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Abstract6

While adaptive cancer therapy is beginning to prove a promising approach of building evolutionary dynamics7

into therapeutic scheduling, the stochastic nature of cancer evolution has rarely been incorporated. Various sources8

of random perturbations can impact the evolution of heterogeneous tumors. In this paper, we propose a method9

that can effectively select optimal adaptive treatment policies under randomly evolving tumor dynamics based on10

Stochastic Optimal Control theory. We first construct a stochastic model of cancer dynamics under drug therapy11

based on Evolutionary Game theory. That model is then used to improve the cumulative “cost”, a combination12

of the total amount of drugs used and the time to recovery. As this cost becomes random in a stochastic setting,13

we maximize the probability of recovery under a pre-specified cost threshold (or a “budget”). We can achieve our14

goal for a range of threshold values simultaneously using the tools of dynamic programming. We then compare our15

threshold-aware policies with the policies previously shown to be optimal in the deterministic setting. We show16

that this threshold-awareness yields a significant improvement in the probability of under-the-budget recovery,17

which is correlated with a lower general drug usage. The particular model underlying our discussion has originated18

in [22], but the presented approach is far more general and provides a new tool for optimizing adaptive therapies19

based on a broad range of stochastic cancer models.20

Keywords: adaptive therapy, tumour heterogeneity, evolutionary game theory, environmental stochasticity,21

stochastic optimal control, threshold-aware optimal treatment policy22

1 Background23

The advent of personalized medicine in cancer has changed the way we think about chemotherapy for patients24

whose tumors have actionable mutations. This has been a game changer for some patients, drastically increasing25

life spans, reducing toxicity and improving quality of life. Frustratingly, however, this population of patients is26
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2 Stochastic optimization of adaptive cancer therapy

still small; it was estimated in 2020 that only ≈ 5% of patients benefit from these targeted therapies [17]. Further,27

despite the many advantages of personalized therapies, they rarely, if ever, lead to a complete cure since tumors28

develop resistance through the process of Darwinian evolution [14].29

In response to this realization, a new approach called “evolutionary therapy” seeks to use the evolutionary30

dynamics of diseases to alter therapeutic schedules and drug choices. Through a combination of mathematical31

and experimental modeling, investigators have worked to understand a range of theoretical questions of practical32

importance. E.g., how does the emergence of resistance to one drug affect the sensitivity to another? Do33

heterogeneous (phenotypically or genotypically mixed) populations within tumors respond to drugs differently34

depending on their current state? The insights gained in these investigations have already led to progress in35

rational drug ordering/cycling for bacterial infections [19, 26, 29, 30] as well as for a number of cancers [7,36

37]. In the study of therapeutic scheduling, adaptive therapy, which uses mathematical tools from Evolutionary37

Game Theory (EGT), has shown promise not only in theory [13], but also in a phase 2 trial for men with38

metastatic prostate cancer [36]. Experimentally, there have been confirmations of EGT principles in vivo[9] as39

well as more quantitatively focused assay development in vitro [21], and observations of game interactions using40

these methods [10]. The majority of theoretical work in this space has focused on simulation-based numerical41

optimization of different drug regimens for deterministic models of cancer evolution [5, 6, 33, 34]. In this paper,42

our goals are (a) to extend such game-theoretic models to account for stochastic perturbations and (b) to provide43

efficient computational tools for this more general setting.44

Our previous paper [15] has focused on a deterministic model [22] and showed the advantages of performing such45

optimization in the framework of Dynamic Programming (DP) [2]. The key idea was to leverage the competition46

among different sub-populations of cancer cells to improve the timing and duration of the drug therapy. We47

showed how DP could be used by a clinician, with appropriate data, to formally optimize outcomes given a48

discussion about patient’s goals (to include tradeoffs between toxicity and quality of life, for example). While49

our approach represented a meaningful step toward the application of DP to cancer therapy, it relied on several50

simplifying modeling assumptions. One of the more significant (and more limiting) among them was due to our51

ignoring stochasticity as an important aspect of cancer biology.52

Cancer (and other populations of living things) are comprised of individual cells (or organisms) with their own53

behaviours and evolutionary histories. Stochastic phenomena are ubiquitous in their interactions. These include54

individual genetic differences, fate transitions [16], varying reactions to drugs [23], differences in signalling, and55

small-scale variations in tumor microenvironment. Many instances of such demographic stochasticity [24] can be56

safely “averaged-out” when dealing with a sufficiently large population. Indeed, this notion is crucial for any57

description of tumor heterogeneity through splitting the cells into sub-populations. Such splitting is natural if58

the mutation-selection balance is tuned so that only closely related genotypes, encoding the same phenotype, will59

stably exist. These groups are also referred to as quasispecies [25, 35] and exist as distributions around a central60

genotype, with all cells in the group behaving in a similar manner despite random birth/death events [8, 24] and61

small within-the-group genetic heterogeneities [20]. In contrast, our focus here is on environmental stochasticity,62

which cannot be ignored even in large populations since it describes random events that simultaneously affect the63
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entire groups. Such perturbations are typically external [8, 24]; e.g., for cancer they might result from therapy-64

unrelated drugs or from frequent small changes in the host’s physiology.65

Modeling such perturbations in continuous-time usually results in Stochastic Differential Equations (SDEs)66

[1, 3], whose behavior can be optimized using Stochastic Optimal Control Theory [11]. The latter provides a67

mathematical framework for handling sequential decision making (e.g., how much drug to administer at each point68

in time) under random perturbations (e.g., stochastic changes in respective fitness of competing subpopulations of69

cancer cells). Any fixed treatment strategy will result in a random tumor-evolutionary trajectory and a random70

cumulative cost (e.g., cumulative amount of drugs used, or time to recovery, or a combination of these two metrics).71

The key idea of DP is to pose equations for the cumulative cost of the optimal strategy and to recover that strategy72

in feedback form: i.e., decisions about the dose and duration of therapy are frequently re-evaluated based on the73

current state of the tumor instead of selecting a fixed time-dependent treatment schedule in advance. We follow74

this approach here, but with an important caveat: instead of selecting an on-average optimal strategy (e.g., the75

one which minimizes the expected cost of treatment) as would be usual in stochastic DP, we select a strategy76

maximizing the probability of some desirable outcome (e.g., patient’s recovery without exceeding a specific cost77

threshold). Our choice of optimization objective is primarily due to a possibility of failure (e.g., a patient dying78

despite the therapy), which makes any description of expected cost heavily dependent on the perceived cost of79

such failure – a quantity that would be hard to justify in many biomedical applications.80

As is often the case, there remains a significant gap between simplified mathematical models and clinical81

applications. Much work remains in refining and calibrating EGT models, and also in measuring different aspects82

of biological stochasticity. But our main contribution is a new computational tool for the evolutionary therapy83

toolbox, with a broad applicability to stochastic cancer models, which will become increasingly realistic in the84

future.85

2 Methods86

2.1 Base deterministic model and effects of stochastic perturbations87

We adopt the base model of cancer evolution proposed by Kaznatcheev et al. in [22], which describes a competition88

of 3 types of cancer cells. Glycoltyic cells (GLY) are anaerobic and produce lactic acid. The other two types89

are aerobic and benefit from better vasculature, development of which is promoted by production of the VEGF90

signaling protein. Thus, the VEGF (over)-producing cells (VOP) devote some of their resources to vasculature91

development, while the remaining aerobic cells are essentially free-riders or defectors (DEF) in game-theoretic92

terminology. The respective proportions of these types in the overall population of cancer cells is encoded by93

(xG, xD, xV). The competition of cells in the tumor is thus modeled as a “public goods” / “club goods” game:94

VEGF is a “club good” since it benefits only VOP and DEF cells, while the acid generated by GLY is a “public95

good” for all cancer cells since it is damaging for the surrounding non-cancerous tissue. The fundamental model96

in [22] is based on a game of (n + 1) locally interacting cells, and the fitness of each of them depends on the97

current xG, xD, and xV. It was observed that, for a range of parameter values, these subpopulations exhibit98
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“cyclic dominance”: when GLY are in the majority, VOP have the highest fitness; when VOP are in the majority,99

DEF have the highest fitness; and when DEF are in the majority, GLY are the fittest. A replicator equation100

[18, 31] is a standard EGT model for predicting the changes in type-proportions as a function of time. For the101

cyclic dominance described above, it predicts periodic orbits, in which xG(t), xD(t), and xV(t) alternate in being102

dominant in the tumor, with the amplitude of oscillations determined by the initial conditions; see Figure 1(A).103

However, this periodicity is destroyed when one recognizes that fitness functions are also subject to stochastic104

perturbations. The nature of perturbations is detailed below, but the result is illustrated in Figure 1(B).105

(a) (b)

Figure 1: A comparison between natural (i.e., without therapy) deterministic and stochastic dynamics starting
from an initial state (xG, xD, xV) = (0.9, 0.04, 0.06) (magenta dot): (a) deterministic; (b) stochastic. We adopt the settings
in [15] to use blue background and green trajectory as indications of not prescribing any drugs. The vector field is shown by
gray arrows. Here we use dashed cyan lines to indicate recovery and failure barriers. Top row: sample trajectories on a
GLY-DEF-VOP triangle. Bottom row: evolution of sub-populations with respect to time based on the reference trajectories
from the top row.

In both the original deterministic case and its stochastic extension, it is easier to view the replicator equation106

as a 2-dimensional system (e.g., by noting that xD = 1 − xG − xV). Following [22], we use a slightly different107

reduction, rewriting everything in terms of the proportion of glycolitic cells in the tumor p(t) = xG(t) and the108

proportion of VOP among aerobic cells q(t) = xV(t)/(xV(t) + xD(t)). A drug therapy (e.g. affecting the fitness of109

GLY cells only) is similarly easy to encode by modifying the replicator equation; see equation (2.2) in Box 1 and110

the Supplementary Materials in [22] for the derivation. This original deterministic model provided a simple and111

very convincing illustration for the importance of proper timing in therapies: starting from the same initial tumor112

composition (q0, p0), the same MTD therapy of a fixed duration could lead to either a cure (p(t) falling below the113

specified “recovery barrier” rb) or a death (p(t) rising above the specified “failure barrier” 1 - fb) depending on114

how long we wait until this therapy starts.115
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This strongly suggests the advantage of adaptive therapies, which prescribe the amount of drugs based on

continuous or occasional monitoring of (q(t), p(t)) or some proxy (non-invasively measured) variables. A natural

question is how to optimize such policies to reduce the total amount of drugs used and the total duration of

treatment until p(t) < rb. Gluzman et al. have addressed this in [15] using the framework of optimal control

theory [11]. A time-dependent intensity of the therapy d(t) (ranging from 0 to the MTD level dmax) was chosen

to minimize the overall cost of treatment J (q0, p0, d(·)) =
T∫
0

d(t) ds + δT, where T is the time till recovery

and the treatment time penalty δ > 0 encodes the balance between the two optimization goals (total drugs vs

total time). They obtained the deterministic-optimal policy in feedback form (i.e., d = d∗(q, p)) using the tools

of dynamic programming [2]. The mathematical structure of this problem makes it easy to show that an optimal

therapy will be “bang-bang” – i.e., d∗(q, p) prescribes either zero drugs or drugs at the MTD-rate dmax for every

possible tumor composition. Figure 2(A) summarizes that deterministic-optimal policy and shows an example

of the corresponding trajectory for one specific initial (q0, p0). However, if the fitnesses of subpopulations are

subject to stochastic perturbations detailed in subsection 2.2, then the resulting trajectory becomes random, and

the actual cost J incurred along it can vary significantly; see the example in Figure 2(B). In fact, some samples

might actually end up in failure (with stochastic perturbations pushing p(t) above 1 − fb). Gathering statistics

from many random simulations that start from the same (q0, p0), we can approximate the Cumulative Distribution

Function (CDF), measuring the probability of keeping J below any given threshold s:

Fd∗(s) = P (J ≤ s) ,

whose graph is shown in Figure 2(C). It shows, for example, that even though J averaged over all simulations that116

resulted in recovery was 4.90, which is not far from 5.13 predicted in deterministic case, at least 22% of simulations117

resulted in a significantly higher J > 5.5. This motivates our optimization strategy for the stochastic problem:118

deriving a threshold-aware optimal policyI ds̄∗ to maximize the probability of recovery without exceeding the cost s̄.119

As shown in Figure 2(C), such policies can provide a significant threshold-advantage over the deterministic-optimal120

therapy.121

2.2 The stochastic model and the optimization problem122

In the deterministic model described above, the discussion typically starts by considering the actual sizes of123

cancer subpopulations (zG, zD, zV), whose respective rates of growth/decay are assumed to be the respective124

subpopulation fitnesses (ψG, ψD, ψV). Since these fitnesses are determined by the current subpopulation fractions125 (
xG =

zG
zG+zD+zV

, xD =
zD

zG+zD+zV
, xV =

zV
zG+zD+zV

)
, it is natural to derive equations that model the evolution126

of the latter. This is precisely the idea of the “replicator” Ordinary Differential Equations (see Supplementary127

Materials section 1S), which is stated in the reduced (q, p) coordinates in Box 1.128

A common way to introduce stochastic perturbations into this base model is to assume that the rates of129

subpopulation growth/decay are actually random and normally distributed at any instant, with the fitness func-130

IIn the interest of computational reproducibility, we provide the full source code for computing threshold-aware policies at https:

//github.com/eikonal-equation/Stochastic-Cancer
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(a) (b) (c)

Figure 2: Stochastic driven system with deterministic-optimal policy starting from an initial state (q0, p0) =
(0.26, 0.665) (magenta dot): (a) the optimal trajectory found by deterministic driven system (2.2) with cost 5.13; (b) two
representative sample paths generated under the deterministic-optimal policy but subject to stochastic fitness perturbations
(the brighter one has a cost of 3.09 while the other has a cost of 6.06); (c) CDFs of the cumulative cost J approximated
using 105 random simulations. In both (a)&(b), green part of a trajectory/path means not prescribing drugs and red part
of a trajectory/path means prescribing drugs at MTD rate. The level sets of the value function in the deterministic case
are shown in light blue. In (c), the solid blue curve is the CDF generated with the deterministic-optimal policy. Its median
(dashed blue line) is 4.94 while its mean conditioning on success is 4.90. The solid green curve is the CDF generated with
the threshold-aware policy with s̄ = 4.50; and the solid red curve is the CDF generated with the threshold-aware policy with
s̄ = 4.94.

tions (ψG, ψD, ψV) encoding the expected values of those rates and the scale of random perturbations specified131

by (σG, σD, σV). This approach, originating from Fudenberg and Harris paper [12], is suitable for modeling het-132

erogeneous tumors, in which subpopulations not only interact,[27] but can also vary in their growth rates over133

time.[32] Adopting the usual probabilistic notation of using capital letters for random variables, we can again start134

with the subpopulation sizes (ZG, ZD, ZV) and derive the Stochastic Differential Equations modeling the evolution135

of (XG, XD, XV). The details of the derivation are in Supplementary Materials section 2S, but the summary is136

reported in in Box 2. Following [15], we also assume the drug therapy targets GLY cells only; the resulting effect137

is included in equation (2.9) for the reduced coordinates (Q, P ).138

As before, the process terminates as soon as P (t) crosses a recovery barrier (GLY’s are low, the patient is139

“cured”) or the failure barrier (GLY’s are high, the patient dies). But the terminal time T and the incurred140

cumulative cost J will also be random even if we fix the initial tumor configuration (q0, p0) and choose a specific141

treatment policy d(·). It might feel natural to select a policy minimizing the expected J , but since there is a142

non-zero probability of failure under every policy, this expectation is actually infinite. So, our alternative approach143

is to select a policy maximizing the probability of desirable outcomes; i.e., the probability P(J (q0, p0, d(·)) ≤ s̄),144

where s̄ > 0 is a desired cost threshold. Our goal is to compute such threshold-aware policies efficiently for145

all starting tumor configurations (q0, p0) and all threshold levels s̄ simultaneouslyII. It is easy to see that here146

feedback policies will have to determine the drug administration rate d(·) based on the current tumor configuration147

and the cost accumulated so far. This makes it natural to treat our chosen s̄ as an initial cost budget, tracking148

the remaining budget s(t) by solving Eq. (2.17) in Box 3.149

IIA similar approach has been recently developed in [4] for controlling “piecewise-deterministic” processes, where perturbations happen
at discrete points in time and amount to abrupt switches in system dynamics.
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7 Stochastic optimization of adaptive cancer therapy

To solve this optimization problem, we define a value function v(q, p, s) = max
d(·)

P(J (q, p, d(·)) ≤ s), encoding150

the maximized chance of starting with (q, p) and curing the patient without exceeding s. It can be shown that151

v satisfies Eq. (2.14) in Box 3, which can be solved numerically; see section 4S.1 for detailed derivations and152

section 5S.1 for a description of our numerical method. The value function is useful due to the fundamental tail153

optimality property underlying most dynamic programming approaches: the optimal strategy from the current154

state is the same as it would have been if we started here. In our context, this means that v can be used to155

produce the optimal d∗(q, p, s), where (q, p) is the current tumor and s is the current remaining budget. So,156

starting with Q(0) = q0, P (0) = p0, the threshold-aware optimal policy for a target threshold s̄ can be obtained157

as ds̄∗ = d∗
(
Q(t), P (t), s(t)

)
, where s(0) = s̄. As the time increases, we use up some of the budget (decreasing158

s(t)) and slide into the lower s-slices of v to determine the new optimal rate of drug administration. The process159

continues until the patient is either cured or dies or our budget is exhausted (s(t) = 0).160

We note that this s-dependent feedback format is in contrast with the deterministic-optimal policies from [15]161

which were determined based on the current tumor configuration only. But one can show that the optimal policy162

in our stochastic case is still bang-bang ; i.e., d∗(q, p, s) always prescribes either 0 (no drugs) or dmax (the MTD163

level); see section 4S.1.164

3 Results165

The results in this section are obtained by solving the optimal control problem described in Box 3. The parameter166

values dmax = 3, ba = 2.5, bv = 2, c = 1, n = 4 are the same ones provided in Kaznatcheev et al. [22] and Gluzman167

et al. [15]. However, we use rb = fb = 10−2 and δ = 0.05 as opposed to rb = fb = 10−1.5 and δ = 0.01 in [15].168

Additionally, here we consider small uniform constant volatilities σG = σD = σV = 0.15, characterizing the scale169

of random perturbations in fitness function for all 3 cancer subpopulations. Example with different volatilities can170

be found in section 6S of Supplementary Materials. To be consistent with [15], in all of our figures, the drugs-on171

region (at the MTD level) is shown in yellow and the drugs-off region is shown in blue.172

3.1 Threshold-aware treatment policies and optimal probability of success173

In Figure 3, we present some representative s-slices of threshold-aware optimal policies and their corresponding174

optimal probability of success for these specific threshold valuesIII. We observe that the drugs-on region is strongly175

s-dependent and completely different from the one in the deterministic-optimal case shown in Figure 2(A)&(B).176

Note that since now the cancer evolution follows a stochastic dynamics given in (2.9), one would have different177

optimal sample paths for different realizations of random perturbations even if the starting configuration stays178

the same. We show 3 representative random paths in Figure 4. In particular, Figure 4(A) shows a sample path179

that leads to recovery incurring the total cost of 4.60, which is below our initial budget s̄ = 5.0. We will use this180

example to illustrate how threshold-aware policies work.181

Starting from the initial budget s̄ = 5.0, the optimal decision on whether to use drugs right away is based182

IIIMovies with additional information for Figures 3 and 4 are available at https://eikonal-equation.github.io/Stochastic-Cancer/
examples.html
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Box 1: Cancer evolution model from Kaznatcheev et al. [22] and optimal control problem from Gluzman

et al. [15]

(xG, xD, xV) for GLY, DEF, and VOP respectively.

Note: xG + xD + xV = 1.


q =

xV

xV + xD

,

p = xG,

or


xG = p,

xD = (1− q)(1− p),

xV = (1− p)q.

(2.1)

Evolution dynamics in reduced coordinates

with control on therapy intensity:



q̇(t) = q(t)
(
1− q(t)

)(
bv

n+1

n∑
k=0

pk(t)− c
)
=: β(q, p),

ṗ(t) = p(t)
(
1− p(t)

)(
ba

n+1
− (bv − c)q(t)− d(t)

)
=: α(q, p, d);

q(0) = q0, p(0) = p0.

(2.2)
Definitions and Parameters:

• d : R+ → [0, dmax], time-dependent intensity of GLY-targeting therapy

• ba, the benefit per unit of acidification;

• bv, the benefit from the oxygen per unit of vascularization;

• c, the cost of production VEGF;

• (n+ 1), the number of cells in the interaction group.

Conditions for the heterogeneous regime:
ba

n+ 1
< bv − c < cn. (2.3)

Process terminates as soon as either Terminal set:
p(t) < rb, if therapy succeeds;

p(t) > 1− fb, if therapy fails.

∆ =
{
(q, p) ∈ [0, 1]× [0, 1] | p < rb or p > 1− fb

}
. (2.4)

Total treatment time: T (q0, p0, d(·)) = inf
{
t ∈ R+ | (q(t), p(t)) ∈ ∆, q(0) = q0, p(0) = p0

}
. (2.5)

Treatment cost function: J (q0, p0, d(·)) =
T∫

0

(d(τ) + δ) dτ + g
(
q
(
T
)
, p
(
T
))
, (2.6)

where T := T (q0, p0, d(·)) is the terminal time and g(q, p) is the terminal cost function where g(q, p) = +∞ if p > 1−fb

and g(q, p) = 0 otherwise.

Value function: u(q0, p0) = inf
d(·)

J (q0, p0, d(·))

is found by numerically solving a first-order HJB PDE. The deterministic-optimal policy is found in feedback form

d∗ = d(q, p). See details in Gluzman et al. [15].

on the first diagram (the “s = 5.0” case) in Figure 3(A). For the initial tumor state (q0, p0) = (0.26, 0.665),183

this indicates that d∗(q0, p0, 5) = 0 (not prescribing drugs initially) would maximize the probability of curing the184

patient without exceeding the threshold s̄ = 5.0. As time passes, we accumulate the cost, thus decreasing the185

budget, even if the drugs are not used. If we stay in the blue region for the time θ = 1/δ, the second diagram186
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Box 2: Stochastic model of cancer evolution

Geometric Brownian motion as the sub-population growth model:

(ZG, ZD, ZV) for actual sub-population sizes of GLY, DEF, and VOP cells.


dZG = (ψG dt+ σG dWG)ZG,

dZD = (ψD dt+ σD dWD)ZD,

dZV = (ψV dt+ σV dWV)ZV.

(2.7)

Definitions and Parameters:

• WG,WD,WV, independent standard Brownian motions for GLY, DEF, and VOP cells respectively;

• σG, σD, σV ≥ 0, volatilities for ZG, ZD, and ZV respectively.

Transformations of proportions of cancer cells:

(XG, XD, XV) for proportions of GLY, DEF, and VOP cells.

Note we still have XG +XD +XV = 1.


Q =

XV

XV +XD

,

P = XG,

or


XG = P,

XD = (1−Q)(1− P ),

XV = (1− P )Q.

(2.8)
Stochastic evolution dynamics in reduced coordinates

with control on therapy intensity:


dQ = β(Q,P ) dt+ ζ(Q;σD, σV) dt+ h1(Q;σV) dWV + h2(Q;σD) dWD,

dP = α(Q,P, d) dt+ η(Q,P ;σG, σD, σV) dt+m1(P ;σG) dWG +m2(Q,P ;σD) dWD +m3(Q,P ;σV) dWV;

Q(0) = q0, P (0) = p0,

(2.9)

where α and β are defined in Box 1 while the exact definitions of functions ζ, η, h1, h2, m1, m2, and m3 can be found

in section 3S of Supplementary Materials.

Process terminates as soon as either Terminal set:
P (t) < rb, if therapy succeeds;

P (t) > 1− fb, if therapy fails.

∆ =
{
(q, p) ∈ [0, 1]× [0, 1] | p < rb or p > 1− fb

}
. (2.10)

(the “s = 4.0” case) in Figure 3(A) becomes relevant. Of course, in reality we constantly reevaluate the decision187

on d∗ (as s changes continuously while Figure 3(A) presents just a few representative slices) taking into account188

the changing tumor configuration (Q(t), P (t)). For example, the path in Figure 4(A) shows the drug use starting189

shortly after s = 4.4, from which point (Q(t), P (t)) stays in the yellow region until recovery.190

However, due to random perturbations, the above process can also stop when the proportion of GLY cells191

becomes too high, as in Figure 4(B). When VOP is relatively low, the deterministic portion of the dynamics can192

bring us close to the failure barrier, with random perturbations resulting in a noticeable probability of crossing it.193

We also fail in keeping the cost below the threshold when the budget is exhausted before the patient is cured, as194

in Figure 4(C). Threshold-aware policies provide no guidance once s = 0, but we need to continue the treatment195

since the patient is still alive. To estimate the patient’s chances of recovery and the probability distribution for196
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Box 3: Objective function

Total treatment time: T (q0, p0, d(·)) = inf
{
t ∈ R+ | (Q(t), P (t)) ∈ ∆, Q(0) = q0, P (0) = p0

}
. (2.11)

Treatment cost function: J (q0, p0, d(·)) =
T∫

0

(d(τ) + δ) dτ + g
(
Q
(
T
)
, P

(
T
))
, (2.12)

where T := T (q0, p0, d(·)) is the terminal time and g(q, p) is the terminal cost function where g(q, p) = +∞ if p > 1−fb

and g(q, p) = 0 otherwise.

Value function: v(q0, p0, s̄) = sup
d(·)

P
(
J (q0, p0, d(·)) ≤ s̄

)
(2.13)

can be found by solving the second-order Hamilton-Jacobi-Bellman (HJB) equation:

max
d∈[0,dmax]

{[
−p(1− p)

∂v

∂p
− ∂v

∂s

]
d

}
− δ

∂v

∂s
+ f1(q, p)

∂v

∂q
+ f2(q, p)

∂v

∂p
+ f3(q, p)

∂2v

∂q2
+ f4(q, p)

∂2v

∂p2
+ f5(q, p)

∂2v

∂q∂p
= 0,

(q, p) ∈ ([0, 1]× [0, 1])/∆, (2.14)

where s ≥ 0 and the exact definitions of functions f1, f2, f3, f4, and f5 can be found in section 4S.1 of Supplementary

Materials.

The boundary conditions of HJB equation:


v(q, p, s) = 1, if p < rb;

v(q, p, s) = 0, if p > 1− fb;

v(q, p, 0) = 0, if p > rb.

(2.15)

The optimal policy can be found in feedback form: d∗(q, p, s) =


dmax, if

(
vpp(1− p) + vs

)
< 0,

0, otherwise.

(2.16)

The ODE that budget s satisfies: ṡ(t) = −
(
d
(
Q(t), P (t), s(t)

)
+ δ

)
, s(0) = s̄. (2.17)

the resulting cost beyond the originally specified threshold s̄, we then switch to the deterministic-optimal policy197

described in section 2.1 and Figure 2.198

Figure 3(B) shows the optimal probability of success v(q, p, s) for different threshold values. One observes199

that v has particularly large gradient near the level curves of the deterministic-optimal value function u shown in200

Figure 2(A). (The particular level curve of u near which v changes the most is again s-dependent as the budget201

decreases.) If the remaining budget is relatively low (e.g., s = 1.5), one can see from Figure 3(B) that there is202

no chance to be cured under this budget unless the GLY is already low (and a short burst of drug therapy would203

likely be enough) or VOP is high (and the no-drugs dynamics will bring us to a low GLY concentration later on).204

Consequently, the optimal policy for s = 1.5 is to not use drugs for the majority of tumor states.205
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11 Stochastic optimization of adaptive cancer therapy

(a)

(b)

Figure 3: Representative slices of threshold-aware policy and their corresponding optimal probability of
success: (a) optimal policy; (b) optimal probability of success. Each triangle represents the optimal policy/probability of
success corresponding to a specific threshold value s, which is shown below the the triangle. The arrows indicate one should
go from higher threshold to lower threshold s values.

3.2 Different thresholds and different initial configurations206

In Figure 2(C), we have already provided a preliminary comparison of outcomes under the deterministic-optimal207

policy developed in [15]. Here, we include additional simulations that highlight the increased probability of success208

achieved under our threshold-aware policies described in section 2.2. In section 6S of Supplementary Materials, we209

show that the advantages of threshold-aware policies can be even more significant when the volatilities (σG, σD, σV)210

are higher.211

We consider two initial tumor configurations at the same GLY-level (p0 = 0.4). The first one, based on212

q0 = 0.27 as shown in Figure 5, is chosen to ensure that the initial configuration is inside the yellow (drugs-on)213

region prescribed by the deterministic-optimal policy. The second, based on q0 = 0.8 and shown in Figure 6, starts214

in the blue (drugs-off) region. In both Figures 5(C) and 6(C), the CDFs generated with the deterministic-optimal215

policy are shown in blue and the CDFs corresponding to our threshold-aware policies are shown in red and green.216

The details of our random simulations used to built these can be found in section 5S.3.217

In Figure 5, under the deterministic-optimal policy only a half of the simulations yield the cost not exceeding218

4.71. Our threshold-aware policy (red), maximizes this P(J ≤ 4.71) to achieve 63%. The potential for improve-219

ment is even more significant with lower threshold values. For instance, the deterministic-optimal policy CDF220

yields the probability of recovery under s̄ = 4.35 as less than 10%, while our threshold-aware policy (green)221

ensures that P(J ≤ 4.35) ≈ 45%. The improvement can be also translated to simple medical terms: starting from222
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12 Stochastic optimization of adaptive cancer therapy

(a) (b) (c)

Figure 4: Representative sample paths starting from the same initial state (q0, p0) = (0.26, 0.665) (magenta dot) and
the same initial budget s̄ = 5. Top row: sample paths on a GLY-DEF-VOP triangle. (a) eventual recovery with a cost
of 4.60 (within the budget); (b) eventual death; (c) failure by running out of budget (eventual recovery with a total cost of
8.70 by switching to the deterministic-optimal policy after s = 0). Some representative tumor states along these paths (with
indications of how much budget is left) are marked by black squares. In (c), the part where J > 5 is specified in orange (no
drugs) and brown (at MTD level). Bottom row: evolution of sub-populations with respect to time based on the sample
paths from the top row. Here we use light green and light pink backgrounds to indicate the time interval(s) of prescribing no
drugs and of prescribing drugs at the MTD-rate, respectively. We use black pentagrams and black crosses to indicate eventual
success and death, respectively. In (c), we use a dashed black line to indicate the time of exhaustion of our budget.

this initial tumor configuration, the deterministic-optimal policy will likely keep using the drugs at the maximum223

rate dmax all the way to recovery; see Figure 5(A). In contrast, our threshold-aware policies tend not to prescribe224

drugs until GLY is relatively low and VOP is relatively high; see Figure 5(B). As a result, the patient would suffer225

less toxicity from drugs in most scenarios. For our second example (Figure 6), the threshold-aware policy (red)226

also improves the P(J ≤ s̄med) from 50% to 65%, where s̄med = 3.77 is the median cost of J associated with the227

deterministic-optimal policy. When starting from a lower initial budget s̄ = 3.45, the deterministic-optimal policy228

can only yield a 16% chance of recovery, while our threshold-aware policy (green) doubles this P(J ≤ 3.45) to229

32%. We can see from Figure 6(A) that the deterministic-optimal policy basically prescribes drugs till recovery230

once the (random) tumor state enters the yellow region. In contrast, Figure 6(B) shows that our threshold-aware231

optimal policy opens the possibility of prescribing drugs for separate time intervals over the entire treatment232

period. This again yields a reduction in the total amount of drugs used until recovery.233

It is worth noting that each threshold-aware policy maximizes the probability of success for a single/specific234

threshold value only. E.g., for all the red/green CDFs we have provided, the probability of success is only235

maximized at those red/green dots. We clearly see from Figure 5(C) that the P(J ≤ 4.35) on the red CDF is236

much less than the one on the green CDF. When we start with (q0, p0, s̄1) = (0.27, 0.4, 4.77) and spend the budget237

till s̄2 = 4.35, the tumor will evolve to a random state at s̄2 based on Eq. (2.9). Therefore, the P(J ≤ 4.35) on the238

red CDF is the averaged value over all possible tumor states we can reach at s̄2. As the optimal policy is strongly239

state-dependent, this averaged value is generally less than the optimal one (green) starting with (q0, p0, s̄2).240

Additionally, we observe that all red and green CDFs become much flatter for all s ≥ s̄. This evidently241
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13 Stochastic optimization of adaptive cancer therapy

shows that switching to the deterministic-optimal policy after the budget runs out lowers the effectiveness of the242

treatment under stochastic tumor dynamics.243

(a) (b) (c)

Figure 5: Comparison between threshold-aware policies and deterministic-optimal policy Case I: starting from
an initial state (q0, p0) = (0.27, 0.4) (magenta dot): (a) a sample path with cost 4.66 under deterministic-optimal policy; (b) a
sample path starting at s̄ = 4.35 with cost 4.08 under threshold-aware policy; (c) CDFs of the cumulative cost J approximated
using 105 random simulations. In (c), the solid blue curve is the CDF generated with the deterministic-optimal policy. Its
median (dashed blue line) is 4.71 while its mean conditioning on success is 4.72. The solid green curve is the CDF generated
with the threshold-aware policy with s̄ = 4.35; and the solid red curve is the CDF generated with the threshold-aware policy
with s̄ = 4.71.

(a) (b) (c)

Figure 6: Comparison between threshold-aware policies and deterministic-optimal policy Case II: starting from
an initial state (q0, p0) = (0.8, 0.4) (magenta dot): (a) a sample path with cost 4.08 under deterministic-optimal policy; (b) a
sample path starting at s̄ = 3.45 with a total cost of 3.449 under threshold-aware policy; (c) CDFs of the cumulative cost J
approximated using 105 random simulations. In (c), the solid blue curve is the CDF generated with the deterministic-optimal
policy. Its median (dashed blue line) is 3.77 and its mean conditioning on success is also 3.77. The solid green curve is
the CDF generated with the threshold-aware policy with s̄ = 3.45; and the solid red curve is the CDF generated with the
threshold-aware policy with s̄ = 3.77.

4 Discussion244

That cancers evolve during therapy is now an accepted fact, and is slowly being incorporated into therapeutic245

decision making. In some cases, this can be implemented simply by changing from one targeted therapy to another,246
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but in most, where tumors are a heterogeneous mixture of interacting phenotypes, this is not feasible. In these247

cases, ecological thinking is rising to the fore in the form of adaptive therapy. Until recently, clinical trials, and248

theoretical investigations, of adaptive therapy have relied on a priori assumptions of the underlying interactions,249

and their effects on tumor composition over time. Several studies, both in vitro[21] and in vivo[9, 27], however,250

have begun to provide methods for more rigorous quantification of these interactions. As these tools mature, the251

goal of understanding these interactions in patients begins to become feasible.252

In our previous work, we showed how, given appropriate information, a mathematical model of the tumor253

growth and interactions could be used together with dynamic programming to calculate a formal optimal solution254

[15]. That work however, while a step forward in adaptive therapy, did not consider the reality of the underlying255

stochasticity of tumor biology and evolution: to make mathematical progress, we had to simplify the situation256

to one that was deterministic. In the present work, we build on our previous advance to include stochasticity in257

growth rates in time, and show that stochastic optimal control theory can be applied to maximize the probability258

of recovery under a given threshold cumulative cost (interpreted as a combination of the total drugs used and259

the time to recovery). We show that the optimal treatment policy becomes threshold-aware. Even though the260

optimal treatment policy is still bang-bang, the drugs-on/off regions vary from one threshold value to another. We261

further compare CDFs generated with the deterministic-optimal policy and threshold-aware policies at different262

threshold values. We show that for any tested starting configurations, our threshold-aware policies offer significant263

advantages over the deterministic-optimal policy and often result in a significant reduction of drugs used to treat264

the patient.265

As mentioned in Gluzman et al.[15], a limitation of the underlying EGT model is that only proportions of266

cancer cells are considered. An immediate mathematical extension of our work is to bring the full tumor size or267

the actual sizes of each type of tumor cells into the model; e.g., see [28] and [22, Appendix C.2]. In principle, the268

same extension can be also used in our stochastic setting though the computational cost will increase accordingly.269

Another important extension will be to move to “partial observability” since the state of the tumor is only270

occasionally assessed directly through biopsies and some proxy measurements have to be used at all other times.271

We also note that maximizing the probability of success under a given threshold cost is not the only choice for272

stochastic models. Minimizing the probability of failure or the expected total treatment time to recovery are among273

other potential choices. It will be interesting to study the tradeoffs between these as well as the multiobjective274

control problem of optimizing threshold-aware policies for two different threshold values simultaneously.275

In summary, we have presented a theoretical advance for the toolbox of evolutionary therapy, a new subfield of276

medicine focused on using knowledge of evolutionary responses to inform therapeutic scheduling. While there are a277

number of cancer trials using this type of evolutionary-informed thinking, most are based on empirical designs and278

are not formulated to consider the underlying stochasticities. Developing theoretical foundation for future clinical279

studies requires EGT models directly grounded in objectively measurable biology [21]. Therapy optimization based280

on such models requires efficient computational methods, particularly in the presence of stochastic perturbations.281

We hope that the approach presented here will be useful for a broad range of increasingly accurate stochastic282

cancer models.283
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Optimal control to reach eco-evolutionary stability in metastatic castrate-resistant prostate cancer. PLoS One,299

15(12):e0243386.300

[6] Cunningham, J. J., Brown, J. S., Gatenby, R. A., & Staňková, K. (2018). Optimal control to develop301
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