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Abstract: 

Nucleotide level chemical modification in transcriptome is critical in regulating different cellular 

processes, including cancer. The most investigated epitranscriptomic modification is methylation at the 

N6- position of adenosine (m6A). This dynamic modification process is carried out by: writer, reader 

and eraser proteins. Writers are methyltransferases, METTL3 is the major writer that works in 

association with METTL14, an accessory protein. Extensive study revealed that cancer progression for 

acute myeloid leukaemia, gastric cancer, colorectal cancer, hepatocellular carcinoma, and lung cancer 

is directly contributed by irregular expression of METTL3. Targeting METTL3, has opened a new 

window in the development of new inhibitors/drugs. In this study, 80 commercially available 

compounds were found from an unbiased screening by molecular docking, showing better score when 

compared with the existing substrate/substrate-analogue and the inhibitor bound crystal structures in 

terms of docking score and binding energy calculation. Among this pool of compounds, the best seven 

small molecules, AMF, RAD, JNJ, MEH, ECP, MHN, SGI, have been selected and further validated 

by different computational tools like binding energy calculation, molecular dynamics simulation etc. 

The novel hits found in this study can function as lead compounds which can be developed into 

inhibitors as well as drugs, specific against METTL3.  

 

Key words: m6A modification, cancer, METTL3, virtual-screening, docking, molecular dynamics 

simulation 
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Introduction:  

DNA and proteins have been researched to undergo various modifications during the course of 

its lifetime. Similarly in the 1970s, mRNA was also found to be undergoing similar 

modifications, which have been termed as post-transcriptional modifications. Desrosiers [1] 

and colleagues discovered m6A (N6-methyladenosine) to be the most significant form of 

modification in mRNA including mammals [2], insects [3], plants [4], yeast [5] and some 

viruses [6]. Jia et al., [7] found out that m6A modification is ‘dynamic’ and ‘reversible’ with 

the discovery of the first m6A demethylase - fat mass and obesity-associated protein (FTO). 

After this discovery, m6A modifications have been reported in several diseases, and 

bioprocesses [7].  

The prospect of m6A modifications was significantly established with the sequencing of m6A 

by using Next Generation Sequencing (NGS) [8]. With the sequencing results, it was found 

that the modifications take place in the consensus sequence - RRACH (in which R represents 

A or G and H represents A, C or U) and were enriched in the 3’- Untranslated regions along 

with the stop codons. The mapping studies have revealed very significant functions of m6A 

transcriptome. Nearly 170 modifications have been reported in RNA including - N6-

methyladenosine (m6A), N1 -methyladenosine (m1A), inosine (I), 5-methylcytosine (m5C), and 

pseudouridine (ψ) [9] - out of which 72 variants of methylation has been recognised which 

translates to its highly pervasive nature in a transcriptome-wide manner.  

Extensive research in this field marked the formal establishment of “epitranscriptomics” that 

deals with the dynamics and functionality of an mRNA transcriptome [10, 11]. 

epitranscriptomic modifications have been found to play a crucial role in regulating RNA 

biology such as splicing, export, maturation, stability, degradation, translation [12,13], folding, 

and metabolism. In addition to mRNA, other RNAs such as - microRNA (miRNA), long 

noncoding RNAs (lncRNA), circular RNA (circRNA), ribosomal RNA (rRNA), transfer RNA 

(tRNA) and small nucleolar RNAs (snoRNA) have also been reported to undergo m6A 

modifications [14,15]. Interestingly, m6A methylation does not undergo in cytosolic mRNAs 

[16,17,18,19].  m6A modification has been reported to play a vital role in the maintenance of 

embryonic stem cell (ESC) pluripotency, regulation of spermatogenesis, regulation of brain 

development, involvement in the development of nerve cells and neural regulation in adults 

[20]. Similar links have been found in between the regulation of cancer and epitranscriptomic 

modifications [21,22,23].  

The functions of m6A modifications are exercised by ‘writer’, ‘reader’ and ‘eraser’ proteins. 

RNA demethylases are erasers, RNA methyltransferases are writers, and m6A binding proteins 

are readers. The first writer protein to be discovered was Methyltransferase 3 also known as 

METTL3, that weighs about 70 kDa, constitutes of 580 amino acids and its enzymatic activity 

is executed by zinc finger domain (ZFD) and a methyltransferase domain [24]. It has been 

found out that METTL14 (another writer protein) plays the structural role for RNA-binding 

whereas, METTL3 plays the catalytic role.  

METTL3 enabled to discover the relationship between m6A and cellular physiology [25]. 

METTL3 was found to be acting as an essential oncogene in Adult Acute Myeloid Leukemia 
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(AML), where METTL3 is recruited to induce m6A deposition which in turn [26] plays a 

crucial role in leukaemia progression by actively engaging translation of target mRNAs [27] 

and knock-down of METTL3 down-regulates the progression of cancer. Henceforth, METTL3 

have been reported to have direct relationship with its overexpression and oncogenic 

implications in many other types of cancer [28]. In hepatocellular carcinoma (HCC), METTL3 

was observed to be significantly upregulated and contributed heavily in the progression of 

tumorigenicity whereas its depletion resulted in the reduced metastasis [29]. As in case of 

gastric cancer it was observed that the upregulation of METTL3 promoted cell proliferation 

and migration. It was directly related to the tumour survival and metastasis [30]. Lung cancer, 

which is reported to be the most widespread affecting form of cancer, has also been found to 

have its progression affected by the elevated levels of METTL3. METTL3 induces drug 

resistance and progression of NSCLC cells by increasing the levels of m6A modifications [31]. 

Li et al. suggested that in case of colorectal cancer (CRC), METTL3 expression is associated 

with the progression of CRC metastatic tissues [32]. A positive feedback-loop has been found 

to exist between METTL3 and the expression of HBXIP in breast cancer cells suggesting that 

METTL3 indeed drives the occurrence of breast cancer [33]. METTL3 have been found to 

induce hepatoblastoma [34], non-small cell lung cancer [35], bladder cancer [36] and more. 

Hence, METTL3 is a very lucrative target for cancer inhibition. Finding inhibitors that 

specifically target METTL3 is an active field of research [37,38].   So far there is only one 

commercially available inhibitor specific for METTL3, STM2457 [39]. It is essential to find 

more potent inhibitors and druglike molecules which can be developed into effective drugs in 

future for cancer treatment.  

In this work we have targeted the S- Adenosyl Methionine (SAM)/ S- Adenosyl Homocysteine 

(SAH) binding pocket for unbiased virtual screening with 810 commercially available small 

molecules and have found novel molecules, potential inhibitors of METTL3 using molecular 

dynamics simulation, protein-ligand binding energy calculation and pharmacokinetic analysis.   

 

Results: 

Molecular docking:  

The docking protocol has been validated by comparing the METTL3-SAH co-crystal (PDB 

ID: 5IL2, chain A) with docked SAH. The RMSD between the docked and co-crystallized 

structure was 0.065Å, indicating the orientation of small molecules is very similar in both cases 

(supplementary Figure 1). The binding energy of docked SAH was -8.7kcal/mol. Initial in-

silico screening was performed using known DNA methyltransferase inhibitors followed by 

unbiased screening of commercially available natural products to find potential inhibitors and 

avoid the prejudice of searching among compounds with similar structure. The SDF files of 

small molecules were downloaded from PubChem and converted to PDB format using Open 

Babel. Autodock Vina [40] produces eight docked conformations, among them the one with 

highest score was selected for further processing. Over 800 molecules were screened. Since the 

binding energy of the docked SAH was -8.7 kcal/mol, the cut off was set at <-9.0 kcal/mol, to 

find molecules that have significantly stronger binding. 80 compounds have been found with 

docking energy equal to or better than -9.0 kcal/mol (supplementary Table 1). The best 10 

small molecule inhibitors based on the docking score are tabulated in Table 1 along with a 
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three-letter code, used in this manuscript as a unique identifier, and chemical structure. Fig 1 

and Table 2 describes the specific interactions between METTL3 and top 7 inhibitor molecules. 

The surface representation of METTL3 with the inhibitor molecules clearly exhibits how 

different inhibitors has occupied the binding pocket and interacting with the target protein. The 

detailed amino acid level information of the protein-inhibitor interaction is presented in the 

right panel of Fig 1 and in Table 2. In the table, the nature of interaction (H bond or 

Hydrophobic interaction) has been tabulated in the amino acid level and the figure is 

representing the spatial distribution of interacting amino acids in the docked structures (The 

LIGPLOT analysis for each inhibitor-protein complex is presented in supplementary Figure 2).  

It is clear that all inhibitor molecules have occupied the same binding pocket that is considered 

to be the binding pocket for SAM/SAH/STM2457. But if we zoom into the amino acid residue 

level one can find significant variation in nature and number of contacts between the amino 

acid residues and the ligand (Table 2). This piece of information could be useful in designing 

more potent inhibitors using the docked inhibitors as lead.      

Binding energy calculation:  

The binding energy of the docked protein-small molecule complex was also calculated by 

Prodigy (Prodigy Webserver (uu.nl)), a server from Bonvin lab, to compare with the 

ligand/inhibitor bound crystal structures of METTL3. The binding energy score of the best ten 

hits obtained from Autodock Vina showed better result than the existing crystal structures 

(Table 3). It also corroborates the docking score and gives another layer of validation that the 

best scoring compounds are potentially strong inhibitors of METTL3. 

Swiss ADME analysis: 

From the molecular docking analysis, we have shortlisted 10 compounds with significantly 

high docking score compared to the non-hydrolysable substrate analogue (SAH) and existing 

inhibitors like STM2457. The binding energy calculation from Prodigy server depicts similar 

findings while compared with the substrate / substrate analogue and inhibitor bound crystal 

structures. All these in-silico analyses are suggesting that AMF, RAD, JNJ, MEH, ECP, MHN, 

SGI, RAF, BAI, TSH, have the potency to be strong inhibitors against METTL3. But it does 

not make these compounds potential drug molecules until it passes the Lipinski’s rule of five, 

which considers molecular weight, solubility, number of hydrogen bond donor, number of 

hydrogen bond acceptor, partition coefficient between n-octanol and water. Compounds 

violating Lipinski’s rule of five, fail to score enough to be considered as druglike molecule. 

These pharmacokinetic properties were estimated using open-source Swiss ADME server 

(http://www.swissadme.ch/). Determining the pharmacokinetic properties are important in 

drug discovery because more than 40% of the compounds get rejected due to poor score in 

ADME [41]. The pharmacokinetic properties of the selected inhibitor molecules are presented 

in table 4. Out of the ten best hits, seven compounds, RAD, RAF, JNJ, ECP, MHN, TSH, SGI 

are obeying the Lipinski’s rule are has been found to be druggable. On the other hand, AMF, 

MEH, BAI are less druglike due to some violations in the Lipinsiki’s rule but it does not 

undermine the essentiality of these compounds in epitranscriptomics related research. Because 

other than the drug discovery for cancer therapeutics, finding potent inhibitors against 

METTL3 is equally important to study the role of METTL3 in different cellular processes as 

well as in cancer progression. AMF, MEH, BAI also has the potential to be lead compounds 

that could be chemically modified to enhance the druglikeness.       
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The relative toxicity of the selected small molecule inhibitors were also assessed using ToxiM 

(ToxiM (iiserb.ac.in)) and ProTOX II (ProTox-II - Prediction of TOXicity of chemicals 

(charite.de))server. It shows that all these ten compounds are belong to toxicity class 4-6 

according to ProTOX II server, which is within the acceptable range. This information gives a 

preliminary understanding about the druggability of these molecules. 

Molecular Dynamics Simulation:  

The stability of the top 7 protein-ligand complexes derived from molecular docking were 

studied using molecular dynamics simulation and compared with apo-protein simulation 

results. It has been found that the overall RMSD of the apo METTL3 and the METTL3-

inhibitor complex (Fig  2A) are within the allowable limit (< 0.3 Å) for the globular protein 

[42]. The average RMSD of the apo-protein is 0.188Å. The overall average RMSD of the 

proteins bound to different inhibitors is comparable to the average RMSD of the protein alone, 

ranging from 0.156-0.213Å. The change of RMSD value of the protein backbone for different 

inhibitor-protein complexes with the apo-protein was compared over course of simulation by 

plotting the RMSD values against time (Fig 2). The average RMSD of the different ligand 

bound complexes are tabulated in Table 5. In presence of SGI and RAD the average overall 

RMSD is lower than the protein alone which signifies that the binding of these two 

aforementioned ligands stabilizes the METTL3 structure, indicating their interaction with the 

protein was stable throughout the simulation process. 

RMSF: It calculates the fluctuation of the individual amino acid residues throughout the 

simulation process in the presence and absence of different ligand molecules (Fig 2B). The 

RMSF of AMF, SGI, RAD, MHN, MEH, ECP, JNJ are lower than the RMSF of the apo-

protein, which signifies ligand binding has stabilized the fluctuation of amino acid sidechains. 

SASA: The solvent accessible surface area (SASA) of the protein alone is 118 Å2. For inhibitor 

bound complexes, the SASA varies from 115-119 Å2.  For most inhibitor bound complexes, 

AMF, SGI, MHN, ECP, JNJ, the SASA is less than that of the protein alone. For RAD and 

MEH, the SASA is slightly higher (~119 Å2), that could be due to a conformational change. 

RMSF analysis suggests that the amino acids 467-486 have comparatively higher fluctuation 

for RAD and MEH (Fig 2D). 

Radius of gyration: The compactness of protein is indicated by radius of gyration (Rg). The 

average Rg value for the protein is 1.736Å. For MEH, SGI, AMF, JNJ, RAD and ECP the 

average Rg is comparable with the apo-protein. The values are given in Table 5. 

 

Discussion: 

The extensive in-silico analysis and molecular docking of 810 commercially available small 

molecules, including natural compounds, are clearly indicating that AMF, RAD, SGI, JNJ, 

MEH, MHN, ECP could be used as the potent inhibitor of METTL3. Some of these compounds 

are showing no violation to Lipinski’s rule thus claim to be compelling drug candidates for 

cancer therapeutics. If compared with the substrate, substrate analogue and inhibitor bound 

crystal structures of METTL3, the data clearly indicates that these seven compounds are 

showing significantly better score in docking and in the terms of binding energy calculation. 

The molecular dynamics simulation output parameters are also in good agreement with the 
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docking results, where it is clearly showing that docked protein-ligand complexes remain stable 

throughout the entire simulation process. These compounds are potent inhibitors of METTL3 

and promising drug molecules against METTL3 induced cancer. Other than being effective 

drug candidates, these candidates hold much promise in the search of strong inhibitors against 

METTL3. Discovery of strong inhibitor against METTL3 is immensely important to explore 

the role of epitranscriptomic modification in different layers of molecular regulation. These 

small molecules are also providing unique scaffolds to design new more effective compounds 

in future.       

The natural compounds found to be potential inhibitors of METTL3 have therapeutic roles, 

AMF, a biflavonoid, is known to act as an inhibitor in cancer [43, 44] and malaria [45]. Docking 

results indicate AMF binds strongly with METTL3 this is validated by simulation studies as 

well. The AMF-METTL3 complex was more stable during the period of simulation than the 

protein alone. However, AMF does not qualify the Lipinski’s rule of five. Searching for small 

molecule derivatives of AMF, we found Bilobetin [46] which also gives a high docking score 

(-10.5 kcal/mol). RAD is a derivative of RAF265 and found to be VEGFR and RAF kinase 

inhibitor [47]. JNJ has been found as potent selective inhibitor of fatty acid amide hydrolase 

(FAAH) and already has been used in developing new drugs against neuropathic pain treatment 

[48]. The role of METTL3 in AML, CRC, HCC, lung cancer is well established, and inhibiting 

METTL3 has been proven to be useful to limit cancer progression. Therefore, the compounds 

found in this study can be highly useful to serve as potential lead molecules to be developed 

into drugs. 

 

Methods:  

 Receptor preparation for docking: The X-ray crystal structure of human METTL3 in the S- 

Adenosyl Homocysteine (SAH) bound form (PDB ID 5IL2, resolution: 1.61 Å) was retrieved 

from Protein data bank (https://www.rcsb.org/) as the receptor for molecular docking. The 

structure consists of methyltransferase domain of METTL3 protein with amino acid boundary 

369 to 570. The SAM binding pocket of the receptor was targeted for virtual screening. Prior 

to docking, the heteroatoms (ligand, water, ions) were removed from the receptor PDB file. 

Polar hydrogens were added, charges were merged; nonpolar hydrogens and lone pairs were 

removed and receptor PDBQT file was generated using UCSF Chimera [49]. The SAH (PDB 

ID 5IL2) and SAM bound (PDB ID 5IL1) crystal structures were used to validate the docking 

results. 

Ligand preparation for virtual screening: 810 commercially available compounds were selected 

for in silico screening through extensive literature survey and careful analysis of available small 

molecule libraries like Pubchem (https://pubchem.ncbi.nlm.nih.gov/). The small molecules 

were converted to the 3D structure, Gasteiger charges were added, and merged; nonpolar 

hydrogens, lone pairs were removed and ligand PDBQT file generation was done by UCSF 

Chimera. The list of all the selected compounds is present in the supplementary file. 

The binding energy of the small molecules that had best score were rechecked using PRODIGY 

server from Bonvin Lab. 
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Receptor grid generation, molecular docking and binding energy calculation: Docking 

was performed using Autodock Vina, an opensource software through UCSF Chimera GUI. 

The search grid was set including the residues of SAM/SAH binding pocket (ASP377, ASP395, 

ASN539, GLU532, ARG536, HIS538, ASN549, & GLN550). For each run, number of binding 

mode was 5.0, exhaustiveness of run was 8.0 and maximum energy was 2.0 kcal/mol.  

Validation is a crucial step in virtual screening. To validate the docking protocol, SAH, the co-

crystal ligand of METTL3 from 5il2 was redocked with METTL3 and then the docked complex 

was superimposed with the co-crystal to compare the binding of SAH.  The docking score of 

SAH was considered as the standard reference.  To validate the docking protocol and ensure 

the small molecules were docked in the SAM binding pocket, the docked structures were 

superimposed on the native conformation of SAH bound METTL3 receptor. Once the grid box 

and docking parameters were validated, the selected 810 compounds were subjected for 

docking using the same protocol. The interaction energy between the binding pocket in the 

receptor protein and the ligand was calculated from the molecular docking process. The 

compounds were scored on their ability to interact with the SAM binding pocket of the target 

protein. The compounds were first screened and the resulting scores were sorted and ranked. 

A threshold of binding energy -9 kcal/mol was set up to screen only those molecules that have 

a stronger binding compared to either SAH or the existing commercially available inhibitor of 

METTL3, STM2457. The top compounds were ranked according to their binding affinities and 

the ligand–protein binding free energy (∆G) as well as the list of atoms present within 10.5Å 

at the interface between protein & ligand were calculated using ProdigY (PROtein binDIng 

enerGY prediction) server (Prodigy Webserver (uu.nl)).   

Determination of Ki using Autodock 4.2.6: Top 10 compounds, based on the Autodock Vina 

score were subjected to another round of docking with Autodock 4.2.6 using Autodock tools. 

The same receptor PDB file was used for docking. Kollman charges were added and the 

corresponding PDBQT file was prepared using Autodock tools. Search grid box was prepared 

by targeting the SAM binding pocket as described in the previous section. The ligand PDBQT 

files were generated via Open Babel software. For the ligands Gasteiger charges have been 

added prior to docking. For docking search parameter and docking output generation genetic 

algorithm and Lamarckian genetic algorithm were used respectively in search of the lowest 

binding energy. The Autodock 4.2.6 score and the corresponding Ki for the docked compound 

have been tabulated in the table 1.   

Drug like properties and toxicity prediction-: To evaluate the druglikeness of the top scoring 

compounds selected on the basis of docking score, Ki and Prodigy energy were subjected to 

ADME properties determination using open source SwissADME server. The five 

physicochemical parameters (Lipinsiki’s rule) that is molecular weight, number of H-bond 

acceptors (NHBA), number of H-bond donors (NHBD), molar refractivity, n-octanol/water 

partition coefficient were calculated and tabulated in table 4. The compounds showing 

promising results were selected for protein-ligand simulation study. The level of toxicity was 

also calculated using the open source ToxiM and ProTox II server.  

MD simulation protocol 

For further evaluation the 7 top performing ligands were subjected to molecular dynamics 

simulation (MDS) of the receptor protein-ligand complex. The all atom MDS of these selected 

protein-ligand complexes were performed by Gromacs 5.1.2 [50] Molecular Dynamics 
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packages (https://www.gromacs.org/). The protein topology was prepared by the Charmm36 

force field [51]. For each ligand, H atom was added with Avogadro [52] and topology file was 

generated using The CHARMM General Force Field (CGenFF) server [51]. After compiling 

the protein and ligand topology the complex topology file was solvated using TIP3P [53] water 

model in a defined dodecahedron box and rendered electroneutral by the addition of required 

number of Na+ and Cl- counter ions. For energy minimization each system with a maximum 

number of 50000 steps was done using the steepest descent algorithm and the force was set to 

less than 10.0 kJ/mol. The two-stage equilibration step consists of the NVT ensemble step and 

the NPT ensemble step.  In the NVT ensemble step the number of particles (N), volume (V) 

and temperature (T) i.e., 300 K were kept constant and maintained for 100ps. The second step 

or the NPT ensemble step has constant pressure (P) i.e., one bar along with the equilibration of 

temperature (T) and number of particles (N) for 100ps. Berendsen’s method [54] and 

Parrinello-Rahman barostat [55] methods were used to perform NVT and NPT equilibration 

respectively. Upon the execution of the two equilibrium phases the equilibrated system was 

subjected to MD run for 10 ns (5000000 steps). On successful completion of the MDS, removal 

of water and ions was done followed by PBC correction for the purification of the trajectories. 

These purified trajectories assist to analyse and calculate various parameters such as root mean 

square deviation (RMSD) [56], root mean square fluctuation (RMSF) [57], radius of gyration 

(Rg) [58], solvent accessible surface area (SASA) [59] and protein-ligand interaction energy 

(short range Lennard-Jones energy) [50]. The Chimera 1.15 software was used to visualize the 

trajectory and render MD movie/clip and images.  
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Figure legend: 

Figure 1: The interaction of small molecule inhibitors with binding pocket of METTL3. 

The left panel is surface representation of human Mettl3 protein (PDB ID 5IL2) with different 

small molecule inhibitor bound form which depicts the relative position of the inhibitor 

molecules in the binding pocket. In the right panel the amino acid residues of the binding pocket 

which has established interaction with the small molecule inhibitor via either hydrogen bond 

formation or hydrophobic interaction has been shown in stick mode of representation.  

Figure 2: The graphical representation of the MD simulation results of apo-protein and 

in the presence of inhibitor molecules. AMF, RAD, JNJ, MEH, ECP, MHN, SGI throughout 

the simulation time frame (10 ns). (A) The RMSD (Å) of Mettl3 backbone in the absence (apo-

protein) and presence of inhibitors, (B) Mettl3 backbone RMSF (Å) against the amino residue 
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number, (C) Radius of gyration (Rg) in Å vs time (ns) and (D) solvent accessible surface area 

(SASA) in Å2 vs time (ns). 

Table: 

Table 1: Details of the best 10 hits with chemical structure, three letter code, docking score (# 

unique three letter code for the small molecules, *ADV-Autodock Vina and **AD 4.2- 

Autodock 4.2) and inhibition constant (Ki). 

 

Table 2: Amino acid residue wise interaction between Mettl3 and inhibitors (AMF, RAD, JNJ, 

MEH, ECP, MHN, SGI). H stands for hydrogen bond and HP stands for hydrophobic 

interaction. 

Table 3: Binding energy (Kcal/mole) calculation of the 10 best hits along with substrate, 

substrate analogue and existing inhibitor (STM2457) bound crystal structure. 

Table 4: The five major physicochemical parameters such as molecular weight (MW), number 

of hydrogen bond acceptors (NHBA), number of hydrogen bond donors (NHBD), molar 

refractivity (MR) and lipophilicity (ilogp) of all the ten hits are shown here. The toxicity score 

& class has been calculated using Toxi M and Protox II server respectively. 

Table 5: Average Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation 

(RMSF), Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA) and protein ligand 

interaction energy (Lennard-Jones energy) has been calculated from MD simulation run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.19.496750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.19.496750


 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.19.496750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.19.496750


 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.19.496750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.19.496750


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.19.496750doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.19.496750


Table 1: chemical structures and docking scores of the best hits 

Sr. 

No. 

Compound 

Name 
Code# Structure 

ADV score 

(kcal/mol)* 

AD 4.2 

Score 

(kcal/mol)** 

Ki 

1 Amentoflavone AMF 

 

-11.3 -8.49 596.66 nM 

2 Raf265 derivative RAD 

 

-10.9 -9.02 244.07 nM 

3 JNJ-1661010 JNJ 

 

-10.5 -10.42 23.21 nM 

4 
Methyl 

Hesperidin 
MEH 

 

-10.3 -7.53 3.02 uM 

5 
Estradiol 

Cypionate 
ECP 

 

-10.2 -11.01 8.52 nM 
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6 Mahanine MAH 

 

-10.1 -9.5 107.97 nM 

7 SGI1027 SGI 

 

-11 -9.8 65.61 nM 

8 
RAF265 (CHIR-

265) 
RAF 

 

-10.8 -9.06 228.35 nM 

9 Baicalin BAI 

 

-9.9 -7.12 6.07 uM 

10 Tanshinone I TSH 

 

-9.8 -8.58 514.71 nM 
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Table 2: Interaction between METTL3 and inhibitors 

Name of amino acid 

with residue number 
AMF RAD JNJ MEH ECP MHN SGI RAF BAI TSH 

Cys 376       HP  HP HP 

Asp 377 H  HP  H    HP HP 

Ile 378  H HP  H  HP  HP HP 

Asp 395 H HP HP H HP H HP HP HP  

Pro 396 HP  HP H HP HP HP HP   

Pro 397 HP HP HP HP HP HP HP HP HP HP 

Trp 398    HP    HP   

Tyr 406 HP HP HP H HP HP HP HP HP HP 

Gly 407 HP HP  HP     HP HP 

Thr 408 HP   HP       

Leu 409 HP HP HP HP HP  HP  HP HP 

Thr 433  HP HP HP HP HP HP H   

Glu 481  HP  H    HP   

Thr 510  HP  H   H H   

Ser 511 HP HP HP H HP  HP HP H  

Lys 513   HP HP HP    HP  

Phe 534 HP HP HP H HP HP HP HP H HP 

Arg 536 HP  HP HP HP    HP HP 

Gly 548   HP HP HP  HP    

Asn 549 HP HP H H HP HP HP HP HP HP 

Gln 550 HP          

Arg 379 H   HP      HP 

Gly 535   HP      HP  

Asn 539         H  

His 512         HP  

His 538         H  

Glu 532         H  

Ile 400  HP     HP HP   
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Table 3: Binding energy (kcal/mol) 

SAM SAH 
STM 

2457 
AMF RAD JNJ MEH ECP MHN SGI RAF BAI TSH 

-7.2 -7 -8.9 -10.6 -10.6 -7.8 -10.6 -10.7 -9.8 -11 -10.5 -9.8 -8.8 
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Table 4: ADME prediction 

Paramete

rs 
AMF RAD JNJ MEH ECP MAH SGI RAF BAI TSH 

MW 
538.46 

g/mol 

518.41 

g/mol 

365.45 

g/mol 

624.59 

g/mol 

396.56 

g/mol 

347.45 

g/mol 

461.52 

g/mol 

504.39 

g/mol 

446.36 

g/mol 

276.29 

g/mol 

Acceptabl

e range 
≤ 500 ≤ 500 ≤ 500 ≤ 500 ≤ 500 ≤ 500 ≤ 500 ≤ 500 ≤ 500 ≤ 500 

NHBA 10 10 3 15 3 2 4 10 11 3 

Acceptabl

e range 
≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 ≤ 10 

NHBD 6 2 1 7 1 2 4 3 6 0 

Acceptabl

e range 
≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 

MR 146.97 122.44 111.02 145.88 117.49 110.48 140 117.53 106.72 80.24 

Acceptabl

e range 
40–130 40–130 40–130 40–130 40–130 40–130 40–130 40–130 40–130 40–130 

ilogp 3.06 2.78 3.31 1.4 4.09 3.52 2.94 2.13 1.75 2.44 

Acceptabl

e range 
≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 ≤ 5 

Druglike

ness 

No (2 

Violatio

ns) 

Yes (1 

Violati

on) 

Yes (0 

Violati

on) 

No (3 

Violatio

ns) 

Yes (1 

Violati

on) 

Yes (0 

Violati

on) 

Yes (0 

Violati

on) 

Yes (1 

Violati

on) 

No (2 

Violatio

ns) 

Yes (0 

Violati

on) 

Toxi M 

score 
0.92 0.929 0.989 0.791 0.716 0.959 0.921 0.912 0.706 0.98 

ProTox 

class 
5 4 5 6 5 5 5 4 5 4 
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Table 5: Molecular dynamics simulation result  

Sr. 

No. 

Compound 

Code 

Average 

RMSD (Å) 

Average 

RMSF (Å) 

Average 

Rg (Å) 

Average SASA 

(Å2) 

Protein-ligand 

interaction energy 

(kcal/mol) 

1 Apo protein 0.189 0.108 1.737 118.296 - 

2 AMF 0.193 0.096 1.733 116.041 -42.4 

3 RAD 0.188 0.089 1.769 119.128 -39.6 

4 JNJ 0.213 0.087 1.730 114.708 -39.0 

5 MEH 0.207 0.087 1.732 115.104 -42.3 

6 ECP 0.202 0.096 1.734 115.162 -32.7 

7 MHN 0.198 0.097 1.763 119.257 -34.2 

8 SGI 0.156 0.083 1.732 116.563 -38.2 
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