
Beyond Drift Diffusion Models: Fitting a broad class of
decision and RL models with HDDM
Alexander Fengler1,2, Krishn Bera1,2, Mads L. Pedersen1,3, Michael J. Frank1,2

1 Department of Cognitive, Linguistic and Psychological Sciences, Brown
University
2 Carney Institute for Brain Science, Brown University
3 Department of Psychology, University of Oslo, Norway

* alexander_fengler@brown.edu

Abstract
Computational modeling has become an central aspect of research in the cognitive
neurosciences. As the field matures, it is increasingly important to move beyond
standard models to quantitatively assess models with richer dynamics that may better
reflect underlying cognitive and neural processes. For example, sequential sampling
models (SSMs) are a general class of models of decision making intended to capture
processes jointly giving rise to reaction time distributions and choice data in
n-alternative paradigms. A number of model variations are of theoretical interest, but
empirical data analysis has historically been tied to a small subset for which likelihood
functions are analytically tractable. Advances in methods designed for likelihood-free
inference have recently made it computationally feasible to consider a much larger
spectrum of sequential sampling models. In addition, recent work has motivated the
combination of SSMs with reinforcement learning (RL) models, which had historically
been considered in separate literatures. Here we provide a significant addition to the
widely used HDDM python toolbox and include a tutorial for how users can easily fit
and assess a (user extensible) wide variety of SSMs, and how they can be combined with
RL models. The extension comes batteries included, including model visualization tools,
posterior predictive checks, and ability to link trial-wise neural signals with model
parameters via hierarchical Bayesian regression.

1 Introduction 1

The drift diffusion model (DDM, also called Ratcliff Diffusion Model) [39, 41], and more 2

generally the framework of sequential sampling models (SSMs) [19,41,56] have become 3

a mainstay of the cognitive scientist’s model arsenal. 4

SSMs are used to model neurocognitive processes that jointly give rise to choice and 5

reaction time data in a multitude of domains, spanning from perceptual discrimination 6

to memory retrieval to preference-based choice [22, 23, 39, 42, 47] across species [8, 16, 60]. 7

Moreover, researchers are often interested in the underlying neural dynamics that give 8

rise to such choice processes. As such, many studies include additional measurements 9

such as EEG, fMRI or eyetracking signals as covariates, which act as latent variables 10

and connect to model parameters (e.g. via a regression model) to drive trial specific 11

parameter valuations [8, 12,13,38,60]. See 1 for an illustration of the DDM and some 12

canonical experimental paradigms. 13

1/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 1. Drift Diffusion Model and some example applications.

The widespread interest and continuous use of SSMs across the research community 14

has spurred the development of several software packages targeting the estimation of 15

such models [10, 55]. For a hierarchical Bayesian approach to parameter estimation, the 16

HDDM toolbox in python [58] is widely used and the backbone of hundreds of results 17

published in peer reviewed journals. 18

HDDM allows users to conveniently specify and estimate DDM parameters for a 19

wide range of experimental designs, including the incorporation of trial-by-trial 20

covariates via regression models targeting specific parameters. As an example, one may 21

use this framework to estimate whether trial by trial drift rate in a DDM covary with 22

neural activity in a given region and time point, pupil dilation or eye gaze position. 23

Moreover, by using hierarchical Bayesian estimation, HDDM optimizes the inference 24

about such parameters at the individual subject and group levels. 25

Nevertheless, until now, HDDM and other such toolboxes have been largely limited 26

to fitting the 2-alternative choice DDM (albeit allowing for the full DDM with 27

inter-trial parameter variabilit). The widespread interest in SSMs has however also 28

spurred theoretical and empirical investigations into various alternative model variants. 29

Notable examples are, amongst others, race models with more than 2 decision options, 30

the leaky competing accumulator model [54], SSMs with dynamic decision 31

boundaries [6, 7, 40] and more recently SSMs based on levy flights rather than basic 32

2/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Gaussian diffusions [59]. Moreover, SSMs naturally extend to n-choice paradigms. 33

A similar state of affairs is observed for another class of cognitive models which aim 34

to simultaneously model the dynamics of a feedback-based learning across trials as well 35

as the within-trial decision process. One way to achieve this is by replacing the choice 36

rule in a reinforcement learning (RL) process a cognitive process models such as SSMs. 37

While recent studies [10,11,36,37], moved into this direction, they have again been 38

limited to an application of the basic DDM. 39

Despite the great interest in these classes of models, tractable inference and therefore 40

widespread adoption of such models has been hampered by the lack of easy to compute 41

likelihood functions (including essentially all of the examples provided above). In 42

particular, while many interesting models are straightforward to simulate, often 43

researchers want to go the other way: from observed data to infer the most likely 44

parameters. For all but the simplest models, such likelihood functions are analytically 45

intractable, and hence previous approaches required computationally costly simulations 46

and/or lacked flexibility in applying such methods to different scenarios [4, 45,52,53]. 47

We recently developed a novel approach using artificial neural networks which can, 48

given sufficient training data, approximate likelihoods for a large class of SSM variants, 49

thereby amortizing the cost and enabling rapid efficient and flexible inference [9]. We 50

dubbed such networks LANs, for likelihood approximation networks. 51

The core idea behind computation amortization is to run an expensive process only 52

once, so that the fruits of this labor can later be reused and shared with the rest of the 53

community. Profiting from the computational labor incurred in other research groups 54

enables researchers to consider a larger bank of generative models and to sharpen 55

conclusions that may be drawn from their experimental data. The benefit is three-fold. 56

Experimenters will be able to adjudicate between a rising number of competing models 57

(theoretical accounts), capture richer dynamics informed by neural activity, and at the 58

same time new proposed models by theoreticians can find wider adoption and be tested 59

against data much sooner. 60

Just as streamlining the analysis of simple SSMs (via e.g. the HDDM toolbox and 61

others) allowed an increase in adoption, streamlining the production and inference 62

pipeline for amortized likelihoods, we hope, will drive the embrace of SSMs variations in 63

the modeling and experimental community by making a much larger class of models 64

ready to be fit to experimental data. 65

Here we develop an extension to the widely used HDDM toolbox, which generalizes 66

it to allow for flexible simulation and estimation of a large class o SSMs by reusing 67

amortized likelihood functions. 68

Specifically, this extension incorporates, 69

• LAN [9] based likelihoods for a variety of SSMs (batteries included) 70

• LAN driven extension of the Reinforcement Learning (RL) - DDM capabilities, 71

which allows RL learning rules to be applied to all included SSMs 72

• New plots which focus on visual communications of results across models 73

• An easy interface for users to import and incorporate their own models and 74

likelihoods into HDDM 75

This paper is formulated as a tutorial to support application of the HDDM LAN 76

extension for data analysis problems involving SSMs. 77

The rest of the paper is organized as follows. In section 2 we start by providing some 78

basic overview of the capabilities of HDDM. Section 3 gives a brief overview of LANs [9]. 79

Section 4 constitutes a tutorial with a detailed introduction on how to use these new 80

features in HDDM. We conclude in section 5 embedding the new features into a broader 81

agenda. Lastly we mention limitations and preview future developments in section 6. 82

3/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

2 HDDM: The basics 83

The HDDM python package [58], was designed to make hierarchical Bayesian inference 84

for drift diffusion models simple for end-users with some programming experience in 85

python. The toolbox has been widely used for this purpose by the research community 86

and the feature set evolves to accommodate new use-cases. This section serves as a 87

minimal introduction to HDDM to render the present tutorial self-contained. To get a 88

deeper introduction to HDDM itself, please refer to the original paper [58], an extension 89

paper specifically concerning reinforcement learning capabilities [36], and the 90

documentation of the package. Here we concern ourselves with a very basic workflow 91

that uses the HDDM package for inference. 92

Data HDDM expects a data set, provided as a pandas DataFrame [27] with three 93

basic columns. A 'subj_idx' column which identifies the subject, a 'response' 94

column which specifies the choice taken in a given trial (usually coded as 1 for correct 95

choices and 0 for incorrect choices and a 'rt' column which store the trial wise reaction 96

times (in seconds). Other columns can be added, for example to be used as covariates 97

(task condition or additional measurements such as trial-wise neural data). Here we take 98

the example of a data set which is provided with the HDDM package. Codeblock 1 99

shows how to load this dataset into a python interpreter, which looks as follows, 100

cav_data = hddm.load_csv(hddm.__path__[0] + \
'/examples/cavanagh_theta_nn.csv')

subj_idx stim rt response theta dbs conf
0 0 LL 1.210 1.0 0.656275 1 HC
1 0 WL 1.630 1.0 -0.327889 1 LC
2 0 WW 1.030 1.0 -0.480285 1 HC
3 0 WL 2.770 1.0 1.927427 1 LC
4 0 WW 1.140 0.0 -0.213236 1 HC
...
3983 13 LL 1.450 0.0 -1.237166 0 HC
3984 13 WL 0.711 1.0 -0.377450 0 LC
3985 13 WL 0.784 1.0 -0.694194 0 LC
3986 13 LL 2.350 0.0 -0.546536 0 HC
3987 13 WW 1.250 1.0 0.752388 0 HC

[3988 rows x 7 columns]

Codeblock 1. Loading package-included data

HDDM Model Once we have our data in the format expected by HDDM, we can 101

now specify a HDDM model. We focus on a simple example here: A basic hierarchical 102

model, which estimates separate drift rates (v) as a function of task condition, denoted 103

by the 'stim' column, and estimates the starting point bias z. (Boundary separation, 104

otherwise known as decision threshold, a and non-decision time t, are also estimated by 105

default). 106

This model assumes that the subject level z, a and t parameters are each drawn 107

from group distributions, the parameters of which are also inferred. The v parameters 108

derive from separate group distributions for each value of 'stim'. Details about the 109

choices of group priors and hyperparameters can be found in the original toolbox 110

paper [58]. Codeblocks 2 and 3 show how to construct and sample from such a model. 111

4/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://hddm.readthedocs.io/en/latest/
https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

basic_hddm_model = hddm.HDDM(cav_data,
include = ['z'],
depends_on = {'v': ['stim']})

Codeblock 2. Initializing HDDM model

Sample and Analyze Once we have defined our HDDM model, the goal is to fit the 112

model to the data. In a bayesian context this implies obtaining a posterior distribution 113

over model parameters. For completeness, we note that such posterior distributions are 114

defined via Bayes’ rule, 115

p(θ|D) ∝ p(D|θ)p(θ)

where D is our data, θ is our set of parameters, p(D|θ) defines the likelihood 116

(analytic in the case of the standard HDDM class) of our dataset under the model and p(θ) 117

defines our initial prior over the parameters. 118

HDDM uses the probabilistic programming toolbox pymc [35] to generate samples 119

from the posterior distribution via markov chain monte carlo (MCMC) (specifically, 120

using coordinate-wise slice samples [28]). To generate samples from the posterior we 121

simply type, 122

basic_hddm_model.sample(1000, burn = 500)

Codeblock 3. Sampling from a basic HDDM model

HDDM then provides access to a variety of tools to analyze the posterior and 123

generate quantities of interest, including: 124

1. chain summaries: To get a quick glance at mean posterior estimates (and their 125

uncertainty) for parameters. 126

2. trace-plots and the gelman rubin statistic [5]: To understand issues with 127

chain-convergence (i.e., whether one can trust that the estimates are truly drawn 128

from the posterior). 129

3. the deviance information criterion (DIC) [48] : As a score to be used for purposes 130

of model comparison (with caution). 131

4. posterior predictive plots: To check for the absolute fit of a given model to data 132

(potentially as a function of task condition etc). 133

The HDDM LAN extension maintains this basic HDDM workflow, which we hope 134

facilitates seamless transition for current users of HDDM. After some brief explanations 135

concerning approximate likelihoods, which form the spine of the extension, we will 136

expose the added capabilities in detail. 137

3 Approximate Likelihoods 138

Approximate Bayesian inference is an active area of research. Indeed, the last decade 139

has seen a multitude of proposals for new algorithms, many of which rely in one way or 140

another on popular deep learning techniques [17, 18, 25, 30–32,51]. Relevant to our goals 141

here are algorithms which can estimate trial by trial likelihoods for a given model. The 142

main idea is to replace the likelihood term in Bayes’ Rule, with an approximation 143

5/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

p̂(D|θ), which can be evaluated via a forward pass through a simple neural network. 144

Once the networks are trained, these "amortized" likelihoods can then be used as a 145

plug-in (replacing the analytical likelihood function) to run approximate inference. 146

Having access to approximate likelihoods, the user will now be able to apply HDDM to 147

a broad variety of sequential sampling models. 148

The HDDM extension described here is based on a specific likelihood amortization 149

algorithm, which we dubbed likelihood approximation networks (LANs) [9]. Details 150

regarding this LAN approach, including methods, parameter recovery studies and 151

thorough tests, can be found in [9]. 152

Figure 2. Depiction of the general idea behind likelihood approximation networks. We
use a simulator of a likelihood-free cognitive process model to generate training data.
This training data is then used to train a neural network which predicts the log-likelihood
for a given feature vector consisting of model parameters, as well as a particular choice
and reaction time. This neural network then acts as a standin for a likelihood function
facilitating approximate Bayesian inference. Crucially these networks are then fully and
flexibly reusable, for data deriving from any experimental design.

Note that in principle, our extension supports the integration of any approximate (or 153

exact) likelihood, in the context of a now simple interface for adding models to HDDM. 154

The scope remains limited only insofar as HDDM remains specialized towards choice / 155

reaction time modeling. 156

4 HDDM Extension: Step by Step 157

A Central Database For Models: hddm.model_config 158

To accommodate the multitude of new models, HDDM > 0.9 now uses a model 159

specification dictionary to extract data about a given model that is relevant for 160

inference. The hddm.model_config module contains a central dictionary with which 161

the user can interrogate to inspect models that are currently supplied with HDDM. 162

Codeblock 4 shows how to list the models included by name. 163

hddm.model_config.model_config.keys()

Codeblock 4. model_config list available models.

6/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

For each model, we have a specification dictionary. Codeblock 5 provides an example 164

for the simple DDM. 165

hddm.model_config.model_config["ddm"] =
{
"params": ["v", "a", "z", "t"],
"params_trans": [0, 0, 1, 0],
"param_bounds": [[-3.0, 0.3, 0.1, 1e-3], [3.0, 2.5, 0.9, 2.0]],
"boundary": hddm.simulators.bf.constant,
"hddm_include": ["z"],
"choices": [-1, 1],
"params_default": [0.0, 1.0, 0.5, 1e-3],
"params_std_upper": [1.5, 1.0, None, 1.0],
}

Codeblock 5. DDM specfic model_config

We focus on the most important aspects of this dictionary (more options are 166

available). Under "params" the parameter names for the given model are listed. 167

"params_trans" specifies if the sampler should transform the parameter at the given 168

position (order follows the list supplied under "params".1 "param_bounds" lists the 169

parameter-wise lower and upper bounds of parameters that the sampler can explore. 170

This is important in the context of LAN based likelihoods, which are only valid in the 171

range of parameters which were observed during training.2 172

HDDM uses the inverse logistic (or logit) transformation for the sampler to operate 173

on an unconstrained parameter space. For a parameter θ and parameter bounds [a, b], 174

this transformation takes takes θ from a value in [a, b] to a value x in (−∞, ∞) via, 175

x = ln
(

θ − a

b − θ

)
A given SSM usually has a "decision boundary" which is supplied as a function 176

that can be evaluated over time-points (t0,, tn), given boundary parameters (177

supplied implicitly via "params"). The values representing each choice are reported as 178

a list under "choices". A note of caution: If a user wants to estimate a new model 179

that is not currently in HDDM, a new LAN (or generally likelihood) has to be created, 180

for it to be added to the model_config dictionary. Simply changing a setting in an 181

existing model_config dictionary will not work. 182

"hddm_include", provides a working default for the include argument expected 183

from the hddm.HDDM classes. 184

Lastly, "params_default" specify the parameter values that are fixed (not fit) by 185

HDDM and "params_std_upper" specify upper bounds on group level standard 186

deviations for each parameter (optional, but this can help constrain the parameter 187

ranges proposed by the sampler, making it more efficient). 188

These model_config dictionaries provide a scaffolding for model specification which 189

is applied throughout all of the new functionalities discussed in the next sections. 190

1Transforming parameters can be helpful for convergence, especially if the parameter space is strongly
constrained a priori (e.g., between 0 and 1).

2We trained the LANs included in HDDM on a broad range of parameters, however it cannot be
guaranteed that these were broad enough for any given empirical data set. If the provided LANs are
deemed inappropriate for a given data set (e.g., if parameter estimates hit the bounds), it is always
possible to retrain on an even broader range of parameters. Ruling out convergence issues however,
should be the first order of business in such cases.

7/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Batteries Included: hddm.simulators, hddm.network_inspectors 191

The new HDDMnn (where nn is for neural network), HDDMnnRegressor and 192

HDDMnnStimCoding classes have access to a (growing) stock of supplied SSMs, enabling 193

rapid compiled [2] simulators, and rapid likelihood evaluation via LANs [9] and their 194

implementation in pytorch [34]. 195

Figure 3. Graphical examples for some of the sequential sampling included in HDDM.

We will discuss how to fit these models to data in the next section. Here we describe 196

how one can access the low level simulators and LANs directly, in case one wants to 197

adopt them for custom purposes. We also show how to assess the degree to which the 198

LAN approximates the true (empirical) likelihood for a given model. Users who just 199

want to apply existing SSMs in HDDM to fit data can skip to the next section. 200

As described in the previous section, you can check which models are currently 201

available in the hddm.model_config.model_config dictionary. For a given model, a 202

doc-string includes some information (and possible warnings) about usage. As an 203

example, let us pick the angle model, which is a DDM that allows for the decision 204

boundary to decline linearly across time with some estimated angle. (Note that although 205

other aspects of the model are standard DDM, even in this case the likelihood is 206

analytically intractable. Nevertheless, we previously observed that inference using LANs 207

yields good parameter recovery [9].) Executing codeblock 6, we get the following output, 208

print(hddm.model_config.model_config['angle']['doc'])

Model formulation is described in the documentation under LAN Extension.
Meant for use with the extension.

Codeblock 6. angle model specific model_config

Using the code in codeblock 7 we can simulate synthetic data from this model. 209

Following the code, the variable out is now a three-tuple. The first element contains 210

8/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

from hddm.simulators import simulator
theta_tmp = hddm.model_config.model_config['angle']['params_default']
model = 'angle'
out = simulator(model = 'angle',

theta = theta_tmp,
n_samples = 100,
delta_t = 0.001)

Codeblock 7. Using the simulator simulator

an array of reaction times, the second contains an array of choices and finally the third 211

element returns a dictionary of metadata concerning the simulation run. 212

Next, we can access the LAN corresponding to our angle model directly by typing 213

the code in codeblock 8. 214

lan_angle = hddm.network_inspectors.get_torch_mlp(model = 'angle')

Codeblock 8. Loading a torch network

lan_angle as defined in this codeblock is a method, which defines the forward pass 215

through the LAN. It expects as input a matrix where each row defines a parameter 216

vector suitable for the SSM of choice (here angle, so we need a value for each of the 217

parameters ['t', 'a', 'v', 'z', 'theta'] which can be found in our 218

model_config dictionary). Two elements are then added: a reaction time and a choice 219

at which we would like to evaluate our likelihood. Codeblock 9 provides a full example. 220

We can see the output below. 221

To facilitate a simple sanity check, we provide the kde_vs_lan_likelihoods plot, 222

which can be accessed from the hddm.network_inspectors submodule. 223

This plot lets the user compare LAN likelihoods against empirical likelihoods from 224

simulator data for a given matrix of parameter vectors [9]. The empirical likelihoods are 225

defined via kernel density estimators (KDEs) [46]. We show an example in codeblock 10. 226

Figure 4 shows the output. 227

Fitting data using HDDMnn, HDDMnnRegressor, and 228

HDDMnnStimCoding classes 229

Using the HDDMnn, HDDMnnRegressor and HDDMnnStimCoding classes, we can follow the 230

general workflow established by the basic HDDM package to perform Bayesian inference. 231

In this section we will fit the angle model to the example data set provided with the 232

HDDM package. Codeblock 11 shows us how to load the correponding dataset. 233

We can now set up our HDDM model, and draw 1000 MCMC samples using the 234

code in codeblock 12. 235

We note a few differences between a call to construct a HDDMnn class and a standard 236

HDDM class. First, the supply of the model argument specifying which SSM to fit 237

(requires that this model is already available in HDDM; see above). Second, the 238

inclusion of model-specific parameters under the include argument. The workflow is 239

otherwise equivalent, a fact that is conserved for the HDDMnnRegressor and 240

HDDMnnStimCoding classes. A third difference concerns the choice of argument defaults. 241

The HDDMnn class uses non-informative priors, instead of the informative priors derived 242

from the literature which form the default for the basic HDDM class. Since, as per our 243

earlier discussions, variants of SSMs are historically rarely if ever fit to experimental 244

9/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Make some random parameter set
from hddm.simulators import make_parameter_vectors_nn

parameter_df = make_parameter_vectors_nn(model = model,
param_dict = None,
n_parameter_vectors = 1)

parameter_matrix = np.tile(np.squeeze(parameter_df.values),
(200, 1))

Initialize network input
network_input = np.zeros((parameter_matrix.shape[0],

parameter_matrix.shape[1] + 2))
Note the + 2 on the right
we append the parameter vectors with
reaction times (+1 columns) and choices (+1 columns)

Add reaction times
network_input[:, -2] = np.linspace(0, 3,

parameter_matrix.shape[0])

Add choices
network_input[:, -1] = np.repeat(np.random.choice([-1, 1]),

parameter_matrix.shape[0])

Note: The networks expects float32 inputs
network_input = network_input.astype(np.float32)

Show example output
print('Some network outputs')
print(lan_angle(network_input)[:10]) # printing the first 10 outputs
print('Shape')
print(lan_angle(network_input).shape) # original shape of output

Some network outputs
[[-2.9323568]
[2.078088]
[0.4104141]
[-0.5943402]
[-1.1136726]
[-1.6901499]
[-2.3512228]
[-3.080151]
[-3.8215086]
[-4.4257374]]

Shape
(200, 1)

Codeblock 9. Check forward pass of supplied angle network.

data, we can not easily derive reasonable informative priors from the literature and 245

10/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

from hddm.network_inspectors import kde_vs_lan_likelihoods

Make a set of parameter vectors
parameter_df = make_parameter_vectors_nn(model = model,

param_dict = None,
n_parameter_vectors = 6)

Generate plot
kde_vs_lan_likelihoods(parameter_df = parameter_df,

model = model,
n_samples = 1000,
n_reps = 10,
font_scale = 1.25)

Codeblock 10. Example usage of the kde_vs_lan_likelihood() function to compare
LAN likelihoods to empirical kernel-density estimates.

Figure 4. Example of a kde_vs_lan_likelihoods plot. If the green (deterministic) and
gray (stochastic) lines overlap, then the approximate likelihood (MLP for multilayered
perceptron, the neural network that provides our LAN) is a good fit to the actual
likelihood.

11/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

cav_data = hddm.load_csv(hddm.__path__[0] + \
'/examples/cavanagh_theta_nn.csv')

subj_idx stim rt response theta dbs conf
0 0 LL 1.210 1.0 0.656275 1 HC
1 0 WL 1.630 1.0 -0.327889 1 LC
2 0 WW 1.030 1.0 -0.480285 1 HC
3 0 WL 2.770 1.0 1.927427 1 LC
4 0 WW 1.140 0.0 -0.213236 1 HC
...
3983 13 LL 1.450 0.0 -1.237166 0 HC
3984 13 WL 0.711 1.0 -0.377450 0 LC
3985 13 WL 0.784 1.0 -0.694194 0 LC
3986 13 LL 2.350 0.0 -0.546536 0 HC
3987 13 WW 1.250 1.0 0.752388 0 HC

[3988 rows x 7 columns]

Codeblock 11. Loading package supplied cavanagh dataset.

hddmnn_model_cav = hddm.HDDMnn(cav_data,
model = 'angle',
include = ['z', 'theta'],
is_group_model = True)

hddmnn_model_cav.sample(1000, burn = 500)

[-----------------100%-----------------]
1001 of 1000 complete in 365.3 sec

Codeblock 12. Sampling from a HDDMnn model.

therefore choose to remain agnostic in our beliefs about the parameters underlying a 246

given data set. If the research community starts fitting SSM variants to experimental 247

data, this state of affairs may evolve through collective learning. At this point we 248

caution the user to however not use these new models blindly. We strongly encourage 249

conducting appropriate parameter recovery studies, specific to the experimental data set 250

under consideration. We refer to the section on inference validation tools below, for how 251

HDDM might help in this procedure. 252

New Visualization Plots: hddm.plotting 253

Based on our model fit from the previous section, we illustrate a few new informative 254

plots, which are now included in HDDM. We can generally distinguish between two 255

types of plots. Plots which use the traces only (to display posterior parameter 256

estimates) and plots which make use of the model simulators (to display how well the 257

model can reproduce empirical data given posterior parameters). The first such plot is 258

produced by the the plot_caterpillar function, which presents an approximate 259

posterior 99%-HDI (specifically we show the 1% to 99% range in the cumulative 260

distribution function of the posterior), for each parameter. Codeblock 13 shows us how 261

to invoke this function and Figure 5 illustrates the resulting plot. 262

12/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

from hddm.plotting import plot_caterpillar

plot_caterpillar(hddm_model = hddmnn_model_cav,
figsize = (8, 8),
columns = 3)

Codeblock 13. Example usage of the caterpillar_plot() function.

Figure 5. Example of a caterpillar_plot. The plot is split by model parameter, then
shows parameter wise, the 99% (line-ends) and 95% (gray band ends) highest density
intervals (HDIs) of the posterior. Multiple styling options exist.

The second such plot is the a posterior pair plot, called via the 263

plot_posterior_pair function. This plot shows the pairwise posterior distribution, 264

subject by subject (and, if provided, condition by condition). Codeblock 14 illustrates 265

how to call this function, and Figure 6 exemplifies the resulting output. 266

from hddm.plotting import plot_posterior_pair

plot_posterior_pair(hddmnn_model_cav,
samples = 500,
figsize = (6, 6))

Codeblock 14. Example concerning usage of the plot_posterior_pair() function.

13/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 6. Example of a posterior_pair_plot in the context of parameter recovery.
The plot is organized per stochastic node (here, grouped by the 'subj_idx' column
where in this example 'subj_idx' = '0'). The diagonal shows the marginal posterior
of a given parameter as a histogram. The elements below the diagonal show pair-wise
posteriors via (approximate) level curves. These plots are especially useful to identify
parameter collinearities, which indicate parameter-tradeoffs and can hint at issues with
identifiability. This example shows how the theta (boundary collapse) and a (boundary
separation) parameters as well as the t (non-decision time) and a parameters trade-off in
the posterior. We refer to [9] for parameter recovery results using the underlying angle
SSM. We note that such parameter trade-offs and attached identifiability issues derive
not just from a given likelihood model, but are affected by the data and parameter
structure as task design and modeling choices.

A last very useful plot addition is what we call the model plot, an extension to the 267

standard posterior predictive plot, which can be used to visualize the impact of the 268

parameter posteriors on decision dynamics. For example, if one is estimating a linear 269

collapsing bound, instead of just interpreting the posterior angle parameter, one can see 270

how that translates to the evolving decision bound over time in tandem with the 271

estimating drift rate, etc. It is an extension of the plot_posterior_predictive 272

function. This function operates by manipulating matplotlib axes objects, via a 273

supplied axes manipulator. The novel axis manipulator in the example show in 274

Codeblock 15 is the _plot_func_model function. Figure 7 show the resulting plot. 275

We use this moment to illustrate how the angle model in fact outperforms the 276

DDM on this example dataset. For this purpose we take an example subject from 277

Figure 7 and contrast the posterior predictive of the angle model with the posterior 278

predictive of the DDM side by side in Figure 8. We clearly see that the DDM model 279

has trouble capturing the leading edge and the tail behavior of the rt distributions 280

simultaneously, while the angle model strikes a much better balance. While this 281

14/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

from hddm.plotting import plot_posterior_predictive

plot_posterior_predictive(model = hddmnn_model_cav,
columns = 3,
figsize = (10, 12),
groupby = ['subj_idx'],
value_range = np.arange(0.0, 3, 0.1),
plot_func = hddm.plotting._plot_func_model,
**{'alpha': 0.01,

'ylim': 3,
'samples': 200,
'legend_fontsize': 7.,
'legend_location': 'upper left',
'add_posterior_uncertainty_model': True,
'add_posterior_uncertainty_rts': False,
'subplots_adjust': {'top': 0.94,

'hspace': 0.35,
'wspace': 0.3}

})

Codeblock 15. Example usage of the plot_posterior_predictive function

example does not present a fully rigorous model comparison (DIC scores for example 282

however bear out the same conclusion) exercise, it provides a hint at the benefits one 283

may expect from utilizing the expanded model space that our HDDM extension brings 284

forth. 285

Inference Validation Tools: simulator_h_c() 286

Validating that a model is identifiable on simulated data is an important aspect of a 287

trustworthy inference procedure. We have two layers of uncertainty in this regard. First, 288

LANs are approximate likelihoods. A model that is otherwise identifiable, could in 289

principle lose this property when using LANs to estimate its parameters from a data set, 290

should the LAN not have been trained adequately. Second, a given model can inherently 291

be unidentifiable for a given data set and or theoretical commitments (regardless of 292

whether its likelihood is analytic or approximate). A simple example is that a given 293

experimental data set does not include enough samples to identify the parameter of a 294

model of interest with any degree of accuracy. Slightly more involved, the posterior 295

could tend to be multi-modal, a problem for MCMC samplers that can lead to faulty 296

inference. While increasing the number of trials in an experiment and/or increasing the 297

number of participants can help remedy this situation, this is not a guarantee. Apart 298

from the size and structure of the empirical data set, our modeling commitments play 299

an important role for identifiability too. As an example, we might have experimental 300

data from a random dot motion task and we are interested in modeling the choices and 301

reaction times of participating subjects with our angle model. A reasonable assumption 302

is that the v parameter (roughly processing speed) differs depending on the difficulty of 303

the trial, however the parameters t and a may not since we have not good a-priori 304

theoretical reason to suspect that the non-decision time (t) and the initial the boundary 305

separation a (the degree of evidence expected to take a decision) will differ across 306

experimental conditions. These commitments are embedded in the model itself (they 307

are assumption about the data generating process imposed by the modeler), and 308

determine jointly with an experimental data set whether inference can be successful. 309

15/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 7. Example of a model_plot. This plot shows the underlying data in blue,
choices and reaction times presented as a histograms (positive y-axis for choice option 1,
negative y-axis or choice option 0 or −1). The Black histograms show the reaction times
and choices under the parameters corresponding to the posterior mean. In addition the
plot shows a graphical depiction of the model corresponding to parameters drawn from
the posterior distribution in black. Various options exist to add and drop elements from
this plot; the provided example corresponds to what we consider the most useful settings
for purposes of illustration.

For a modeler it is therefore of paramount importance to check whether their chosen 310

combinations of theoretical commitments and experimental data set jointly lead to an 311

inference procedure that is accurate. Since the space of models incorporated into 312

HDDM has been significantly expanded with the LAN extension, we provide a few tools 313

to help facilitate parameter recovery studies which are relevant to real experimental 314

data analysis and plan to supplement these tools even further in the future. 315

First, we provide the simulator_h_c function, in the hddm_dataset_generators 316

submodule. The function is quite flexible, however we will showcase a particularly 317

relevant use-case. Taking our cav_data data set loaded previously, we would like to 318

16/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 8. Contrasting the posterior predictive of the angle and DDM model on an
example subject. A) shows the angle model and B) shows the DDM. We can clearly
see how the angle model outperforms the DDM in capturing the leading edge of the rt
distribution, while staying faithful to the tail behavior.

generate data from our angle model in such a way that we encode assumptions about 319

our model into the generated data set. In the example below we assume that the v and 320

theta parameters vary as a function of the "stim" column. For each value of "stim" a 321

group level µ and σ (defining the mean and standard deviation of a group level Normal 322

distribution) are generated and subject-level parameters are sampled from this group 323

distribution. This mirrors exactly the modeling assumptions when specifying a HDDM 324

model with the depends_on argument set to {'v': 'stim', 'theta': 'stim'}. 325

Codeblock 16 provides an example on how to call this function. 326

The simulator_h_c function returns the respective data set (here sim_data) 327

exchanging values in the previous rt and response columns with simulation data. 328

Trial-by-trial parameters are attached to the dataframe as well. The parameter_dict 329

dictionary contains all the parameters of the respective hierarchical model which was 330

used to generate the synthetic data. This parameter dictionary follows the parameter 331

naming conventions of HDDM exactly. 332

We can now fit this data using the HDDMnn class as illustrated in Codeblock 17. 333

The plots defined in the previous section allow us to specify a 334

parameter_recovery_mode which we can utilize to check how well our estimation 335

worked on our synthetic data set. Codeblocks 18, 19 and 20 and Figures 9, 10 and 11 336

show respectively code and plot examples. 337

Note how both the plot_posterior_pair function as well as the 338

plot_posterior_predictive function take the parameter_recovery_mode argument 339

to add a ground truth to the visualization automatically (the ground truth is expected 340

to be included in the data set attached to the HDDM model itself). The 341

plot_caterpillar function needs a ground_truth_parameter_dict argument to add 342

the ground truth parameters. The simulator_h_c function provides such a compatible 343

dictionary of ground truth parameters. Using the set of tools in this section, we hope 344

that HDDM conveniently facilitates application relevant parameter recovery studies. 345

17/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Generate some data
from hddm.simulators.hddm_dataset_generators import simulator_h_c
sim_data, parameter_dict = simulator_h_c(data = cav_data,

model = 'angle',
p_outlier = 0.00,
depends_on = {'v': ['stim'],

'theta': ['stim']},
regression_models = None,
regression_covariates = None,
group_only_regressors = False,
group_only = None,
fixed_at_default = None)

sim_data

subj_idx stim rt response theta dbs conf v \
0 0 LL 2.020890 1.0 0.442532 1 HC -0.474451
1 0 WL 2.075889 1.0 0.844691 1 LC -0.865643
2 0 WW 2.119889 1.0 0.661660 1 HC 0.752663
3 0 WL 1.804893 0.0 0.844691 1 LC -0.865643
4 0 WW 2.410885 1.0 0.661660 1 HC 0.752663
...
3983 13 LL 2.874057 1.0 0.402371 0 HC -0.473813
3984 13 WL 2.169051 0.0 0.972350 0 LC -1.001207
3985 13 WL 1.798055 0.0 0.972350 0 LC -1.001207
3986 13 LL 1.709054 1.0 0.402371 0 HC -0.473813
3987 13 WW 2.115052 1.0 0.911009 0 HC 0.824063

a z t
0 1.402356 0.577363 1.468893
1 1.402356 0.577363 1.468893
2 1.402356 0.577363 1.468893
3 1.402356 0.577363 1.468893
4 1.402356 0.577363 1.468893
...
3983 1.283326 0.616165 1.618054
3984 1.283326 0.616165 1.618054
3985 1.283326 0.616165 1.618054
3986 1.283326 0.616165 1.618054
3987 1.283326 0.616165 1.618054

[3988 rows x 11 columns]

Codeblock 16. Using the simulator_h_c() function.

Adding to the bank of SSMs: User Supplied Custom Models 346

The new models immediately available for use with HDDM are just the beginning. 347

HDDM allows users to define their own models via adjusting the model_config and the 348

provision of custom likelihood functions. The goal of this functionality is two fold. First, 349

we aim to make HDDM maximally flexible for advanced users, cutting down red-tape to 350

allow creative usage. Second, we hope to motivate users to follow through with a 351

18/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

hddmnn_model_sim = hddm.HDDMnn(sim_data,
model = 'angle',
include = ['v', 'a', 't',

'z', 'theta'],
is_group_model = True,
depends_on = {'v': ['stim'],

'theta': ['stim']},
p_outlier = 0.00)

hddmnn_model_sim.sample(1000, burn = 500)

[-----------------100%-----------------]
1001 of 1000 complete in 1436.2 sec

Codeblock 17. Fitting a HDDMnn model to synthetic data.

from hddm.plotting import plot_caterpillar

plot_caterpillar(hddm_model = hddmnn_model_sim,
ground_truth_parameter_dict = parameter_dict,
figsize = (10, 15),
y_tick_size = 6,
columns = 3)

Codeblock 18. Caterpillar plot on fit to simulated data.

two-step process of model integration. Step one involves easy testing of new likelihoods 352

through HDDM, however with somewhat limited auxiliary functionality (one can 353

generate plots based on the posterior traces, but other plots will not work because of 354

the lack of a simulator). Step two involves sharing the model likelihood and a suitable 355

simulator with the community to allow full integration with HDDM as well as other 356

similar toolboxes which operate across programming languages and probabilistic 357

programming frameworks. In future work we hope to flesh out a pipeline that allows 358

users to follow a simple sequence of steps to full integration of their custom models with 359

HDDM. Here, we show how to complete step one, defining a HDDMnn model with a 360

custom likelihood to allow fitting a new model through HDDM. See future work section 361

for some guidance on producing your own LAN, or contact the authors. 362

We start with configuring the model_config dictionary. We add a "custom" key 363

and assign the specifics of our new model. For illustration purposes we will add the 364

angle model to HDDM (even though it is already provided with the LAN extension). 365

Codeblock 21 illustrates. 366

Additionally we need to define a basic likelihood function that takes in a vector (or 367

matrix / 2d numpy array) of parameters, ordered according to the list in the "params" 368

key above. As an example, we load our LAN for the angle model (as supplied by 369

HDDM) as if it is a custom network (illustrated in Codeblock 22. 370

We can then fit our newly defined custom model as per Codeblock 23 371

We note the only difference to a normal call to the hddm.HDDMnn class. We supply 372

the model argument as "custom", supply under model_config our own config 373

dictionary and we explicitly add the network argument, our custom_network defining 374

the likelihood. 375

19/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

from hddm.plotting import plot_posterior_predictive

plot_posterior_predictive(model = hddmnn_model_sim,
columns = 3,
figsize = (10, 12),
groupby = ['subj_idx'],
value_range = np.arange(0.0, 3, 0.1),
plot_func = hddm.plotting._plot_func_model,
parameter_recovery_mode = True,
**{'alpha': 0.01,
'ylim': 3,
'add_model': True,
'samples': 200,
'legend_fontsize': 7.,
'legend_location': 'upper left',
'add_posterior_uncertainty_rts': False,
'add_posterior_uncertainty_model': True,
'add_posterior_mean_model': True,
'add_posterior_mean_rts': True,
'subplots_adjust': {'top': 0.94,

'hspace': 0.35,
'wspace': 0.3}

})

Codeblock 19. Model plot for fit to simulated data.

from hddm.plotting import plot_posterior_pair
posterior_pair_plot(hddmnn_model_sim,

parameter_recovery_mode = True,
samples = 500,
figsize = (6, 6))

Codeblock 20. Posterior pair plot for fit to simulated data.

Connecting SSMs with Reinforcement Learning 376

While above we focused on SSMs in stationary environments, a host of commonly 377

applied experimental task paradigms involve some form of learning that results from the 378

agent’s interactions with the environment. While SSMs can be used to model the 379

decision processes, we need additional machinery to capture the learning dynamics that 380

arise while subjects perform such tasks. Reinforcement learning (RL) [49] is one 381

computational framework which can allow us to account for such learning processes. In 382

reinforcement learning, researchers typically assume a simple softmax choice rule, 383

informed by some ‘utility’ (or ‘goodness’) measure of taking a particular action in a 384

given state. Mathematically choice probabilities are expressed as, 385

p(actioni; t) = eqaction,i(t)∑
j eqaction,j(t)

While reinforcement learning models can account for learning dynamics in basic 386

choice behavior, the choice functions commonly employed (e.g., softmax) cannot capture 387

the reaction time. To combine the strengths of sequential sampling models and 388

20/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

my_model_config = {
"params": ["v", "a", "z", "t", "theta"],
"params_trans": [0, 0, 1, 0, 0],
"params_std_upper": [1.5, 1.0, None, 1.0, 1.0],
"param_bounds": [[-3.0, 0.3, 0.1, 1e-3, 0.0],

[3.0, 2.5, 0.9, 2.0, 1.1]],
"boundary": hddm.simulators.bf.constant,
"params_default": [0.0, 1.0, 0.5, 1e-3],
"hddm_include": ["z"],
"choices": [-1, 1],
"slice_widths": {"v": 1.5, "v_std": 1,

"a": 1, "a_std": 1,
"z": 0.1, "z_trans": 0.2,
"t": 0.01, "t_std": 0.15},

}

Codeblock 21. Constructing a custom model config.

from hddm.torch.mlp_inference_class import load_torch_mlp

custom_network = load_torch_mlp(model = 'angle')

Codeblock 22. Loading a custom network.

hddm_model_custom = hddm.HDDMnn(data = data,
include = ["z", "theta"],
model = 'custom',
model_config = my_model_config,
network = custom_network)

hddm_model_custom.sample(1000, burn = 500)

Codeblock 23. Constructing a HDDMnn model using a custom network.

reinforcement learning models, recent studies have used the drift diffusion model to 389

jointly model choice and response time distributions during learning [11,36,37]. Such an 390

approach allows researchers to study not only the across-trial dynamics of learning but 391

the within-trial dynamics of choice processes, using a single model. The main idea 392

behind these models is to allow a reinforcement learning process to drive the 393

trial-by-trial parameters of a sequential sampling model (such as the basic drift diffusion 394

model), which in turn is used to jointly capture reaction time and choice behavior for a 395

given trial. This can be applied in complex tasks which involve learning from feedback 396

(see Figure 12). This results in a much more broadly applicable class of models. It 397

naturally lends itself for use in computational modeling of numerous cognitive tasks 398

where the ’learning process’ informs the ‘decision-making process’. Indeed, a recent 399

study showed that joint modeling of choice and RT data can improve parameter 400

identifiability of RL models, by providing additional information about choice 401

dynamics [1]. However, to date, such models have been limited by the form the decision 402

model. Many RL tasks involve more than two responses, making the DDM inapplicable. 403

Similarly, the assumption of a fixed threshold may not be valid. For example, early 404

during learning differences in Q values, and hence drift rates, will be close to zero and 405

21/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

there is little value in accumulating evidence. A standard DDM model would predict 406

that such choices are associated with very long tail RT distributions. A more 407

appropriate assumption would be that learners use a collapsing bound so that when no 408

evidence is present the decision process can terminate. 409

Utilizing the power of LANs, we can now further generalize the RL-DDM framework 410

to include a much broader class of SSMs for the ’decision-making process’ part. The 411

rest of this section provides some details and code examples for these new RL-SSMs. 412

Test-bed We test our method on a synthetic dataset of the two-armed bandit task 413

with binary outcomes. However, our approach can be generalized to any n-armed bandit 414

task given a pre-trained LAN that outputs likelihoods for the corresponding n-choice 415

decision process (e.g. race models). The model employed a simple delta learning 416

rule [43] to update the action values 417

qaction,i(t + 1) = qaction,i(t) + α ∗ [r(t) − qaction,i(t)],

where qaction(t) denotes expected reward (Q-value) for the chosen action at time t, 418

r(t) denotes reward obtained at time t and α (referred to as rl_alpha in the result 419

plots) denotes the learning rate. The trial-by-trial drift rate depends on the expected 420

reward value learned by the RL rule. The drift rate is therefore a function of Q-value 421

updates, and is computed by the following linking function 422

v(t) = [qaction,1(t) − qaction,2(t)] ∗ s,

where s is a scaling factor of the difference in Q-values. In other words, the scalar s 423

is the drift rate when the difference between the Q-values of both the actions is exactly 424

one (Note that we refer to the scalar s as v in the corresponding figure). We show an 425

example parameter recovery plot for this Rescorla-Wagner learning model connected to 426

a SSM with collapsing bound in Fig. 13. 427

Model definitions for RL with model_config_rl Just like the model_config, the 428

new HDDM version includes model_config_rl, which is the central database for the 429

RL models used in the RLSSM settings. For each model, we have a specification 430

dictionary which is specified as in the model_config. Below is an example for simple 431

Rescorla-Wagner updates [43], a basic reinforcement learning rule. The learning rate 432

(referred to as ‘rl_alpha’ in the result plot (Fig. 13) to avoid nomenclature conflicts 433

with the ‘alpha’ parameter in some SSMs) is the only parameter in the update rule. We 434

do not transform this parameter ("params_trans" is set to 0) and specify the 435

parameter bounds for the sampler as [0, 1]. Note that for hierarchical sampling, the 436

learning rate parameter α is transformed internally in the package. Therefore, the 437

output trace for the learning rate parameter must be transformed by an inverse-logit 438

function, 1
(1+exp(−α)) to get the learning rate values back in range [0, 1]. Codeblock 24 439

shows us an example of such a model_config_rl dictionary. 440

Analyzing instrumental learning data: The HDDMnnRL class Running HDDMnnRL 441

presents only a few slight adjustments compared to the other HDDM classes. First, the 442

data-frame containing the experimental data should be properly formatted. For every 443

subject in each condition, the trials must be sorted in ascending order to ensure proper 444

RL updates. The column split_by identifies each row with a specific task condition (as 445

integer). The feedback column gives the reward feedback on the current trial and 446

q_init denotes the initial q-values for the model. The rest of the data columns are the 447

same as in other HDDM classes. Codeblock 25 provides an example. 448

22/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

hddm.model_config_rl.model_config_rl["RWupdate"] =
{

"doc": "Rescorla-Wagner update rule.",
"params": ["rl_alpha"],
"params_trans": [0],
"params_std_upper": [10],
"param_bounds": [[0.0], [1.0]],
"params_default": [0.5],

}

Codeblock 24. model_config definition for RL-SSM models.

import pandas as pd
data = pd.read_csv(hddm.__path__[0] + \

'/examples/demo_HDDMnnRL/rlssm_data.csv')

response rt feedback subj_idx split_by trial q_init
0 0.0 2.729579 0.0 0 0 1 0.5
1 1.0 3.090593 1.0 0 0 2 0.5
2 1.0 3.892617 1.0 0 0 3 0.5
3 1.0 2.429583 1.0 0 0 4 0.5
4 1.0 2.566581 1.0 0 0 5 0.5
...
29995 1.0 3.381547 1.0 19 2 496 0.5
29996 1.0 3.324544 0.0 19 2 497 0.5
29997 1.0 3.132535 0.0 19 2 498 0.5
29998 0.0 3.206539 0.0 19 2 499 0.5
29999 1.0 5.009474 0.0 19 2 500 0.5

[30000 rows × 7 columns]

Codeblock 25. Reading in RL-SSM example data.

We can fit the data loaded in Codeblock 25 using the HDDMnnRL class. We showcase 449

such a fit using the weibull model in conjunction with the classic Rescorla-Wagner 450

learning rule [43]. The HDDMnnRL class definition (shown in Codeblock 26) takes a few 451

additional arguments compared to the HDDMnn class: "rl_rule" specifies the RL 452

update rule to be used and non_centered flag denotes if the RL parameters should be 453

re-parameterized to avoid troublesome sampling from the neck of the funnel of 454

probability densities [3, 33]. 455

rlssm_model = hddm.HDDMnnRL(data,
model="weibull",
rl_rule="RWupdate",
non_centered=True,
include=["z", "alpha", "beta", "rl_alpha"],
p_outlier=0.0)

rlssm_model.sample(3000, burn=1500)

Codeblock 26. Constructing and sampling from a HDDMnnRL model.

23/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 13 shows a caterpillar plot to verify the LAN-based parameter recovery on a 456

sample RLSSM model. 457

Neural Regressors for RLSSM with the HDDMnnRLRegressor class We also 458

include a HDDMnnRLRegressor class, which is aimed at capturing even richer (learning 459

or choice) dynamics informed by neural activity, just like the HDDMnnRegressor class 460

described above does for basic SSMs. The extension works the same as the bespoke 461

HDDMnnRegressor class, except that the model is now informed by a reinforcement 462

learning process to account for the across-trial dynamics of learning. The method allows 463

estimation of the parameters (coefficients and intercepts) linking the neural activity in a 464

given region and time point to the RLSSM parameters. 465

The usage of HDDMnnRLRegressor class is the same as HDDMnnRL class except that 466

our dataframe will now have additional column(s) for neural (or other, e.g. EEG, pupil 467

dilation etc.) trial-by-trial covariates. Just as when using the HDDMnnRegressor class, 468

the model definition will also include specifying regression formulas which link 469

covariates to model parameters. For example, if the boundary threshold parameter a is 470

dependent on some neural measure neural_reg, Codeblock 27 shows us how to specify 471

a corresponding HDDMnnRLRegressor model. 472

rlssm_reg_model = hddm.HDDMnnRLRegressor(data,
'a ~ 1 + neural_reg',
model="weibull",
rl_rule="RWupdate",
include=["z", "alpha", "beta", "rl_alpha"],
p_outlier=0.0)

rlssm_reg_model.sample(3000, burn=1500)

Codeblock 27. Constructing and sampling from a HDDMnnRLRegressors model.

More Resources 473

The original HDDM [58] paper as well as the original HDDMrl paper [36] are good 474

resources on the basics of HDDM. The documentation provides examples for many 475

complex use cases, including a long tutorial specifically designed to illustrate the 476

HDDMnn classes and another tutorial specifically designed to showcase the HDDMnnRL 477

classes. Through the hddm user group, an active community of HDDM users, one can 478

find support on many problems and use cases which may not come up in the official 479

documentation or published work. 480

5 Concluding Thoughts 481

We hope this tutorial can help kick-start a more widespread application of SSMs in the 482

analysis of experimental choice and reaction time data. We consider the initial 483

implementation with focus on LANs [9] as a starting point, which allows a significant 484

generalization of the model space that can be considered by experimenters. The 485

ultimate goal however is to lead towards community engagement, providing an easy 486

interface for the addition of custom models as a start, which could greatly expand the 487

space of models accessible to research groups across the world. We elaborate on a few 488

possible directions for advancements in the next section. 489

24/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://hddm.readthedocs.io/en/latest/
https://hddm.readthedocs.io/en/latest/lan_tutorial.html
https://hddm.readthedocs.io/en/latest/demo_HDDMnnRL.html
https://groups.google.com/g/hddm-users
https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

6 Limitations and Future Work 490

The presented extension to HDDM greatly expands the capabilities of a tried and tested 491

python toolbox, popular in the cognitive modeling sphere. However, using HDDM as 492

the vehicle of choice, limitations endemic to the toolbox design remain and warrant a 493

look ahead. First, HDDM is based on pymc2 [35] a probabilistic modeling framework 494

that has since been superseded by it’s successor pymc3 [44] (pymc 4.0.0, a rebranded 495

pymc has just been released too). Since pymc2 is not an evolving toolbox, HDDM is 496

currently bound to fairly basic MCMC algorithms, specifically a coordinate-wise slice 497

sampler [29]. While we have confirmed adequate posterior sampling and estimation 498

using our LANs, estimation may be rendered more efficient if one were to leverage more 499

recent MCMC algorithms such as hamiltonian monte carlo [21]. Moreover, new libraries 500

have emerged that act as independent functionality providers for other probabilistic 501

programming frameworks, e.g. the ArViz [24] python library which provides a wide 502

array of capabilities from posterior visualizations to the computation of model 503

comparison metrics such as the WAIC [57]. While custom scripts can be used currently 504

to deploy ArViz within HDDM, we are working on a successor to HDDM (we dub it 505

HSSM) which will be built on top of one or more of these modern probabilistic 506

programming libraries. Second, we realize that a major bottleneck in the wider 507

adoption of LANs (and other likelihood approximators), lies in the supply of amortizers. 508

While our extension comes batteries included, we focused on supplying a few SSM 509

variants of proven interest in the literature, as well as some that we used for our or 510

lab-adjacent research. It is not HDDM, but user friendly training pipelines for 511

amortizers, which we believe to spur the quantum leap in activity in this space. 512

Although we are working on the supply of such a pipeline for LANs [9], our hope is that 513

the community will provide many alternatives. Third, we caution against uninformed 514

use of approximate likelihoods. Before basing results of empirical studies on inference 515

performed with LANs or other approximate likelihoods (e.g. user supplied), it is 516

essential to test for the quality of inference that may be expected. Inference can be 517

unreliable in manifold ways [14,15,50]. Parameter recovery studies and calibration tests, 518

e.g. simulation based calibration [50] should form the backbone of trust in reported 519

analysis on empirical (experimental) data sets. To help the application of a universal 520

standard of rigor, we are working on a set of guidelines, such as a suggested battery of 521

tests to pass before given user supplied likelihoods should be made available to the 522

public. Other interesting work in this sphere is emerging [20,26]. 523

Acknowledgments 524

We thank Lakshmi N Govindarajan for useful tips concerning code quality. We also 525

thank Thomas Wiecki for reviewing the additions to the HDDM package. 526

25/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 9. Example of a caterpillar_plot. The plot is split by model parameter
kind, then shows parameter wise, the 99% (line-ends) and 95% (gray band ends) highest
density intervals (HDIs) of the posterior. In the context of paramter recovery studies,
the user can provide ground-truth parameters to the plot, which will be shown as blue
tick-marks on top of the HDIs. Multiple styling options exist.

26/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 10. Example of a model_plot. This plot shows the underlying data in blue,
choices and reaction times presented as a histograms (positive y-axis for choice option 1,
negative y-axis or choice option 0 or −1). The Black histograms show the reaction times
and choices under the parameters corresponding to the posterior mean. In addition
the plot shows a graphical depiction of the model corresponding to parameters drawn
from the posterior distribution in black, as well as such a depiction for the ground
truth parameters, in case these were provided (e.g., if one is performing recovery from
simulated data). Various options exist to add and drop elements from this plot, the
provided example corresponds to what we consider the most useful settings for purposes
of illustration.

27/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 11. Example of a posterior_pair_plot in the context of parameter recovery.
The plot is organized per stochastic node (here, grouped by the 'stim' and 'subj_idx'
columns where in this example ('stim' = 'LL', 'subj_idx' = '0'). The diagonal
show the marginal posterior of a given parameter as a histogram, adding the ground
truth parameter as a blue tick-mark. The elements below the diagonal show pair-wise
posteriors via (approximate) level curves, and add the respective ground truths as a blue
cross.

Figure 12. RLSSM - combining reinforcement learning and sequential sampling models.

28/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

Figure 13. Parameter recovery on a sample synthetic dataset using RL+Weibull model.
Posterior distributions for subject-level and group-level parameters are shown using
caterpillar plots. The thick black lines correspond to 5-95 percentiles, thin black lines
correspond to 1-99 percentiles. The blue ticks mark the ground truth values.

29/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

References
1. I. C. Ballard and S. M. McClure. Joint modeling of reaction times and choice

improves parameter identifiability in reinforcement learning models. Journal of
Neuroscience Methods, 317:37–44, 2019.

2. S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science & Engineering,
13(2):31–39, 2010.

3. M. J. Betancourt and M. Girolami. Hamiltonian monte carlo for hierarchical
models, 2013.

4. U. Boehm, S. Cox, G. Gantner, and R. Stevenson. Fast solutions for the
first-passage distribution of diffusion models with space-time-dependent drift
functions and time-dependent boundaries. Journal of Mathematical Psychology,
105:102613, 2021.

5. S. P. Brooks and A. Gelman. General methods for monitoring convergence of
iterative simulations. Journal of computational and graphical statistics,
7(4):434–455, 1998.

6. P. Cisek, G. A. Puskas, and S. El-Murr. Decisions in changing conditions: the
urgency-gating model. Journal of Neuroscience, 29(37):11560–11571, 2009.

7. P. Cisek, G. A. Puskas, and S. El-Murr. Decisions in changing conditions: the
urgency-gating model. Journal of Neuroscience, 29(37):11560–11571, 2009.

8. T. Doi, Y. Fan, J. I. Gold, and L. Ding. The caudate nucleus contributes causally
to decisions that balance reward and uncertain visual information. ELife,
9:e56694, 2020.

9. A. Fengler, L. N. Govindarajan, T. Chen, and M. J. Frank. Likelihood
approximation networks (lans) for fast inference of simulation models in cognitive
neuroscience. eLife, 2021.

10. L. Fontanesi. rlssm.

11. L. Fontanesi, S. Gluth, M. S. Spektor, and J. Rieskamp. A reinforcement learning
diffusion decision model for value-based decisions. Psychonomic bulletin & review,
26(4):1099–1121, 2019.

12. B. U. Forstmann, A. Anwander, A. Schäfer, J. Neumann, S. Brown, E.-J.
Wagenmakers, R. Bogacz, and R. Turner. Cortico-striatal connections predict
control over speed and accuracy in perceptual decision making. Proceedings of the
National Academy of Sciences, 107(36):15916–15920, 2010.

13. M. J. Frank, C. Gagne, E. Nyhus, S. Masters, T. V. Wiecki, J. F. Cavanagh, and
D. Badre. fmri and eeg predictors of dynamic decision parameters during human
reinforcement learning. Journal of Neuroscience, 35(2):485–494, 2015.

14. A. Gelman, D. B. Rubin, et al. Inference from iterative simulation using multiple
sequences. Statistical science, 7(4):457–472, 1992.

15. J. Geweke. Evaluating the accuracy of sampling-based approaches to the
calculations of posterior moments. Bayesian statistics, 4:641–649, 1992.

30/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

16. J. I. Gold and M. N. Shadlen. The neural basis of decision making. Annual
review of neuroscience, 30, 2007.

17. D. Greenberg, M. Nonnenmacher, and J. Macke. Automatic posterior
transformation for likelihood-free inference. In International Conference on
Machine Learning, pages 2404–2414. PMLR, 2019.

18. M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander. Likelihood-free inference
via classification. Statistics and Computing, 28(2):411–425, 2018.

19. G. E. Hawkins, B. U. Forstmann, E.-J. Wagenmakers, R. Ratcliff, and S. D.
Brown. Revisiting the evidence for collapsing boundaries and urgency signals in
perceptual decision-making. Journal of Neuroscience, 35(6):2476–2484, 2015.

20. J. Hermans, A. Delaunoy, F. Rozet, A. Wehenkel, and G. Louppe. Averting a
crisis in simulation-based inference. arXiv preprint arXiv:2110.06581, 2021.

21. M. D. Hoffman and A. Gelman. The no-u-turn sampler: adaptively setting path
lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

22. I. Krajbich, D. Lu, C. Camerer, and A. Rangel. The attentional drift-diffusion
model extends to simple purchasing decisions. Frontiers in psychology, 3:193,
2012.

23. I. Krajbich and A. Rangel. Multialternative drift-diffusion model predicts the
relationship between visual fixations and choice in value-based decisions.
Proceedings of the National Academy of Sciences, 108(33):13852–13857, 2011.

24. R. Kumar, C. Carroll, A. Hartikainen, and O. Martin. Arviz a unified library for
exploratory analysis of bayesian models in python. Journal of Open Source
Software, 4(33):1143, 2019.

25. J.-M. Lueckmann, G. Bassetto, T. Karaletsos, and J. H. Macke. Likelihood-free
inference with emulator networks. In Symposium on Advances in Approximate
Bayesian Inference, pages 32–53. PMLR, 2019.

26. J.-M. Lueckmann, J. Boelts, D. Greenberg, P. Goncalves, and J. Macke.
Benchmarking simulation-based inference. In International Conference on
Artificial Intelligence and Statistics, pages 343–351. PMLR, 2021.

27. W. McKinney. Data structures for statistical computing in python. In S. van der
Walt and J. Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 51 – 56, 2010.

28. R. M. Neal. Bayesian learning for neural networks. PhD thesis, University of
Toronto, 1995.

29. R. M. Neal. Slice sampling. Annals of statistics, pages 705–741, 2003.

30. G. Papamakarios and I. Murray. Fast ε-free inference of simulation models with
bayesian conditional density estimation. In Advances in Neural Information
Processing Systems, pages 1028–1036, 2016.

31. G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and
B. Lakshminarayanan. Normalizing flows for probabilistic modeling and inference.
arXiv preprint, arXiv:1912.02762, 2019.

31/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

32. G. Papamakarios, D. Sterratt, and I. Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 837–848. PMLR, 2019.

33. O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. A general framework for the
parametrization of hierarchical models. Statistical Science, 22, 2007.

34. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

35. A. Patil, D. Huard, and C. J. Fonnesbeck. Pymc: Bayesian stochastic modelling
in python. Journal of statistical software, 35(4):1, 2010.

36. M. L. Pedersen and M. J. Frank. Simultaneous hierarchical bayesian parameter
estimation for reinforcement learning and drift diffusion models: a tutorial and
links to neural data. Computational Brain & Behavior, 3:458–471, 2020.

37. M. L. Pedersen, M. J. Frank, and G. Biele. The drift diffusion model as the
choice rule in reinforcement learning. Psychonomic bulletin & review,
24(4):1234–1251, 2017.

38. A. Rangel, C. Camerer, and P. R. Montague. A framework for studying the
neurobiology of value-based decision making. Nature reviews neuroscience,
9(7):545–556, 2008.

39. R. Ratcliff. A theory of memory retrieval. Psychological review, 85(2):59, 1978.

40. R. Ratcliff and M. J. Frank. Reinforcement-based decision making in
corticostriatal circuits: mutual constraints by neurocomputational and diffusion
models. Neural computation, 24(5):1186–1229, 2012.

41. R. Ratcliff, P. L. Smith, S. D. Brown, and G. McKoon. Diffusion decision model:
Current issues and history. Trends in cognitive sciences, 20(4):260–281, 2016.

42. R. Ratcliff, A. Thapar, and G. McKoon. Aging, practice, and perceptual tasks: a
diffusion model analysis. Psychology and aging, 21(2):353, 2006.

43. R. A. Rescorla. A theory of pavlovian conditioning: Variations in the
effectiveness of reinforcement and nonreinforcement. Current research and theory,
pages 64–99, 1972.

44. J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in
python using pymc3. PeerJ Computer Science, 2:e55, 2016.

45. M. Shinn, N. H. Lam, and J. D. Murray. A flexible framework for simulating and
fitting generalized drift-diffusion models. Elife, 9:e56938, 2020.

46. B. W. Silverman. Density estimation for statistics and data analysis, volume 26.
CRC press, 1986.

47. P. L. Smith, R. Ratcliff, and D. K. Sewell. Modeling perceptual discrimination in
dynamic noise: Time-changed diffusion and release from inhibition. Journal of
Mathematical Psychology, 59:95–113, 2014.

32/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

48. D. J. Spiegelhalter, N. G. Best, B. P. Carlin, and A. Van der Linde. The deviance
information criterion: 12 years on. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 76(3):485–493, 2014.

49. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018.

50. S. Talts, M. Betancourt, D. Simpson, A. Vehtari, and A. Gelman. Validating
bayesian inference algorithms with simulation-based calibration. arXiv preprint
arXiv:1804.06788, 2018.

51. A. Tejero-Cantero, J. Boelts, M. Deistler, J.-M. Lueckmann, C. Durkan, P. J.
Gonçalves, D. S. Greenberg, and J. H. Macke. sbi: A toolkit for simulation-based
inference. Journal of Open Source Software, 5(52):2505, 2020.

52. B. M. Turner and P. B. Sederberg. A generalized, likelihood-free method for
posterior estimation. Psychonomic bulletin & review, 21(2):227–250, 2014.

53. B. M. Turner and T. Van Zandt. Approximating bayesian inference through
model simulation. Trends in Cognitive Sciences, 22(9):826–840, 2018.

54. M. Usher and J. L. McClelland. The time course of perceptual choice: the leaky,
competing accumulator model. Psychological review, 108(3):550, 2001.

55. J. Vandekerckhove and F. Tuerlinckx. Diffusion model analysis with matlab: A
dmat primer. Behavior research methods, 40(1):61–72, 2008.

56. A. Voss, V. Lerche, U. Mertens, and J. Voss. Sequential sampling models with
variable boundaries and non-normal noise: A comparison of six models.
Psychonomic bulletin & review, 26(3):813–832, 2019.

57. S. Watanabe. A widely applicable bayesian information criterion. Journal of
Machine Learning Research, 14(Mar):867–897, 2013.

58. T. V. Wiecki, I. Sofer, and M. J. Frank. Hddm: Hierarchical bayesian estimation
of the drift-diffusion model in python. Frontiers in neuroinformatics, 7:14, 2013.

59. E. M. Wieschen, A. Voss, and S. Radev. Jumping to conclusion? a lévy flight
model of decision making. The Quantitative Methods for Psychology,
16(2):120–132, 2020.

60. M. M. Yartsev, T. D. Hanks, A. M. Yoon, and C. D. Brody. Causal contribution
and dynamical encoding in the striatum during evidence accumulation. Elife,
7:e34929, 2018.

33/33

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496747doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.19.496747
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	HDDM: The basics
	Approximate Likelihoods
	HDDM Extension: Step by Step
	Concluding Thoughts
	Limitations and Future Work

