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Abstract
Our continuous visual experience in daily life is dominated by change. Previous research has
focused on the effects of visual motion, eye movements or the transition between events, but has
failed to capture their full impact across the brain. Using intracranial recordings in humans, we
investigate  the  neural  responses  to  these  sources  of  novelty  during the  natural  experience  of
watching film.  Responses to saccades  and film cuts  were much stronger than those to  visual
motion,  extending  far  beyond  traditional  visual  processing  areas.  Film  cuts  associated  with
semantic  event  boundaries  elicit  strong  and  specific  responses  in  higher-order  brain  areas.
Saccades associated with high visual novelty also elicit strong neural responses. Specific locations
in higher-order brain areas show selectivity to either high or low-novelty saccade, as well as face
or non-face targets. In summary, visual and semantic novelty drive much of the human brain,
while exhibiting specialization to specific forms of novelty. 

Teaser
When watching movies, the entire brain responds to film cuts, eye movements and motion, with
stronger responses when something new happens.
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MAIN TEXT

Introduction

In order to study the neural processing of natural visual stimuli, recent work has focused
on the experience of watching movies (1–4). Movies offer a balance between experimental
control  and  the  realisms  of  natural  environments  (1).  Visual  dynamics  during  movie
watching  are  dominated  by  motion  of  objects  in  the  scene,  the  viewer’s  own  eye
movements, and film cuts introduced by the film editor to change view angle, but also to
transition between scenes. 

Motion  in  movies  is  associated  with  strong  neural  responses  widespread  across  the
occipital,  parietal  and  temporal  lobes  (3,  4).  It  is  a  more  powerful  driver  of  neural
responses than low-level features such as luminance and contrast (3, 4). Visual motion is
also caused by eye movements,  which many studies consider to be a confound (5, 6).
Complicating matters, motion in movies can also attract and guide eye movements (7).
Regardless, it is clear that eye movements cause neural responses that are distinct from
what is expected due to the associated visual change alone (8). Responses to saccades, the
rapid movements of the eyes between fixations, were thought to be confined to visual
processing areas and largely suppressed in higher-order perceptual areas (9). More recent
work, however, indicates that saccades play an important role in the organization of many
perceptual and cognitive processes (10–13). Saccades modulate neural responses across
the visual system (10, 14, 15), medial temporal lobe (16, 17), non-visual nuclei of the
anterior  thalamus  (11)  and even the auditory  cortex  (18).  It  is  also worth noting that
responses to visual motion and saccades are modulated by the semantics of the visual
stimulus.  For instance,  responses in fMRI to motion are particularly pronounced when
they are associated with ‘social’ stimuli (4), and saccade-locked potentials in the medial
temporal lobe (MTL) can be specific to the target of a saccade, such as faces or objects
(12).

Besides  motion  and  saccades,  movies  also  allow  us  to  investigate  the  processing  of
narratives.  The  theory  of  event  segmentation  proposes  that  continuous  narratives  are
segmented and remembered as discrete events (19). Event boundaries, the moments of
change between events, are associated with shifts in brain states as well as transient neural
responses (6, 20–23). In movies, event boundaries typically coincide with film cuts. Film
cuts between events contain semantic changes and are associated with neural activity in
higher order brain areas (6, 20). On the other hand, film cuts that maintain continuity (of
space, time and action) are mainly associated with changes in low-level visual areas (5,
20). Consistent with event segmentation theory, increased activation in MTL following a
film cut is predictive of subsequent recall  of the preceding event (24). Specific  neural
responses to different types of cuts have also been observed in single cell data from the
MTL (6). For instance, modulation in firing rate in cells that respond to ‘hard boundaries’
is predictive of later recognition of the subsequent scene. 

In summary, the main drivers of visual change -- motion, film cuts and saccades -- elicit
neural activity in various visual and higher-order brain areas. However, they have been
studied in isolation, so that the relative strength of responses and extent of their responses
across the brain is not well established. Given that these sources of visual change interact
it  is  important  to analyze them in combination to  control  for their  correlations  to one
another.  We  hypothesized  that  visual  change  causes  strong  neural  responses  that  are
modulated by semantic  novelty in the visual scene.  We measured semantic  novelty in
terms of visual features across saccades using deep-networks (25), and on a higher level,
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in terms of event boundaries judged by human observers across film cuts. We found that
neural activity related to motion is mostly confined to the low-level visual brain areas,
while neural activity  related to saccades and film cuts is  widespread across the whole
brain. In addition,  we found that responses to saccades and film cuts are enhanced by
semantic novelty. Importantly, we find specific brain areas that respond to high semantic
novelty and semantically meaniniful stimuli, in particular faces. However, a distinct set of
brain areas responds exclusively to low semantic novelty and non-face saccades. 

Results 

Patients (N=23, Table S1) were implanted with intracranial electrodes for seizure onset
localization totaling 6328 contacts with a wide coverage across the whole brain (Figure
1A). Intracranial electroencephalography (iEEG) was recorded simultaneously with eye
movements while patients watched various video clips totaling up to 45 minutes (Figure
1B). We were interested in neural responses to the main sources of visual change in this
task, namely visual motion in the videos, film cuts and eye movements (Figure S1). Visual
motion  was  quantified  as  the  magnitude  of  optical  flow averaged  across  each  frame
(Figure 1C). Saccades and film cuts were quantified as a series of impulses at saccade
onset and the time of film cuts, respectively (Figure 1C). We observed that film cuts are
followed by a decrease of saccade frequency with the dip 100ms after cuts and a rebound
at 250ms (Figure 1D). In addition, visual motion is larger prior to a saccade (Figure 1E),
suggesting that both film cuts and motion drive saccades. We also note that visual motion
decreases  before  film cuts  (Figure  1F),  as  a  result  of  the  video  editing  process.  This
decrease in motion is particularly prominent in professionally edited movies (Figure S2).
In  total,  the  three  sources  of  visual  change  (motion,  saccades  and  cuts)  are  clearly
correlated  to  one  another:  saccade  frequency  increases  after  film cuts,  an  increase  in
motion attracts saccades, and motion slows down before film cuts. 

Responses to low level features in the movies

Based  on  previous  literature  we  hypothesized  that  visual  change  leads  to  strong  and
widespread  neural  responses.  To  test  this  we  analyzed  broad-band  high-frequency
amplitude (BHA, 70-150 Hz), a signal of dendritic origin that is highly correlated with
neuronal  firing  (27,  28).  To  increase  spatial  specificity  we  performed  bipolar  re-
referencing. All further analysis therefore considers 5378 bipolar channel pairs. We will
refer to these channel pairs as channels for simplicity. To capture neuronal responses, we
used a conventional systems identification approach (Figure S3A) (29). Specifically, BHA
in each channel is treated as the output of a linear system, with motion, saccades and cuts
as  its  input  (30).  The  resulting  impulse  responses  are  often  referred  to  as  “temporal
response functions” (TRF) and are obtained for each channel separately. We test statistical
significance  separately  for  motion,  film  cuts  and  saccades  so  that  each  electrode  is
characterized as responsive to one, several, or none of these sources of visual change. In
each brain area a subset of channels shows statistically significant responses. For example,
of the 928 channels located in the parietal lobe (Figure 2A), 238 were responsive to film
cuts, 106 to saccades and 65 to motion (FDR corrected with q<0.05, see methods). We
analyzed all three sources of change simultaneously to account for the correlation between
them  (29,  30).  That  the  respective  contributions  to  the  neural  responses  can  be
successfully disentangled from one another is demonstrated for saccade and film cuts in
Figure S3B. 

Contrary to our expectation we found the most widespread BHA responses to saccades
and film cuts (Figure 2). The visual motion led to responses mostly in the occipital lobe,
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while film cuts and saccades also resulted in widespread responses in frontal, temporal
and parietal lobes (Figure 2B&D). Across the whole brain, the sets of channels responding
to  either  film  cuts,  saccades  or  motion  are  distinct,  with  little  overlap  (Figure  2C).
Surprisingly,  the responses to saccades and film cuts were also stronger than those to
motion in areas such as the precuneus and middle temporal area (Figure S4). Both of these
areas have been shown to be important in processing of motion (8, 33). However, in the
transverse  temporal  gyrus  (Heschl’s  gyrus)  the largest  fraction  of  responsive  channels
responded to motion (Figure S4). 

Motion predominantly increases BHA across the brain (Figure 2A & S4A), whereas film
cuts and saccades differentially increase or decrease activity, especially in higher order
areas (Figure 2A & S4A). Duration of responses to saccades, and to a lesser extent, to film
cuts increase from occipital towards frontal areas (Figure S4). Responses to film cuts are
also higher in amplitude than responses to motion and saccades, especially in higher-order
brain areas (Figure 2A & S4).

Cuts at event boundaries are associated with distinct neural responses across the brain

The main observation from Figure 2 is that film cuts drive neural activity throughout the
brain.  Film  cuts  cause  abrupt  changes  in  various  low-level  visual  features,  such  as
luminance, contrast and color, but for some cuts there are additional changes in semantic
information and the narrative. To determine the effect of semantic versus low-level visual
changes  we divide  film cuts  into  two categories:  “event  cuts”  and “continuous  cuts”.
(Figure  S5A).  To  this  end,  we  collected  event  boundary  annotations  in  a  separate
population of participants recruited online (N=200, Table S2). Participants were instructed
to watch the videos and “indicate when […] a meaningful segment has ended by pressing
the spacebar”. These event boundaries annotations were consistent across participants and
consistent with data collected in a previous study (34) (Fig. S5B). For each video, we
ranked all cuts by agreement,  i.e. the fraction of participants that marked the end of a
segment within one second after a cut. The film cuts with large agreement are termed
‘event cuts’ (using change point detection, see Methods). As a result, we selected 57 event
cuts out of a total of 561 cuts that were reliably marked as event cuts (Table S2). Among
the cuts with low agreement we selected an equal number of cuts matching in low-level
visual features, following (6) (see Methods). These cuts were labeled ‘continuous cuts’.
Continuous cuts lie between narrative event boundaries and are characterized mostly by
changes in camera angle or position (Figure 3B).   

We first tested whether event cuts lead to stronger neural responses than continuous cuts.
In each channel we fit the TRF identified previously (Figure 2A) to the neural signal after
each individual film cut. The factor with which the TRF has to be multiplied to best fit the
neural signal, gives us a measure of the amplitude of the response (Figure S6). For each
channel we compute the difference between the average amplitude of responses to event
cuts and the average amplitude of responses to continuous cuts. In the temporal lobe and
MTL this difference across all channels is significantly larger than zero indicating event
cuts lead to stronger responses than continuous cuts (Figure 3A). In all other brain areas
the magnitudes of responses to event cuts and continuous cuts are similar on average. 

However, the distributions of these magnitude differences appear to be bimodal in the
occipital lobe and MTL. Therefore, we suspected that there are distinct responses to event
cuts and continuous cuts in these areas. To explore this possibility, we repeat the analysis
but now identify separate TRFs for event cuts and continuous cuts in each channel (Figure
3B), i.e. using separate regressors indicating each type of cut. We found channels that
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respond selectively to event cuts, channels that respond selectively to continuous cuts, and
non-selective channels that respond to both (Figure 3C&D, for full list of TRFs see Figure
S9).  Most  channels  in  the  occipital  lobe  respond  non-selectively  to  either  event  or
continuous cuts (Figure 3C).  In contrast,  parietal,  temporal  and frontal  lobes are more
selective  for  event  cuts.  Selectivity  for  event  cuts  is  most  pronounced  in  MTL,  and
particularly  for  the  hippocampus  entorhinal  and parahippocampal  cortex  (Figure  S10),
which is consistent with previous reports of strong fMRI responses to event boundaries in
the hippocampus. In most channels both event cuts and continuous cuts increase neural
activity  (Figure  S9).  In  this  analysis  we  included  saccades  as  a  regressor  to  remove
correlated activity associated with saccades following cuts. We obtain similar results when
also including motion as a regressor (Figure S7),  or when performing the analysis  on
different types of videos (Figure S8). 

Novelty across saccades

As with film cuts, BHA responses to saccades are widespread across the brain (Figure 2).
We hypothesize that  these responses are driven by changes in  low-level  and semantic
visual features between the foveal image before and after each saccade. If that is true, we
would expect stronger responses when the image features before and after a saccade are
less  similar  to  one  another,  i.e.  when the  upcoming  target  of  a  saccade  is  novel.  To
measure novelty we leverage a deep convolutional neural network trained with contrastive
learning.  Specifically,  we use  a  ResNet  that  is  pre-trained  to  extract  features  that  are
shared  across  different  image  patches  (25).  These  features  tend  to  capture  semantic
properties of objects in the images (35). We compute the euclidean distance of features for
image patches of 5x5 degree in visual angle around the gaze position before and after each
saccade (Figure S11A&B). In doing so, each saccade is associated with a numerical value
indicating the novelty of the upcoming fixation. Interestingly, on average the novelty of
observed saccades was larger than emulated saccades (random fixation pairs matched in
distance  and direction  to  observed saccades)  (Figure  S11C, p=10-22 N=55,334).  This
indicates that viewers tend to direct their gaze towards locations with higher novelty. This
is particularly true shortly after film cuts, whereas saccades later during scenes tend to
move towards low-novelty targets (Figure S12).

Next, we divided all 55,334 saccades from all 23 patients and videos into two equally
sized  groups  with  high  and low novelty,  while  controlling  for  saccade  amplitude  and
excluding saccades across cuts (Figure 4B). We predicted that saccades with high novelty
will result in stronger BHA responses. We estimate the magnitude of the response to each
saccade as before (Figure S6). In the occipital, temporal and frontal lobes saccades with
high  novelty  were  associated  with  stronger  neural  responses  (Figure  4A).  We  also
computed  separate  TRFs  for  saccades  with  high  and low novelty  (Figure  4B).  In  the
occipital  lobe  the  majority  of  channels  respond  non-selectively  to  either  high  or  low
novelty.  In contrast,  for higher-order brain areas  most  channels  respond selectively  to
either  high  or  low  novelty  saccades  (Figure  4C&D).  This  suggests  that  there  is  a
specialization for high novelty, but also, a specialization for low-novelty saccades. These
low-novelty saccades target areas of the scene that are semantically similar to the current
gaze point. Interestingly, in the parietal and frontal lobes, some channels responding to
low-novelty  saccades  show  an  inhibition  of  neural  activity  (Figure  S13).  In  contrast,
channels responding to high-novelty saccades show only increases in neural activity. 
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Saccades to faces

Another way to quantify semantic changes across saccades is by the content of the saccade
target. Specifically, saccades to faces have been reported to have stronger neural responses
than saccades to other objects  (12). To detect faces in the movies we finetuned a pre-
trained object detection and segmentation network with a subset of labeled frames from
our videos. This network was then used to detect faces in the unlabeled frames. We then
divide saccades to faces and saccades to other objects (non-face saccades) and analyze
their neural responses (Figure S15).

As above we calculate the difference in the magnitude of responses to face and non-face
saccades. Surprisingly, the responses to non-face saccades have a larger magnitude than
face-saccades in the occipital,  parietal,  mediotemporal  (MTL) and frontal  lobe (Figure
5A).  This  is  in  particular  surprising  because  saccades  to  faces  have  a  higher  novelty
(p=1.6*10-60, Nface=7636, Nnon-face=7784, Mann-Whitney U-test), so if anything, the
opposite effect would have been expected. Most channels throughout the brain respond
selectively  to  either  face  or  non-face  saccades  (Figure  5C).  Face  saccades  dominate
responses primarily in the temporal  lobe. Interestingly,  in the superior temporal  gyrus,
which contains the auditory cortex, the largest fraction of responsive channels is to face-
saccades (Figure 5D & S16). Overall, these results indicate that faces and other objects are
processed selectively  in  brain areas  extending far  beyond traditional  visual  processing
areas.  

Face Motion

Optical flow captures various different types of visual motion in the videos. This includes
global movement of the scene due to camera movements and the movement of characters
(36).  In primates,  socially  relevant  stimuli  accounts  for the majority  of neural  activity
related to motion, e.g. monkeys watching other monkeys (4). To capture socially relevant
motion we used the same face annotations as before and computed the motion of faces
throughout the movie (Figure 6A). 

Using  total  motion  and  face  motion  as  regressors  we  found  that  a  larger  fraction  of
channels  respond to  face  motion  over  total  motion  (Figure  6B&C).  This  includes  the
lateral occipital cortex, superior parietal lobe and fusiform gyrus (Figure 6B & S17). The
lateral occipital lobe and fusiform gyrus in particular are areas known to be involved in
face processing  (37–39). Therefore, the responses to face motion, likely capture known
face processing areas.  In contrast,  channels in the MTL, particularly the hippocampus,
respond predominantly to total motion and not face motion Figure (6B and S17). Since
total motion also captures motion of the camera, these responses could be related to spatial
remapping. Spatial remapping is necessary when neural representations of locations in the
visual scene need to be reassigned after movement of the scene.   
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Discussion 

Much of the existing neuroscience literature  related to motion perception,  saccades  or
dynamic visual stimuli focuses on the effects of individual stimulus properties on neural
activity in anatomically constrained brain areas. This approach allows one to link specific
effects to existing reports for the same brain areas. However, implicitly, it also ascribes a
narrow specialization to individual brain areas which may not be warranted in a real-life
setting. Here we take a more inclusive approach to study the effect of multiple sources of
visual  change  in  a  more  ecologically  valid  setting  of  watching  movies.  The  system
identification approach allows us to disentangle the observed correlation between visual
motion,  saccades, and film cuts. We found that low-level and semantic visual changes
across film cuts and saccades are processed by distinct,  widespread neural populations
across the whole brain. In contrast, visual motion is processed in a more confined area of
visual brain regions. In the following we will put our results in context of the specific
literature on motion, film cuts, and saccades. 

Motion
Motion processing has been studied with various simple visual stimuli, such as moving
dots. Several specific brain areas within the occipital,  temporal and parietal lobes have
been identified to be important in processing motion in this context, for instance V3, the
medial temporal area (MT), or the ventral intraparietal area (VIP) (33). Motion processing
in these areas has been confirmed for naturalistic stimuli (3, 4, 36). However, motion in
naturalistic stimuli activates much wider areas across the temporal lobe (3, 4, 8). Here, we
confirm these results in intracranial EEG data recorded from human subjects, where we
find widespread responses to optical flow in temporal and parietal lobes (Figure 2). The
widespread responses to motion in naturalistic conditions have been shown to be largely
driven by motion of socially relevant stimuli, such as faces or body parts (4). We confirm
this observation in our data, where motion of faces dominated neural responses compared
to total motion (Figure 6). Specifically, face motion activates distinct clusters of channels
in the lateral occipital cortex, fusiform gyrus and superior temporal sulcus (Figure 6 &
S17), which include known face-processing areas (37–39). These areas are also known to
respond stronger to moving faces (4, 37, 40). Some areas, however, respond specifically to
total  motion,  notably  the  Hippocampus  (Figure  S17).  The  total  motion  regressor  also
includes camera movement, which requires remapping of spatial representations, in which
the  hippocampus  plays  a  major  role  (41).  Importantly,  responses  to  motion  are  more
confined to visual areas compared to responses to film cuts and saccades, which are more
widespread in higher order brain areas. Our direct comparison of different types of visual
change in movies thus shows that motion in naturalistic stimuli is perhaps a less dominant
driver of neural responses than previously thought (3, 4). An interesting exception is the
transverse temporal gyrus (Heschl’s gyrus), where a larger fraction of channels responds
to optical flow than to film cuts and saccades (Figure S4). The channels in the Heschl’s
gyrus and the superior temporal gyrus, comprising the auditory cortex (42), specifically
respond  to  total  motion  as  opposed  to  face  motion  (Figure  S17).  These  responses,
therefore, may represent processing of the sounds related to moving objects or characters,
highlighting the multimodal nature of the auditory cortex (43–47). 

Event boundaries
The other obvious source of visual change in film are cuts. Film makers use cuts to change
view angle, but also to change location and time between scenes. Such scene cuts not
only  change  low-level  visual  content  but  also  change  in  semantics,  which  may  be
perceived by viewers as a boundary between distinct events. The analysis of film cuts thus
naturally links to the concept of “event boundaries”, and we defined “continuous cuts”
versus “event cuts” based on standard event segmentation (19, 20). Many previous studies
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have  focused  on  the  medial  temporal  lobe  because  of  the  proposed  role  of  event
boundaries in organizing memory of continuous experience (6, 19, 21, 22, 34, 48). Most
recently, Zheng et al., have analyzed different types of film cuts as a proxy of cognitive
boundaries  (6).  They  identified  neurons  in  the  medial  temporal  lobe  with  specific
responses to film cuts within and between different video clips. Our data shows similar
specificity of channels in the medial temporal lobe to event and continuous cuts. However,
we also find a large number of channels  with specific  responses to event  cuts  widely
distributed across the brain outside of the medial temporal lobe (Figure 3C&D). Other
work with intracranial recordings in humans has been able to decode scene identity from
recording locations widespread across the whole temporal lobe (5). Specific responses to
event salience have also been identified in the orbitofrontal cortex (23). Our data, with
wide  coverage  and  rich  naturalistic  stimuli,  shows  that  event  boundaries  are  indeed
processed  in  distributed  areas  across  the  whole  brain  (Figure  3C&D).  This  view  is
supported  by  work  on  event  boundaries  with  fMRI  data  demonstrating  that  different
features of events are processed in successive stages of the visual processing hierarchy
(20, 21). Notably, Magliano and Zacks report that film cuts with action discontinuities
activate parietal and frontal areas, while film cuts in general strongly activate visual areas
(20). Additionally, in electrophysiological data, information flow from the hippocampus to
cortical  region  has  been  shown  to  be  timed  to  event  boundaries  (49).  Together,  this
suggests that event boundaries have a broad impact on the brain, and that film cuts are a
particularly effective tool to study the effect of event boundaries on brain and cognition. 

Saccades
Saccades  are  often  studied  in  the  context  of  visual  processing,  for  example  saccadic
suppression in early visual areas (50). In higher-order areas effects of saccades are thought
to be suppressed as well, which is reflected in the observation that shifts in the retinal
image across saccades are not consciously perceived (9). Our findings, however, support
the view that saccades modulate neural activity across most, if not all the brain (Figure 2)
(18). These results extend previous work that has found modulation of neural activity by
saccades in the non-visual thalamus (11), medial temporal lobe (16, 17), auditory, frontal
and parietal cortices (18). These findings collectively suggest that saccades are essential in
the organization of perceptual and cognitive processes across the whole brain, which has
been suggested for processes such as attention and memory (13). This claim is further
supported  by our  findings  that  responses  to  saccades  depend on the type of  semantic
change. 

Saccade novelty 
There  is  competing  evidence  that  saccades  sample  either  semantically  similar  (51),  or
semantically dissimilar objects in static natural scenes (52). We show that, in dynamic
natural scenes, both types of saccades occur at different times. 
Visual representations that are maintained across saccades have been proposed to consist
of  rough schemas  (53).  In  natural  scenes,  eye  movements  have  been shown to  target
objects with similar semantics (51). We propose that saccades with low semantic novelty
mainly sample semantically similar locations in order to build congruent schemas across
saccades. This claim is supported by the widespread responses specific to saccades with
low semantic novelty we find in our data (Figure 4). 
In contrast, saccades are also attracted by visual features that are novel in the context of
the scene (52). Similarly, EEG saccade-evoked responses show differences for saccades to
objects that are semantically congruent or incongruent with the context of a scene (54).
We propose that  saccades  with high semantic  novelty  are  associated  with the shift  of
attention to novel and semantically incongruent objects in a visual scene. We find that
different sets of channels are recruited to process information across saccades with high
and low semantic novelty (Figure 4).
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Previous  work  on  saccade  guidance  by  either  semantically  similar,  or  semantically
dissimilar objects used a confined set of static visual scenes of objects or abstract visual
stimuli (51–54). These paradigms constrain saccade behavior to either type. In movies,
scenes change rapidly and we find that both types of saccades can be observed. Saccades
targeting  semantically  similar  or  dissimilar  objects  show  distinct  patterns  of  neural
responses  across  the  brain  (Figure  4).  Our  results,  therefore,  support  the  notion  that
multiple  behaviors  compete  for  eye  movement  control  in  natural  environments  (55).
Construction of a coherent schema of a visual scene competes with the necessity to sample
novel objects in dynamic environments. Consistent with this we find that after film cuts,
saccades are directed primarily to novel targets.   
In addition to the construction of schemas of visual representations, low-novelty saccades
suppress neural processing in in the parietal and frontal lobes (Figure S13). These effects
could be indicative of mechanisms to maintain perceptual stability across eye movements
(56). 
 
Saccades to faces
Faces contain a wide variety of features that are processed in distinct specialized areas
(37).  Low-level,  view specific  features  are  processed in  the  occipital  lobe,  while  face
specific areas in the fusiform gyrus and superior temporal gyrus process face identity, face
motion and eye gaze. An extended face network, distributed in the auditory cortex, limbic
system  and  prefrontal  cortex,  has  been  proposed  to  process  higher  level  semantic
information,  such  as  speech,  directed  attention,  emotion  and  biographical  information
(57).  In  support  of  this  model,  we  find  that  saccades  to  faces  and  other  objects  are
processed by distinct sets of channels across the whole brain (Figure 5). Notably we find
specific sets of channels that respond to face and non-face saccades in the medial temporal
lobe  (Figure  S16).  Similarly,  responses  in  distinct  groups  of  neurons  in  the  medial
temporal lobe to saccades to faces and other objects were recently reportent by Staudigl et
al.  (12).  They suggested that  that these responses reflect  the coordination  of detecting
socioemotional features and memory. We also find specific responses to saccades to faces
in auditory areas, such as the STS, and the frontal cortex (Figure S16). Excitability in the
auditory system was found to be enhanced late during a fixation and during saccades by
Leszczynski et al. (18). In the frontal cortex, responses to the talker’s mouth have been
reported  (58).  Since  faces  in  movies  are  associated  with speech,  we propose  that  the
specific responses to saccades to faces in auditory and frontal areas are related to speech
processing. Together these results show that the extended face network can be studied in
real world scenarios, where multiple semantic features interact, by locking face processing
to saccades.

Limitations
The relatively weak responses to optical flow in our data could be due to several factors.
First,  our motion feature is  unspecific,  capturing global  and local  motion.  It  has been
shown that specifically the motion of socially relevant objects, such as faces is associated
with strong responses  (4, 40). However, face motion in our study only captures a small
part of the socially relevant motion defined by Russ et al (4), which includes motion of the
whole  body.   Second,  electrode  coverage  in  our  patient  population  is  not  chosen  to
specifically cover motion sensitive areas. We further did not run any motion localizers to
identify  motion  sensitive  channels.  The  locations  we  recorded  from might  not  cover
motion sensitive areas. However, we would still have expected widespread responses to
motion. It is therefore possible that responses to film cuts and saccades simply are related
to  stronger  neural  responses  than  motion  because  they  are  associated  with  more
pronounced changes and novel information. 
The system-identification approach used here captures time-delayed responses only to first
order. Higher-order (non-linear) effects on BHA are not captured. Similarly, we have not
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included  multiplicative  interactions  between  regressors  (motion,  saccades  and  cuts).
Techniques for doing this within a system-identification approach are readily available
(29, 30), but would lead to significantly more complex exposition. The current approach
does however account for, and compensates for correlation in the regressors, contrary to
more conventional reverse-correlation (evoked response) analysis. 
We have focused on BHA as the best available correlate of neuronal firing that is available
in iEEG recordings. The same intracranial EEG recordings, however, could be analyzed
more extensively for modulation of power in other frequency bands and phase alignment.
In other  words,  one could  perform a more thorough analysis  of  local  field  potentials,
which  are a  rich  source of  information  on neuronal  dynamics  (59,  60).  As shown by
recordings in macaque V1, such analysis may be particularly important when analyzing
modulatory top-down effects (10). 
The analysis focused on saccade onset, rather than fixation onset. Our motivation was to
look  for  change  across  a  saccade,  rather  than  focusing  on  the  content  of  individual
fixations.  However,  early  on  we  determined  that  our  analysis  approach  gives  similar
results if we used fixation onset instead of saccade onset (as the two are tightly coupled in
time,  32±14ms).  However,  we  note  that  previous  work  showed  that  locking  visual
responses  to  saccade  versus  fixation  onset  highlight  either  top-down  or  bottom-up
influences at the level of V1. (10).

Future work
The widespread responses to saccades and film cuts demonstrate the opportunity to study
a wide range of sensory and cognitive processes in movies in a broad view. Film cuts are
characterized  by various changes  in  semantics.  Further characterization  of the specific
types of change would allow investigation of relevant cognitive processes. For example,
event boundaries are associated with changes in space, time or action. These changes are
potentially processed by distinct neural areas. In the case of novelty across saccades, we
identified that saccades with high and low novelty are processed in distinct brain areas.
We propose that these different types of saccades represent the construction of schemas of
visual  scenes  and  exploration  of  new  scenes,  respectively.  Future  work  can  address
whether switches between these processes in natural environments are related to switches
in attentional states. 

In  conclusion,  taking  a  data  driven approach to  analyze  intracranial  EEG data  during
movies we found widespread responses to film cuts and saccades. We show that semantic
changes across film cuts and saccades can be defined through event boundaries, visual
novelty and the presence of faces. These semantic changes modulate neural activity in
distributed  locations  across  the  whole  brain,  extending  previously  known  anatomical
locations with functional specificity to these visual features. We argue that film cuts and
saccades in movies offer the opportunity to study several cognitive processes, such as
attention or memory in naturalistic conditions. Future studies developing relevant memory
and attention tasks in combinations with movies can contribute to the understanding of
perception and cognition in natural environments. 
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Materials and Methods

Experimental Design
Intracranial  electroencephalography  (iEEG)  along  with  eye  movements  were  recorded
from 23 patients (mean age 37.96 years, age range 19-58 years, 11 female; Table S1)  with
pharmacoresistant  focal  epilepsy at  North Shore University  Hospital  (Manhasset,  New
York). Patients were chronically implanted with depth and/or grid electrodes to identify
epileptogenic foci. Three patients were implanted twice at different times. We recorded
the same session twice with these patients with different electrode coverage. The study
was  approved  by  the  institutional  review board  at  the  Feinstein  Institute  for  Medical
Research and all patients gave written informed consent before implantation of electrodes.
Across patients electrode locations cover most of the brain (Figure 1A). However, most
dense coverage is available on the temporal lobe and coverage of the occipital  lobe is
more sparse (Figure 1A). iEEG data was recorded continuously at 3kHz (16-bit precision,
range ± 8 mV, DC) on a Tucker-Davis Technologies data processor (TDT, Alachua, FL,
USA). Gaze position was recorded simultaneously with iEEG data with a Tobii TX300
eye  tracker  (Tobii  Technology,  Stockholm,  Sweden)  at  300Hz.  The  eye
tracker was calibrated before each video to prevent drift. We used parallel port triggers
sent from the stimulus PC to the eye tracker and data processor to align the different data
streams. A custom script using psychotoolbox (61) for movie presentation and the Tobii
SDK  for  collecting  eye  tracking  data  was  implemented  in  MATLAB.  For  additional
accuracy  in  the  alignment  of  the  movie  features  to  iEEG  and  eye  tracking  data  we
recorded timestamps at the onset of each frame with the clock of the eye tracker. 
Patients  watched up to  43.6 minutes  of  video clips  (Figure 1B).  Video clips  included
segments  of  an animated  feature film (‘Despicable  Me’,  10 min each,  in  English and
Hungarian language), a animated short film with a mostly-visual narrative shown twice
(‘The Present, 4.3’ min), and three clips of documentaries of macaques (‘Monkey’, 5 min
each, without sound). Inkscapes does not contain film cuts, humans or animals and was
therefore not analyzed. 

Electrode localization
Each electrode shank/grid contains multiple recording contacts.  Contact locations were
identified using the iELVis MATLAB toolbox (62). All subjects received a preoperative
T1-weighted  1mm  isometric  scan  on  a  3T  scanner.  Tissue  segmentation  and
reconstruction of the pial  surface was performed with the freesurfer package (63, 64).
Postoperative CT scans were acquired and coregistered to the freesurfer reconstruction.
Contacts were then semi-manually localized using the bioimagesuite software (65). All
contacts  were  then  coregistered  to  the  freesurfer  fsaverage  brain  for  visualization  and
assignment to anatomical atlases (66). Subdural contacts were shifted to the closest vertex
of the lepto-meningeal surface to correct for brain shift while preserving the geometry of
grid contacts. Freesurfer coordinates of subdural contacts are determined by finding the
nearest  vertex  on  freesurfer  spherical  pial  surface.  In  contrast,  stereotactic  electrode
shanks  were  coregistered  to  fsaverage  space  using  a  linear  affine  transformation.
Stereotactic contacts close to the pial surface (< 4mm) are assigned to cortical atlases by
finding  the  nearest  vertex  on  freesurfer  spherical  pial  surface.  For  further  analyses
stereotactic  contacts  close to the pial  surface were shifted to the nearest  vertex of the
native pial surface and then moved to fsaverage space in the same manner as subdural
contacts.
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Data Preprocessing
iEEG data was minimally processed by removing line noise at 60Hz, 120Hz, and 180Hz,
with a 5th order butterworth bandstop filter, and low frequency drift at 0.5Hz with 5th
order butterworth high-pass filter. The data was then re-referenced to a bipolar montage.
Artifacts with an absolute voltage 5 times of the interquartile range of voltage of each
channel were removed. Further, after visual inspection, channels with spiking activity and
channels  outside  the  skull  were  identified  manually  and  removed  from analysis.  The
power of the signal in each frequency band is  calculated by the absolute  value of the
Hilbert  transformation  of  the  bandpass  filtered  signal.  The  broadband  high-frequency
amplitude (BHA) power is defined in the range of 70-150Hz. The power envelope is then
downsampled to 60Hz. 

Features extraction from videos

Total motion
As a measure of motion we extract optical flow from each video using the Horn-Schunck
method  as  implemented  in  MATLAB (67).  The  Horn-Schunck  method  computes  the
displacement vectors of pixels from one frame to the next, assuming smooth flow across
neighboring pixels.  We average the displacement  vectors across all  pixels within each
frame. This results in a regressor of average motion throughout the video (Figure 1C). The
motion regressor contains artifacts from film cuts. To remove these artifacts, we replace
the samples within a window of 166 around film cuts with a linear interpolation. 

Film cuts
Film  cuts  in  the  movies  were  identified  as  peaks  in  the  temporal  contrast  between
consecutive video frames. Temporal contrast is the mean square difference of luminance
between consecutive video frames (3). Film cuts with smooth transitions do not show up
as sharp peaks in the temporal contrast and are missed. Moments of sudden motion on the
other hand, might be mistaken for Film cuts. Film cuts detection is corrected by visual
inspection to account for these errors. 

Definition of event cuts versus continuous cuts
To classify film cuts based on changes in semantic information we align film cuts to event
boundaries.  We record  event  boundary  annotations  for  all  videos  in  a  separate  study
conducted online. 200 participants were recruited on Prolific (www.prolific.co). The task
was implemented in PsychoJS scripts created from the psychopy builder (68). The task
was hosted  on Pavlovia  (https://pavlovia.org/).  Participants  watched one of  the videos
each  with  the  following  instructions:  “The  movie  can  be  divided  into  meaningful
segments. You will have to indicate when you feel like a meaningful segment has ended
by pressing the 'space' bar. You will likely detect multiple events throughout the movie.”.
For all videos, except Despicable Me, we included a task to check attention. Participants
saw a black screen with 10 white  boxes flashed at  random times.  Participants  had to
respond with a button press every time they saw a white box. We excluded the data from
20 out  of  200 participants  because  either  no  event  boundaries  were  annotated  or  the
attention test failed (Table S2). The attention test was considered failed if participants
responded to less than 8 of the white boxes in the task after the movies. 

To account for reaction time and processing of visual information we subtracted
about 1s from the timing of event boundary annotations to match the timing of scene cuts
(similar to (22)). Event boundaries from all participants were aggregated in one regressor
consisting of impulses at the time of button presses per video. This regressor was then
smoothed with a Gaussian of 0.5s. The resulting regressor is a measure of event salience
(Figure  S5A)  (23).  Event  salience  in  our  data  is  consistent  with  salience  from  data
collected by Cohen et al. (Figure S5B&C) (34). This allowed us to compute event salience
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at the time of each film cut. Film cuts were sorted by event salience. ‘Event cuts’ are the
film cuts with the highest  event salience above a “change point”.  For each movie the
change point is detected with the findchangepts() function in MATLAB, which minimizes
the residual error from the mean in the segments before and after the change point. We
select 57 event cuts out of a total of 561 cuts (Table S2). An equal number of ‘Continuous
cuts’ is selected from cuts with low event salience. Event cuts and continuous cuts were
matched  in  changes  of  low-level  visual  features  (69).  These  features  are  luminance,
contrast,  complexity,  entropy,  color,  and  features  from  layer  fc7  of  AlexNet  (6).
Complexity was quantified as the ratio of file size after JPEG compression (70).   

Face Detection 
We  use  an  object  detection  algorithm  made  available  through  facebook's  Detectron2
platform (71).  We selected  a  ResNeXt-101-32x8d model  backbone (72) trained in  the
mask R-CNN framework (73) on the COCO dataset (74) due to its high segmentation
accuracy compared to other models on the Detectron2 platform. Neural networks for face
detection exhibit high performance on natural movies, however, face detection in comics
requires  retraining  of  the  networks.  We  therefore  annotated  faces  in  4551  frames  in
‘Despicable  Me  English’  and  1575  frames  in  ‘Despicable  Me  Hungarian’  using  the
‘Labelme’  (https://github.com/wkentaro/labelme)  and  ‘Roboflow’  (Roboflow  Inc,  Des
Moines, Iowa) tools. We applied flip and 90° rotations for data augmentation and created
a training and validation set with a 80%-20% train-validation split ratio. For ‘Despicable
Me English’ achieved a mean average precision of bounding box annotations mAP=0.61
and  classification  accuracy  74.5%  on  the  validation  dataset  (mAP=0.74  and  80%
classification  accuracy  on  a  subset  of  frames).  For  ‘Despicable  Me  Hungarian’  we
achieved a  mAP=0.58 and a classification  accuracy of 78% on the validation  dataset.
Missing bounding boxes and wrong labels were corrected manually. Faces in the video
‘The Present’ were annotated manually with ‘Labelme’ in the whole video. 

Face Motion
To estimate face motion we compute the velocity of the centroid of the face annotations
from frame to frame. We sum the velocity of all bounding boxes within each frame to
capture motion of all faces within a frame. 

Saccade Detection
For saccade detection we apply a 20th order median filter to smooth the gaze position data
and compute eye movement velocity. Samples of the eye velocity that were faster than 2
standard deviations from average eye velocity were labeled as saccades. Often we observe
a short adjustment of the eye movement after a saccade until it fixates on the new target.
We correct this overshoot by merging these samples to the saccade. To combine samples
for the saccade and the overshoot, we perform a morphological closing operation with a
kernel size of 5 samples (16.7 ms) on the samples belonging to the saccade and overshoot.
We  label  the  first  sample  in  the  saccade  as  the  saccade  onset.  The  fixation  onset
corresponds to the first sample after which eye velocity drops under the 70th percentile,
computed from velocity values within 33ms before and 120ms after saccade onset. The
eye tracker provides labels for data quality when the gaze was not detected, for example
during eye blinks. Saccades within 83ms of samples with low data quality are removed.
We also remove saccades within 110ms after a previous saccade. 
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Classification of saccades to faces
Saccades to faces could be determined simply using the location of the fixation onset. If
the saccade lands on the bounding box of a face annotation the saccade could be classified
as a face saccade. However, several saccades move towards faces but land just outside the
face bounding box (Figure S15A). Other saccades land within a face bounding box, but
move away from the center of the face (Figure S15B). Therefore,  we generate several
handcrafted features and classify face and non-face saccades using an SVM (Figure S15).
The first  feature is  a binary variable  indicating whether the saccade points towards or
away from the centroid of the closest face annotations bounding box. The second feature
measures  the  overlap  of  a  circle  with a  radius  of  5  degree  visual  angle  with all  face
annotation bounding boxes. The third feature is the distance to the closest face annotation
centroid. The fourth feature is the angle between the vector from saccade onset to the face
annotation centroid and the vector from saccade to fixation onset. The fifth feature is the
angle between the vector from saccade onset to the face annotation centroid and the vector
from fixation onset to the face annotation centroid. We manually label a total of 1288 face
and non-face saccades for saccades in one video from one patient to obtain training data.
We fit an SVM with a Gaussian kernel in MATLAB using fitcsvm() and a kernel scale of
2.2.  We  achieve  a  cross-validation  accuracy  of  0.964  using  10  fold  cross-validation.
Saccades in all other videos and patients are classified in face and non-face saccades using
this SVM model. The SVM classifies saccades and provides a score, indicating the signed
distance to the decision boundary. Negative scores indicate saccades predicted as non-face
saccades. Saccades with scores above 1 are classified as face saccades.

Saccade Novelty
To quantify the change of semantic novelty across saccades we use convolutional neural
networks trained through contrastive learning (25). In contrastive learning neural networks
are trained on subsets of transformation of images, in order to learn more generalizable
representations.  The  networks  are  trained  to  minimize  the  distance  of  features  from
transformations  of  the  same  image.  The  most  useful  transformations  to  improve
performance are random crops of images (25). These random crops are similar to saccades
in images. In fact, crops based on simulated saccades improve performance of networks
trained with contrastive learning compared to random crops (75). Here, we compute the
feature distance between image patches  extracted  around gaze position at  saccade and
fixation onset (Figure S11A). Patches have a size of 200x200 pixels corresponding to the
size of the foveal visual field of 5 degree visual angle. Features of a convolutional neural
network of the pre- and post-saccadic patch are computed with a ResNet-50 trained with
SimCLR (25).  Saccade  novelty  is  then  defined as  the  euclidean  distance  between the
features  of  the  pre-  and  post-saccadic  image  patch  (Figure  S11B).  A  large  distance
between features corresponds to high saccade novelty. We divide all saccades into two
groups of high and low saccade novelty, controlling for saccade amplitude. We do this by
fitting a linear regression model to describe the relationship between saccade novelty and
saccade amplitude.  Saccades with higher novelty than predicted with this linear model
comprise the group of saccades with high novelty. The groups of saccades with high and
low novelty are matched in number. To control for the possible confound of film cuts,
saccades across film cuts and saccades within 1 seconds after film cuts are removed from
the analysis. 

System identification approach to establish temporal response functions. 
We identify neural responses to features in the movies with a conventional linear system
identification approach (29, 30). Each channel is analyzed individually. The inputs to the
system are the time courses for the visual motion, film cuts, and saccade onset (Figure 1).
These are the same for all channels (from a patient). The output is the time course of the
BHA neural signal  for every channel.  All signals are (re)sampled at  60Hz - twice the
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frame rate. An impulse response, or temporal response function (TRF), is estimated (with
ordinary leasts squares with ridge regression with 0.3 as the ridge parameter: Equation S1,
(29)) that maps the stimulus to the BHA signal through a convolution (Figure S3A). For
each channel TRFs are estimated simultaneously for all inputs to remove correlation. We
fit  the  TRFs  in  with  latencies  from 0.5  seconds  before  to  3  seconds  after  the  visual
stimulus. After estimation, TRFs are smoothed with a Gaussian window with a standard
deviation of 53ms to filter higher-frequency noise.  

Response amplitude
To estimate the amplitude of the BHA responses in each channel to individual film cuts
(or saccades) we fit the TRFs to the neural data in the same window around the specific
film cut (or saccade) (Figure S6). The amplitude is estimated using ordinary least squares
regression. The regression coefficient describes the factor the TRF is multiplied with to
best fit the neural data. 

Statistical Analysis

To determine the statistical significance of responses, i.e. predictable fluctuations in BHA,
we compute  a  surrogate  distribution  of  TRFs  with  time-shuffled  input  signals  (visual
motion,  saccades,  cuts).  Surrogates  output  signals  are  constructed  by  random circular
shifts in time of the BHA in each electrode (i.e. multiple channels). Input signals are left
unchanged to preserve their  correlation structure.  For all  analyses we construct 10,000
surrogate  outputs.  Surrogate  TRFs  are  computed  as  above  using  the  surrogate  output
signals.  We  then  determine  which  channels  have  time  points  in  the  TRF  that  are
significantly different from surrogate TRFs. We refer to it  as a “significant  response”.
This is done separately for each input (regressor). Thus, for a given channel, we may find
a significant response for saccades (i.e. the saccade TRF has a significant time point) or
we may find a significant response for cuts, or the responses may be significant for both
(i.e. both TRFs have a significant time point). Corrections for multiple comparisons across
time points and channels are addressed through cluster-based statistics (76). Significant
clusters are determined in two steps. First, we determine a test statistic  for each timeɑ
point as the proportion of surrogate TRFs that have a more extreme amplitude than the
original TRF. Clusters are defined as connected time points and channels on a shaft/grid
that satisfy the test statistic of  < 0.001. For each cluster a weight is computed as theɑ
squared amplitude of the TRF summed over the cluster. Second, a distribution of surrogate
weights is found for each electrode by taking the maximum weight in each electrode. For
each cluster in the original data we compute a p-values as the proportion of surrogate
weights that is larger than the cluster weight. Finally, the p-values for all clusters in all
electrodes  and  patients  are  corrected  for  multiple  comparisons  using  the  Benjamini-
Hochberg procedure implemented in mafdr() in MATLAB (77) at a false discovery rate of
q  < 0.05.  Clusters  with  corrected  p-values  above 0.05 are  considered  significant.  For
example, 1151 channels showed significant responses to film cuts (Figure S4 & 2D). At a
FDR of 0.05, this means that on average, 58 channels may be false discoveries.

Removal of saccadic spike artifacts
Significant  TRFs to saccades  often consist  of  sharp spikes  at  the time of the saccade
(Figure S18B). These channels are localized close to the orbit of the eyes and are likely
artifacts  of muscle movements  Figure S18C) (78). To remove these channels  from all
further analysis we construct a correlation matrix between all significant TRFs (Figure
S18A). We then cluster this correlation matrix to visually identify the group of channels
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with  saccadic  spikes  (Figure  S18)  (31).  Saccade  related  artifacts  are  identified  and
removed from all analyses with this method. 

Visualization 
We visualize channel locations with the iELVis MATLAB toolbox (62). All spatial plots
are based on the freesurfer fsaverage brain (66). Our analysis is based on bipolar channel
pairs. For clearer visualization, in spatial plots all contacts that are part of a significant
bipolar  channel  pair  are  plotted.  We group responsive  channels  in  anatomical  regions
based on the Desikan-Killiany and Aseg atlases (79, 80). Bar plots depict the number of
channel pairs in each anatomical area. When only one channel is in a given anatomical
area the channel pair is counted as 0.5 channels in the given area. 
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Figures and Tables

Figure 1: Electrodes coverage across the whole brain and movie features capturing
novelty. A) We analyzed eye tracking and simultaneous intracranial EEG data from 6328
contacts across 23 patients. Electrodes cover the whole brain but are more sparse in the
occipital lobe. Each electrode contains multiple recording contacts (points on the graph).
We analyze neural data in 5378 bipolar channel pairs, referred to as channels. Left panel
shows the location of cortical lobes with color coding used in subsequent analysis. The
medial  temporal  lobe  (MTL)  includes  the  Amygdala,  Hippocampus,  entorhinal  and
parahippocampal cortex. Contacts in the entorhinal and parahippocampal cortex are not
included  in  the  temporal  lobe.  Image  courtesy  of  Assoc  Prof  Frank  Gaillard,
Radiopaedia.org,  rID: 46846  B) Patients watched up to 43.6 min of video clips. Two
different 10min clips of the animated comic ‘Despicable Me’ (26) were presented, one in
English, the other Hungarian. ‘The Present’ is a short, 4.3min, animated movie presented
twice.  ‘Monkey’ videos are three distinct clips of short scenes from documentaries on
macaques  presented  without  sound (4,  8).  C)  The regressors  specifying  film cuts  and
saccade are a series of impulses at the time of the cuts and saccade onset, respectively.
The regressor for visual  motion captures  the total  optic  flow in each video frame.  D)
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Saccade probability as a function of time from film cuts. E) Average visual motion as a
function of saccade onset time. F) Average motion as a function of time from film cuts
across all clips. Cuts tend to follow periods of low motion -- an effect mostly driven by
‘Despicable Me’ (Figure S2). Shaded area depicts the standard error of the mean.
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Figure 2. More channels respond to film cuts and saccades than to visual motion. A)
Temporal response functions in the parietal lobe for channels with statistically significant
response in BHA. The sizes of the blocks in each column reflect the relative number of
significant channels. TRFs in each channel were normalized by z-scoring. Red indicated
an increase, blue a decrease in BHA. Similar TRFs were grouped by clustering TRFs that
are highly correlated to each other (31, 32). The bottom row shows the average TRF for
each cluster. The magnitude of the responses was scaled to reflect the relative strength of
responses  to  each stimulus  within  each channel.  TRFs are  smoothed with  a  Gaussian
window with a standard deviation of 53ms. Time for motion indicated the delay of the
neural response in relation to the optical flow signal. B) Location of all channels with
significant response plotted on an average brain. C) Number of significant channels for
each condition indicated as area of each circle. The area of the gray circle indicates the
total number of channels. D) Fraction of channels out of all channels within each brain
area with significant response. Error bars correspond to the 95% confidence interval of the
proportion  of  channels  with  significant  responses.  Background  colors  correspond  to
different brain areas in Figure 1A. For results in a more detailed parcellation of the brain
see Figure S4. 
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Figure 3:  Responses to film cuts associated with event boundaries dominate neural
responses in higher order brain areas. A) Difference in magnitude of the responses to
individual  event  cuts  and  continuous  cuts  (Figure  S5).  Magnitude  of  the  response  is
estimated  by  scaling  the  temporal  response  function  in  each  channel  to  best  fit  the
response to each cut (Figure S6). Only channels with significant responses to film cuts in
Figure 2B are considered. Difference of medians Δ: Occipital: Δ=0.0425, p=0.2, N=137;
Parietal:  Δ=-0.005,  p=0.67,  N=238;  Temporal:  Δ=0.11,  p  =  1.2*10-16,  N=410,  MTL:
Δ=0.2, p=8.2*10-5, N=56; Frontal: Δ=0.0009, p=0.67, N=279; Insula: Δ=-0.01, p=0.67,
N=25; Wilcoxon signed-rank test, False discovery rate (FDR) control, at a level of q  = 
0.05. B) Temporal response functions are obtained for two separate regressors coding for
event cuts and continuous cuts. In this example channel in the supramarginal gyrus there is
a significant response after 0.5s to event cuts, but no response to continuous cuts. This
channel  is therefore only responsive to event  cuts. TRFs in all  channels are shown in
Figure S9. C) Fraction of responsive channels with selective response to event cuts or
continuous  cuts.  White  error  bars  correspond  to  the  95%  confidence  interval  of  the
proportion of channels responsive to continuous cuts, black error bars correspond to the
proportion  of  channels  responsive  to  event  cuts.  Background  colors  correspond  to
different brain areas in Figure 1A. D) Location of channels selectively responding to event
cuts only (bright green), continuous cuts only (dark green), or responding non-selectively
to either types of cuts (medium green). For results in a more detailed parcellation of the
brain see Figure S10. 
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Figure  4:  Differential  responses  to saccades  with  high and low novelty  in higher
order brain areas. A) Difference in magnitude of neural responses to individual saccades
with high and low novelty targets. Magnitude was estimated using filters for all saccades
as described in Figure 3. Difference of medians Δ: Occipital: Δ=0.04, p=3.5*10-6, N=139;
Parietal:  Δ=0.01,  p=0.19,  N=114;  Temporal:  Δ=0.021,  p  =  3.8*10-7,  N=264,  MTL:
Δ=0.008, p=0.17, N=61; Frontal: Δ=0.012, p=2.8*10-4, N=234; Insula: Δ=0.02, p=0.062,
N=15;  Wilcoxon  signed-rank  test,  FDR control,  at  a  level  of  q  =  0.05.  B)  Temporal
response  functions  are  estimated  for  saccades  with  high  and  low  novelty  separately.
Example of a high-novelty saccade (feature distance = 8.49) and a low-novelty saccade
(feature  distance  =  4.85)  with  similar  saccade  amplitude.  Novelty  is  computed  as  the
distance between features from a convolutional neural network (Figure S11). TRFs in all
channels  are  shown in  Figure  S13.  C)  Fraction  of  responsive  channels  with  selective
(low/high  novelty)  or  non-selective  response  (both).  Background colors  correspond  to
different  brain  areas  in  Figure  1A.  D)  Locations  of  channels  with  significant  TRFs
selectively responding to saccades with high novelty only (light blue), saccades with low
novelty  only  (dark  blue)  and  non-selective  responses  to  both  high  and  low  novelty
saccades (medium blue). For results in a more detailed parcellation of the brain see Figure
S14. 
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Figure 5: Responses that are selective for face and non-face saccades are found in
higher-order brain areas. A) Difference in magnitude of neural responses to individual
saccades to faces and non-faces. Magnitude was estimated using filters for all saccades as
described in Figure 3. Difference of medians Δ: Occipital: Δ=-0.14, p=3.9*10-7, N=139;
Parietal: Δ=-0.053, p=5.5*10-5, N=109; Temporal: Δ=-0.029, p=0.37, N=241, MTL: Δ=-
0.041, p=5*10-4, N=58; Frontal: Δ=-0.024, p=2.5*10-5, N=226; Insula: Δ=0.0028, p=0.5,
N=16; Wilcoxon signed-rank test, FDR control, at a level of q = 0.05. B) Separate TRFs
are  computed  for  face  and non-face  saccades  (Figure  S15).  C)  Fraction  of  responsive
channels  with  selective  (face/non-face)  or  non-selective  response  (both).  Background
colors correspond to different  brain areas in Figure 1A. D) Location of channels with
significant TRFs to face saccades only (light blue), non-face saccades only (dark blue),
and face and non-face saccades (medium blue). For results in a more detailed parcellation
of the brain see Figure S16. 
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Figure 6: Total motion and face motion are processed in distinct visual areas. A)
Separate TRFs are computed for total motion (optical flow) and face motion. B) Fraction
of  channels  with  selective  responses  (face/total  motion)  and  non-selective  responses
(both). Background colors correspond to different brain areas in Figure 1A. C) Channels
with significant response to total motion only (bright red), face motion only (dark red),
and total  and face motion (medium red) on the fsaverage brain. For results in a more
detailed parcellation of the brain see Figure S17. 
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