1	Deciphering inhibitory mechanism of coronavirus replication through host
2	miRNAs-RNA-dependent RNA polymerase (RdRp) interactome
3	Olanrewaju B. Morenikeji ^{1*#,} Muyiwa S. Adegbaju ² , Olayinka S. Okoh ³ , Asegunloluwa E.
4	Babalola ⁴ , Anastasia Grytsay ¹ , Olubumi A. Braimah ¹ , Mabel O. Akinyemi ^{5#} , Bolaji N. Thomas ^{6#}
5	
6	¹ Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford PA
7	16701; ² Institute for Plant Biotechnology, Stellenbosch University, Stellenbosch 7600, South
8	Africa; ³ Department of Chemical Sciences, Anchor University Lagos, Nigeria; ⁴ Department of
9	Mathematical Sciences, Anchor University Lagos, Nigeria; ⁵ Department of Biological Sciences,
10	Fairleigh Dickinson University, Madison NJ 07940; ⁶ Department of Biomedical Sciences,
11	Rochester Institute of Technology, Rochester, NY 14623 ⁴
12	
13	
14	Olanrewaju B. Morenikeji: <u>obm3@pitt.edu</u>
15	Muyiwa S. Adegbaju: muyiwagbaju17@gmail.com
16	Olayinka S. Okoh: <u>ookoh@aul.edu.ng</u>
17	Asegunloluwa E. Babalola: ababalola@aul.edu.ng
18	Anastasia Grytsay: ang251@pitt.edu
19	Olubumi A. Braimah: <u>oab13@pitt.edu</u>
20	Mabel O. Akinyemi: <u>larakinyemi@gmail.com</u>
21	Bolaji N. Thomas: <u>bntsbi@rit.edu</u>
22	

23 [#]co-senior authors

24

^{*}Corresponding authors:

Dr. Olanrewaju B. Morenikeji

Division of Biological and Health Sciences

University of Pittsburgh at Bradford

300 Campus Drive

Bradford PA 16701

Tel: (585) 490-7271

Email: obm3@pitt.edu

25

26 Abstract

27 Despite what we know so far, Covid-19, caused by SARS-CoV-2 virus, remains a pandemic that 28 still require urgent healthcare intervention. The frequent mutations of the SARS-CoV-2 virus has 29 rendered disease control with vaccines and antiviral drugs quite difficult and challenging, with 30 newer variants surfacing constantly. There is therefore the need for newer, effective and 31 efficacious drugs against coronaviruses. Considering the role of RNA dependent, RNA 32 polymerase (RdRp) as an important enzyme necessary for the virus life cycle and its 33 conservation among coronaviruses, we investigated potential host miRNAs that can be employed 34 as broad-range antiviral drugs averse to coronaviruses, with particular emphasis on BCoV, 35 MERS-CoV, SARS-CoV and SARS-CoV-2. miRNAs are small molecules capable of binding 36 mRNA and regulate expression at transcriptional or translational levels. Our hypothesis is that host miRNAs have the potential of blocking coronavirus replication through miRNA-RdRp 37 38 mRNA interaction. To investigate this, we downloaded the open reading frame (ORF 1ab)

39	nucleotide sequences and used them to interrogate miRNA databases for miRNAs that can bind
40	them. We employed various bioinformatics tools to predict and identify the most effective host
41	miRNAs. In all, we found 27 miRNAs that target RdRp mRNA of multiple coronaviruses, of
42	which three - hsa-miR-1283, hsa-miR-579-3p, and hsa-miR-664b-3p target BCoV, SARS-CoV
43	and SARS-CoV-2. Additionally, hsa-miR-374a-5p has three bovine miRNAs homologs viz bta-
44	miR-374a, bta-miR-374b, and bta-miR-374c. Inhibiting the expression of RdRp enzyme via non-
45	coding RNA is novel and of great therapeutic importance in the control of coronavirus
46	replication, and could serve as a broad-spectrum antiviral, with hsa-miR-1283, hsa-miR-579-3p,
47	and hsa-miR-664b-3p highly promising.
48	
49	Running Title: Blocking RNA virus replication via non-coding RNA
50	
51	Keywords: miRNA, RNA-dependent RNA polymerase, prediction, markers, regulation,
52	coronavirus
53	
54	Introduction
55	The diseases caused by SARS-CoV-2, a member of the Coronaviridae family, have had profound
56	impact on all human endeavors, leaving hardship, death and destruction in its trail (Aftab et al
57	2020). The rate of transmission of SARS-CoV-2 from person to person is the major driver of the
58	significant morbidity and mortality attendant to Covid-19 and its pandemic form (Gao et al.,
59	2020; Walls et al., 2020). After a successive entry into the host, viral replication is another
60	important step to its pathogenicity and transmission. A large portion of coronavirus genome
61	encodes open reading frame (ORF) 1a/1b (Figure 1), which produces two precursor polyproteins

62	(pp1a) and (pp1ab), dedicated to code for multiple enzymes among which is RNA dependent,
63	RNA polymerase (RdRp). Each of this precursor polyproteins are subsequently cleaved into non-
64	structural proteins (nsp). The pp 1ab is cleaved into 16 nsps, of which nsp12 or RNA dependent,
65	RNA polymerase (RdRp) is one, and pivotal for successful virus replication in the host (Gao et al
66	2020). In addition, formation of protein complex between RdRp protein, nsp 7 and nsp 8 have
67	been reported, as the latter duo serve as cofactor for RdRp (Kirchdoerfer and Ward 2019; Gao et
68	al 2020). Except for retroviruses, most RNA viruses require the activity of RdRp protein for viral
69	replication and may explain why its active site is the most conserved among these viruses (Aftab
70	et al., 2020), thereby making it a prominent target for drug development.
71	
72	Several vaccines have now been developed and approved for use to limit COVID-19 infection in
73	humans. However, their safety and long-term efficacy against SARS-CoV-2 is not guaranteed
74	(Saha et al., 2021). Other strategies recommended for treating disease include inhibition of RdRp
75	activity using antiviral agents like the nucleoside analogues, Favipiravir, Galidesivir, and
76	Remdesivir, and other plant-based compounds such as Tellimagrandin I, Saikosaponin B2,
77	Hesperidin and Epigallocatechin gallate (Saha et al., 2021). So far, these antiviral drugs have
78	been reported to be ineffective against SARS-CoV-2, possibly due to single nucleotide
79	polymorphism (SNP)-induced changes culminating in conformational, structural and functional
80	amino acids changes and the high virus mutation rate. Therefore, alternate therapeutic options
81	that are effective against the virus must be explored. Here, we propose an alternative option that
82	utilizes blocking RdRp transcript via host microRNAs thereby inhibiting translation of the most
83	important protein for viral replication, leading to reduced viral propagation and pathogenicity
84	(Fig 2).

85

86	MicroRNAs are short non-coding RNAs, of about 23 nucleotides in the introns (Trobaugh and
87	Klimstra, 2017). They control several cellular operations transcriptionally by taking on target
88	transcripts such as host mRNA and RNAs from the genome of pathogens, via sequence-specific
89	interlink, influencing the function and/or stability of these targets (Morenikeji et al., 2020;
90	Tucker et al., 2021). Several studies have shown the involvement of miRNAs in regulation of
91	host immune responses. Morenikeji et al. (2020) demonstrated via in silico analysis that certain
92	bovine miRNAs are involved in regulating specific immune response genes associated with
93	Bovine coronavirus (BCoV) infection and were identified as drug targets and diagnostic
94	biomarker for the virus. Additionally, miRNAs have been found in chicken binding the L gene
95	region of Newcastle Disease virus, causing viral degradation and inhibiting replication in vitro
96	(Chen et al., 2020). In humans, decrease in viral replication, translation and transmission from
97	person to person due to binding of certain miRNAs to the genome of viruses such as Human
98	immunodeficiency virus (HIV), Enterovirus 71 (E 71) and Human T cell leukemia virus, type I
99	(HTLV-1) have also been reported (Nathans et al., 2009; Zheng et al 2013; Bai and Nicot 2015).
100	More evidence on the involvement of miRNA in altering viral replication and pathogenesis have
101	continued to emerge (Khongnomnan et al., 2015; Ingle et al., 2015; Trobaugh and Klimstra,
102	2017), but none of these studies have examined the role of miRNA in inhibiting coronavirus
103	replication, showing the importance of our study.
104	

105 Considering the significant role of RdRp in viral replication and survival, we elucidated host
106 miRNAs that can bind mRNA of RdRp in four coronaviruses, resulting in its disintegration,

- 107 thereby controlling the replication and pathogenesis of RNA viruses and opening a new door to
- 108 therapeutic targets for coronaviruses.
- 109

110 Materials and Methods

111 Sequence mining of RdRp region from the genome of various coronaviruses

- 112 In this study, the analytical pipeline employed, starting from sequence curation to interactome
- networks, is a slight modification of our previously described model (Fig 3), (Morenikeji at al.,
- 114 2020; 2021; Tucker et al., 2021). Since RdRp is one of the 16 non-structural proteins encoded by
- 115 ORF 1ab gene of coronaviruses, we carried out an extensive search for ORF 1ab gene, and the
- 116 nucleotide sequence of 13 selected coronaviruses, whose genomes have either been fully or
- 117 partially annotated, were retrieved. These viruses are: SARS-CoV (NC_004718.3), SARS-CoV-
- 118 2 (NC_045512.2), tylonycteris bat coronavirus (NC_009019.1), MERS-CoV (NC_019843.3),
- 119 duck coronavirus (NC_048214.1), Canada goose coronavirus (NC_046965.1), BCoV
- 120 (NC_003045.1), betacoronavirus England 1 (NC_038294.1), alphacoronavirus (NC_046964.1),
- 121 bat coronavirus (NC_034440.1), pipistrellus bat (NC_009020.1), rabbit coronavirus

122 (NC_017083.1), rodent and coronavirus (NC_046954.1)

123

124 Evolutionary analysis of RdRp in 13 coronaviruses

125 To determine the evolutionary relationship and distance of the RdRp region from the 13

126 coronaviruses, we constructed a phylogenetic tree using <u>https://ngphylogeny.fr/</u> with the

127 following workflow. Preliminary multiple sequence alignment (MSA) was generated using

128 MAFFT, followed by trimming of the MSA to focus on the informative regions using block

129 mapping and gathering with entropy (BMGE) (Criscuolo et al., 2010). The phylogenetic tree was

130	inferred using PhyML (Guindon et al., 2010) and tree visualization carried out with interactive
131	tree of life (iTol) (https://itol.embl.de). Using the MSA generated by BMGE, pairwise distance
132	between the RdRp of the 13 coronaviruses was computed using MEGA X (Kumar et al., 2018).
133	
134	Prediction and network of miRNA binding sites in the RdRp region of MERS-CoV, BCoV,
135	SARS-CoV and SARS-CoV-2
136	To examine whether host cellular miRNA can target coronavirus RdRp, we selected four
137	common coronaviruses in human and cattle for further analysis. Potential miRNA binding sites
138	in the RdRp coding regions of MERS-CoV, BCoV, SAR-CoV and SARS-Cov-2 were predicted
139	using mirDB software (http://mirdb.org). Each of the RdRp coding sequence from the 4
140	coronaviruses were used as the target sequence and human genome selected as the reference
141	genome for miRNA prediction. After each prediction, miRNAs with a score of 60 and above
142	were considered significant and selected for further analysis. The list of miRNAs from each
143	coronavirus were intersected with Bioinformatic and Evolutionary Genomics (BEG) Venn
144	diagram generator (http://bioinformatics.psb.ugent.be/webtools/Venn/). Based on the
145	complementary base pairing of miRNAs and RdRp mRNA and the value of normalized binding
146	free energy (ndG), possible miRNA-mRNA interactome network connections were determined
147	using Cytoscape version 3.7.2, as previously described (Morenikeji et al., 2020; Tucker et al.,
148	2021). To search for possible homologs of human miRNAs in the bovine genome, we searched
149	the miRNA database (https://mirbase.org). The sequence of each of the top 25 miRNAs selected
150	were used as query against the Bos taurus genome on used mirDB. Homologous bovine miRNAs
151	were extracted and recorded for further analysis.
152	

153 Results

154 Dataset of RdRp nucleotides from the genome of 13 coronaviruses

- 155 Our search for nucleotide sequences encoding for RdRp in coronaviruses using the keyword
- 156 "1ab polyprotein" initially yielded about 59 organisms. After filtering for only coronaviruses, 13
- 157 viruses, whose genome was either fully or partially annotated were subsequently selected for
- 158 further analysis. The RdRp encoding regions of tylonycteris bat coronavirus, MERS-CoV, duck
- 159 coronavirus, SARS-CoV, Canada goose coronavirus, BCoV, betacoronavirus England 1,
- 160 alphacoronavirus, bat coronavirus, SARS-CoV-2, pipistrellus bat, rabbit coronavirus and rodent
- 161 coronavirus were identified to be within the ORF 1ab gene (Table 1). Since RdRp protein is

162 categorized to be one of the cleaved 16 non-structural proteins encoded by ORF 1ab gene, its

163 coding region which falls between nsp11 and nsp 13, is beyond the coding region of ORF 1a

- 164 gene, which partially overlaps with ORF 1ab gene and encode variants of nsp1 to nsp9 (Fig 1).
- 165 Each of the RdRp nucleotides for the 13 coronaviruses were copied and added to the pipeline
- 166 (Fig 3) to determine their evolutionary relationship.
- 167

168 Evolutionary relatedness of RdRp coding sequences

To confirm that RdRp coding sequence is conserved among the coronaviruses, we examined their evolutionary relatedness. The sequence analysis of RdRp reveal minor variation across the 13 viruses though sharing common evolutionary origin (Fig 4). Two viruses, MERS-CoV and Betacoronavirus England 1, are not different from each other in this region, showing a pairwise distance of 0.00 (Table 2). Similarly, comparing the RdRp sequences of bat coronavirus with either MERS-CoV or Betacoronavirus England 1 indicated some level of closeness with a value of 0.18. A similar close relatedness was observed for SARS-CoV and SARS-CoV-2 having a

176	pairwise distance of 0.29. Alphacoronavirus is the most distantly related from the rest of the
177	viruses, showing consistent higher value for the pairwise distance, further supported by the
178	phylogenetic tree analysis(Fig 4).
179	
180	ORF 1 ab is conserved in BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2
181	From the genome organization of BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2 (Fig 1),
182	ORF 1ab in the viruses are very similar, indicating high level of conservation in this gene
183	making it an excellent antiviral drug candidate. To ascertain the level of conservation of ORF
184	1ab in BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2, the well annotated ORF 1ab genes of
185	each of the viruses were overlayed on one another and compared. Comparing the gene across the
186	viruses, we found that ORF 1ab is highly conserved across the viruses as no conspicuous
187	difference was noted in the arrangement of all the non-structural proteins and RdRp (Fig 1),
188	making RdRp a good antiviral drug target.
189	
190	Identification of miRNA binding to RdRp of BCoV, MERS-CoV, SARS-CoV and SARS-
191	CoV-2
192	In this analysis, BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2 miRNAs that bind to the
193	RNA-dependent RNA polymerase (RdRp) of coronaviruses were examined. A total of one
194	hundred and three (103) miRNA were obtained for BCoV, seventy-eight (78) for MERS-CoV,
195	fifty-seven (57) for SARS-CoV, while ninety-seven (97) miRNAs were found for SARS-CoV-2.
196	To ensure the binding of miRNAs to RdRp target, significant miRNAs were filtered based on the
197	ranking scores as described above. The filtering generated a total of sixty-six (66) miRNA for
198	BCoV, forty-one (41) for MERS-CoV, twenty-nine (29) for SARS-CoV and fifty-three (53) for

199	SARS-CoV-2 (Fig 5). The results of complementary binding of human miRNAs to the RdRp
200	sequence for each of the 4 coronaviruses were intersected to identify broad-spectrum miRNAs,
201	which can possibly inhibit viral replication. As shown, there was no miRNA that could bind to
202	the RdRp region of all 4 viruses (Fig 6a). However, we uncovered three miRNAs; hsa-miR-
203	1283, hsa-miR-664b-3p and hsa-miR-579-3p that could bind to this region in BCoV, SARS-CoV
204	and SARS-CoV-2 (Table 3; Fig 6b). Similarly, miRNAs that could bind to the region in at least
205	two coronaviruses were identified, ranging from as low as one (hsa-miR-8081) for MERS-CoV
206	and SARS-CoV to as high as nine (hsa-miR-585-5p, hsa-miR-7159-5p, hsa-miR-1305, hsa-miR-
207	15a-5p, hsa-miR-6507-5p, hsa-miR-16-5p, hsa-miR-3065-5p, hsa-miR-195-5p and hsa-miR-15b-
208	5p) for BCoV and MERS-CoV (Table 3).
209	
210	Interestingly, there was no miRNA concomitantly binding RdRpregion in both MERS-CoV and
211	SARS-CoV-2 (Fig 6a). The identity of the connections of miRNAs and RdRp between for
212	coronavirues (BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2) are depicted through a

213 network as shown in Figure 6b. This interactome reveal a possible molecular mechanism for

regulating multiple coronavirus replication through miRNAs binding RdRp mRNA. Network of

215 different nodes were created based on all identified miRNAs and potential binding sites on RdRp

216 mRNA, while the network edges were determined through the value ndGs and correlation

217 between each RNA. From Table 3, it is shown that 27 human miRNAs targeted multiple viruses

218 from BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2. Of particular importance, among these

219 27 miRNAs are three miRNAs (hsa-miR-1283, hsa-miR-579-3p and hsa-miR-664b-3p) that are

220 predicted to target BCoV, SARS-CoV and SARS-CoV-2. Furthermore, we report five miRNAs

targeting SARS-CoV and SARS-CoV-2, while another five targeted BCoV and SARS-CoV.

222

223	Human miRNAs homologs found in bovine genome target RdRp mRNA sequences
224	Of the top 25 human miRNAs selected for further analysis, eight has bovine miRNA homologs
225	as shown (Table 4). Only one of the human miRNAs, hsa-miR-374a-5p, had three bovine
226	miRNA homologs including bta-miR-374a, bta-miR-374b, and bta-miR-374c. hsa-miR-3065-5p
227	has two bovine homologs - bta-miR-338 and bta-miR-3065, while others have one homolog
228	each. In all, we report 13 bovine homologs, and two of them, bta-miR-196a and bta-miR-338 are
229	read in reverse direction while eleven are forward stranded.
230	
231	Discussion

232 The genome arrangement of coronaviruses is similar and of particular importance is the open 233 reading frame 1ab (ORF 1ab) gene, which encodes 1ab polyprotein, a protein precursor that is 234 further cleaved into sixteen non-structural proteins (nsps). One of the sixteen nsps is RdRp that 235 plays a vital role in RNA virus replication (Aftab et al., 2020; Gao et al 2020; Jiang et al., 2021). 236 RdRp is a promising candidate for drug target for treating diseases caused by coronavirus 237 because the active site is highly conserved and the protein lacks homologous counterparts in host 238 cell (Jiang et al., 2021). Medical interventions in form of mRNA vaccines and antiviral drugs 239 have been developed and approved to treat coronavirus disease such as Covid-19, but many of 240 these drugs are still undergoing clinical trials. The concept behind antiviral drugs for treating 241 Covid-19 and other diseases caused by other RNA viruses is to identify compounds which can 242 bind to active site of the RdRp enzymes and prevent its catalytic activity, which leads to viral 243 replication (Yang et al., 2011; Markland et al., 2000; Elfiky 2016; Elfiky et al., 2017; Elfiky and 244 Ismail 2019; Ezat et al., 2019; Wang et al., 2020). However, major concern on the efficacy of the

antiviral drugs remains, necessitating exploring alternative options, including preventing RdRp
protein translation. To the best of our knowledge, the use of non-coding RNA such as miRNAs
as an alternative route has not been explored as antiviral drug option. Since miRNA can bind
directly to the genome of RNA virus or cause changes in the host transcriptome facilitated by the
virus, it is noteworthy that finding host miRNA that can bind directly to the RdRp region of
coronaviruses may provide insight on effective manipulation to control the viral replication/load
in the host and provide a remarkable alternative treatment.

252

253 To have an effective antiviral drug, it is important that a virus target be conserved. Therefore, we 254 identify the conservation of miRNA binding site in the RdRp sequence of multiple coronaviruses 255 through evolutionary analysis. First, 13 annotated RdRp nucleotide sequences were used to 256 define the conservation of this region and construct a phylogenetic tree. Most of the viral species 257 examined belong to the betacoronavirus subfamily, with our result showing high similarity 258 between them, given this region as a potential drug target. Interestingly, the pairwise distance 259 result between MERS-CoV and Betacoronavirus England 1 show no difference in this region for 260 both viruses, indicating that they are likely to have the same binding site for host miRNAs. A 261 close similarity in the RdRp region of SARS-CoV and SARS-CoV-2 shows the virus evolved 262 from a common origin, in agreement with previous findings (Wu et al 2020; Aftab et al 2020). 263 The genetic conservation of RdRp gene across multiple viruses shows a strong positive selection 264 for this region and justifies the fact that the enzyme coded by this region is important for almost 265 all RNA virus replication, strengthening its choice for miRNA drug targeting. It is puzzling that 266 the magnitude of the difference in pathogenicity, rate of transmission and virulence between 267 SARS-CoV and SARS-CoV-2 is only caused by single nucleotide mutations (Ceraolo and

Giorgi, 2020; Lu et al., 2020; Kruse, 2020; Nguyen et al., 2020; Wang et al., 2020). Thus, the
slight pairwise distance observed between the RdRp sequences of SARS-CoV and SARS-CoV-2
may have remarkable implications on the number of miRNA which can bind concomitantly with
both viruses. Several regions of RNA viruses mutate at a faster rate as a mechanism to escape
host immune system reaction, however, a slower mutation rate at the RdRp region means a
miRNA could be broad spectrum antiviral drug for many viruses.

274

275 Remarkably, our study uncovered several miRNAs that bound to the RdRp sequence of 276 coronaviruses including SARS-CoV, SARS-CoV-2 MERS-CoV and BCoV. The presence of 277 human miRNA homologs in bovine genome is of great importance as this is indicative of the 278 crucial roles these miRNAs play as preserved by evolutionary forces or selection. Additionally, 279 some of the miRNAs have multiple binding sites within the RdRp region thereby increasing the 280 binding probability and reducing off-target effects, strengthening their choice for possible antiviral molecule. This is contrary to the submission of Thorg et al. (2017), which stated that the 281 282 common location of the miRNA binding site is the UTRs of the viral genome. Conversely, our 283 results align with similar study in chicken where Wang et (2021) identified multiple miRNA 284 binding sites within the L gene of the NDV and infectious bursal disease virus (IBDV). Wang et 285 al (2021) found the overexpression of ggam-miR-21 inhibiting VP1 translation in chicken 286 fibroblasts and suppresses overall viral replication.

287

288 We identified some miRNAs including hsa-miR-1283, hsa-miR-664b-3p, hsa-miR-579-3p,

which targeted multiple regions in the RdRp sequence of BCoV, SARS-CoV, and SARS-CoV-2,

290 these miRNAs have been previously linked with onco-protective roles, indicating their growth

291 regulatory function. For example, hsa-miR-1283 has been linked with cardio-protection and 292 inhibition of apoptosis (Liu *et al.*, 2021), thereby blocking oncogenesis. In addition, this miRNA 293 has also been implicated in hypertension (Chen et al., 2021). hsa-miR-579-3p, on the other hand 294 has been reported to be associated with growth control and tumor suppression via control of 295 melanoma progression (Fattore et al., 2016; Kalhori et al., 2019), while hsa-miR-664b-3p is 296 reported to play a critical role in regulating cancer progression (Liu et al., 2020). From our study, 297 an upregulation or administration of any of the three miRNAs might play a dual role of blocking 298 viral replication/degradation and inhibition of cancer progression.

299

300 Conclusion

301 In summary, we utilized several computational approaches to examine genome plasticity and 302 elucidate potential host miRNAs that could bind to the RdRp sequence region of coronaviruses. 303 Although viral genome is known to be variable, we report high conservation of RdRp sequence 304 in multiple coronaviruses species, indicating evolutionary favorability, hence a candidate 305 signature for genome targeting. In all, this study also provides an insight on possible alternative 306 route for targeting and inhibiting viral replication via host non-coding RNA (miRNAs) to combat 307 disease rather than common anti-coronavirus drug, based on inhibiting RdRp enzymatic 308 activities. In particular, hsa-miR-1283, hsa-miR-664b-3p, hsa-miR-579-3p and hsa-miR-374a-5p 309 with bovine homologs bta-miR-374a, bta-miR-374b, and bta-miR-374c are very promising. This 310 study opens the door for developing non-coding RNAs as a broad-spectrum antiviral therapy and 311 lays a foundation for further investigation to validate the effective binding of identified miRNAs 312 to RdRp sequences of coronaviruses through in vivo or in vitro analysis.

313

315 References

320

324

330

333

337

347

351

- Aftab, S. O., Ghouri, M. Z., Masood, M. U., Haider, Z., Khan, Z., Ahmad, A. and Munawar, N.
 (2020). Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential
 therapeutic drug target using a computational approach. *Journal of translational medicine*, 18(1), 1-15. doi: 10.1186/s12967-020-02439-0.
- Bai, X.T. and Nicot, C. (2015). miR-28-3p is a cellular restriction factor that inhibits human T
 cell leukemia virus, type 1 (HTLV-1) replication and virus infection. *J. Biol. Chem.* 290,
 5381–5390
- Chen, W., Liu, T., Liang, Q., Chen, X., Tao, W., Fang, M., Xiao, Y. and Chen, L. (2021). miR1283 Contributes to Endoplasmic Reticulum Stress in the Development of Hypertension
 Through the Activating Transcription Factor-4 (ATF4)/C/EBP-Homologous Protein
 (CHOP) Signaling Pathway. *Medical Science Monitor: International Medical Journal of Experimental and Clinical Research*, 27, e930552-1. doi: 10.12659/MSM.930552.
- 331 Ceraolo, C. and Giorgi, F. M. (2020). Genomic variance of the 2019 □nCoV coronavirus.
 332 *Journal of medical virology*, 92(5), 522-528.
- Criscuolo, A. and Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a
 new software for selection of phylogenetic informative regions from multiple sequence
 alignments. *BMC Evolutionary Biology*, 10:210
- Elfiky, A. A. (2016). Zika viral polymerase inhibition using anti HCV drugs both in market and
 under clinical trials. *Journal of Medical Virology*, 88(12), 2044-2051.
- Elfiky, A. A., Mahdy, S. M., and Elshemey, W. M. (2017). Quantitative structure activity
 relationship and molecular docking revealed a potency of anti hepatitis C virus drugs
 against human corona viruses. *Journal of Medical Virology*, 89(6), 1040-1047.
- Elfiky, A. A. and Ismail, A. (2019). Molecular dynamics and docking reveal the potency of
 novel GTP derivatives against RNA-dependent RNA polymerase of genotype 4a HCV.
 Life Sciences, 238, 116958.
- Ezat, A. A., Elfiky, A. A., Elshemey, W. M. and Saleh, N. A. (2019). Novel inhibitors against
 wild-type and mutated HCV NS3 serine protease: an in silico study. *VirusDisease*, 30(2),
 207-213.
- Fattore, L., Mancini, R., Acunzo, M., Romano, G., Laganà, A., Pisanu, M. E., Malpicci, D.,
 Madonna, G., Mallardo, D., Capone, M., Fulciniti, F., Mazzucchelli, L., Botti, G., Croce,
 C. M., Ascierto, P. A. and Ciliberto, G. (2016). miR-579-3p controls melanoma
 progression and resistance to target therapy. *Proceedings of the National Academy of Sciences*, *113*(34), E5005-E5013.
- Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L. and Rao, Z. (2020). Structure of the
 RNA-dependent RNA polymerase from COVID-19 virus. *Science*, *368*(6492), 779-782.

361 362 363 364 365	 Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59:307–321
366 367 368 369	Ingle, H., Kumar, S., Raut, A. A., Mishra, A., Kulkarni, D. D., Kameyama, T., Takaoka, A., Akira, S, and Kumar, H. (2015). The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. <i>Science signaling</i> , 8(406), ra126-ra126.
370 371 372 373	Jiang, Y., Yin, W. and Xu, H. E. (2021). RNA-dependent RNA polymerase: Structure, mechanism, and drug discovery for COVID-19. <i>Biochemical and biophysical research</i> <i>communications</i> , 538, 47-53. doi: 10.1016/j.bbrc.2020.08.116.
374 375 376	Kruse, R. L. (2020). Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. <i>F1000Research</i> , <i>9</i> .
377 378 379 380	Kumar S, Stecher, G., Li, M., Knyaz, C. and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. <i>Molecular Biology and</i> <i>Evolution</i> 35:1547-1549.
381 382 383 384	Kalhori, M. R., Irani, S., Soleimani, M., Arefian, E. and Kouhkan, F. (2019). The effect of miR□579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. <i>Journal of Cellular Biochemistry</i> , 120(10), 16760-16774. DOI: 10.1002/jcb.28935.
385 386 387 388	 Khongnomnan, K., Makkoch, J., Poomipak, W., Poovorawan, Y. and Payungporn, S. (2015). Human miR-3145 inhibits influenza A viruses replication by targeting and silencing viral PB1 gene. <i>Experimental Biology and Medicine</i>, 240(12), 1630-1639.
389 390 391 392	Kirchdoerfer, R.N., Ward, A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. <i>Nat Commun</i> 10 , 2342 (2019). <u>https://doi.org/10.1038/s41467-019- 10280-3</u>
393 394 395 396 397	Liu, C., Liu, H., Sun, Q. and Zhang, P. (2021). MicroRNA 1283 alleviates cardiomyocyte damage caused by hypoxia/reoxygenation via targeting GADD45A and inactivating the JNK and p38 MAPK signaling pathways. <i>Kardiologia Polska (Polish Heart Journal)</i> , 79(2), 147-155.
398 399 400 401	Liu, T., Meng, W., Cao, H., Chi, W., Zhao, L., Cui, W., Yin, H. and Wang, B. (2020). lncRNA RASSF8-AS1 suppresses the progression of laryngeal squamous cell carcinoma via targeting the miR-664b-3p/TLE1 axis. <i>Oncology Reports</i> , 44(5), 2031-2044.
402 403 404 405	 Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., Chen, J., Meng, Y., Wang, J., Lin, Y., Yuan, J., Xie, Z., Ma, J., Liu, W.J., Wang, D., Xu, W., Holmes, E.C., Gao, G.F., Wu, G., Chen, W., Shi, W. and Tan, W. (2020). Genomic

406 407 408	characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. <i>The Lancet</i> , 395(10224), 565-574
409 410 411 412 413	Markland, W., McQuaid, T. J., Jain, J. and Kwong, A. D. (2000). Broad-spectrum antiviral activity of the IMP dehydrogenase inhibitor VX-497: a comparison with ribavirin and demonstration of antiviral additivity with alpha interferon. <i>Antimicrobial agents and chemotherapy</i> , <i>44</i> (4), 859-866.
414 415 416 417 418	Morenikeji O. B., Wallace, M., Strutton, E., Bernard, K., and Thomas, B. N. (2020) Integrative Network Analysis of Predicted mi-RNA Targets Regulating Expression Immune response Genes in Bovine Coronavirus Infection. <i>Front. Genet.</i> , <u>https://doi.org/10.3389/fgene.2020.584392</u>
419 420 421 422 423	Morenikeji, O. B., Bernard, K., Strutton, E., Wallace, M., and Thomas, B. N. (2021) Evolutionary conserved long non-coding RNA regulates gene expression in Cytokine Storm during COVID-19 <i>Front. Bioeng. Biotechnol.</i> , <u>https://doi.org/10.3389/fbioe.2020.582953</u>
424 425 426	Nathans, R., Chu, C.Y., Serquina, A. K., Lu, C. C., Cao, H. and Rana, T.M. (2009) Cellular microRNA and P bodies modulate host-HIV-1 interactions. <i>Mol. Cell</i> 34, 696–709
427 428 429	Nguyen, T. M., Zhang, Y. and Pandolfi, P. P. (2020). Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses. <i>Cell Research</i> , <i>30</i> (3), 189-190.
430 431 432 433	Saha, S., Nandi, R., Vishwakarma, P., Prakash, A. and Kumar, D. (2021). Discovering potential RNA dependent RNA polymerase inhibitors as prospective drugs against COVID-19: an in silico approach. <i>Frontiers in Pharmacology</i> , <i>12</i> , 267.
434 435 436	tenOever, B, R. (2013) RNA viruses and the host microRNA machinery. <i>Nat Rev Microbiol</i> . Mar;11(3):169-80. doi: 10.1038/nrmicro2971.
437 438	Thorg et al 2017
439 440 441	Trobaugh, D. W. and Klimstra, W. B. (2017). MicroRNA regulation of RNA virus replication and pathogenesis. <i>Trends in Molecular Medicine</i> , 23(1), 80-93.
442 443 444 445 446 447 448 449 450	 Tucker, A.R., Salazar, N.A., Ayoola, A.O., Memili, E., Thomas, B.N. and Morenikeji, O. B.(2021) Regulatory network of miRNA, lncRNA, transcription factor and target immune response genes in bovine mastitis. <i>Sci Rep.</i> 2021 Nov 9;11(1):21899. doi: 10.1038/s41598-021-01280-9. Wang, Y. S., Ouyang, W., Pan, Q, X., Wang, X. L., Xia, X. X., Bi, Z. W., Wang, Y. Q., Wang, X. M. (2013) Overexpression of microRNA gga-miR-21 in chicken fibroblasts suppresses replication of infectious bursal disease virus through inhibiting VP1 translation. <i>Antiviral Res.</i> 2013;100(1):196–201.

451 452 453 454	Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T. and Veesler, D. (2020) Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. <i>Cell</i> . 2020 Apr 16;181(2):281-292.e6.
455 456 457 458	Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W. and Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. <i>Cell research</i> , 30(3), 269-271.
459 460 461 462 463	 Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G. and Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. <i>Cell host & microbe</i>, 27(3), 325-328.
464 465 466	Yang, P. L., Gao, M., Lin, K., Liu, Q. and Villareal, V. A. (2011). Anti-HCV drugs in the pipeline. <i>Current opinion in virology</i> , <i>1</i> (6), 607-616.
467 468 469 470	Zheng, Z., Ke, X., Wang, M., He, S., Li, Q., Zheng, C., Zhang, Z., Liu, Y. and Wang, H. (2013) Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J. Virol. 87, 5645–5656
471	Declaration of competing interest
472	Authors declare we have no competing financial or personal interest
473	
474	Acknowledgement
475	OBM was supported by Pitt-Momentum Fund of the University of Pittsburgh. Ongoing support
476	by the Division of Biological and Health Sciences, Pitt-Bradford, College of Health Sciences and
477	Technology, Rochester Institute of Technology is acknowledged APC charges for this article
478	were fully paid by the University Library System, University of Pittsburgh.
479	
480	Author Contributions
481	OBM conceptualized and designed the experiments; MSA, OSO, AEB and OBM carried out the

482 experiments, analyzed the data and drafted the manuscript; MSA, OSO, AG, OAB, MOA, BNT

- 483 and OBM revised the manuscript, contributed to the discussion and scientific content. All
- 484 authors read and approved the final version of the manuscript.
- 485
- 486 Data Availability (see supplementary Tables)
- 487
- 488 Table Legends
- Table 1. List of coronaviruses; accession number of their ORF1ab gene, genome location andthe location of RdRp coding sequence within ORF 1ab genome location.
- 491
- 492 **Table 2.** Genetic pairwise distance of the 13 coronaviruses used in the study. The least distance

493 is 0; which is between MERS-CoV and Beta coronavirus England 1; while 5.51 is the highest

494 pairwise genetic distance and this is between BCoV and Alpha coronavirus bat; and between

- 495 Alpha-coronavirus bat and rabbit coronavirus.
- 496
- **Table 3.** Predicted miRNAs with regions of complementarity in multiple coronaviruses from

498 BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2. Number of intercepts shows the number of

499 miRNA that have complementary region, while the miRNAs are listed under the MiRNA

500

column.

501

Table 4. Predicted human miRNAs that have bovine miRNA homologs, their size and strands.
The seed location is with respect to the human miRNA, while the size and strand are the bovine
miRNAs. – strand miRNAs are read in reverse direction

506 Figure Legends

507	Figure 1. Schematics of the ORF 1a and ORF 1b regions of the genomes of SARS-CoV-2,
508	MERS-CoV, SARS-CoV and BCoV; their encoded non-structural proteins (nsp) and RdRp
509	layered on one another for easy comparison. The region is highly conserved in the four viruses;
510	except for BCoV which does not have nsp1. All the nsps are present in the four viruses and they
511	are arranged in the same sequence/order. Figures created with sketch pad,
512	
513	Figure 2. Proposed model of miRNA biogenesis and base pairing with coronavirus RdRp
514	mRNA sequence. The figure gives a description of coronavirus infection of host, and release of
515	host miRNA to base pair and degrade the virus or inhibit translation. Figure created with sketch
516	pad.
517	
518	Figure 3. Flow chart of methodology used for the study. Step by Step pipeline for elucidating
519	host miRNA – viral RdRp interaction.
520	
521	Figure 4. Phylogenetic tree showing the evolutionary relationship of 13 coronaviruses. Tree was
522	constructed using MEGA X.
523	
524	Figure 5. Bar chart showing the number of predicted human miRNA that can bind with the ORF
525	1ab region of each of BCoV, MERS-CoV, SARS-CoV and SARS-CoV-2. Figure created
526	graphpad
527	

528	Figure 6. Venn Diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/) showing the
529	number of predicted human miRNA that can target multiple coronaviruses. The number in the
530	intersection/overlapping regions represent the number of miRNAs that can concomitantly target
531	the coronaviruses represented by the intersected shape. (a). Network connections among
532	miRNAs and RdRp of SARS_CoV, B_CoV, MERS_CoV and SARS_CoV-2. B. Generated
533	using Cytoscape 3.7.2
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	
549	
550	

551 Table 1. List of coronavirus species; accession number of their ORF1ab gene, genome location and the location of RdRp coding

552	sequence	within	ORF	1ab	genome	location
-----	----------	--------	-----	-----	--------	----------

S/N	Virus	Accession Number	Genome Location of ORF 1ab	Location of RdRp within
				ORF 1ab
1	Tylonycteris bat CoV	NC_009019.1	267-21625	13553-16327
2	SARS-CoV	NC_004718.3	26521485	13401-16163 13410-16207 13410-16207 12211-15071 13318-16100 11971-14786 13400-16185 12136-14885 13156-15970 12136-14885
3	MERS-CoV	NC_019843.3	279-21514	13410-16207 g
4	Duck coronavirus	NC_048214.1	34720364	12211-15071
5	Bovine coronavirus	NC_003045.1	21121494	13318-16100
6	Canada goose CoV	NC_046965.1	55420085	11971-14786
7	Betacoronavirus England 1	NC_038294.1	278-21513	13400-16185
8	Alphacoronavirus Bat-CoV	NC_046964.1	281-20175	12136-14885
9	Bat CoV	NC_034440.1		13156-15970
10	Pipistrellus bat coronavirus	NC_009020.1	261-21808	13661-16332
11	Rabbit coronavirus	NC_017083.1	209-21663	13483-16270
12	Rodent coronavirus	NC_046954.1	211-21596	13386-16201
13	SARS-CoV-2	NC_045512.2	266-21555	13430-16221

554

	Tylonycteris bat coronavirus	SARS- CoV	MERS CoV	Duck coronavirus	Canada goose coronavirus	B-CoV	Beta- coronavirus England 1	Alpha- coronavirus bat	Bat coronavirus	Pipistrellus bat coronavirus	Rabbit coronavirus	Rodent coronavirus	SAF CoV
'ylonycteris bat oronavirus							-						
ARS-Cov	4.36												
/IERS-CoV	1.8	4.25											a
Juck coronavirus	4.85	5.27	4.83										/aila
Canada goose oronavirus	4.89	5.17	4.81	2.34		_							available under aCC-BY-ND 4.0 International license
3-CoV	4.48	4.92	4.52	5.28	5.14								ler a
Beta-coronavirus England 1	1.8	4.27	0	4.86	4.84	4.55							СС-ВҮ
Alpha-coronavirus bat	5.1	5.32	5.13	4.99	5.11	5.51	5.13						Ż
Bat coronavirus	1.75	4.33	0.18	4.76	4.93	4.58	0.18	4.98					4.0
'ipistrellus bat oronavirus	1.57	4.43	1.56	5.11	5.14	4.61	1.62	5.41	1.54				Interna
labbit coronavirus	4.49	4.95	4.57	5.26	5.24	0.2	4.6	5.51	4.59	4.63			tion
lodent coronavirus	4.57	4.83	4.58	5.26	5.21	0.57	4.61	5.44	4.56	4.71	0.54		al lic
ARS-Cov-2	4.27	0.29	3.97	5.21	5.07	4.8	3.99	5.27	4.21	4.34	4.73	4.65	ense

555 Table 2. Genetic pairwise distance of the 13 coronaviruses used in the study

556

557 The least distance is 0; which is between MERS-CoV and Beta coronavirus England 1; while 5.51 is the highest pairwise genetic

558 distance and this is between BCoV and Alpha coronavirus bat; and between Alpha-coronavirus bat and rabbit coronavirus.

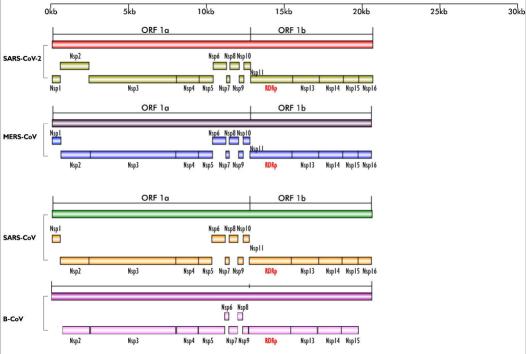
559

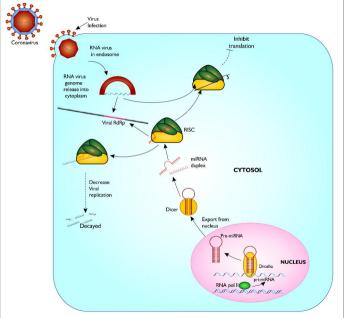
560

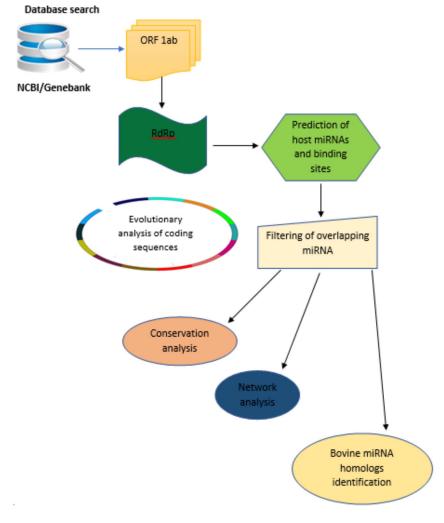
Table 3. Predicted miRNAs with regions of complementarity in multiple coronaviruses from BCoV, MERS-CoV, SARS-CoV and

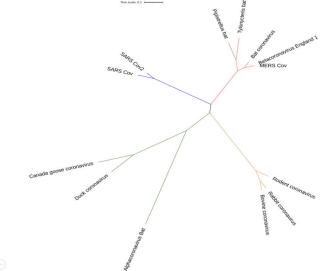
563 SARS-CoV-2

RdRp from virus	Number of intercepts	miRNA
	3	hsa-miR-1283 hsa-miR-579-3p hsa-miR-664b-3p
B_Cov SARS_Cov SARS_Cov2		
	5	hsa-miR-4754 hsa-miR-555 hsa-miR-297 hsa-miR-1265 hsa-
		miR-302c-5p
SARS_Cov SARS_Cov2		
	5	hsa-miR-4793-5p hsa-miR-302b-5p hsa-miR-556-3p hsa-miR-
		1248 hsa-miR-302d-5p
B_Cov SARS_Cov		
	1	hsa-miR-8081
MERS_CoV SARS_Cov		
	4	hsa-miR-4504 hsa-miR-222-5p hsa-miR-567 hsa-miR-936
B_Cov SARS_Cov2		
	9	hsa-miR-7159-5p hsa-miR-585-5p hsa-miR-1305 hsa-miR-
		195-5p hsa-miR-6507-5p hsa-miR-3065-5p hsa-miR-15a-5p
		hsa-miR-15b-5p hsa-miR-16-5p
B_Cov MERS_CoV		

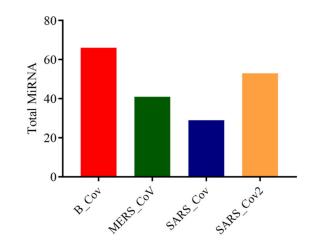

⁵⁶⁵ Number of intercepts show the number of miRNAs with complementary region

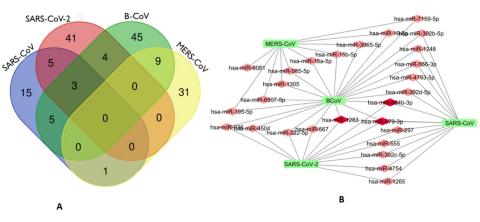

miRNA	Seed location	Bovine homolog	Size	Strand
hsa-miR-196a-1-3p	229, 1027, 1413, 1765, 1940	bta-miR-196a	3 to 20	-
hsa-miR-654-5p	1387	bta-miR-380-5p	1 to 22	+
hsa-miR-541-3p	1387	bta-miR-541	1 to 22	+
hsa-miR-374a-5p	1047, 1362, 1370	bta-miR-374a	1 to 22	+
		bta-miR-374b	2 to 22	+
		bta-miR-373c	1 to 21	+
hsa-miR-664b-3p	1628, 2626	bta-miR-664b	3 to 23	+
hsa-miR-545-5p	830, 2750	bta-miR-545-5p	1 to 21	+
hsa-miR-374b-5p	1047, 1362, 1370	bta-miR-374b	1 to 22	+
-		bta-miR-374a	1 to 22	+
		bta-miR-374c	1 to 21	+
hsa-miR-3065-5p	227, 512, 1025	bta-miR-338	1 to 23	-
		bta-miR-3065	1 to 23	+


Table 4. Predicted human miRNAs that have bovine miRNA homologs, their size and strands.


573 The seed location is with respect to the human miRNA, while the size and strand are the bovine miRNAs. – strand miRNAs are read

574 in reverse direction





4 🕞 🖉 🖻 🍳 🖃 😁

