 
of the variant.  143 
 144 
We found marked differences in the relative proportions of different mutation types (i.e., the 145 
mutation spectrum) across varying allele age bins within CEU (Figure 1) as well as in YRI and in 146 
CHB (Figure 1—figure supplement 1), as seen earlier in low coverage 1000G data (Speidel et al. 147 
2019). We obtained qualitatively similar results when considering other 1000G populations of TSI, 148 
LWK and JPT (Figure 1—figure supplement 1). This observation echoes previous findings about 149 
the evolution of the mutation spectrum comparing polymorphisms across allele frequencies 150 
(Harris and Pritchard 2017; Mathieson and Reich 2017; Carlson et al. 2018). As noted previously, 151 
however, differences in mutation spectrum across frequencies alone are weak evidence for the 152 
evolution of the mutation process itself, because patterns of standing polymorphisms can be 153 
affected by repeat mutations and other evolutionary forces, including selection and gene 154 
conversion.  155 
 156 
Notably, the infinite-sites model is a reasonable assumption for small sample sizes (Kimura 1969), 157 
but recurrent mutations become highly likely in large datasets, especially at sites with higher 158 
mutation rates (Lek et al. 2016; Harpak, Bhaskar, and Pritchard 2016). Recurrent, multi-allelic, 159 
and back mutations violate the model assumptions of Relate and are often excluded from its 160 
output. For instance, given the higher mutation rate of transitions at CpG sites, such SNPs are 161 
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more likely to be subject to recurrent mutations in a large sample and thus may map to multiple 162 
branches in the tree, leading to their exclusion from Relate's output (Speidel et al. 2019). As 163 
expected from these considerations, the fraction of CpG C>T SNPs in young mutations (i.e., those 164 
estimated to have occurred in the past ~50 generations) is lower than proportions in de novo 165 
mutations in present-day pedigree studies (Figure 1—figure supplement 2). Differences in 166 
mutation spectrum across age bins in modern humans persist even after excluding CpG C>T 167 
mutations (Figure 1—figure supplement 3), however, indicating that other mutation types are also 168 
changing in relative frequency over time and the observed patterns are not driven solely by 169 
recurrent mutation at CpG sites.  170 
  171 
Next, we examined the effect of linked selection on different mutation types. While we excluded 172 
direct targets of selection from analysis (i.e., exons and conserved regions), much of the genome 173 
is linked to non-neutral variants and notably subject to background selection (Charlesworth, 174 
Morgan, and Charlesworth 1993; McVicker et al. 2009; Murphy et al., 2021). A common measure 175 
of the effects of background selection is the B-statistic or B-score that measures the reduction in 176 
nucleotide diversity levels compared to neutral expectation (McVicker et al. 2009). To characterize 177 
the impact of linked selection, we calculated the average genome-wide B-score of each mutation 178 
type. We obtained nearly identical average B-scores and similar distributions for all mutation types 179 
(Figure 1—figure supplement 4). Further, comparing the mutation spectrum over time in CEU, 180 
YRI and CHB, we obtained qualitatively similar results when restricting to effectively neutral 181 
regions (B-score > 800, where the genetic diversity is reduced by <20% compared to the neutral 182 
expectation; Figure 1—figure supplement 5). These analyses suggest that although linked 183 
selection has pervasive effects, its average impact is relatively uniform across the seven mutation 184 
types in commonly accessible regions (Materials and Methods). 185 
  186 
Gene conversion is another evolutionary process that can have a profound impact on the mutation 187 
spectrum of polymorphisms. GC-biased gene conversion (gBGC) acts like selection for certain 188 
mutation types, by causing the preferential transmission of strong (S) alleles (C or G) over weak 189 
(W) alleles (A or T) in heterozygotes (Duret and Galtier 2009). Accordingly, we observed 190 
enrichments of W>S mutations (T>A and T>G) in common variants and of S>W mutations (C>A 191 
and C>T) in rare variants (Figure 1—figure supplement 6A). Moreover, gBGC violates model 192 
assumptions (both neutrality and infinite-sites mutation model) of Relate and could lead to subtle 193 
biases in estimated allele age (Speidel et al. 2019). Assuming no systematic evolution in the 194 
relative rates of S>W mutations and W>S mutations and unbiased estimation of allele age under 195 
gBGC, we would expect similar fractions of S>W and W>S mutations across age bins; in contrast, 196 
the W>S variants are overall more enriched in older variants compared to S>W variants (Figure 197 
1—figure supplement 6B; (Speidel et al. 2019)). As the strength of biased gBGC depends on the 198 
effective population size and thus may differ across human populations, these results highlight 199 
the need to account for gBGC in order to reliably interpret the source of observed differences 200 
within and between populations (whether using allele frequency bins or allele age estimates). 201 
 202 
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 203 
Figure 1. Changes in the mutation spectrum of polymorphisms in CEU over evolutionary time.  204 
 205 
The following source data and figure supplements are available for figure 1: 206 
Source data 1. Relate output for SNPs in commonly accessible region with additional 207 
annotation (one file for each population of YRI, LWK, CEU, TSI, CHB, JPT) 208 
Source data 2. Text file with (pseudo-)counts of different types of mutations in YRI, LWK, CEU, 209 
TSI, CHB, JPT in each time window. 210 
Figure supplement 1. Mutation spectra of human polymorphisms stratified by allele age. 211 
Figure supplement 2. Mutation spectrum of SNPs found in CEU in comparison to that of de novo 212 
mutations identified in trios from Iceland.  213 
Figure supplement 3. Mutation spectra of CEU polymorphisms and DNMs from Icelandic trios, 214 
excluding C>T transitions at CpG sites.  215 
Figure supplement 4. Mean and distribution of B-scores of different mutation types. 216 
Figure supplement 5. Mutation spectra of human polymorphisms in genomic regions with weak 217 
background selection (B-score>800). 218 
Figure supplement 6. Fractions of S>S, S>W, W>S, and W>W mutations in variants stratified 219 
by derived frequency (A) and allele age (B).  220 
Figure supplement 7. Mutation spectra of human polymorphisms stratified by allele age based 221 
on alternative binning strategies. 222 

Pairwise comparisons of mutation types accounting for gBGC   223 

In light of the impact of gBGC on mutation spectrum comparisons, we focused on comparisons 224 
of pairs of mutation types subject to similar effects of gBGC (i.e., both favored, disfavored, or 225 
unaffected by gBGC). Specifically, we focused on four pairwise comparisons including (1) C>T at 226 
nonCpGs vs. C>A at nonCpGs; (2) C>T CpGs vs. C>A CpGs (3) C>G vs. T>A; (4) T>C vs. T>G. 227 
Three of these comparisons involve mutation types with the same mutational opportunity (e.g., 228 
both T>C and T>G mutations arise from T bases in the genome), which further minimizes the 229 
confounding effects of regional variation on the chance of recurrent mutation or strength of 230 
background selection. Moreover, the pairwise ratios impose no co-dependency among mutation 231 
types as the four comparisons are mathematically independent of each other (although they may 232 
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be biologically dependent, if multiple ratios are affected simultaneously by some change in the 233 
mutational process).  234 
 235 
Investigating the mutation spectrum using these four pairwise comparisons, we observed marked 236 
differences in the ratios both over time and across populations. The contrasts across time 237 
windows and among populations point to the timing, direction, and population origin of mutation 238 
rate changes. Specifically, we found three key signals of mutation rate evolution, reflected by both 239 
temporal variation within a population and differences between YRI, CHB and CEU (P < 0.01 by 240 
Chi-square test after correcting for multiple hypothesis testing; Materials and Methods) (Figure 241 
2A). These differences may represent broader geographic or population differences, as they were 242 
replicated in other populations from the same continents–– LWK, TSI, and JPT–– from 1000 243 
Genomes Project (Figure 2—figure supplement 1).  244 
 245 
We performed multiple sanity checks to rule out sources unrelated to mutation or technical 246 
artifacts contributing to the inter-population differences. First, the signals are unlikely to be driven 247 
by gBGC and selection, as the pairwise comparisons are designed to control for their effects. In 248 
addition, we obtained qualitatively similar results when restricting the analysis to neutral regions 249 
largely unaffected by linked selection (B-score > 800) (Figure 2—figure supplement 2) or 250 
comparing regions with high and low recombination rates (Figure 2—figure supplement 3). To 251 
account for potential inaccuracies in mutation ages estimated by Relate, we stratified variants by 252 
allele frequencies instead of inferred mutation age; the results were qualitatively similar (Figure 253 
2—figure supplement 4). Lastly, we find qualitatively similar results with different boundaries for 254 
allele age binning (Figure 2—figure supplement 5). Together, these results provide unequivocal 255 
evidence that the human germline mutation spectrum has evolved over time and differs across 256 
populations.  257 
 258 
We now discuss each of the three signals of mutation rate evolution in detail. 259 
 260 
European-specific elevation of non-CpG C>T/C>A ratio 261 
The largest signal that we observed is the CEU-specific transient elevation in the ratio of C>T/C>A 262 
mutations at nonCpG sites compared to the ancestral state before the OOA migration; in contrast, 263 
the nonCpG C>T/C>A ratios of CHB and YRI remain relatively constant through time. This signal 264 
encompasses the previously reported enrichment of C>T polymorphisms in a TCC context in 265 
Europeans, as well as other tri-nucleotide contexts (Harris and Pritchard 2017; Mathieson and 266 
Reich 2017; Speidel et al. 2019). Investigating the temporal patterns in CEU, we found that the 267 
increase in the ratio of C>T/C>A mutations at nonCpG sites becomes discernible starting from 268 
the time window spanning the OOA migration (50,000-100,000 years ago or ~2,000-4,000 269 
generations ago) (Schiffels and Durbin 2014), peaks around 238–887 generations ago, and 270 
subsides in the most recent age bin of 0–55 generations (Figure 2A). Because there is large 271 
uncertainty in inferred allele ages and our binning approach effectively spreads the contribution 272 
of each variant to two or more bins (Materials and Methods), the timeline and magnitude of 273 
variation should be interpreted cautiously: The transient change in nonCpG C>T mutations was 274 
likely shorter-lived and possibly of higher intensity than our results suggest. However, the 275 
temporal and geographic enrichment patterns from our analysis are consistent with previous 276 
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reports based on low coverage 1KG or other datasets (Harris and Pritchard 2017; Mathieson and 277 
Reich 2017; Speidel et al. 2019).  278 
 279 
Among all nonCpG trinucleotide contexts, the inter-population differences are most pronounced 280 
in the four previously reported tri-nucleotide contexts (TCC, TCT, CCC, and ACC; (Harris and 281 
Pritchard 2017)), but it is detectable in other nonCpG contexts as well (Figure 2B). Previous 282 
analysis found that these mutational contexts are enriched in two of the mutational signatures 283 
extracted from somatic mutations in tumor samples: the Catalog of Somatic Mutations in Cancer 284 
(COSMIC) SBS7 and SBS11 associated with exposures to ultraviolet light and alkylating agents, 285 
respectively (Harris 2015; Mathieson and Reich 2017; Alexandrov et al. 2020). To test if one of 286 
these two mutational signatures may be responsible for the observed differences in polymorphism 287 
data, we recalculated the C>T/C>A mutation ratio at nonCpG sites after excluding the sequence 288 
contexts most affected by SBS7 or SBS11 (Materials and Methods). While we observed some 289 
reduction in the magnitude of nonCpG C>T/C>A ratio in Europeans, the inter-population 290 
differences remain significant (Figure 2B). These results suggest the transient change in nonCpG 291 
C>T/C>A ratio is not fully driven by the mutational mechanisms corresponding to either COSMIC 292 
SBS7 or SBS11. Thus, the etiology of this transient increase in Europeans remains unclear. 293 
 294 
Divergence of C>G/T>A ratio among populations 295 
The second largest inter-population difference was in the C>G/T>A ratio (Figure 2A): following 296 
the OOA migration, both YRI and CEU samples show a continuous increase in the C>G/T>A ratio 297 
albeit of different magnitudes, while in the CHB, the ratio initially decreases and then stays 298 
relatively stable for roughly 900 generations. Interestingly, unlike the previous signal, inter-299 
population differences in C>G/T>A remain highly significant for the most recent variants as well 300 
(0-55 generations), pointing to ongoing factors differentiating the relative rates of C>G and T>A 301 
mutations at present. 302 
 303 
Notably, the fraction of C>G in de novo germline mutations is particularly sensitive to parental 304 
ages, increasing rapidly with the mother’s age at conception (Jónsson et al. 2017). This raises 305 
the possibility that the inter-population differences in C>G/T>A ratio are driven by different 306 
average maternal reproductive ages among populations (Macià et al. 2021). To test this 307 
hypothesis, we leveraged the regional enrichment of maternal C>G mutations (Jónsson et al. 308 
2017): “C>G enriched regions”, defined as 10% of the genome with the highest C>G SNP density, 309 
contribute one-third of the overall maternal age effect (i.e., the yearly increase in maternal DNMs 310 
with mother’s age). The C>G/T>A ratio within the C>G enriched regions alone does not show 311 
significant inter-population differences (Figure 2C), probably reflecting reduced power due to the 312 
much lower SNP counts in these regions (<15% of all). Outside of the C>G enriched regions, the 313 
three populations differ as much as they do genome-wide (Figure 2C), indicating that the 314 
differential accumulation of C>G mutations with maternal ages is not the primary driver of the 315 
differences observed across these populations. 316 
 317 
To determine whether the signal in C>G/T>A ratio is driven by differences between populations 318 
in C>G or T>A mutation rate, we performed two additional comparisons (T>G/T>A and 319 
C>G/C>A), substituting numerator or denominator in the ratio by another mutation type. Unlike 320 
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previous comparisons, these two comparisons are sensitive to the effects of gBGC, so the 321 
variation across time bins cannot be readily interpreted as evidence for an evolution of the 322 
mutation spectrum. However, if the inter-population differences are in the same direction (i.e., 323 
rates in CHB<CEU<YRI), we can reason that the mutation type not being substituted (C>G or 324 
T>A) contributes to the inter-population differences. For T>G/T>A ratio, we still observed highly 325 
significant inter-population differences across the three populations, with CEU and YRI 326 
converging in recent time windows (Figure 2—figure supplement 6). Considering the C>G/C>A 327 
ratio, we also found subtle but significant differences during the period of 55–437 generations ago 328 
(Figure 2—figure supplement 6). These results suggest that the inter-population differences in 329 
the C>G/T>A ratio arise from differences in mutation rates in both numerator and denominator, 330 
with CHB having the highest T>A and lowest C>G rates, and YRI having the lowest T>A and 331 
highest C>G rates.   332 
 333 
Differences in the T>C/T>G ratios at deep timescales in the ancestors of all modern 334 
humans  335 
The T>C/T>G ratios were higher in the three oldest bins (dated to >28,800 generations ago) than 336 
in more recent ones in all three population samples and that effect was more pronounced in YRI 337 
compared to CHB and CEU (Figure 2A). The difference seen between old polymorphisms 338 
observed in different contemporary populations is puzzling, because the majority of these variants 339 
long predate the OOA migration (~2,000-4,000 generations ago), and thus arose in the common 340 
ancestor of the three contemporary populations. To verify that these differences do not stem from 341 
inaccuracies in the polarization of ancestral and derived alleles, we repeated the analysis by 342 
determining the ancestral state on the basis of the chimpanzee reference genome (PanTro2; 343 
Materials and Methods); qualitatively similar results are obtained (Figure 2—figure supplement 344 
7A). We further tested the effect of reference bias by stratifying the human reference genome by 345 
inferred local ancestry and found qualitatively similar results in regions of European or African 346 
ancestry (Figure 2—figure supplement 7B) (Green et al. 2010). 347 
      348 
One known difference between Africans and non-Africans, which could contribute to the 349 
difference between YRI and the other two population samples, is that most non-Africans derive 350 
~1-3% of their genomic ancestry from Neanderthals, and some groups also have an additional 351 
contribution from Denisovans (Mallick et al. 2016). In contrast, sub-Saharan African populations 352 
have minimal (<0.1%) ancestry from these archaic hominins (Prüfer et al. 2014; Chen et al. 2020). 353 
In principle, it is therefore possible that the increased T>C/T>G ratio in old age bins is related to 354 
variants that arose in known archaic groups (Neanderthal or Denisovan) and introgressed into 355 
ancestors of non-Africans after the OOA migration. However, several observations argue against 356 
this hypothesis. First, the similar T>C/T>G ratios in CHB and CEU, combined with the much higher 357 
Denisovan ancestry in East Asians (Mallick et al. 2016), rule out Denivosan introgression as the 358 
major driver of the observed differences between the YRI and CEU and CHB. Second, the inter-359 
population differences persist when previously identified introgression tracts of Neanderthal 360 
ancestry were removed from CEU and CHB (Sankararaman et al. 2014). Lastly, even if the 361 
Neanderthals and/or Denisovans had higher T>C/T>G ratio compared to modern humans, their 362 
introgression into ancestors of non-Africans could only explain the inter-population differences, 363 
not the large elevation in this ratio in YRI (Figure 2).   364 
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 365 
To our surprise, when we removed variants with derived alleles observed in both Neanderthals 366 
and Denisovans (i.e., ND11 variants, where 0 and 1 denote ancestral and derived alleles 367 
respectively), the T>C/T>G ratios in the oldest bins reduced to similar levels as the younger 368 
variants for all three populations, and the differences between YRI and the other two populations 369 
disappeared (Figure 2D); the same is not seen, however, when removing only the derived variants 370 
shared with either Neanderthal or Denisovan but not both (i.e., ND01 or ND10 variants; Figure 371 
2—figure supplement 8). Variants shared between Neanderthals, Denisovans, and modern 372 
humans (in particular YRI who have minimal archaic ancestry) likely arose in the common 373 
ancestral population before the split of the three groups (dated to 550,000-800,000 years ago; 374 
(Prüfer et al. 2014), consistent with the age estimates of >29,000 generations for variants in the 375 
three oldest bins. Therefore, we hypothesize that the T>C/T>G ratio was higher in one or more 376 
populations in the remote past and those ancient groups contribute variable amounts of ancestry 377 
to contemporary populations due to incomplete lineage sorting, complex population structure, or 378 
differential gene flow from unknown ghost hominins (Durvasula and Sankararaman 2020; 379 
Ragsdale et al. 2022; Hammer et al. 2011). 380 
 381 
Next, we examined if the elevated T>C/T>G ratio is related to increased T>C or reduced T>G 382 
mutations. Using alternative pairwise comparisons (T>C/T>A and T>A/T>G), we inferred that the 383 
signal is primarily driven by higher proportions of T>C mutations among older variants (Figure 2—384 
figure supplement 9). Thus, it appears that the relative T>C mutation rate used to be higher in the 385 
ancestral population of modern humans (and some archaic humans) but decreased by ~29,000 386 
generations ago and stayed relatively stable until present. Moreover, Neanderthal-introgressed 387 
segments have a slightly lower fraction of T>C mutations and a higher fraction of T>G mutations 388 
(~1% relative difference in each fraction) (Skov et al. 2020). Therefore, Neanderthal introgression 389 
into the ancestors of non-Africans could have the effect of further lowering the T>C/T>G ratio in 390 
non-Africans. Nonetheless, this effect alone would be insufficient to explain the ~4.4% difference 391 
genome-wide in the T>C/T>G ratio between YRI and non-African populations (CEU or CHB) in 392 
the older bins (Figure 2D), as only a small fraction (~1-3%) of non-Africans ancestry is derived 393 
from Neanderthals. 394 
 395 
Given the possible differences in mutation spectrum across ancestral populations that contributed 396 
differentially to contemporary populations, a potential concern is that some variants that actually 397 
arose before OOA could be incorrectly dated and lead to apparent differences between 398 
contemporary populations even at recent timescales. To address this concern, we excluded 399 
derived variants shared by either Neanderthals or Denisovans from further analysis. This filtering 400 
removes ancestral polymorphisms segregating in modern humans due to incomplete lineage 401 
sorting or introgression from Neanderthals, Denisovans or any unknown ghost population related 402 
to either of them. After removing these variants, we still found the elevation of C>T/C>A ratio at 403 
nonCpG sites in CEU and C>G/T>A divergence among populations (Figure 2—figure supplement 404 
10). This result confirms that these two signals are not related to mis-dated ancient variants 405 
segregating in human populations. 406 
 407 
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 408 
Figure 2. Pairwise comparisons of polymorphisms arising in different time windows. (A) Four 409 
pairwise mutation ratios are shown, each of which compares two mutation types that are matched 410 
for mutational opportunity and effects of gBGC. The black arrow indicates the window coinciding 411 
with the OOA migration. Highlighted in boxes are three ratios that show significant inter-population 412 
differences, with in-depth investigation into each shown in lower panels. Asterisks refer to the p-413 
value obtained from a Chi-square test after a Bonferroni correction for 60 tests: * for P < 0.01, ** 414 
for P<0.0001 and *** for P<10-8. (B) CEU-specific elevation in C>T/C>A ratio at nonCpG sites, 415 
after excluding the four trinucleotide contexts (TCC, TCT, CCC, and ACC) previously identified to 416 
be associated with the TCC pulse in Europeans (denoted by TCC*; Harris and Pritchard, 2017), 417 
as well as contexts affected by COSMIC mutational signatures of SBS7 and SBS11 (Harris 2015; 418 
Mathieson and Reich 2017); (C) Post-OOA divergence in C>G/T>A ratio among three population 419 
groups; and (D) Higher T>C/T>G ratio in YRI than CEU and CHB samples among extremely old 420 
variants, driven by ND11 variants (data are not shown for ND11 variants in recent windows, as 421 
there are few such variants whose estimated ages fall in those windows). 422 
 423 
The following figure supplements are available for Figure 2: 424 
 425 
Figure supplement 1. Pairwise polymorphism ratios in three additional populations from Africa 426 
(LWK), Europe (TSI), and East Asia (JPT) in the 1000 Genomes project. 427 
Figure supplement 2. Pairwise polymorphism ratios in genomic regions with a minimal effect of  428 
background selection (B-score >800). 429 
Figure supplement 3. Pairwise polymorphism ratios in 33% of the genome with the lowest (A) 430 
and highest (B) regional recombination rates. 431 
Figure supplement 4. Pairwise ratios of human polymorphisms stratified by allele frequency. 432 
Figure supplement 5. Pairwise polymorphism ratios in YRI, CEU, and CHB in commonly 433 
accessible regions based on alternative binning strategies. 434 
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  435 
Figure supplement 6. Alternative pairwise polymorphism ratios (T>G/T>A and C>G/C>A), used 436 
to investigate the cause of inter-population differences in C>G/T>A ratio. 437 
Figure supplement 7. Replication of the T>C/T>G signal with an alternative derived allele 438 
polarization and stratification by the local ancestry of the reference genome. 439 
Figure supplement 8. T>C/T>G ratio in YRI, CEU and CHB excluding variants for which the 440 
derived alleles are also found in Denisovans (A), Neanderthals (B), and both (C).  441 
Figure supplement 9. Alternative pairwise polymorphism ratios (T>C/T>A and T>A/T>G), used 442 
to investigate the cause of inter-population differences in T>C/T>G ratio.  443 
Figure supplement 10. Pairwise polymorphism ratios in YRI, CEU, and CHB in commonly 444 
accessible regions excluding variants shared with Neanderthals and/or Denisovans (e.g., ND01, 445 
ND10 and ND11). 446 
 447 

Parental age effects on the mutation spectrum  448 

To explore whether the inter-population differences in polymorphism data could be driven by 449 
changing mean generation times over evolution (Macià et al. 2021), we turned to genomic data 450 
from pedigrees and quantified the parental age effects on the pairwise ratios of de novo mutations 451 
(DNMs) at present day (Materials and Methods. To maximize the power and precision, we 452 
focused on the largest publicly available DNM dataset, which includes 200,435 de novo single 453 
nucleotide mutations from 2,976 Icelandic trios (Halldorsson et al. 2019). The inferred parental 454 
age effects based on a previous, smaller DNM dataset were qualitatively similar (Figure 3—figure 455 
supplement 1), despite some significant differences across datasets, possibly due to systematic 456 
differences in the criteria for identifying and filtering DNMs (Figure 3—figure supplement 2). 457 
 458 
Considering the four pairwise mutation ratios, which are mathematically independent, three show 459 
a significant dependence on parental age (Figure 2). As an illustration, if both parents reproduce 460 
at 40 years rather than at 20 years of age, the ratios of nonCpG C>T/C>A and T>C/T>G decrease 461 
by 9.8% (90% confidence interval (CI): 4.9%-14.7%) and 7.5% (CI: 1.8%-13.7%) respectively, 462 
whereas the C>G/T>A ratio increases by 11.6% (90% CI: 3.3%-19.8%). In terms of sex-specific 463 
effects (Figure 3—figure supplement 3), nonCpG C>T/C>A and T>C/T>G ratios were largely 464 
determined by the paternal age and much less so the maternal age, reflecting that the paternal 465 
age effect is 3-4-fold stronger than maternal age effect for these mutation types (Kong et al. 2012; 466 
Jónsson et al. 2017; Goldmann et al. 2018). For C>G/T>A ratio, however, the maternal age is 467 
nearly as important as the paternal age, consistent with the unusually strong maternal age effect 468 
on C>G mutations (Jónsson et al. 2017).  469 
 470 
We were unable to directly quantify the dependence of CpG C>T/C>A ratio on parental ages, 471 
because the low count of C>A mutations at CpGs (on average 0.55 DNMs per trio) limited our 472 
ability to reliably infer the parental age effects (Materials and Methods). However, a previous study 473 
noted that the fraction of CpG C>T mutations among all DNMs depends strongly on parental age 474 
and decreases by 0.26% per year (Jónsson et al. 2017). Consistent with this finding, the ratio of 475 
the counts of CpG C>T and CpG C>A DNMs in the 20%-tile of trios with the youngest parents is 476 
significantly higher than in the 20%-tile of trios with the oldest parents (21.0 vs. 17.4, P=0.03 by 477 
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Chi-square test). This difference suggests the ratio of C>T to C>A mutations at CpG sites 478 
decreases with the parental age. Overall, the significant age-dependency of three–and likely all–479 
of the four pairwise mutation ratios highlights the pervasive influence of reproductive ages on the 480 
human germline mutation spectrum. 481 
 482 

 483 
Figure 3 Effects of parental ages on three pairwise mutation ratios estimated from DNM data in 484 
2,879 Icelandic trios (Halldorsson et al. 2019). The different curves reflect expectations for 485 
different ratios of paternal (Gp) to maternal (Gm) mean generation times. Each light gray curve 486 
represents the expected ratio for Gp/Gm=1 from one bootstrap resampling replicate (see 487 
Materials and Methods), with the lighter blue area denoting 90% confidence interval (CI) assessed 488 
from 500 replicates. For ease of comparison, ratios for polymorphisms of different ages identified 489 
in CEU are shown on the right of each panel. The points represent the observed polymorphism 490 
ratios, while the whiskers denote the 95% CI assuming a binomial distribution of polymorphism 491 
counts. All results are based on variants in the commonly accessible regions, excluding those 492 
with derived alleles observed in either Neanderthal or Denisovan. 493 
 494 
The following source data and figure supplements are available for Figure 3: 495 
Source data 3: Mutation parameters inferred from DNM data in 2,879 Icelandic trios with 496 
estimated uncertainty based on bootstrap resampling (one file for each mutation type for 497 
commonly accessible regions excluding archaic sites; n=500 replicates). 498 
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 499 
Figure supplement 1. Effects of parental ages on three pairwise mutation ratios estimated from 500 
an earlier DNM dataset (Jónsson et al. 2017). 501 
Figure supplement 2. Discrepancies in the mutation spectrum between different DNM datasets 502 
and between DNMs and young polymorphisms. 503 
Figure supplement 3. Sex-specific parental age effects on three pairwise mutation ratios. 504 
 505 

Shifts in generation times needed to explain the observed changes in the polymorphism 506 
data 507 

Motivated by the strong dependency of DNM ratios on parental ages, we tested the hypothesis 508 
that changes in past generation times account for the observed mutation spectrum of 509 
polymorphism data, as suggested by a couple of recent studies (Macià et al. 2021; Wang et al. 510 
2021). In particular, we asked whether the temporal shifts in the pairwise polymorphism ratios 511 
could be fully explained by shifts in average reproductive ages, i.e., without the need to invoke 512 
additional factors. As the mutation process may have evolved somewhat separately in different 513 
human populations, we focused the comparison of DNMs to variants identified in CEU, who are 514 
most genetically similar to the Icelandic individuals (with FST < 0.005) for whom we have the 515 
largest DNM dataset (Halldorsson et al. 2019).  516 
 517 
Assuming the observed changes in the mutation spectrum are solely driven by shifts in average 518 
reproductive ages, we inferred past generation times by relating observed pairwise ratios in DNM 519 
data and polymorphism data. Specifically, for a given pairwise mutation ratio in the polymorphism 520 
data, we asked what value of the generation time is compatible with the relationships to age 521 
estimated from pedigree data (assuming an identical male to female generation time and a fixed 522 
onset of puberty). Accounting for uncertainty in the DNM data, we then inferred the 95% 523 
confidence interval of the generation time for each mutation ratio and time window. Given the 524 
complications with low numbers of CpG mutations in DNMs data and of recurrent mutations at 525 
CpG sites in polymorphism data, we excluded the pairwise ratio of C>T/C>A at CpGs for this 526 
analysis. 527 
 528 
Solving each of the three pairwise ratios over time, we inferred inconsistent values of generation 529 
times across different mutation types within a single time window and discrepant trends across 530 
time windows. For instance, the steady increase in C>G/T>A ratio over time translates into a 531 
gradual increase in reproductive age, with the ratio of the most recent bin corresponding to a 532 
reproductive age under 23 years (Figure 3C; Figure 4). In contrast, the T>C/T>G polymorphism 533 
ratio appears to be lower than the ratio in de novo mutations across the range of typical parental 534 
ages in pedigree studies and suggests a generation time of more than 40 years (Figure 3C). Such 535 
a long population-average generation time is not only inconsistent with the estimate of the 536 
C>G/T>A ratio, but it is also unrealistic for human evolution (Fenner 2005; Moorjani, 537 
Sankararaman, et al. 2016). Finally, the transient elevation in nonCpG C>T/C>A ratio suggests a 538 
drastic, rapid reduction in the generation time (Figure 3A; Figure 4). Specifically, the ratios of both 539 
ancient (>5,670 generations ago) and the most recent polymorphisms (<55 generations ago) 540 
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correspond to relatively old reproductive ages of ~35 years, while the peak at around 238-887 541 
generations ago provides average reproductive age estimates of less than 20 years (Figure 4).  542 
 543 
The incompatible patterns across different mutation ratios could potentially arise if male and 544 
female generation times differed in the past. To explore this possibility, we varied the ratio of male 545 
and female generation times between 0.8–1.2, as seen across a range of contemporary human 546 
populations ((Fenner 2005); Figure 4—figure supplement 1; Figure 4—figure supplement 2). We 547 
further allowed male and female generation times to vary freely and inferred the combinations of 548 
paternal and maternal ages that could give rise to the observed polymorphism ratios. Even after 549 
modeling sex-specific reproductive ages, we found inconsistent generation time estimates and 550 
incompatible trends across mutation ratios (Figure 4—figure supplement 3). Overall, our results 551 
suggest that shifts within a plausible range of human generation times–i.e., those that fall within 552 
the range of puberty and reproductive cessation in humans–cannot explain the observed variation 553 
in the polymorphism data for CEU, and by analogy are unlikely to explain the mutation ratios in 554 
CHB or YRI polymorphisms. 555 
 556 

 557 
Figure 4  Past generation times corresponding to the observed polymorphism ratios in CEU, 558 
given parental age effects estimated from DNM data. Red points represent the point estimates 559 
based on maximum likelihood estimators of mutation parameters from the DNM data; gray dots 560 
show estimates from 500 bootstrap replicates by resampling trios with replacement. We assumed 561 
the same male to female generation times (Gp=Gm) for all time windows. Similar trends were 562 
obtained for other fixed values of Gp/Gm (between 0.8-1.2) or independent Gp and Gm (Figure 563 
4—figure supplement 1; Figure 4—figure supplement 3) 564 
 565 
The following source data and figure supplements are available for figure 4: 566 
 567 
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Source data 4: Past generation times inferred from each polymorphism ratio, assuming fixed 568 
ratios of male to female generation times (Gp/Gm=0.8, 1, 1.2), with confidence intervals 569 
estimated using bootstrap resampling (n=500 replicates; one file for each mutation type). 570 
 571 
Figure supplement 1. Past generation times inferred from the observed pairwise polymorphism 572 
ratios, assuming a fixed ratio of male to female generation times of (A) Gp/Gm=0.8 , or (B) 573 
Gp/Gm=1.1, or (C) Gp/Gm=1.2 .  574 
Figure supplement 2. Past generation times corresponding to the observed pairwise 575 
polymorphism ratios, based on parental age effects estimated from an earlier DNM dataset 576 
(Jónsson et al. 2017). 577 
Figure supplement 3. Combinations of paternal and maternal reproductive ages corresponding 578 
to the observed pairwise polymorphism ratios.  579 

Discussion 580 

 581 
Multiple changes in the germline mutation spectrum during the course of human evolution 582 
We introduced a new framework to compare the mutation spectrum over time and across 583 
population samples, while controlling for the effects of selection and biased gene conversion. By 584 
applying this approach to multiple population samples from the 1000 Genomes Project dataset, 585 
we identified three signatures of inter-population differences. Notably, we replicated the transient 586 
elevation in non-CpG C>T mutation (manifest in the C>T/C>A ratio) identified previously in 587 
Europeans compared to East Asians and Africans (Harris 2015; Harris and Pritchard 2017; 588 
Mathieson and Reich 2017; Speidel et al. 2019). We found that this ratio also differs weakly 589 
between YRI and CHB, suggesting an additional change occurred in this mutation type. In both 590 
cases, the signal is enriched in the TCC, TCT, CCC, and ACC contexts, and previously identified 591 
COSMIC signatures of SBS7 and SBS11 which are associated with exposure to UV and alkylating 592 
agents. While these contexts may contribute to this signal, we show that they do not fully explain 593 
the observed differences between contemporary populations. Thus, the etiology of this signal 594 
remains obscure, and it may not be specific to Europeans. Further investigation into the extended 595 
sequence contexts of this mutation pulse may help elucidate the underlying molecular 596 
mechanism(s) (Aggarwala and Voight 2016; Aikens, Johnson, and Voight 2019).  597 
  598 
We also identified two novel inter-population differences in the mutation spectrum. First, the ratio 599 
of C>G/T>A mutation rates differs between the three populations considered. We found that this 600 
signal is related to an increase in T>A mutations and depletion of C>G mutations in CHB 601 
compared to CEU, as well as a depletion of T>A mutations in YRI. Some aspects of this 602 
observation (e.g., the enrichment of T>A mutations in East Asians) were previously noted (Harris 603 
and Pritchard 2017), and our analysis added information about the timing of this variation. Given 604 
the distinct trends of T>A and C>G mutations with allele age (Figure 2—figure supplement 6), at 605 
least two changes in the mutational processes are needed to explain the inter-population 606 
differences. Interestingly, these differences are still observed in the most recent polymorphisms, 607 
indicating that––unlike the TCC mutation pulse––this process is likely ongoing. This finding 608 
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therefore points to an opportunity to directly examine and map the underlying biological causes 609 
using large-scale de novo mutation datasets from these populations. 610 
  611 
Unexpectedly, we detected significant differences between YRI and the other two populations, 612 
CEU and CHB, in the mutation spectra of polymorphisms that are estimated to long predate the 613 
OOA migration. Specifically, the T>C/T>G mutation ratio is elevated in the very old allele age bins 614 
compared to more recent bins for all populations, with a significantly higher ratio seen in YRI than 615 
in CEU and CHB. We showed that the inter-population differences cannot be explained by 616 
differential gene flow from sequenced archaic hominins––Neanderthals or Denisovans––into the 617 
ancestors of non-Africans and such introgression alone cannot explain the shift in the older bins 618 
in all modern human populations.  619 
 620 
Instead, we found evidence that the signals come from extremely old variants that emerged prior 621 
to the split of modern humans and archaic hominins at least ~550,000 years ago (Prüfer et al. 622 
2014). This suggests that the observed differences between contemporary populations could 623 
have arisen from the complex demographic history of ancestral populations. Based on observed 624 
polymorphism patterns in contemporary African populations and using simulations, several recent 625 
studies have suggested that one or more ghost archaic populations may have introgressed into 626 
the ancestors of Africans and possibly into the common ancestors of all modern humans (Hammer 627 
et al. 2011; Ragsdale and Gravel 2019; Speidel et al. 2019; Durvasula and Sankararaman 2020). 628 
After the ancestors of non-Africans migrated out of Africa, the ghost archaic group(s) may have 629 
continued interbreeding with remaining populations in Africa, leading to higher ancestry in YRI. 630 
An alternative model is deep population structure in modern humans. Under this model, two or 631 
more long-lasting, weakly differentiated ancestral populations contributed differentially to 632 
contemporary human populations through continuous gene flow or multiple merger events 633 
(Ragsdale et al. 2022). In both models, a greater contribution from a group with a higher T>C/T>G 634 
ratio to the ancestors of African individuals would explain differences between YRI and non-635 
African population samples as well as the elevated ratio in old variants for all three contemporary 636 
human populations. Our analysis further showed that the T>C/T>G signal comes from T>C 637 
mutations rather than T>G mutations, suggesting that one or more of the remote ancestral 638 
populations had a higher T>C mutation rate relative to their contemporaries as well as to modern 639 
humans.  640 
 641 
Interpretation of inter-population differences in the mutation spectrum 642 
Although the three population samples that we focused on here were collected from three distinct 643 
continents, the observed differences among them are not necessarily generalizable to the 644 
continental level. In particular, within the same continent, and notably in Africa, there is relatively 645 
deep genetic divergence between some populations (e.g., between Bantu groups and Khoe-San), 646 
often accompanied by long-term geographic isolation and environmental differences (Mallick et 647 
al. 2016). These different histories could lead to considerable variation in the mutation processes 648 
within a continent. In fact, even for closely related populations, we detected subtle but significant 649 
differences in the polymorphism ratios (e.g., between CEU and TSI in Figure 2—figure 650 
supplement 1). Genetic data from more diverse populations, in terms of both ancestry and 651 
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geographic location, are needed to generate a more complete picture of past and ongoing 652 
variation in the mutation spectrum among human populations and to understand its evolution. 653 
 654 
Changes in generation times cannot explain the evolution of the mutation spectrum 655 
Across mammals, the generation time is the strongest predictor of the yearly mutation rate and of 656 
some aspects of the mutation spectrum (Wu and Li 1985; Hwang and Green 2004; Moorjani, 657 
Amorim, et al. 2016). Recent studies have suggested that changes in generation times can also 658 
explain the differences in mutation spectrum observed between human populations (Macia et al 659 
2021). Indeed, our analysis of de novo mutations from pedigree studies shows significant effects 660 
of parental ages on all four pairwise mutation ratios that we examined.  661 
  662 
On that basis, it has been suggested that the population-specific mutation spectrum can be 663 
leveraged to infer the historical generation time in humans (Macià et al. 2021; Wang et al. 2021). 664 
In practice, there are several technical hurdles. First, given the sampling noise associated with 665 
the limited number of de novo mutations per family, large numbers of pedigrees are required to 666 
characterize the parental age effects reliably, especially for specific mutation types. In our 667 
analysis, we used the largest available pedigree dataset, but the parental age effects remain 668 
imprecisely estimated and should be revisited as larger datasets become available, ideally from 669 
diverse populations. Second, technical issues, both molecular and computational, may affect the 670 
reliability of variant calls of different mutation types to varying degrees (Bergeron et al. 2021). 671 
Indeed, we found that the four pairwise ratios differ significantly across three recent pedigree 672 
datasets, as well as between de novo mutations and young polymorphisms in 1000 Genomes 673 
dataset, which are unlikely to be reconciled by biological reasons (Figure 3—figure supplement 674 
2). Finally, controlling for the effects of biased gene conversion is difficult, as its effects may differ 675 
to some extent by mutation type even within a class (e.g., T>C and T>G both classified as S>W 676 
mutations may be subject to differing strengths of BGC).  677 
 678 
While these technical limitations likely influence the absolute values of the inferred generation 679 
times, the temporal trends, whether increasing or decreasing, should be robust to technical 680 
biases. In that regard, it is striking that the trends in generation times estimated from different 681 
mutation ratios are mutually inconsistent (Figure 4). These inconsistencies persist after 682 
accounting for uncertainty in the parental age effects inferred from pedigrees and incorporating 683 
sex-specific reproductive ages. Our findings therefore reveal that there is no single value or 684 
trajectory of generation times that can account for the observed patterns at all mutation ratios 685 
across time windows simultaneously. In other words, generation time alone cannot be the sole 686 
driver of the mutation spectrum over the course of human evolution. 687 
 688 
Implications 689 
The mutation spectrum of polymorphisms is a convolution of multiple evolutionary forces: 690 
mutation, recombination (including gene conversion), natural selection, and demography. In this 691 
study, we investigated the contribution of these forces to differences in the mutation spectrum 692 
between contemporary human populations. Notably, we identified an unexpected role of 693 
demographic history in shaping variants that long predate the OOA migration, due either to deep 694 
population structure or to introgression from unknown ghost hominin population(s). Complex 695 
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demographic history alone cannot lead to inter-population differences in the mutation spectrum, 696 
so changes in the mutational processes must have happened in the ancestral populations; 697 
however, incorrect or incomplete demographic models may misguide interpretation of the timing 698 
and source of mutation rate evolution. For future studies aiming to understand the evolution of 699 
mutagenesis based on analyses of polymorphism patterns, it will be crucial to consider and model 700 
the impact of these non-mutational evolutionary forces.  701 
 702 
Our analysis further demonstrates the limitations in inferring past generation times based on 703 
polymorphism patterns. The approach relies on the assumption that changes in the generation 704 
time play the sole (or a predominant) role in the evolution of the mutation spectrum. Yet we found 705 
that shifts in generation time could not explain the observed variations in the mutation spectrum 706 
on their own, leaving a non-negligible role for other factors––such as transient environmental 707 
exposures, genetic modifiers and other life history traits (e.g., changes in the onset of puberty)––708 
in shaping the mutation landscape in human populations. This conclusion is in line with recent 709 
studies in model organisms that discovered naturally occurring genetic modifiers (Jiang et al. 710 
2021; Sasani et al. 2021) as well as a human pedigree study that identified individuals with 711 
germline hypermutation potentially due to genetic modifiers or exposures to chemotherapeutic 712 
agents (Kaplanis et al. 2021).  713 
 714 
The variation in the mutation spectrum over the course of human evolution raises a fundamental 715 
puzzle about why the molecular clock works over long timescales and across species. Our 716 
analyses uncovered substantial variation in multiple pairwise mutation ratios at different time 717 
depths during human evolution. Since variation in each pairwise ratio suggests mutation rate 718 
variation for at least one (or both) of the mutation types involved, our findings suggest that the 719 
absolute mutation rate per year of several mutation types must have been evolving. For example, 720 
our result suggests the mutation rate for C>T mutations at nonCpG sites varied by ~15-20% in 721 
CEU over the past 3,000 generations. Over longer timescales, it is likely that all mutation types 722 
deviate from a strictly clock-like behavior. It is puzzling then that the mutation rates across species 723 
are strikingly similar over millions of years: for instance, the substitution rate differs by less than 724 
10% percent for any mutation type in the human and chimpanzee lineages (Moorjani, Amorim, et 725 
al. 2016). This observation suggests that although the mutation rate and spectrum can evolve 726 
over relatively short timescales, the fluctuations in mutation rate often average out over longer 727 
timescales, possibly reflecting the effects of long-term stabilizing selection.  728 
 729 
 730 
Materials and Methods 731 
 732 
Data availability 733 
All datasets analyzed here are publicly available at the following websites: 734 
  735 

Dataset Source Reference 
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High coverage 1000 Genomes Project https://www.internationalgenome.org/
data-portal/data-collection/30x-grch38 

(Byrska-
Bishop et al., 
2021) 

Low coverage 1000 Genomes Project http://www.1000genomes.org/categor
y/phase-3/ 

(1000 
Genomes 
Project 
Consortium 
et al. 2015) 

Archaic genomes: Neanderthal and 
Denisovans 

http://cdna.eva.mpg.de/neandertal/ (Meyer et al. 
2012; Prüfer 
et al. 2014) 

Introgressed regions from Neanderthals 
identified in non-Africans 

https://reich.hms.harvard.edu/dataset
s/landscape-neandertal-ancestry-
present-day-humans 

(Sankararam
an et al. 
2014) 

Introgressed regions from unknown ghost 
archaic hominin identified in Africans 

https://drive.google.com/file/d/1Q7iEdj
Cf7d4HnI65_JzjIYnsDP8G0Iy8/view 

(Durvasula 
and 
Sankararama
n 2020) 

Decode de novo mutations 2019  
(2,976 families) 

https://www.science.org/doi/10.1126/s
cience.aau1043 

 (Halldorsson 
et al. 2019) 

Decode de novo mutations 2017  
(1,548 families) 

https://www.nature.com/articles/natur
e24018#additional-information 

(Jónsson et 
al. 2017)  
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Goldman de novo mutations 2016  
(806 families) 

https://pubmed.ncbi.nlm.nih.gov/2732
2544/ 

(Goldmann et 
al. 2016) 

  736 
 737 
Data filtering and partitions used in the analysis  738 
 739 
Commonly accessible regions: In order to reliably compare mutation patterns across datasets, 740 
we generated a list of genomic regions that were “accessible” or assayed by the study after 741 
accounting for the constraints of the study design. To generate this list, we first followed the variant 742 
calling procedure described in Jonsson et al. 2017 to identify the accessible genome for de novo 743 
studies. This yielded an accessible genome length of 2.7 Gb similar to the estimate reported in 744 
the original study (Jónsson et al. 2017). We intersected this dataset with the 1000 Genomes Strict 745 
Mask (see Resources below). We used the strict mask generated using low coverage 1000 746 
Genomes dataset as it encompasses a larger set of low complexity regions and thus may port 747 
well across datasets. Further, to focus on putatively neutral regions, we removed exons and 748 
phylogenetically conserved regions sources). The combined set of accessible autosomal regions 749 
contained 2.15 Gb. Unless otherwise stated, we present all results generated for this subset of 750 
the autosomal genome, which we refer to as the “commonly accessible” regions. 751 
 752 
Regions of high and low recombination rate: To study the impact of recombination rate on 753 
mutation patterns, we divided the genome into bins sorted by recombination rate using the high-754 
resolution recombination map inferred from over 126,000 meioses in Icelandic pedigrees 755 
(Halldorsson et al. 2019). Briefly, for each position in the genome, we interpolated the 756 
recombination rate (excluding regions that fell outside the span of regions provided in 757 
(Halldorsson et al. 2019)). We then sorted all genomic sites by interpolated recombination rate 758 
and divided the genome into three discrete bins with recombination rates of (0, 2.6×10-4], (2.6×10-759 
4, 6.3×10-2], and (×10-2!"#$"%&'&(!")*%+"%,-.*/-/-0"1,20+34"556",7".+)"0)-,8/%"(*9)9:" 760 

B-statistic or B-scores: To focus on regions of the genome that are minimally affected by linked 761 
selection, we assigned a B-score to each variant site in a population. The B-score measures the 762 
expected reduction in diversity levels at a site due to background selection, with smaller values 763 
implying greater effects of background selection. We used the B-score values provided by 764 
(McVicker et al. 2009). We then compared the mutation patterns within windows of different 765 
values of B-scores. Additionally, where specified, we used the list of effectively neutral regions 766 
that contains the commonly accessible regions with a B-score > 800. This subset of the genome 767 
includes 1.33 Gb. 768 

Archaic regions: To explore the source of differences across human populations and their 769 
relationship to archaic hominins, we annotated variants in modern humans according to whether 770 
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they shared the derived allele with Neanderthals (Vindija or Altai) or Denisovans (Altai), where 0 771 
and 1 denote ancestral and derived alleles respectively. We generated three sets of variants: 772 
ND10: Neanderthals have the derived allele, but Denisovans have the ancestral allele. This set 773 
includes ~2,500,000 sites (not all of which are segregating variants in contemporary human 774 
populations). 775 
ND01: Neanderthals have the ancestral allele, but Denisovans have derived allele. This set 776 
includes ~2,100,000 sites. 777 
ND11: Both Neanderthals and Denisovans both have the derived alleles. This set includes 778 
~15,200,000 sites. 779 
ND: Either Neanderthals or Denisovans have a derived allele. This set includes ~19,800,000 sites. 780 
ND00: Neither Neanderthals nor Denisovans have a derived allele, while modern humans have 781 
derived alleles (i.e., all accessible sites excluding ND sites). Most of these sites have the ancestral 782 
allele in archaic hominins, though some derived variants may be missing or of low quality in 783 
archaic genomes (thus not annotated in the VCF file). 784 
 785 
Resources 786 
 787 

Dataset Source 

1000 
Genomes Strict 
Mask 

https://www.internationalgenome.org/announcements/genome-accessibility-
masks/ 

Recombination 
  rate map 

https://www.science.org/doi/10.1126/science.aau1043 
 

B-scores https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.10004
71 
 

Conserved 
regions 

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/phastConsElem
ents46wayPrimates.txt.gz 
 

Coding regions http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/refGene.txt.gz 
 

Human 
ancestral 
genome 

http://web.corral.tacc.utexas.edu/WGSAdownload/resources/homo_sapiens
_ancestor_GRCh38_e86 
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COSMIC 
signatures 
(v3.2, 
GRCh38) 

https://cancer.sanger.ac.uk/signatures/documents/453/COSMIC_v3.2_SBS
_GRCh38.txt 
 

 788 
Relate analysis  789 
We applied Relate v1.1.5 (Speidel et al. 2019) to phased whole genome sequences from the 1000 790 
Genomes Project (see Datasets). The 1000 Genomes data was phased and imputed statistically 791 
(Byrska-Bishop et al., 2021). As a result most singletons are missing in the phased data. We 792 
focused on biallelic SNPs only using VCFtools (--remove-indels --min-alleles 2 --max-alleles 2) 793 
(Danecek et al. 2011). We then converted VCFs to haps/sample format using RelateFileFormats 794 
(--mode ConvertFromVcf) and prepared the input files using PrepareInputFiles.sh provided by 795 
Relate. We used 1000 Genomes Pilot Mask as the genome accessibility filter and  the 6-EPO 796 
human ancestral genome to identify the most likely ancestral allele for each SNP. We assumed 797 
a mutation rate (m) of 1.25 x 10-8 per base pair per generation and an effective population size 798 
(N) of 30,000 (Jónsson et al. 2017). We used the Hapmap II genetic map (1000 Genomes Project 799 
Consortium et al. 2015). For each population, we inferred the mutation ages by splitting the Relate 800 
output genealogies into subtrees for each population using RelateExtract (--mode 801 
SubTreesForSubpopulation) and re-estimated the branch lengths (using 802 
EstimatePopulationSize.sh) to obtain the final mutation ages and the associated uncertainty 803 
(upper and lower bounds). For each mutation, we then inferred the upstream and downstream 804 
base pair based on the human ancestral genome. We annotated if the variant has a derived allele 805 
in Neanderthals and Denisovans using the publicly available genomes for Vindija Neanderthal, 806 
Altai Neanderthal and Altai Denisovan genome (see Datasets) and if it was previously identified 807 
as in a region that introgressed from Neanderthals (Sankararaman et al. 2014). Unless otherwise 808 
stated, we present the results for the commonly accessible regions. 809 
 810 
Binning of polymorphisms based on mutation age 811 
There is large uncertainty in the mutation ages estimated by Relate, such that the estimated lower 812 
and upper bounds often differ by an order(s) of magnitude or more. We took a two-step approach 813 
to bin the polymorphisms by age, accounting for this uncertainty. First, we determined the 814 
boundaries of age bins by sorting all SNPs segregating in CEU into 15 bins of roughly equal sizes 815 
with a Monte Carlo method (i.e., randomly selecting a point estimate by sampling a point uniformly 816 
between the upper and lower bounds of inferred allele age by Relate). We then calculated the 817 
pseudo-counts of each mutation type in each bin by summing up the probability densities across 818 
all variants, assuming a uniform distribution of each variant within the inferred age intervals. For 819 
example, if a T>A SNP has an estimated age range of (500, 1300) generations, which overlaps 820 
with three of the predetermined age bins (312, 545], (545, 1160], and (1160, 2970], we would 821 
assign the T>A SNP to three bins with the following weights (545-500)/(1300-500)=0.056,(1160-822 
545)/(1300-800)=0.769, and (1300-1160)/(1300-800)=0.175, respectively. We note that since the 823 
allele age distribution differs across populations due to differences in their demographic history, 824 
there is no way to bin variants equally for all populations simultaneously. For results shown in 825 
main figures, we based our binning into equal sizes on the age estimates of variants observed in 826 
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CEU. Results were qualitatively similar when the bin boundaries were determined based on 827 
variants observed in YRI and CHB samples (Figure 1—figure supplement 7; Figure 2—figure 828 
supplement 5).  829 
 830 
Calculating confidence intervals of polymorphism ratios and the statistical significance of 831 
inter-population differences 832 
To assess the confidence intervals (CIs) of the mutation ratios in polymorphism data, we assumed 833 
the pseudo-counts of the two mutation types being compared follow a binomial distribution 834 
conditional on the total count. In practice, we used the normal approximation for calculating the 835 
95% CI of the proportion for a given mutation type based on the observed counts of two types, 836 

using �̂� ± 𝑧%!"($%!")'!('"
, where n1 and n2 are the pseudo-counts of two mutation types,  �̂� = '!

'!('"
 is 837 

the point estimate of the probability of success, and z=1.96 is the Z-score corresponding to the 838 
upper 2.5%-tile. We then transformed the CI of fraction of one mutation type into that of the ratio 839 
of the two mutation types using (𝛼)*+,- , 𝛼.!!,-) = ( !#$%&'

$%!#$%&'
, !())&'
$%!())&'

). 840 

 841 
We performed chi-square tests to evaluate the statistical significance of inter-population 842 
differences in observed mutation ratios. Specifically, for each mutation ratio in each age bin, we 843 
constructed a 2xNpop contingency table, where each entry is the pseudo-count of observed 844 
polymorphisms of one of the two mutation types in a population. We then calculated the p-value 845 
of the χ2 statistic and corrected for multiple hypothesis testing by Bonferroni correction by 846 
multiplying the p-value by 15x4, which represents the product of the number of age bins and the 847 
number of mutation ratios studied (for Figure 2—figure supplement 4, we substituted the first 848 
number by the number of derived allele frequency bins).  849 
 850 
Sequence contexts related to COSMIC mutational signatures SBS7 and SBS11 851 
We downloaded loadings of the single base substitution (SBS) reference signatures on the 96 852 
trinucleotide mutation types from COSMIC website (v3.2, GRCh38; link provided under 853 
Resources). We found that both SBS7a/b and SBS11 consist of nearly exclusive C>T mutations, 854 
with 86.7% mutations caused by SBS7a/b concentrated in YCN contexts while 70.0% SBS11 855 
mutations are in NCY contexts, where Y represents pyrimidine (i.e., C or T) and N represents any 856 
base. Therefore, as proxies for mutations potentially affected by SBS7a/b and SBS11, we 857 
removed C>T mutations in YCN and NCY contexts in analysis corresponding to Figure 2B. 858 
 859 
Quantification of parental age effects on DNM counts and ratios 860 
We used a model-based approach to quantify the effects of paternal and maternal ages jointly by 861 
leveraging information from all phased and unphased DNMs. In short, as described in (Gao et al. 862 
2019), we modeled the expected number of DNMs inherited from a parent as a linear function of 863 
parental age at conception, and assumed that the observed number of DNMs follows a Poisson 864 
distribution. Using a  maximum likelihood approach, we estimated the sex-specific slopes and 865 
intercepts (at age zero) for each mutation ratio. Confidence intervals of the slopes and intercepts 866 
were assessed by bootstrap resampling of trios. With these estimated parental age effects, we 867 
then predicted the expected count of each mutation type and the pairwise ratios under given 868 
combinations of maternal and paternal ages, such as shown in the left panel of Figure 3.  869 
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 870 
For analysis corresponding to Figures 3 and 4, we inferred the parental age effects based on a 871 
DNM dataset from 2,976 Icelandic trios  (Halldorsson et al. 2019). Five trios have exceedingly 872 
large numbers of DNMs given the parental ages (Proband IDs: 24496, 71657, 8008, 64783, 873 
126025) and were removed in our analysis. Given the evidence for a non-linear effect of maternal 874 
age (i.e., a more rapid increase in maternal mutations at older ages) (Gao et al. 2019), we further 875 
excluded 92 trios with maternal ages above 40 in our analysis. Overall, DNM data from 2,879 trios 876 
were used for inference of (linear) parental age effects on DNMs. We also replicated the analysis 877 
(Figure 3—figure supplement 1; Figure 4—figure supplement 2) with an earlier dataset of DNMs 878 
from 1,548 Icelandic trios, excluding 73 trios with maternal ages above 40 (Jónsson et al. 2017). 879 
 880 
Inference of generation time corresponding to the observed polymorphism ratios 881 
Under the scenario of co-varying paternal and maternal reproductive ages, we inferred the 882 
generation time by solving the system of linear equations: 883 
/!
/0

= 𝛾, where 𝛾=0.8, 1, 1.1, or 1.2 is the assumed ratio of paternal to maternal ages;  884 
and 885 
(1)!/!(2)!)((1*! /0(2*! )
(1)"/!(2)")((1*" /0(2*" )

= 𝑅$,4, where 𝛽  and 𝛼 are the slopes and intercepts estimated from DNM 886 

data for maternal (m) or paternal age (p) effects and R is the observed ratio of pseudo-counts of 887 
two mutation types (indicated with superscript 1,2) in an age bin. 888 
 889 
To evaluate the uncertainty in the generation time estimates, we solved the equation system 890 
with maximum likelihood estimates from each bootstrap replicate of pedigree data and obtained 891 
90% CIs of the inferred generation times from the overall distribution of estimates across all 892 
replicates. 893 
 894 
Under the scenario of independently varying paternal and maternal reproductive ages, the 895 

combinations of (Gp, Gm) that satisfy (1)
!/!(2)!)((1*! /0(2*! )

(1)"/!(2)")((1*" /0(2*" )
= 𝑅$,4 follow a simple linear 896 

constraint, when other parameters are set. Therefore, we plotted in a two-dimensional plot the 897 
linear combinations of (Gp, Gm) corresponding to each observed polymorphism ratio and the 898 
slope and intercept estimates from all bootstrap replicates and compared the distribution of 899 
linear constraints across mutation ratios (Figure 4—figure supplement 2). 900 
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  915 
Figure 1––figure supplements. 916 
Figure supplement 1. Mutation spectra of human polymorphisms stratified by allele age. 917 
The ancestral allele of each SNP is determined based on the human ancestral allele, and the 918 
allele age inferred by using Relate (Speidel et al. 2019). Populations are coded the same way 919 
as in the 1000 Genomes project (same below): YRI-Yoruba in Ibadan, Nigeria; LWK-Luhya in 920 
Webuye, Kenya; CEU-Utah Residents (CEPH) with Northern and Western European ancestry; 921 
TSI-Toscani in Italia; CHB-Han Chinese in Bejing, China; and JPT: Japanese in Tokyo, Japan. 922 
 923 
Figure supplement 2. Mutation spectrum of SNPs found in CEU in comparison to that of 924 
de novo mutations identified in trios from Iceland. “DNM 2019” denotes DNM data from 2,879 925 
Icelandic trios (Halldorsson et al. 2019), from which five trios with exceedingly large numbers of 926 
DNMs and 92 trios with maternal age above 40 were excluded. “DNM 2017” denotes DNM data 927 
from 1,475 Icelandic trios from (Jónsson et al. 2017), excluding 73 trios with maternal age above 928 
40. All polymorphisms and DNMs were filtered to the commonly accessible region. 929 
 930 
Figure supplement 3. Mutation spectra of CEU polymorphisms and DNMs from Icelandic 931 
trios, excluding C>T transitions at CpG sites.  932 
 933 
Figure supplement 4. Mean and distribution of B-scores of different mutation types. We 934 
show the mean and the distribution of B-scores (measures the reduction in nucleotide diversity 935 
levels compared to neutral expectation (McVicker et al. 2009) (0-high constraint; 1000-low 936 
contraint) for different mutation types. 937 
 938 
Figure supplement 5. Mutation spectra of human polymorphisms in genomic regions with 939 
weak background selection (B-score>800). The box represents the interquartile range, with 940 
the centerline showing the median value. 941 
 942 
Figure supplement 6. Fractions of S>S, S>W, W>S, and W>W mutations in variants 943 
stratified by derived frequency (A) and allele age (B). The enrichment of weak (W)> strong (S) 944 
mutations and depletion of S>W mutations in variants with higher derived allele frequencies and 945 
old allele ages support profound effects of GC-biased gene conversion (gBGC) on human 946 
polymorphisms and biases in allele age dating by Relate, which ignores gBGC. 947 
 948 
Figure supplement 7. Mutation spectra of human polymorphisms stratified by allele age 949 
based on alternative binning strategies. The age bin boundaries were determined based on 950 
allele age distribution of variants observed in YRI (A) and CHB (B) samples, respectively. 951 
  952 
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Figure 2––figure supplements. 953 
Figure supplement 1. Pairwise polymorphism ratios in three additional populations of 954 
African (LWK), European (TSI), and East Asian (JPT) ancestry in the 1000 Genomes project. 955 
The three signals of differences between YRI, CEU and CHB, are observed in LWK, TSI and JPT, 956 
with slight differences in the timing and magnitude of differences. Additionally, TSI shows a slightly 957 
elevated T>C/T>G ratio in recent time windows, which is absent in CEU and possibly represents 958 
another signal.  959 
 960 
Figure supplement 2. Pairwise polymorphism ratios in genomic regions with weak 961 
background selection (B-score >800). 962 
 963 
Figure supplement 3. Pairwise polymorphism ratios in 33% of the genome with the lowest 964 
(A) and highest (B) regional recombination rates. 965 
 966 
Figure supplement 4. Pairwise ratios of human polymorphisms stratified by allele 967 
frequency. Unlike Figure 2 and its figure supplements, this analysis was performed on all non-968 
singleton variants, including unphased SNPs and those undated by Relate. Singletons were 969 
removed because they showed very different mutation ratios compared to all other variants, 970 
indicating higher false positive rates. We note that the derived allele frequency is a poor proxy for 971 
allele age, and variants at the same (sample) frequency can have drastically different ages within 972 
and across populations, which renders the inter-population comparisons difficult to interpret. 973 
However, for recent changes in the mutation spectrum, we expect the mutation ratios of low-974 
frequency variants to differ across populations, as those variants are likely to be young. 975 
Consistent with this expectation, the two post-OOA signals in nonCpG C>T/C>A and C>G/T>A 976 
ratios are replicated in variants at low and intermediate frequencies. The signal of T>C/T>G in 977 
ancient variants is discernible in low-frequency variants (DAF<5%) but weak in high frequency 978 
variants, possibly because most of those ancient variants are segregating at low frequencies.  979 
 980 
Figure supplement 5. Pairwise polymorphism ratios in YRI, CEU, and CHB in commonly 981 
accessible regions based on alternative binning strategies. The age bin boundaries were 982 
determined based on allele age distribution of variants observed in YRI (A) and CHB (B) samples, 983 
respectively.  984 
 985 
Figure supplement 6. Alternative pairwise polymorphism ratios (T>G/T>A and C>G/C>A) 986 
to investigate the cause of inter-population differences in C>G/T>A ratio. 987 
 988 
Figure supplement 7. Replication of the T>C/T>G signal with alternative derived allele 989 
polarization and region stratification by ancestry of reference genome. (A) The ancestral alleles 990 
polarized to the chimpanzee reference allele. (B) Genomic regions are stratified based on 991 
ancestry of human reference genome (African or European). Results are not shown for the small 992 
fraction of reference genome of Asian ancestry. The T>C/T>G is no longer significant in the two 993 
subsets of the genome due to reduction in sample size, but YRI still shows a higher ratio than 994 
CEU and CHB in both subsets with similar magnitude of elevation.  995 
 996 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496622doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496622
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

Figure supplement 8. T>C/T>G ratio in YRI, CEU and CHB excluding variants for which the 997 
derived alleles are found in Denisovans (A), Neanderthals (B), and both (C). The absence of 998 
significant signals in non-ND11 variants (C) is not purely due to a reduction in sample size, as the 999 
set of ND11 variants is much smaller but shows highly significant differences between YRI and 1000 
the other two populations (Figure 2D).  1001 
 1002 
Figure supplement 9. Alternative pairwise polymorphism ratios (T>C/T>A and T>A/T>G) to 1003 
investigate the cause of inter-population differences in T>C/T>G ratio. The significant 1004 
differences in recent time windows (<3000 generations) in T>C/T>A and T>A/T>G comparison 1005 
are driven by differences in T>A mutation rate (CHB >CEU>YRI), which is consistent with findings 1006 
in Figure 2—figure supplement 6. 1007 
 1008 
Figure supplement 10. Pairwise polymorphism ratios in YRI, CEU, and CHB in commonly 1009 
accessible regions excluding variants shared with Neanderthals and/or Denisovans. 1010 
 1011 
 1012 
 1013 
Figure 3––figure supplements. 1014 
Figure supplement 1. Effects of parental ages on three pairwise mutation ratios estimated 1015 
from an earlier DNM dataset ((Jónsson et al. 2017)). Shown on the right are the observed ratios 1016 
of polymorphisms in CEU stratified by allele age. All results are based on variants in the commonly 1017 
accessible regions, excluding those with derived alleles observed in either Neanderthal or 1018 
Denisovan or both. 1019 
 1020 
Figure supplement 2. Discrepancies in the mutation spectrum between DNM datasets and 1021 
between DNMs and young polymorphisms. Panel (A) shows the fractions of seven mutation 1022 
types in two DNM datasets (Halldorsson et al. 2019; (Jónsson et al. 2017)) as well as in CEU 1023 
SNPs in the three most recent time windows. Young polymorphisms are depleted of C>T 1024 
transitions at CpG sites compared to DNMs, consistent with the expectation that recurrent 1025 
mutations are undated and ignored by Relate. As we previously noted (Gao et al. 2019), the 1026 
fraction of C>A mutation in 2017 DNM dataset is substantially lower than that in polymorphisms, 1027 
which indicates under-detection and is somewhat ameliorated in the 2019 DNM dataset. Panel 1028 
(B) shows that, in addition to differences in C>T/C>A ratios at both CpG and nonCpG sites, the 1029 
two DNM datasets also differ significantly in the T>C/T>G ratio, suggesting additional technical 1030 
differences in mutation identification (note that the 2017 dataset is a subset of the 2019 dataset). 1031 
Furthermore, the C>G/T>A ratios of both DNM datasets are significantly higher than that in young 1032 
polymorphisms, highlighting technical differences between variant detection in DNM study and 1033 
population dataset. (TBD add goldmann dataset?) 1034 
 1035 
Figure supplement 3. Sex-specific parental age effects on three pairwise mutation ratios. 1036 
In the upper panel, the background color represents the expected DNM ratio given the paternal 1037 
(x-axis) and maternal (y-axis) age, with darker colors representing greater values. Each colored 1038 
line represents the linear combinations of paternal and maternal ages corresponding to a certain 1039 
mutation ratio observed in polymorphisms in an age bin. The vertical patterns for nonCpG 1040 
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C>T/C>A and T>C/T>G ratios suggest that these two ratios are insensitive to the maternal age. 1041 
The lower panel shows the observed polymorphism ratios ordered by allele age (same data as in 1042 
Figure 2—figure supplement 10), with the colors matching those of lines in the upper panel. 1043 
 1044 
Figure 4––figure supplements. 1045 
Figure supplement 1. Past generation times corresponding to the observed pairwise 1046 
polymorphism ratios, assuming fixed ratio of male to female generation times of 0.8 (A), 1047 
1.1 (B) and 1.2 (C). The parental age effects were inferred from DNM data of 2,879 Icelandic trios 1048 
from  (Halldorsson et al. 2019). 1049 
 1050 
Figure supplement 2. Past generation times corresponding to the observed pairwise 1051 
polymorphism ratios, based on parental age effects estimated from an earlier DNM data 1052 
((Jónsson et al. 2017)). In each panel, the ratio of male to female generation times is assumed to 1053 
be fixed throughout time at 0.8 (A), 1 (B) and 1.2 (C), respectively. 1054 
 1055 
Figure supplement 3. Combinations of paternal and maternal reproductive ages 1056 
corresponding to the observed pairwise polymorphism ratios. Under the assumption of 1057 
linear parental age effects on the mutation rate of each mutation type, a specific value of pairwise 1058 
polymorphism ratio places a linear constraint on the values of paternal and maternal reproductive 1059 
ages (denoted by Gp and Gm), which is represented by a line in each plot. Blue lines represent 1060 
predicted constraints based on the maximum likelihood estimators of mutation parameters 1061 
estimated from DNM data ((Halldorsson et al. 2019)); gray lines show constraints from 500 1062 
bootstrap replicates by resampling trios with replacement. Panels (A) and (B) show the same 1063 
results but with Gm and Gp shown on the x- and y-axes respectively, in order to illustrate their 1064 
temporal trends. Consistent with results shown in Figure 3—figure supplement 3, the T>C/T>G 1065 
and nonCpG C>T/C>A ratios are relatively insensitive to Gm and largely determined by Gp, so 1066 
the temporal trends of these two mutation ratios in panel (B) mirror those of Figure 4. The 1067 
C>G/T>A depends on both Gp and Gm, so its temporal trend in both panels (A) and (B) mirrors 1068 
that shown in Figure 4. Note that for each time window, the gray areas predicted by three 1069 
polymorphism ratios barely, if at all, overlap, suggesting that no combination of (Gp, Gm) values 1070 
can explain the three observed polymorphism ratios simultaneously. In addition, the temporal 1071 
trends predicted by the three polymorphism ratios disagree with each other. 1072 
 1073 
  1074 
Supplementary files 1075 
The source data can be downloaded from: 1076 
https://www.dropbox.com/s/552lhlsm5tplp0i/MutSpecGentime2022_SourceData.zip?dl=0 1077 
 1078 
Source data 1. Relate output for SNPs in commonly accessible region with additional 1079 
annotation (one file for each population of YRI, LWK, CEU, TSI, CHB, JPT); 1080 
Source data 2. Text file with (pseudo-)counts of different types of mutations in YRI, LWK, CEU, 1081 
TSI, CHB, JPT in each time window.; 1082 
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Source data 3: Mutation parameters inferred from DNM data in 2,879 Icelandic trios with 1083 
estimated uncertainty based on bootstrap resampling (one file for each mutation type for 1084 
commonly accessible regions excluding archaic sites; n=500 replicates). 1085 
Source data 4: Past generation times inferred from each polymorphism ratio, assuming fixed 1086 
ratios of male to female generation times (Gp/Gm=0.8, 1, 1.2), with confidence intervals 1087 
estimated using bootstrap resampling (n=500 replicates; one file for each mutation type). 1088 
 1089 
 1090 
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