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56 Abstract

57

58 Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus, and leading cause of neurological 

59 infection in Asia and the Pacific, with recent emergence in multiple territories in Australia in 2022. 

60 Patients may experience devastating socioeconomic consequences; JEV infection (JE) predominantly 

61 affects children in poor rural areas, has a 20-30% case fatality rate, and 30-50% of survivors suffer 

62 long-term disability. JEV RNA is rarely detected in patient samples, and the standard diagnostic test is 

63 an anti-JEV IgM ELISA with sub-optimal specificity; there is no means of detection in more remote 

64 areas. We aimed to test the hypothesis that there is a diagnostic protein signature of JE in human 

65 cerebrospinal fluid (CSF), and contribute to understanding of the host response and predictors of 

66 outcome during infection. 

67 We retrospectively tested a cohort of 163 patients recruited as part of the Laos central nervous system 

68 infection study. Application of liquid chromatography and tandem mass spectrometry (LC-MS/MS), 

69 using extensive offline fractionation and tandem mass tag labelling, enabled a comparison of the CSF 

70 proteome in 68 JE patient vs 95 non-JE neurological infections. 5,070 proteins were identified, 

71 including 4,805 human proteins and 265 pathogen proteins. We incorporated univariate analysis of 

72 differential protein expression, network analysis and machine learning techniques to build a ten-protein 

73 diagnostic signature of JE with >99% diagnostic accuracy. Pathways related to JE infection included 

74 neuronal damage, anti-apoptosis, heat shock and unfolded protein responses, cell adhesion, macrophage 

75 and dendritic cell activation as well as a reduced acute inflammatory response, hepatotoxicity, activation 

76 of coagulation, extracellular matrix and actin regulation. We verified the results by performing DIA LC-

77 MS/MS in 16 (10%) of the samples, demonstrating 87% accuracy using the same model. Ultimately, 

78 antibody-based validation will be required, in a larger group of patients, in different locations and in 

79 field settings, to refine the list to 2-3 proteins that could be harnessed in a rapid diagnostic test.   
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80 Author summary

81

82 Japanese encephalitis virus (JEV) is a leading cause of brain infection in Asia and the Pacific, with 

83 recent introduction in multiple territories in Australia in 2022. Patients may experience devastating 

84 socioeconomic consequences; JEV infection (JE) predominantly affects children in poor rural areas, 

85 has a 20-30% case fatality rate, and 30-50% of survivors suffer long-term disability. The disease is 

86 difficult to diagnose, and there are no rapid tests that may be performed in remote areas that it exists 

87 such that we remain unclear of the burden of disease and the effects of control measures. We aimed to 

88 apply a relatively novel method to analyse the proteins in patients with JE as compared to other 

89 neurological infections, to see if this could be useful for making a diagnosis.  

90 We tested the brain fluid of 163 patients recruited as part of the Laos central nervous system infection 

91 study. We used a method, ‘liquid chromatography mass spectrometry’ that does not require prior 

92 knowledge of the proteins present, that is you do not target any specific protein. Over 5,000 proteins 

93 were identified, and these were analysed by various methods. We grouped the proteins into different 

94 clusters that provided insight into their function. We also filtered the list to 10 proteins that predicted JE 

95 as compared to other brain infections. Future work will require confirmation of the findings in a larger 

96 group of patients, in different locations and in field settings, to refine the list to 2-3 proteins that could 

97 be harnessed in a rapid diagnostic test.   
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98 Introduction

99

100 Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus, and a leading cause of neurological 

101 infection as Japanese encephalitis (JE) in Asia. It is of considerable public health importance, with 

102 recent estimates based on sparse data suggesting 1.5 billion people at risk with 42,000 cases per year 

103 (1, 2). It is an emerging disease, with recent evidence of JEV in multiple territories in Australia (3). 

104 Patients may experience devastating socioeconomic consequences; JE predominantly affects children 

105 in poor rural areas, has a 20-30% case fatality rate, and 30-50% of survivors suffer long-term 

106 disability (4). Although no specific treatment is available, several vaccines are available and 

107 recommended by the WHO (5, 6). Although recent efforts have strengthened JEV vaccination 

108 programs, still only 15 of 24 endemic countries include JEV vaccine in routine immunisation 

109 policies, and even then, it is not uniformly nationwide, with vaccine coverage in targeted areas 

110 reported to be as low as 39% (7). JEV is a zoonosis, and sustained vaccine coverage is essential to 

111 control disease.

112 A fundamental limitation in the control of JE is the poor accuracy of existing diagnostic tests, 

113 requirement for lumbar puncture and laboratory capacity for diagnosis (8) . Surveillance data suggest 

114 that only 11 of 24 countries meet the minimum surveillance standards, equivalent to diagnostic 

115 testing in a sentinel site (7). This is a threat to vaccine implementation, as accessible and accurate 

116 diagnostics are essential to understand epidemiology, effectiveness of vaccination, identify associated 

117 research knowledge gaps and facilitate public engagement. This also has implications for appropriate 

118 risk-assessment for travellers. Aside from JEV control, diagnosis is crucial for patients, families and 

119 health-workers, to be able to institute appropriate supportive and rehabilitation care, stop unnecessary 

120 antibiotics, or if the test is negative to prompt further investigation.

121 The gold-standard JEV test is a neutralisation assay. However this requires paired acute and 

122 convalescent sera, is laborious, time-consuming, requires specialist skills, high-level isolation 

123 facilities for viral cell culture and may not define the infecting virus in secondary flavivirus infections 
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124 (8). The WHO recommended diagnostic test is anti-JEV IgM antibody capture ELISA (MAC-ELISA) 

125 of cerebrospinal fluid (CSF). There are limited data from field studies comparing CSF MAC ELISA 

126 with neutralisation assays. The manufacturer of the only available commercial kit for clinical 

127 diagnosis (InBios) quotes a sensitivity of >90% for well-characterised CSF samples, but sensitivity in 

128 the field is as low as 53% (9). There are also increasingly recognised problems with specificity 

129 related to prior vaccination and cross-reactivity with other flaviviruses (10, 11). Reported specificity is 

130 >90%, however a study by our group demonstrated that 13% of patients with JE IgM detected in CSF 

131 by MAC-ELISA had another pathogen detected that may have explained the presentation (10).

132 Detection of JEV RNA would be highly specific, but the period of viraemia is brief and hard to 

133 capture clinically, often occurring before the onset of neurological symptoms and signs. RT-qPCR 

134 remains insensitive irrespective of the analytical sensitivity or gene targets  (12). For this reason, the 

135 application of metagenomics is not likely to significantly improve JEV RNA detection.

136 Uniquely untargeted and powerful, the application of liquid-chromatography mass-spectrometry (LC-

137 MS) proteomics techniques to clinical samples represent a relatively novel approach to improve 

138 diagnosis of JE (13, 14). Such an approach is based on the hypothesis that there is a protein signature 

139 in CSF specific for JE, and that this could be harnessed in an antibody-based point-of-care test. 

140 Furthermore, deep proteomics exploration provides insights into disease processes and potential 

141 therapeutic targets. Network science and machine learning are two complementary disciplines 

142 enabling insights into complex high dimensional data (15, 16). Networks, comprised of nodes and 

143 links, are naturally attuned to problems where features have a relational structure (17) and have a 

144 track record of success in understanding networks of biological interactions (18) . On the other hand, 

145 machine learning can uncover signals in data related to outcome variables and identify predictive 

146 markers of disease, a vital exploratory process for constructing diagnostics (19). Used in conjunction, 

147 network science and machine learning provide novel characterisation of disease states and can 

148 identify robust predictive markers of disease (20). 

149 Herein we aimed to test the hypothesis that there is a diagnostic protein signature of JE by performing 

150 LC-MS/MS in patient samples recruited as part of the Laos CNS study, incorporating differential 
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151 expression, network and machine learning analysis. A subsidiary aim was to utilise the data in the 

152 same workflow to evaluate proteins associated with outcome of JE. We first performed a pilot 

153 feasibility study (n=15) and then in a larger verification study (n=148) including a sample size based 

154 on a power calculation. These data were combined in the final analysis. The results were verified by 

155 performing data independent acquisition (DIA) LC-MS/MS in 16 (10%) of the samples. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.19.496758doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.19.496758
http://creativecommons.org/licenses/by/4.0/


9

156 Materials and methods

157

158 Patient samples

159 A prospective study of central nervous system (CNS) infection has been conducted at Mahosot 

160 Hospital, Vientiane, Laos, since 2003. Methods and results from 2003-2011 have been described (21). 

161 Patients from 2014-2017 were part of the Southeast Asia Encephalitis Project (22). Inpatients of all 

162 ages were recruited for whom diagnostic lumbar puncture was indicated for suspicion of CNS 

163 infection because of altered consciousness or neurologic findings and for whom lumbar puncture was 

164 not contraindicated. There was no formal definition for CNS infection; patient recruitment was at the 

165 discretion of the responsible physician, reflecting local clinical practice. The laboratory also receives 

166 samples from patients from other hospitals around Vientiane; Friendship, Children’s and Setthathirat 

167 Hospitals. Written informed consent was obtained from patients or responsible guardians. Ethical 

168 clearance was granted by the Ethical Review Committee of the Former Faculty of Medical Sciences, 

169 National University of Laos and the Oxford University Tropical Ethics Research Committee. The 

170 confirmed aetiology was determined by the results of a panel of diagnostic tests which included tests 

171 for the direct detection of pathogens in CSF or blood, specific IgM in CSF, seroconversion, or a 4-

172 fold rise in antibody titre between admission and follow-up serum samples (21). Pathogen detection 

173 was confirmed after critical analysis of test results to rule out possible contamination. Japanese 

174 encephalitis virus infection was confirmed, as recommended by the World Health Organisation, by 

175 detection of anti-JEV IgM by ELISA in CSF or seroconversion in paired serum samples. All anti-JEV 

176 IgM positive samples were subsequently confirmed by the gold standard virus neutralisation assay see 

177 cited reference (23). Power analysis was performed to estimate the sample size that would be required 

178 using different values. A schematic representation of the study methods is illustrated in Figure 1.

179

180 Figure 1: Schematic representation of the study methods

181
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182 LC-MS sample preparation 

183 CSF samples were diluted 1:5 in 9 M urea and vortexed intermittently at room temperature for 30 

184 minutes, to solubilise and denature proteins, inactivating any pathogens and rendering the sample 

185 acellular. Protein concentration was assessed with a Nanodrop assay ND-1000 spectrophotometer 

186 (Thermo Scientific) by measuring the absorbance at 280 nm, normalised by aliquoting different 

187 volumes of each sample dependent on the protein concentration, and then the total volume equalised 

188 with 7.5 M urea. An equal volume of 100 mM dithiothreitol (DTT) in 50 mM ammonium bicarbonate 

189 (AmBic) was added as a reducing agent, and the samples vortexed and incubated at 56˚C for 45 min. 

190 An equal volume of 100 mM iodoacetamide (IAA) in 50 mM AmBic was added as an alkylating 

191 agent, vortexed and incubated at room temperature for 1 hr in the dark. 50 mM AmBic was added to 

192 each sample to reduce the urea concentration to below 1M. Digestion was performed with trypsin in a 

193 ratio of 1:20 m:m protein:trypsin (Promega, P/N V5072 for the pilot study; V5117 for the larger 

194 study); first 75% of the total amount of trypsin added and incubated at 37°C for 18 hours overnight 

195 and then the remaining 25% added and incubated at 37.5°C for 6 hours. The samples were frozen at -

196 20˚C to quench the trypsin digestion reaction. A pooled aliquot of each sample was analysed by label-

197 free LC-MS to verify protein digestion.

198 Reverse phase (RP) C18 solid phase extraction (SPE) was used to desalt the digested proteins, as per 

199 the manufacturers’ instructions (Waters P/N WAT023590 for the pilot study; Thermo Scientific P/N 

200 60109-001 for the larger study). The total eluate was dried completely using a vacuum concentrator 

201 (Savant SpeedVac or Eppendorf concentrator) and for the samples to be labelled by Tandem Mass 

202 Tag (TMT), resuspended in 100 mM triethylammonium bicarbonate (TEAB). The samples were 

203 vortexed, centrifuged, sonicated for 3 min, and then this was repeated. The Pierce Quantitative 

204 Colorimetric Peptide Assay (Thermo Scientific, UK) was performed as per the manufacturer’s 

205 instructions. The samples were normalised for peptide concentration with TEAB to make up a final 

206 volume of 100 L required for TMT labelling. TMT labelling was performed as per the 

207 manufacturer’s instructions, in two batches of TMT 11-plex (Thermo Scientific, P/N A37724) for the 

208 pilot study and ten batches of 16-plex (Thermo Scientific, P/N A44520) for the larger study. For the 
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209 larger study, in order to examine technical variability and adjust for batch effects, each batch 

210 contained one reference pool and the batch 9 and 10 had two replicate samples. A pooled sample was 

211 analysed by LC-MS to verify labelling efficiency. 

212

213 Offline high pH reverse-phase fractionation

214 For the pilot study, offline high pH reverse-phase fractionation was performed using a Hypersil Gold 

215 column (Thermo Scientific, P/N 25002-202130). The mobile phase A was water adjusted with 

216 ammonium hydroxide to pH 10 and B was 10 mM ammonium bicarbonate in 80% Acetonitrile (ACN) 

217 adjusted with ammonium hydroxide to pH 10 and a flow rate of 300 µL/min. The samples were 

218 separated into 91 fractions with each fraction collected every 60 seconds from the start of the run and 

219 using the gradient shown in supplementary data (S1 Data). For the larger study, offline high pH reverse-

220 phase fractionation was performed using an Xbridge BEH C18 column (Waters P/N 186006710). The 

221 mobile phase A was water adjusted to pH 10 with ammonium hydroxide and B was 90% ACN adjusted 

222 to pH 10 with ammonium hydroxide, at a flow rate of 200 µL/min. Fractions were collected every 60 

223 seconds from the start of the run (100 fractions) and then concatenated into 44 fractions using the 

224 gradient shown in supplementary data (S1 Data). The samples analysed by DIA LC-MS/MS were not 

225 processed by offline fractionation. 

226

227 Liquid-chromatography mass-spectrometry

228 Online peptide desalting was performed with a Dionex Ultimate 3000 nano UHPLC (Thermo 

229 Scientific) using 100% of loading mobile phase A = 0.05% TFA in water at a flow rate 10 µL/min for 

230 4.6 min. The online desalting column (trap column) used was a C18 column (Thermo Scientific P/N 

231 160454). At 4.6 min the flow from the nano pump was diverted to the trap column in a backward 

232 flush direction. For online low-pH reverse-phase fractionation, the trapped peptides were eluted from 

233 the column over the gradient time specified in supplementary data (S1 Data). For the pilot study, 

234 Accucore C18 columns (Thermo Scientific P/N 16126-507569) were used with a nano source, at a 
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235 flow rate of 250 µL/min. For the larger study, EASY-Spray PepMap C18 columns (Thermo Scientific 

236 P/N ES903) were used with an EASY-Spray source, and a flow rate of 300 µL/min. Mobile phase A 

237 was 0.1% FA and B was 0.1% FA in 80% ACN. MS was performed with a Q Exactive benchtop 

238 hybrid quadrupole-Orbitrap MS (Thermo Scientific), the settings are described in detail in 

239 supplementary data (S1 Data). For the CSF samples processed by DIA LC-MS/MS, samples were 

240 analysed using a Dionex Ultimate 3000 nano UPLC (Thermo Scientific) coupled to an Orbitrap 

241 Fusion Lumos mass spectrometer (Thermo Scientific). Briefly, peptides were trap on a PepMap C18 

242 trap columns (Thermo) and separated on an EasySpray column (50cm, P/N ES803, Thermo) over a 

243 60-minute linear gradient from 2 % buffer B to 35 % buffer B (A: 5 % DMSO, 0.1 % formic acid in 

244 water. B: 5 % DMSO, 0.1 % formic acid in acetonitrile) at a flow rate of 250 nL/min. The instrument 

245 was operated in data-independent mode as previously described (24).  

246

247

248 Data processing and statistical analysis

249

250 The sample size was estimated using a power calculation based on a t test and multiple testing 

251 correction, with data from the pilot study and the R package 'FDRsampsize' (25). 

252

253 Protein identification, quantification, missing value imputation and batch correction: Thermo raw files 

254 were imported into Proteome Discoverer v2.5 (Thermo Scientific, UK) for peptide identification 

255 using the SEQUEST algorithm (26) searching against the SwissProt Homo sapiens and pathogen 

256 databases according to the included samples with precursor mass tolerance 10ppm and fragment mass 

257 tolerance 0.02 Da. Carbamidomethylation of cysteine, TMT at N-termini and lysine were set as fixed 

258 modifications, and oxidation of methionine was set as a variable modification. False discovery rate 

259 (FDR) estimation was performed using the Percolator algorithm (27). The criteria for protein 

260 identification included FDR < 1%, ≥ 2 peptides per protein, ≥ 1 unique peptides per protein, ≤ 2 

261 missed cleavages and ≥ 6 and ≤ 144 peptide length (amino acids), coisolation threshold < 50%, 
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262 average S/N threshold >10 and at least 2 channels with quantification data. Protein quantification was 

263 performed in R v 4.1.2 with the package MSstatsTMT (28). Proteins with >50% missing data were 

264 removed and the data was imputed with the package DreamAI (29). To incorporate peptide count per 

265 protein, jitter was added proportional to 1/median peptide count for each protein. The pilot and larger 

266 study data were merged, normalised with the package RobNorm (30) and then batch correction was 

267 performed with the function ComBat (31) in the package sva without modifiers as covariates (32). 

268 The protein list was filtered to remove contaminant proteins from the skin or red blood cells, see 

269 supplementary data S5_contaminants for the list of proteins removed. 

270

271 Differential protein expression: Differential expression between the protein abundance in the JE vs. 

272 non-JE patient samples was performed using a t test and Benjamini-Hochberg correction for multiple 

273 testing. 

274

275 Network analysis: Weighted correlation network analysis (WGCNA) was performed using the 

276 package WGCNA: constructing a signed weighted co-expression network with a soft power threshold 

277 of 12 to produce a power distribution, that is, scale-free topology; applying hierarchical clustering to 

278 detect modules of highly interconnected proteins with a minimum module size of five, deepSplit 4 

279 and merge threshold 0.3; classifying intramodular hub proteins as the five proteins with the highest 

280 module membership for each module; and then correlating the modules with patient sample data (33). 

281

282 Feature selection and predictive modelling: This was implemented with the Boruta algorithm (using 

283 the random forest classifier) using the package Boruta (34) and with Lasso (least absolute shrinkage 

284 and selection operator) regression using the package glmnet (16, 35). A final list of proteins based on 

285 the intersect between Boruta and Lasso were selected (36). Classification of JE vs. non-JE was 

286 performed with selected proteins using a several different machine learning models (random forest, 

287 support vector machine, logistic regression and naïve bayes with the package caret and 
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288 caretEnsemble) (37). Models were trained using tenfold cross-validation repeated ten times evaluated 

289 on AUC-ROC. An analysis of feature importance was performed to identify proteins that best 

290 predicted the outcome (alive/ died) in JE patients, however due to the small sample size this was 

291 considered an exploratory analysis. Feature selection was performed with Boruta and Lasso, and then 

292 five-fold cross-validation performed on the entire dataset using different machine learning models. 

293 Protein involvement in biological, molecular and cellular processes was explored using gene ontology 

294 using the webserver STRING (38), the R package WebGestaltR 0.4.4 (39), and tissue expression 

295 correlated with the Human Protein Atlas (HPA) (40, 41).

296

297 Data independent acquisition (DIA) data processing: For robustness, final verification was performed 

298 on 10% of the samples independently processed via a separate mass spectrometry pipeline using 

299 label-free DIA LC-MS/MS. DIA data were analysed using DIA-NN software (v0.8) with the library-

300 free approach as previously described (42), using the default settings as recommended. Briefly, for the 

301 library-free processing, a library was created from human UniProt SwissProt database (downloaded 

302 24/2/21 containing 20,381 sequences) using deep learning. Trypsin was selected as the enzyme (1 

303 missed cleavage), with carboamidomethylation of C as a fixed modification, oxidation of Methionine 

304 as a variable modification and N-term M excision. Identification and quantification of raw data were 

305 performed against the in-silico library applying 1% FDR at precursor level and match between runs 

306 (MBR). The DIA-NN ‘report.proteingroup’ matrix output was further analysed. Missing values were 

307 imputed with half the minimum value for each protein. These data was used as a test set in the 

308 predictive model for the diagnosis of JE. In view of the small numbers of JE patients included in the 

309 test set and missing outcome data for these patients, this was not used to test the predictive model for 

310 JE outcome.  

311
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312 Results

313

314 Patient data

315 Power analysis was performed to estimate the sample size that would be required to compare 

316 differential expression of proteins in JE vs non-JE using different values: with 1000-3000 biomarkers 

317 to be tested, 50-150 finally verified, effect size 0.8, power 90%, false discovery rate <5%, the total 

318 sample size with an equal number of JE cases and non-JE controls, was 122. Overall, including the 

319 pilot and larger study, 163 patients were included – 68 JE and 95 Non-JE, see Table 1, supplementary 

320 data S2 and S3.

321

322 Table 1: Summary of included patients’ demographics, clinical presentations and details of diagnosis. 

323

324 JE patients were confirmed by the assays with the highest diagnostic confidence; detection of JEV 

325 RNA, or detection of JEV IgM in CSF or by seroconversion and confirmed by virus neutralisation 

326 tests (VNT). Non-JE patients included a range of different categories of infection that are common in 

327 the region. None of the patients had dual infections. Details of patient demographics, clinical 

328 presentations, laboratory investigations and outcome are reported in supplementary data S1 and S2.   

329

330 Protein profiling in CSF reveals differential expression in JE

331 5,070 proteins were identified, including 4,805 human proteins and 265 pathogen proteins, see 

332 supplementary data S4 for MSstatsTMT output for the pilot and larger studies. The pathogen proteins 

333 were bacterial or parasitic proteins. 2244 human proteins were identified in more than half of the 

334 samples included in both the pilot and larger studies. 68 proteins deemed to be contaminants were 

335 removed from the list, see supplementary data S5, resulting in a filtered list of 2176 proteins. 
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336 268 proteins showed differential expression (167 > 1.2 fold change, FC, and 101 <0.8 FC) based on 

337 the performance of a t test and Benjamini Hochberg multiple testing correction with p value <0.05, 

338 illustrated by the volcano plots in Figure 2.  

339

340 Figure 2: Volcano plots of the identified proteins illustrating the statistical significance (t test p 

341 values, a. uncorrected and b. corrected) against the magnitude of change (fold change) for Japanese 

342 encephalitis (JE) vs. Non-JE neurological infections.  

343

344 Molecular pathways associated with JE in CSF

345 2176 proteins from 163 patient samples were used to build a weighted gene expression network. A 

346 single outlier was identified, see supplementary data S7, and removed. Further analysis revealed that 

347 this sample had higher overall protein abundances, in spite of peptide normalisation prior to TMT 

348 labelling and downstream normalisation in MSstatsTMT and RobNorm during data processing. 44 

349 modules were identified, and then closely related modules merged into 20 modules, see the tree 

350 diagram illustrating the cluster dendrogram in Figure 3 and the modules in Figures 4. Module-trait 

351 relationships are shown in Figure 5; suggesting that 15 modules were associated with JE (p value < 

352 0.05), 9 upregulated (red) and 6 downregulated (green). 10 of the modules included proteins in the top 

353 five intramodular proteins, that is proteins with the highest modular membership, with significant 

354 differences in abundance between the JE and non-JE group. 

355

356 Figure 3: Weighted correlation network analysis cluster dendrogram

357

358 Figure 4: Weighted correlation network analysis clustering of module eigengenes. 

359 The red line in the figure indicates the threshold for merging modules together, here the threshold was 0.3. 

360
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361 Figure 5: Weighted correlation network analysis module-trait relationships.

362 darkred=anti-apoptosis, red=neuronal damage, sienna3=oxidative stress, orangered4=angiogenesis, yellowgreen=heat shock 

363 response, yellow=unfolded protein response, darkgreen=cellular response to cytokine, floralwhite=translation, 

364 darkolivegreen=acute inflammation, paleturquoise=actin, salmon=extracellular matrix, mediumpurple3=lymphocyte subset, 

365 plum1=hepatotoxicity, darkorange=activation of coagulation, greenyellow=Igs, skyblue3=IgM, brown=cell adhesion and 

366 pathogen attachment, magenta=endothelial activation, pink=macrophages, royalblue=myeloid dendritic cells.

367

368 A diagnostic protein signature of JE in CSF

369 Feature selection: In total, 86 proteins were identified by at least one of the feature selection 

370 procedures as important in classifying JE vs non-JE; 68 proteins identified with the Boruta algorithm 

371 and 28 with Lasso, see supplementary data S10. The proteins were associated with 11 different 

372 WGCNA modules, all of which had been identified as associated with JE through WGCNA. 48 were 

373 upregulated and 38 downregulated in comparison to other neurological infections. Functional 

374 enrichment analysis in STRING demonstrated interactions between the proteins, Figure 6. Gene 

375 ontology analysis highlighted overexpression of proteins related to apoptosis and downregulation of 

376 proteins related to neutrophil degranulation, supplementary data S11. 22 proteins were secreted 

377 proteins: Immunoglobulin lambda variable 3-9 (IGLV3-9), Immunoglobulin heavy variable 3-74 

378 (IGHV3-74), Golgi membrane protein 1 (GOLM1), Cathepsin L (CTSL), CEA cell adhesion 

379 molecule 8 (CEACAM8), Phospholipase B domain containing 1 (PLBD1), Cerebellin 1 precursor 

380 (CBLN1), Secreted phosphoprotein 1 (SPP1), Natriuretic peptide C (NPPC), Microtubule associated 

381 protein tau (MAPT), Chitinase 3 like 1 (CHI3L1), ISG15 ubiquitin like modifier (ISG15), Interleukin 

382 18 binding protein (IL18BP), Beta-2-microglobulin (B2M), TNF superfamily member 13b 

383 (TNFSF13B), Bactericidal permeability increasing protein (BPI), Pentraxin 3 (PTX3), Matrix 

384 metallopeptidase 9 (MMP9), S100 calcium binding protein A12 (S100A12), Azurocidin 1 (AZU1), 

385 Olfactomedin 4 (OLFM4) and Matrix metallopeptidase 8 (MMP8). 15 proteins were associated with 

386 increased expression in the brain: Brain abundant membrane attached signal protein 1 (BASP1), 

387 Aldolase, fructose-bisphosphate C (ALDOC), CBLN1, Metallothionein 3 (MTX3), MAP2, Tyrosine 

388 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG), Tyrosine 3-
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389 monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH), MARCKS like 1 

390 (MARCKSL1), Secernin 1 (SCRN1), SPP1, Microtubule associated protein tau (MAPT), CHI3L1, 

391 Paralemmin (PALM), Reticulon 1 (RTN1), Purkinje cell protein 4 (PCP4), Cytidine/uridine 

392 monophosphate kinase 2 (CMPK2), NPPC, Glial fibrillary acidic protein (GFAP), Cell cycle exit and 

393 neuronal differentiation 1 (CEND1). Thus, three proteins were secreted and showed an increased 

394 expression in the brain: SPP1, MAPT, CHIL3, NPPC and CBLN1.

395 JEV has a predilection for the thalamus and substantia nigra of the basal ganglia (23). One of the 

396 proteins were ‘group enriched’ in the thalamus, MMP9, from the HPA database. Four proteins were 

397 associated with the GO term ‘substantia nigra development’, associated with BASP1, Glucose-6-

398 phosphate dehydrogenase (G6PD), YWHAH and 14-3-3 protein epsilon (14-3-3epsilon). The HPA 

399 database includes mRNA expression data from 13 brain regions, including the basal ganglia and 

400 thalamus; substantia nigra expression on its own is not reported 

401 (https://www.proteinatlas.org/humanproteome/brain). 

402

403 Figure 6: STRING functional protein association network https://version-11-5.string-

404 db.org/cgi/network?taskId=bMZcY3ZdJua4&sessionId=bpgLGeFd4RM1 

405

406 Predictive modelling: 

407 Feature selection identified a final set of 10 proteins which together exhibited high predictive 

408 performance (Figure 7). When examined using the ensemble model, using ten-fold cross validation, 

409 JE classification demonstrated an AUC-ROC of 99.5 (99.2-99.9), in addition to high sensitivity and 

410 specificity – metrics in Table 2 and ROC in supplementary data S12.

411

412 Table 2: Predictive modelling scores with 95% confidence intervals  
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Classification 
task

Data AUC-
ROC

Accuracy Sensitivity Specificity Positive 
predictive 
value

Negative 
predictive 
value

Training 
set1 
(n=163)

99.5 
(99.2-
99.9)

99.4 
(98.8- 
99.8)

99.5
(98.5-
99.9)

99.3
(98.3- 
99.8)

99.3
(98.3- 
99.8)         

99.5
(98.5- 
99.9)

JE diagnosis 
(JE vs. 
non-JE)

Test set2 
(n=16)

91.0% 
(79.0-
100)

87.5% 
(61.7-
98.5)

100% 
(47.8-100)

81.8% 
(48.2-
97.7)

71.4% 
(29.0-
96.3)

100% 
(66.4-
100)

JE outcome 
(dead vs. 
alive)

Training 
set3 
(n=42)

88.5 
(84.7-
92.2)

86.3 
(83.5-
88.8)

42.0
(32.2-
52.3)

93.7 
(91.4, 
95.5)

52.5
(41.0-
63.8)

90.6
(88.1-
92.8)

413 1. The training set included patient samples (68 JE and 95 non-JE confirmed neurological infections) processed by TMT LC-MS/MS. 2. The 
414 test set included 10% of the patient samples from the TMT LC-MS/MS analysis processed separately by label-free DIA LC-MS/MS. 3. The 
415 training set included all the JE patients included in the TMT LC-MS/MS analysis for which outcome data was available.

416

417 Figure 7: Differential expression across samples in ten proteins as a diagnostic signature of Japanese 

418 encephalitis virus infection 

419

420 Data acquired by DIA LC-MS/MS of 16 (10%) of the samples was used to verify the ten-protein JE 

421 diagnostic predictive model. The test metrics are reported in Table 2. 

422

423 Predictors of JE outcome

424 Feature selection: Subgroup analysis was performed using 42 JE samples for which outcome data at 

425 hospital discharge (died vs. alive) were available. Seven proteins were identified as important in 

426 predicting outcome using the Boruta algorithm and 2 proteins using Lasso, such that 2 proteins were 

427 identified by both Boruta and Lasso, see supplementary data S13. In view of the small sample size, 

428 the data were not split into a training and test set. These proteins were used to train different models 

429 with five-fold CV repeated ten times evaluated on ROC, and then combined in an ensemble model 

430 with cross-validation scores reported in Table 2, see the list of proteins in supplementary data S13 and 

431 ROC in S14. There were five JE patients in the DIA LC-MS analysis of which 3 had outcome data, 

432 and this was considered too small to report test metrics.  
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433 Discussion

434 We performed deep untargeted analysis of well-characterised patient CSF samples from a large 

435 number of different confirmed neurological infections. To our knowledge, the highest number of 

436 proteins in CSF identified to date has been 3,174 (43); thus this research represents a notable 

437 improvement in terms of the numbers of proteins identified and this serves as a marker of the depth of 

438 analysis and prospects for biomarker identification (44). Offline fractionation into 90 fractions in the 

439 pilot study, and 100 fractions concatenated into 44 in the larger study, with two-hour online LC 

440 gradients and multiplexing with TMT-16plex contributed to the depth of analysis. Furthermore, the 

441 diverse range of neurological infections also augmented the variety of proteins identified. 

442 WGCNA analysis identified 20 clusters of highly correlated proteins, and provided insight into the 

443 proteins and how they associate with disease mechanisms. The modules were allocated a descriptor, 

444 according to functional enrichment analysis of the proteins. For example, one module was associated 

445 with IgM (proteins in the module included Immunoglobulin heavy constant mu and Immunoglobulin J 

446 chain) and correlated with JE and Orientia tsutsugamushi (OT), as well as the duration of illness. 

447 Other important modules associated with upregulation in JE included neuronal damage, anti-

448 apoptosis, heat shock response, unfolded protein response, cell adhesion, macrophage and dendritic 

449 cell activation. In contrast, in comparison to other non-JE neurological infections, there was an 

450 association with downregulated acute inflammatory response, hepatotoxicity, activation of 

451 coagulation, extracellular matrix and actin regulation. 

452 Predictive modelling using the 10 protein ensemble model enabled classification of JE and non-JE 

453 samples with a CV accuracy of 99.4 (95% CI 98.8- 99.8) across all the samples using the TMT 

454 labelled DDA data, and 87.5% (95% CI 61.7-98.5) in verification with 16 (10%) of the samples by 

455 DIA. DIA is a label-free method of analysis, with ongoing improvements in depth and throughput; in 

456 this case providing a complementary method to verify the TMT data rather than performing 

457 traditional targeted LC-MS/MS proteomics such as parallel reaction monitoring (PRM). Three 

458 proteins selected as the best disease classifiers were not “significant” i.e. p value < 0.05 with t-test and 

459 adjustment for multiple testing, highlighting the limitations of univariate analysis in biomarker 
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460 identification (45). Biomarker discovery is a lengthy process, akin to the pharmaceutical pipeline (13). 

461 The work demonstrates important CSF proteins in classifying JE vs. non-JE. However, there is no 

462 doubt that the protein signature needs to be validated with orthogonal antibody-based methods in 

463 additional patient groups. It will also be useful to compare this with protein profiling in other body 

464 fluids. This will inform the use of a smaller subset of proteins in an ELISA or rapid diagnostic test 

465 (RDT) to be tested alongside the existing anti-JEV IgM assay.  

466 To date, to our knowledge, two studies have utilized unbiased techniques to examine the CSF 

467 proteome in human patients with confirmed JEV infection; while they demonstrates the feasibility of 

468 the methods, the patients were not confirmed by seroneutralisation and included relatively small 

469 numbers of patients (10 and 26 JE patients) (46, 47). There have been a handful of studies utilizing 

470 ELISA methods to target specific proteins, however these rarely used power calculations in their 

471 experimental design, nor did they include adequate controls (48-53). Analysis of the transcriptome 

472 and proteome in animal models (54-58) and cell culture (48, 54, 59-64) have been performed, 

473 however the comparability to human CSF and comparison with other neurological infections is 

474 limited. Furthermore, mRNA expression does not directly correlate with that of the corresponding 

475 protein (65).

476 As expected, while we included JEV proteins in the search database, we did not identify any JEV 

477 pathogen proteins. This is compatible with previous publications; non-structural protein 1 is the major 

478 secreted protein during flavivirus infections, harnessed widely as a diagnostic biomarker for Dengue 

479 virus infection, but not a useful diagnostic biomarker for JE (66). The data provide useful 

480 interrogation of the host response to JEV infection. The identified proteins fit well into the existing 

481 literature on the host response in JEV and other closely-associated flavivirus infections, most 

482 importantly West Nile virus infection (67, 68). MAPT and MAP2 are both closely associated 

483 microtubule stabilising proteins specific to neuronal cells (69). Both proteins were identified in this 

484 study as being biomarkers of JE in CSF, and the high levels in comparison to other neurological 

485 infections is striking. The association of the former has previously been demonstrated by ELISA, in 

486 one of the only studies of this type (70). The role of actin, microtubule and intermediate filament 
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487 cytoskeletal re-organisation in flavivirus infection has been described (71) and upregulation of MAPT 

488 and MAP2 may represent neuronal damage following transneural spread of JEV. Other proteins that 

489 were associated with JE in this study, all within the red WGCNA module, that may reflect neuronal 

490 damage include Paralemmin, Calbindin 1, MAP2, Parvalbumin, Secernin 1 and Cell cycle exit and 

491 neuronal differentiation. The upregulation of ISG15 and ISG20 fit in with the known upregulation of 

492 a host of ISGs as part of the innate immune response to a viral infection (72, 73). Additional 

493 functional enrichments reflecting different WGCNA modules have previously been described anti-

494 apoptosis (74), heat shock response (75, 76), unfolded protein response (77), translation (78), IgM 

495 (79), cell adhesion and pathogen attachment (80), endothelial activation (81) and macrophage 

496 activation (82, 83). In comparison to other neurological infections, there was a downregulation in 

497 acute phase response proteins and neutrophil enriched proteins, as has been seen by other studies (84-

498 87). In these, however, the sample size for the analysis of proteins predictive of outcome was less 

499 substantial and not supported by an a priori power calculation. 

500 Incomplete coverage and missing data between LC-MS runs is an ongoing issue in the field (29). It is 

501 notable that comparing with other similar studies in the literature, the important proteins may not be 

502 exactly the same but are closely related. These issues are now being improved by DIA methods. 

503 Further limitations are that we did not include CSF from healthy people in Laos on ethical grounds, or 

504 from cohorts from elsewhere on the basis that samples that have undergone different storage 

505 conditions may not be comparable. The latter is also the reason that there are no samples from 

506 neurological flaviviruses occurring in other geographical areas, such as West Nile virus (WNV) and 

507 Zika virus (ZIKV). Furthermore, for the purposes of the objective of finding a diagnostic protein 

508 signature of JE, the utmost importance was comparing JE with controls of a wide range of other 

509 neurological infections. The analysis of proteins predictive of different categories of infectious 

510 aetiologies was not sufficiently powered, and has not been reported. It is important to keep in mind 

511 that the comparison is between different neurological infections in the analysis of proteins that are up 

512 and down-regulated.
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513 An RDT to detect JE in less accessible areas is urgently needed. This study demonstrates the 

514 feasibility of an unbiased LC-MS approach in the identification of novel protein biomarkers of 

515 neurological infections. Additional data using antibody-based methods will allow the 10-protein 

516 signature to be refined. This will require purchasing or development of ELISA assays and comparing 

517 the specific protein abundance in JE and non-JE patients. These data will need to be validated in a 

518 larger group of patients, in different locations and in field settings. Ultimately, this will enable the 

519 selection of 2-3 proteins for the development of an RDT.  
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