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Abstract  

Despite the promise of the gut microbiome to forecast human health, few studies expose the microbial 

functions underpinning such predictions. To comprehensively inventory gut microorganisms and their 

gene content that control trimethylamine induced cardiovascular disease, we mined over 200,000 gut-

derived genomes from cultivated and uncultivated microbial lineages. Creating MAGICdb (Methylated 

Amine Gene Inventory of Catabolism database), we designated an atherosclerotic profile for 6,341 

microbial genomes that encoded metabolisms associated with heart disease. We used MAGICdb to 

evaluate diverse human fecal metatranscriptome and metaproteome datasets, demonstrating how this 

resource eases the recovery of methylated amine gene content previously obscured in microbiome 

datasets. From the feces of healthy and diseased subjects, we show MAGICdb gene markers predicted 

cardiovascular disease as effectively as traditional blood diagnostics. This functional microbiome catalog 

is a public, exploitable resource, enabling a new era of microbiota-based therapeutics. 
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Introduction 

Mounting evidence implicates the gut microbiome, the thousands of microorganisms and their 

gene products residing in the gut, as a critical modulator of human health1,2. One of the most compelling 

examples implicating gut microbial metabolism as a factor in human disease is atherosclerotic 

cardiovascular disease (ACVD), which is the leading cause of death globally3–5. Here gut microorganisms 

process quaternary amines from protein rich foods (e.g. eggs, beans, meat) to generate the metabolite 

trimethylamine (TMA, Figure 1). TMA, an obligate microbiota derived metabolite, is absorbed into the 

blood stream and subsequently transformed by the liver to trimethylamine-N-oxide, which promotes 

ACVD in humans3,5. Gut microorganisms also catalyze reactions that reduce gut TMA concentrations6. 

While linkages between the gut microbiota and atherosclerosis are accepted3–5,7, a systems microbiology 

approach to reveal the balance between these reactions and their contributions to TMA production has yet 

to be holistically applied in the human gut.  

The microbial biochemistry catalyzing TMA production from quaternary amines in the gut are 

commonly attributed to four routes from dietary choline8, glycine betaine9, carnitine10 and butyrobetaine11  

(Figure 1, orange). Alternatively, through demethylation reactions, microorganisms can either directly 

reduce TMA concentrations12 or act on dietary quaternary amines6,13–17 to indirectly subvert TMA 

production (Figure 1, green). These nonTMA producing demethylation reactions are catalyzed by 

enzymes belonging to the same superfamily (MTTB), with the TMA specific enzymes distinguished by 
the presence of a pyrrolysine amino acid6,18,19. Despite their capacity to reduce concentrations of disease-

causing TMA, the nonTMA routes remain largely enigmatic in the human gut today.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496735doi: bioRxiv preprint 

mailto:wrighton@colostate.edu
https://doi.org/10.1101/2022.06.20.496735


Collectively the microbial conversions of quaternary amines and their derivatives are here 

referred to as methylated amine (MA) metabolism. MA metabolism has been poorly characterized in the 

gut for several reasons. First, many of the nonTMA producing, quaternary amine acting enzymes were 

discovered in the past five years13–16, and are sampled only from a few cultivated microorganisms (Table 

S1). Additionally, both proatherogenic and nonTMA producing MA enzymes are either misannotated or 

not annotated at all in automated workflows commonly used to characterize the gut microbiome. 

Complications include misannotations due to close homology with genes of different functions that then 

require manual active site confirmation (e.g. cutC, grdI)20,21. Also, within the MTTB superfamily many 

members either have unknown biochemical functions (e.g. mtxB)6 or the presence of pyrrolysine results in 

truncated genes (e.g. mttB) (Figure 1)12,18,19. Beyond annotation, many of the known TMA-utilizing 

microorganisms, like methanogens, are rare members in the gut and are often missed because of sampling 

considerations22,23. These challenges collectively result in an incomplete understanding of this important, 

disease relevant gut metabolism.  

Given their potential contributions to atherosclerotic cardiovascular disease (ACVD), we 

hypothesized the complete profiling of the proatherogenic (TMA producing) and nonTMA producing 

genes in fecal content would discriminate healthy and diseased individuals. To test this hypothesis, we 

cataloged the proatherogenic and nonTMA producing gene content from more than 200,000 microbial 

genomes derived from the human gut24–26. We constructed the Methylated Amine Gene Inventory of 

Catabolism database (MAGICdb), a resource that uncovered the untapped atherosclerotic disease 

modulating microorganisms prevalent and metabolically active in the human gut. We then used 

MAGICdb to diagnose atherosclerotic cardiovascular disease from fecal microbiomes, demonstrating a 

diagnostic performance on par with traditional lipid blood markers. This microbial genome resource 

paves the way for disease diagnoses and management from microbiome content, representing a new 

avenue for the development of therapeutic interventions in precision medicine. 

 

Methylated amine transformations are a keystone metabolism in the human gut 

To inventory the MA content in the gut microbiome, we developed a computational workflow 

that overcame prior annotation challenges by employing homology and non-homology approaches 

(Figure S1). We first identified homologs within each of the 7 gene types and then followed two distinct 

curation paths: one for the nonatherogenic superfamily members (mtxB, mttB) and other demethylating 

genes (mtmB, mtbB) and another for proatherogenic members (cutC, cntA/yeaW, grdI).  Following 

manual curation of these genes, the microbial genomes were defined as proatherogenic (TMA producing), 

non-TMA producing, or both based on their collective gene content.  

To link fecal TMA concentrations to microbial gene content we performed a human cohort study 

of 113 individuals (Figure 2A, Figure S2AB). We applied our computational workflow to 54 fecal 

metagenomes that spanned quartiles of fecal TMA concentrations derived from our cohort (Figure 2B). 

To sample rare microbial members, these fecal metagenomes were sequenced up to 55 Gbp/sample (mean 

of 18 Gbp/sample, Table S1), resulting in deeper sequencing than the 4 Gbp/sample that is commonly 

used in gut metagenome studies27–29. We show that a metagenome sequence depth of more than 35Gbp 

recovered nearly double the amount of MA genes than the traditional 4 Gbp (Figure S3). At a cumulative 

sequencing depth of 775 Gbp (i.e., 75% of our total sequencing) the MA gene discovery rate plateaued 

(Figure 2C). Beyond sequencing depth, gene recovery was also enhanced by the number of individuals 

sampled, suggesting this metabolism may be variably dispersed across humans (Figure 2DE). These 

analyses illuminate the importance of considering gene abundance and cohort distribution when designing 

experiments to target specific metabolisms from a complex microbiome like the gut.  

From our cohort we sampled 153 MA genes (135 unique) with 41% and 59% of the genes given 

proatherogenic or nonTMA assignments respectively (Table S1). We found no considerable relationship 

between gene content or TMA concentrations with host sex, body mass index, or lifestyle (Figure S2). As 

expected from relationships outlined in Figure 1, the relative abundance of the proatherogenic cntA/yeaW 

gene was associated with higher fecal TMA concentrations, while the TMA reducing mttB and mtxB 

genes relative abundance was associated with lower TMA concentrations (Figure S3B). More 
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importantly, while neither the proatherogenic nor the nonTMA summed relative abundances were on their 

own able to predict fecal TMA concentrations, together their cumulative profile was predictive (Figure 

S3D). While deduced from a small sized cohort, this early data supports the notion that the 

comprehensive MA functional content previously obscured in feces may have explanatory relevance for 

the atherosclerotic status in humans.  

Across the cohort we reconstructed 2,447 high and medium quality microbial metagenome 

assembled genomes (MAGs) that were dereplicated into 1,436 genomic representatives (Table S1). Only 

1.5% of these dereplicated MAGs encoded at least one MA gene (Figure 2D). These 21 MA containing 

genomes were nearly equally classified as proatherogenic and nonTMA producing. Only a single genome, 

a member of a novel genus in the Anaerovoracaceae, had both TMA-forming and depleting genes. 

Confirming our earlier suspicions, microbial members that encoded MA genes, especially the less studied 

nonTMA types, were some of the rarest members in the fecal community and were heterogeneously 

distributed across the cohort (Figure 2DE).  

MAGs did not have consistent abundances or distributions across the cohort. The most dominant 

MA encoding genome was a proatherogenic Enterocloster. As only the 96th most abundant of the 1,436 

MAGs sampled, this genome was detected in a third of individuals (Figure 2E). The second most 

abundant member, a proatherogenic Dorea, was sampled in nearly every human. Relative to their TMA 

producing counterparts, the four most dominant nonTMA producing genomes were less abundant but had 

similar occupancy across the cohort, with the remaining rare nonTMA members being more variably 

sampled (Figure 2E). Despite being encoded by rare and variably distributed members, the cumulative 

MA gene relative abundance was predictive of fecal TMA concentrations (Figure S2). Here we propose 

extending the idea of a microbial keystone species30,31 to the level of metabolism, establishing that in spite 

of low relative abundance methylated amine metabolisms in the gut have a disproportionately large effect 

on host physiology.  

 

Curation of methylated amine metabolism from over 200,000 microbial genomes 

To create the most robustly sampled MA genome and gene resource, we extended sampling to 

~9,000 publicly available microbial fecal metagenomes24,25. This vastly expanded sampling beyond our 

cohort to thousands of humans spanning diverse ages, geographies, diets, and health conditions. We 

employed our computational workflow on 237,273 bacterial and archaeal MAGs. We also mined 700 

bacterial genomes from gut microorganisms cultivated as part of the Human Microbiome Project26. In 

total, we analyzed the MA genes from 238,530 microbial genomes acquired from cultivated and 

uncultivated microorganisms (Figure 3AB). Showing the value of each of these datasets the large-scale 

MAG compendiums provided the most MA containing genomes, while our cohort-study derived MAGs 

and the microbial genomes from cultivated representatives provided a larger percentage of higher quality 

genomes that were maintained in the dereplicated database (Figure 3B).  

Mining this genome content, we created Methylated Amine Gene Inventory of Catabolism 

database (MAGICdb) which included (i) a gene dataset with unprecedented sampling of these disease 

relevant genes, and (ii) the corresponding linked genome dataset offering organismal context for MA 

metabolisms. MAGICdb contains 6,341 genomes encoding 8,721 MA genes (Figure 3A, Table S2). 

Within the MAGIC gene database, the proatherogenic and nonTMA gene richness was nearly equivalent 

(1,597 and 1,434 respectively) with cutC (choline trimethylamine lyase) and mtxB (non-pyrrolysine 

methyltransferase) being the most dominant types sampled respectively (Figure 3C). Considering the 

unique genes only, MAGICdb sampled up to 12-fold more genes compared to prior reports20,22,32–35. This 

expansion of MA gene diversity was attributed to the vast number of genomes collected from 

nonreference-based gut metagenome samples, rather than only relying on genomes from cultivated 

microorganisms like most prior analyses. 

Within the MAGIC genome database, MA encoding members belonged to 1 archaeal and 11 

bacterial phyla, or half of the phylum-level lineages surveyed (Figure 3A). This metabolism was found in 

less than 3% of the microbial gut genomes surveyed, indicating that even when scaled to a larger dataset 

this is a specialized metabolic capacity in the gut microbiome. Here we discovered the first MA 
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containing genomes within the phyla Spirochaetota (12 MAGs exclusively proatherogenic) and 

Synergistota (59 MAGs with proatherogenic and nonTMA producing members). We also extended this 

metabolism to 88 gut genera that prior to our survey, were not recognized as playing a role in gut MA 

transformations (Table S2). This novelty sampled in MAGICdb documents the disease causing or 

ameliorating gene reservoir that was previously untapped within the gut microbiome. 

Analysis of the TMA classifications across taxonomic levels revealed that all the Archaeal 

genomes were nonTMA producing. The same cohesive phylogenetic clustering of MA functionality was 

not observed for the bacteria at higher levels like class but was observed at finer taxonomic levels like 

genera. In fact, 89% of the 125 bacterial genera were exclusively proatherogenic (Enterocloster, 

Citrobacter, Escherichia) or nonTMA producing (Eubacterium, Blautia) (Figure 3A). The remaining 

genera were classified as both, either because a single genome contained both specializations or because a 

genus contained multiple genomes with contrasting specializations. This heterogeneity is best exemplified 

in Bilophila (in the phylum Desulfobacterota) where a majority of the 711 Bilophila MAGs were non-

TMA producing (97%), 12 MAGs were exclusively proatherogenic, and 7 MAGs encoded both 

capabilities. While we manually validated this MA content, these analyses were performed on draft 

genomes of variable completion, thus some MA content could be unsampled. However, since 50% of the 

dereplicated genomes (n=1,092) in MAGICdb were >90% complete, and classifications were validated 

for taxonomic consistency, we consider misclassifications due to unsampled genes less likely. 

This ability to sample the MA capacity in a genome-wide context highlights a strength of our 

paired gene and genome databases over prior unpaired single-gene studies. In addition to Bilophila, 

members of the Desulfovibrio and a novel genus in Anaerovoracaceae also encoded the proatherogenic 

choline converting cutC along with a TMA reducing mttB (Figure 3D). This concept of a zero summed 

game, where there is the potential that TMA is produced and subsequently utilized within the same 

microorganism, would have been missed where each gene is sampled independently. This finding 

underscores the value of sampling the entire gene repertoire within a genomic context when identifying 

microorganisms for possible therapeutic strategies like probiotics.  

Since TMA classification largely followed taxonomic lines, it is tempting to want to assign these 

metabolic roles from taxonomic data alone, as is often done in 16S rRNA amplicon studies in the gut. 

However, our analyses underlie the danger in doing this, as these metabolisms are not universally 

encoded by all genome representatives within a genus. For example, of the genomes surveyed, only 51% 

of the exclusively proatherogenic Escherichia and 19% of the non-TMA producing Blautia genomes 

sampled encoded MA metabolism (Figure 3D). These analyses reveal the likelihood for falsely reporting 

an association or metabolic capacity from taxonomic content alone.  

In summary, MAGICdb is a high-quality catalog of the TMA modulating genes and genomes that 

are harbored in the human gut. This curated resource will substantially enhance the sampling precision 

and efficiency of future microbiome studies. For instance, we show that many of these genomes were rare 

and not evenly dispersed across humans, thus having a higher likelihood of being missed without 

cultivation or deep metagenomic sequencing.  This extensively sampled reference database can now be 

used as “bait” to capture this metabolism from less deeply sequenced samples, increasing the 

‘mappability’ or recovery of reads for this functional gene content from samples where they would not 

have assembled. In addition, mapping is a far less computationally intensive process, where users can take 

advantage of our expertly curated indexing to rapidly annotate this gene content in their datasets.  

To demonstrate the useability of MAGICdb in this format, this resource was used in three case 

studies. We use MAGICdb to map gene expression data from our test fecal reactors and two previously 

published human cohort studies, illuminating the microorganisms actively shaping TMA concentrations 

in the gut. We also use this resource to recruit gene content that was previously not sampled in previously 

published ACVD cohort, demonstrating the efficacy of MAGICdb for disease diagnosing relevance in 

humans.  

 

Case study 1: MAGICdb contains microbial members capable of quaternary amine transformations 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496735doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496735


Previously the active MA transformations in the gut were only demonstrated using pure cultures, 

thus the cooperative and competitive processing of quaternary amines and their collective contributions to 

TMA output remains poorly resolved at the community level. To address this knowledge gap, we used 

fecal reactors to individually dose the same community with each quaternary amine (Figure 4A). To 

uncover the complex metabolic network stimulated by quaternary amines, we profiled the microbial 

community gene expression with metaproteomics and paired this to quantification of the chemical 

outcomes with NMR over time.  

For both the community wide gene expression and metabolite profiles, replicates within each 

quaternary amine treatment were congruent, however between treatments the outcomes statistically 

differed (Figure S4). Metabolite quantification revealed that only choline and glycine betaine resulted in 

a proatherogenic response, while choline was exclusively converted to TMA, glycine betaine conversion 

resulted in both demethylated and TMA metabolites (Figure 4B). Alternatively, carnitine and 

butyrobetaine stimulation exclusively produced a nonatherogenic response, a finding reflecting the anoxic 

reactor conditions that restricted the oxygen-requiring proatherogenic monooxygenases (CntA, 

YeaW)10,11.  

 In the TMA producing reactors amended with choline and glycine betaine, a single genus, 

Enterocloster, dominated the CutC and GrdI expression respectively. Additionally, we provide the first 

demonstration of TMA production from newly discovered MAGICdb lineages, with genomes from 

undefined genera in the Anaerovoraceae and Oscillospiraceae implicated in choline conversions. Further 

the gene expression data supports TMA production from glycine betaine by members of Dorea, 

Enterococcus, and Enterocloster genera.   

Across the 4 quaternary amine substrates, the nonatherogenic response was mediated by two 

genomes belonging to the genera Lactonifactor and Eubacterium, with 3 and 11 mtxB genes expressed 

respectively. This to our knowledge is the first implication for members of the genus Lactonifactor in 

modulating TMA concentrations in the gut. Eubacterium, on the other hand, is the model microorganism 

for quaternary amine demethylation (Table S1). Interestingly, we observed that a single Eubacterium 

MtxB was expressed in all quaternary amine treatments, suggesting this single enzyme demethylated all 

substrates. Validating this supposition, this enzyme was 99% similar to a recently biochemically 

characterized enzyme purified from E. limosum ATCC 8486, which demethylated butyrobetaine, but also 

promiscuously used carnitine and glycine betaine15. Our metabolite and metaproteome findings support a 

growing body of literature that Eubacterium are highly specialized for nonatherogenic quaternary amine 

degradation in the gut, representing an ideal target for probiotic-based therapeutics.   

These genome-based proteome and metabolite analyses also allowed us to contextualize the 

impacts of MA metabolism more broadly on the gut ecosystem. For instance, the concentration of short 

chain fatty acids (e.g. acetate, butyrate, propionate) increased across all quaternary amine amended 

reactors (Figure S5). Gene expression data for the genes responsible of the production of these 

metabolites signaled this was in part due to contributions from MA metabolizing microorganisms (Figure 

S6, Table S3). Given that short chain fatty acids regulate colonocyte energy balance, gut hormone 

homeostasis, and diabetes36,37, gut microbial MA metabolism can have other important health outcomes 

beyond cardiovascular disease.  

This genome context also demonstrated that quaternary amines were metabolized using a variety 

of energetic strategies. We show that proatherogenic microorganisms process quaternary amines as both a 

carbon and energy source for anaerobic respiration with fumarate or sulfite as electron acceptors or via 

obligate fermentation (Table S3). The nonTMA producing Lactonifactor and Eubacterium genomes were 

inferred to be using these substrates to support and obligatory fermentative lifestyle. Of the ten genomes 

expressing pro and nonTMA forming genes Eubacterium is the only specialist, as all others express 

glycoside hydrolases with MA genes, such that we cannot rule out concomitant carbohydrate substrate 

use. Differences in ATP gained from various MA metabolisms will likely impact microbial biomass 

production and TMA conversion rates, and thus warrant further investigation. 

Comparative proteomics indicated that choline and glycine betaine selectively enriched distinct 

Enterocloster strains with non-overlapping substrate specificity (encoded grdI or cutC but not both) 
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(Figure 4C). This exposes the strain-resolved niche differentiation that may occur in the gut. Lastly, even 

in these reduced complexity, artificially stimulated reactors these data revealed multiple microorganisms 

co-expressed the same MA enzymes (Figure 4C), hinting at the functional redundancy that is likely 

simultaneously active in the gut.  

Together these community focused analyses reveal quaternary amine conversions are an 

emergent property of the microbiome and cannot be fully evaluated by single gene surveys or outcomes 

from pure culture experiments. Future engineering of the gut microbiome for controlling TMA 

concentrations will need to account for energy differences in this metabolism, the metabolic plasticity and 

exchanges between microorganisms. In summary, moving to an organismal and community resolved view 

of active MA metabolism sheds light on the complexity that needs to be addressed when designing 

therapeutic strategies for the gut ecosystem. 

 

Case study 2: MAGICdb divulges TMA modulating enzymes expressed, but previously obscured in 

human cohorts 

To further extend the relevance of this MAGICdb resource, we mapped human fecal 

metatranscriptomic and metaproteomic data from two published cohorts containing 306 healthy subjects 

and 106 subjects diagnosed with irritable bowel disease (Figure 5A). We were surprised to find that 

MAGICdb genes were expressed in 82% of 361 metatranscriptomes and in 58% of 447 metaproteomes 

(Figure S7). Using the metatranscriptome data, we identified the most highly expressed genes for each of 

the MA gene types and recorded their prevalence (occupancy, % of humans detected in) and mean 

relative abundance across the cohort (Figure 5). We then compared whether these transcribing MA gene 

containing genera also expressed the same gene in metaproteomes from the human cohort and in our fecal 

reactors (Figure 5).  

Across the multitude of data types, fecal sources, and sampled conditions, the same 

proatherogenic genera were culprits implicated in TMA production from dietary quaternary amines. Our 

collective findings indicate that the TMA production from choline was likely mediated by 

microorganisms that have so far evaded cultivation (e.g. members of Anaerovoraceae and 

Oscillospiraceae). Notably these two genomes had the most highly transcribed cutC but were also 

expressed in more than a third of the 361 metatranscriptome samples (Figure 5A). Similarly, we showed 

members from these genera were active in our choline reactors that exclusively resulted in TMA 

production (Figure 4). While our cohort study revealed that some members of this Anaerovoraceae genus 

could encode nonatherogenic genes (Figures 2D, 3B), our combined in vivo and in vitro expression data 

suggest a stronger proatherogenic role may be likely.  

Our proatherogenic findings expanded TMA production beyond the Gammaproteobacteria (e.g. 

Escherichia, Klebsiella, Citrobacter) which are well documented to produce TMA, to also include 

members of the class Clostridia (e.g. Enterocloster, Dorea). Notably the exclusively proatherogenic 

Dorea genus (194 genomes in MAGICdb) encoded only grdI and the same MAG representative that was 

active in the human cohort was active in our glycine betaine fecal reactors (Figure 4C). Notably, a 

closely related Dorea genome, with the same MA functionality, was the second most dominant in our 

human cohort and detected in 86% of 52 individuals (Figure 2D). While today there is limited progress in 

designing specific microbiota eradication techniques, our coordinated analyses reveal likely targets for 

precision interventions.  

One of the most significant findings of MAGICdb was our vast expansion of the nonTMA 

producing microbial enzymes and the microorganisms that encode them. A sequence similarity analyses 

of the 3,022 MTTB superfamily genes in our database, resulted in 18 clusters composed of 1,031 nodes 

(Figure 6). Forty percent of these sequences were in cluster 1, which contained the genes for directly 

demethylating proatherogenic TMA. This extends the TMA utilizing gene content (mttB) in the human 

gut from a study focused on a single species of Bilophila wadsworthia and a study of TMA utilizing 

methanogens based on 6 draft genomes34. MAGICdb contains 1,071 mttB genes assigned to Bilophila 

from multiple species and 61 methanogen genomes that span 3 genera, including one uncultivated genus 

UBA71 (Figure 3A). Outside these lineages, we recovered 407 TMA reducing genomes that were 
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assigned to 7 bacterial genera with considerable representation from members of Emergencia (11 MAGs) 

and a novel genus in the Anaerovoracaceae (2 MAGs) (Figures 5B, 6).  

Here we show members of 7 different genera (e.g., Bilophila, Emergencia, and 

Methanomassilicoccus) expressed 30 of these direct TMA demethylating genes (Figure 6C). While an 

mttB gene from a methanogenic Methanomethylophilaceae genome was the most highly transcribed (4-

fold greater than the others), this gene was only found in 3% of samples. This is true in general for the 

methanogen TMA demethylating potential, while active in specific humans, it is sparsely distributed (or 

detected) (Figure 2E, Methanomethylophilaceae and Methanomassillicoccus). The high level of activity 

of these methanogen and other members in certain humans, which would directly remove TMA from 

hepatic circulation, indicates how the personalized composition of the gut microbiota between individuals 

could be an underappreciated moderator of heart disease risk.  

This study is the first inventory of nonatherogenic quaternary amine acting gene content (mtxB) in 

the human gut, cataloging 1,863 genes from 43 genera. More than half of the 17 non-pyrrolysine clusters 

contained a representative that was expressed in vivo or in vitro, while 2 of these clusters included 6 

protein sequences that were previously experimentally verified to demethylate the quaternary amines 

studied here (Figure 6).  Of the non-pyrrolysine containing clusters, cluster 5 with 80% of the sequence 

diversity assigned to Eubacterium had the most representatives expressed in human cohorts (Figure 5). 

Interestingly, the mtxB gene with the highest mean transcription was assigned to Bilophila, which was the 

genera that most consistently transcribed both mttB and mtxB across the cohort (Figure 5). Beyond 

known prior roles in TMA production from glycine betaine and choline and direct TMA reduction34, we 

provide evidence that Bilophila also has the potential to convert quaternary amines to nonTMA products.  

These nonatherogenic routes may control gut TMA concentrations and therefore beneficially 

contribute to human health. While promising, to determine their translational capacity for probiotic-based 

therapeutics more research is needed. First, while these genes are inferred to demethylate quaternary 

amines more in depth biochemical characterization is needed with model organisms beyond Eubacterium 

(Table S1). Our combined analyses implicate Biliophila or Parabacteroides as alternative targets given 

their activity in human cohorts (Figure 5). Also, we showed that many microorganisms containing mtxB 

are not physiologically characterized and would need to be evaluated for their immunogenic potential. 

Lastly, our genome resolved analyses show the need to audit these demethylating microorganisms for the 

net TMA production and conversion rate, as these MAGs encode several proatherogenic and 

nonatherogenic routes. In conclusion MAGICdb recovered MA gene content previously unnoticed in 

prior microbiome publications, demonstrating the utility of this database to expedite the sampling of 

microbiome MA metabolism across wider ranges of humans and disease conditions.  

 

Case study 3: Gut microbiota markers predict cardiovascular disease in humans 

While gut microbiota are commonly implicated in cardiovascular disease, the compilation of both 

proatherogenic and nonatherogenic genes that modulate gut TMA concentrations has not been 

systematically examined. Previous work sampled the proatherogenic genes that yielded TMA from 

choline (cutC) or carnitine (cntA/yeaW) in fecal metagenomes from 218 individuals with ACVD and 187 

healthy controls. Using a database of 17 genes recovered in the study32, this analysis failed to classify 

disease status in the cohort based on the relative abundance of these genes, with a cross-validation area 

under the curve (AUC) value of 0.63. 

Here we reanalyzed this metagenomic dataset32, but instead used the 3,031 unique genes in the 

MAGIC database for read recruitment (Figure 3A). For context, MAGICdb has a 62- and 161- fold more 

sampling of cutC and cntA/yeaW gene richness respectively, but also included the other MA genes not in 

the previous analysis (grdI, mtxB, mttB). Through read mapping MAGICdb uncovered 2,699 unique MA 

genes residing in these fecal metagenomes (Figure S7). We showed that ACVD subjects had increased 

relative abundance of proatherogenic genes (cutC, cntA, yeaW, grdI), while the nonatherogenic mttB gene 

relative abundance was depleted in these same individuals (Figure 7A).   

To ascertain the enhanced prediction provided by the increased gene richness, the logistic 

regression model using only cutC and cntA/yeaW from MAGICdb had an AUC value of 0.67, with a 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496735doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496735


slightly improved classification from the original model (Figure S8). However, expanding our model to 

include the relative abundance for the full gene set (cutC, cntA, yeaW, grdI, mtxB, and mttB) and the 

diversity profile of these genes across the cohort (Figure 7B) added to the predictability, resulting in 

AUC values of 0.75 and 0.81 respectively. These significantly increased values indicated the power of 

including both proatherogenic and nonatherogenic gene diversity when classifying ACVD health status. 

With an AUC of 0.81 these MA gene-based predictions did not differ significantly from predictions 

reliant on more traditional cumulative blood markers (HDL, LDL, triglycerides) in this same cohort 

(Figure 7C).  Future studies with larger cross-sectional cohorts of ACVD and healthy individuals are 

required to validate this microbiome derived gene model more completely. 

 

Conclusion  

Tradeoffs between the individuals sampled and sequencing depth impact all cohort studies, and 

are important considerations when functional genes, especially those encoded by rare members need to be 

sampled. Our hope in creating MAGICdb was to alleviate this burdened decision from future 

cardiovascular disease relevant cohort studies. We have demonstrated that expertly curated MAGICdb 

eliminates the need to individually deeply sequence to assemble and recover these rare, sparsely 

distributed genes, instead favoring shallower sequencing from more individuals, with MA genes 

recovered by mapping to the database.  

MAGICdb is the first comprehensive catalog of gut microbial MA metabolism. We leveraged this 

database with our own and other’s metagenome, metatranscriptome, and metaproteome datasets to show 

that these gut MA genes are active, coordinated, and predictive of cardiovascular disease. This open-

access database and accompanying models can be applied to larger cohorts, opening the door for 

nontraditional microbiota tools for diagnosing, halting, and reversing cardiovascular disease. 

Additionally, this gene foundation can be exploited to discover the microbial MA contributions to other 

diseases (e.g diabetes, as well as cerebral, hepatic, and vascular conditions) where this metabolism has 

been implicated38,39. Collectively, our results establish the utility of metabolism-oriented microbiome 

databases to guide modern precision medicine strategies designed to correct defects in the gut 

microbiome. 

Materials and Methods  

MAGICdb construction and analysis 

 Combining the 1,436 MAGs recovered in this study with (i) 700 genomes from isolates in the 

Human Microbiome Project (HMP)26 and (ii) 237,273 gut derived metagenome-assembled genomes 

(MAGs) from previously published studies24,25, we obtained 238,530 gut associated genomes for analysis 

of MA metabolic potential. MAGs in (ii) were compilation studies, where MAGs were accumulated 

across many publications representing many different lifestyles, disease types, and diets24,25. As outlined 

in Figure S1, each gene type in Figure 1 was assessed separately. First, using an experimentally 

validated amino acid sequence, each gene type was searched against the predicted amino acid sequences 

of the 238,530 gut associated genomes using BLAST40, retaining sequences with >60 bitscore. For CutC, 

CntA, YeaW, and GrdI, sequences were aligned with experimentally validated reference sequences using 

muscle, and phylogenetic trees were built using RAxML41. Individual gene trees were visualized in 

iTOL42, and the branch containing sequences of interest were selected. For the remaining sequences, 

active residues were confirmed as outlined for CutC, CntA, YeaW, and GrdI8,10,11,21. Of note, is CntA and 

YeaW, which we report together as specificity cannot be inferred from sequence information alone 10,11. 

The remaining sequences with active residues were then incorporated into MAGIC gene database, as well 

as their corresponding genomes into MAGIC genome database.  

For MttB superfamily genes that did or did not contain pyrrolysine, a different approach was 

taken due to pyrrolysine interpreted as a stop codon during gene calling18,19. After recovery of putative 

MttB homologs using amino acid BLAST40, obtained sequences were length filtered to 360 bp and 

aligned to known MttB superfamily members. Sequences longer than 360 did not contain pyrrolysine and 

aligned through the pyrrolysine residue were incorporated into the MAGIC gene database as non-
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pyrrolysine containing MtxB, as well as their corresponding genomes into the MAGIC genome database. 

These superfamily sequences could not be assigned a specific quaternary amine substrate, as such we 

denoted these as MtxB to indicate an unassigned substrate “X”, nomenclature consistent with the MttB 

superfamily (e.g. MtgB for glycine betaine6, MtcB for carnitine13). The remaining truncated genes were 

then manually called in Geneious43 from the original genome scaffolds using the amber read-through 

option to detect pyrrolysine. The resulting sequences that encoded for pyrrolysine were incorporated into 

the MAGIC gene database as pyrrolysine containing MttB, as well as their corresponding genomes into 

the MAGIC genome database.  

MTTB superfamily genes in MAGICdb were used to construct a sequence similarity network via 

the EFI-EST webtool44. Networks were generated with initial edge values of >80%, and sequences with 

100% sequence similarity were collapsed into single nodes. The resulting representative node network 

was visualized with Cytoscape 3.845 using the perfuse force directed layout option. Genomes in 

MAGICdb were analyzed with GTDB-Tk46 for taxonomy, checkM47 for quality, and DRAM48 for genome 

annotation.  

 

Sample procurement and cohort statistics 

The current study considered samples collected from 125 individuals aged 21 years or older under 

the auspices of Dr. Alan George Smulian either at the University of Cincinnati College of Medicine or the 

University of Cincinnati Medical Center Holmes Hospital Outpatient Services. Each individual provided 

self-collected fecal and urine samples, along with data on medical history (e.g. antibiotic usage, recent 

colonoscopy), weight, age, dietary habits, and smoking status (Table S1). Donor identities were stripped 

from the paired samples and their associated data, and each donor was assigned a unique identification 

number. Targeted metabolomic analyses of methylated amines (MAs) were carried out on fecal samples 

from all 125 individuals, while a subset of 54 samples were selected based for fecal metagenomic 

sequencing along a fecal TMA gradient (Figure S3). Based on surveys, subjects and their corresponding 

samples were removed from analyses due to antibiotic use in the last 6 months, lack of patient 

information, or a colonoscopy in the last 6 months, confining the cohort to 113 subjects. Five sets of 

donated samples were removed from analyses due to donor antibiotic use and seven were removed for 

lack of donor de-identified data. Written, informed consent was obtained from all study participants, and 

subject treatment and experiments with donated samples were approved by Institutional Review Boards 

of the University of Cincinnati and the Ohio State University. 

 

Metagenomic sequencing, assembly, and binning for this cohort and methylated amine reactors 

Fifty-four fecal samples out of 113 were chosen across a trimethylamine gradient for 

metagenomic sequencing, with at least five samples chose from each quartile (Figure 2B). Total nucleic 

acids were extracted from five microcosm samples and 54 human fecal samples using the PowerSoil 

DNA Isolation kit (MoBio), eluted in 100 μL, and stored at −20 °C until sequencing. DNA was submitted 

for sequencing at the Genomics Shared Resource facility at The Ohio State University. Libraries were 

prepared with the Nextera XT Library System in accordance with the manufacturer’s instructions. 

Genomic DNA was sheared by sonication, and fragments were end-repaired. Sequencing adapters were 

ligated, and library fragments were amplified with five cycles of PCR before solid-phase reversible 

immobilization size selection, library quantification, and validation. Libraries were sequenced on the 

Illumina HiSeq 2500 platform and paired-end reads of 113 cycles were collected. All raw reads from 

microcosms and fecal samples were trimmed from both the 5′ and 3′ ends with Sickle 

(https://github.com/najoshi/sickle), and then each sample was assembled individually with IDBA-UD49  

using default parameters. Metagenome statistics including amount of sequencing are noted in Table S1. 

All microcosm and fecal metagenomes (Table S1) were binned using metabat250 with default 

parameters. Bins were then assessed for quality using checkM47. Metagenomic reads from the binned 

samples were then mapped to bins >50% completion and <10% contamination (medium or high quality 

bins51) at 99% identity using bbmap52. For deeply sequenced metagenomes (n=15) reads that did not map 

to the pool of medium or high quality bins were then reassembled using IDBA-UD49, completing iterative 
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assemblies for each of the 15 samples, until no new bins could be recovered. The resulting 2,447 bins 

were then dereplicated into 1,436 bins using dRep (55).  

 

Fecal metabolite analyses from the cohort study 

Fecal samples were self-collected by volunteers and brought to the collection center where they 

were stored at −80 °C. Samples were then shipped to the lab for analysis on dry ice where they were again 

stored. Samples arrived frozen in less than 24 h and were immediately stored at −80 °C until ready for 

NMR analysis.  

Fecal samples were removed from the freezer and transferred to a biosafety cabinet on dry ice. A 

total of 0.2 to 0.5 g (wet weight) of frozen chips of each sample were weighed and transferred to a 5 ml 

centrifuge tube. To extract metabolites from the fecal samples, 1 ml 0.75 M potassium phosphate buffer 

(PBS buffer) in 50% D2O, pH 7.2, was added to each tube, resulting either 3x volume/weight dilution 

(for fecal samples with more than 0.3 g in wet weight) or 5x volume/weight dilution (for fecal samples 

with less than 0.3 g in wet weight) of the original samples. The slurries were then vortexed for a total of 3 

minutes to extract metabolites. Vortexing was paused several times in order to cool the sample on ice to 

avoid overheating. The vortexed samples were then centrifuged at 1000x g for 10 minutes at 4°C. The 

supernatant was transferred to a 1.5 ml microcentrifuge tube and were centrifuged again twice at 4°C 

(16100x g, 10 min) to remove remaining debris. Total 200 ul of final supernatant were mixed with 100 

uM DSS and transferred to a 3 mm x 178 mm NMR tube for NMR analysis. 

1D 1H and 2D 1H-13C HSQC NMR spectra were conducted at 298 K on a Bruker Avance III HD 

800 MHz (Billerica, MA) at Ohio State campus chemical instrument center (CCIC) NMR facility. Proton 

NMR, about 4 min for one Data Set, was acquired using 1.28s acquisition time, 2s relaxation delay, and 

64 number of scans. The water suppression was achieved using excitation sculpting with gradients.  2D 
1H-13C HSQC was acquired with a standard Bruker pulse sequence using phase-sensitive echo/antiecho-

TPPI gradient selection.  The experiment parameters include ~4ms acquisition time in 13C dimension, 

~80ms acquisition time in 1H dimension, 1s relaxation delay, 16 number of scans, 13C GARP decoupling 

during acquisition, and data matrix of 2048 X 128.  The experimental time is roughly 38 min for one Data 

Set.  Standards with 100 uM of target metabolites (>98% purify) were analyzed under the same 

conditions. When appropriate, sample aliquots were spiked with a known concentration of trimethylamine 

to confirm peak assignment.  

All NMR data were processed with Bruker Topspin 3.6.1 (Billerica, MA). The data were 

typically zero-filled one time in both 1H and 13C dimension prior the application of window functions, 

followed by Fourier transformation, phasing, and baseline correction.  Chemical shifts were internally 

referenced to DSS at 0.00 ppm. The concentration of a trimethylamine was estimated employing 

standards of known concentration and comparing the integral of peaks to DSS. 

 

Cohort analyses 

We leveraged our cohort metagenomes to understand the distribution of MA genes with variable 

depths of sequencing and in relation to fecal TMA concentrations. First, we mined our fecal metagenome 

assemblies for MA genes, finding 153 MA genes that were dereplicated into 135 genes using cd-hit53. We 

grouped subjects into quartiles (Q1-Q4, 25% of the data points in each) and then related the paired gene 

content as shown in Figure 2B. To understand the recovery of new genes with additional subjects and 

sequencing, we performed a species accumulation analysis where genes recovered from each 

metagenome were iteratively dereplicated with the addition of each subject using cd-hit53, as shown in 

Figure 2C. To obtain gene abundance, we mapped metagenomic reads rarified to 8Gbp of sequencing to 

the dereplicated gene set (n=135) using bowtie254. Reads were counted and summarized using coverM 

(https://github.com/wwood/CoverM) into trimmed mean (-m trimmed_mean) and including genes with a 

minimum covered fraction of 75% (--min-covered-fraction 0.75). To relate gene abundance to fecal TMA 

concentration, we used linear regression based modelling to predict TMA concentrations from MA 

gene relative abundance in our cohort using sparse Partial Least Squares (sPLS 55,56) as implemented in 

the R package mixOmics57, with data shown in Figure S2D. To further understand how gene recovery 
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was impacted by sequencing depth, we used our most deeply sequenced metagenomes (>35Gbp) to 

recruit reads to the cohort gene database (n=135) using all reads for a particular metagenome and 

reads rarified to 4Gbp from the same metagenome, with gene abundance and gene count reported in 

Figure S2C. Briefly, we mapped all metagenomic reads or reads rarified to 4Gbp (similar to previously 

depths used in other microbiome studies27,32) of sequencing to the dereplicated gene set (n=135) using 

bowtie254. Reads were counted and summarized using coverM (https://github.com/wwood/CoverM) into 

trimmed mean (-m trimmed_mean) and including genes with a minimum covered fraction of 75% (--min-

covered-fraction 0.75). 

Beyond the gene level, within our cohort, we aimed to understand the distribution of MA 

genomes in the context of the microbial community. Abundance data reported was based on the 1,436 

unique bins. Briefly, reads from metagenomes with greater than 8Gbp in depth were rarified to 8Gbp 

from all 52 metagenomes and mapped to 1,436 unique bins using bowtie254 with 95% identity and 

counted using coverM (https://github.com/wwood/CoverM) with in trimmed mean mode (-m 

trimmed_mean) and including genomes with a minimum covered fraction of 75% (--min-covered-fraction 

0.75). Trimmed mean values were then transformed into relative abundance. To determine rank of each 

genome, relative abundance of each genome was averaged across the cohort and then ordered from 

maximum to min, and ranks were assigned 1-1,436, as shown in Figure 2DE. Note, only 52 

metagenomes were used in this analysis, as two were dropped due to sequencing <8Gbp.  

 

Methylated amine reactor construction and operation 

The microcosm experiment consisted of six treatments all set up with fecal material from subject 

74: (i) no substrate and fecal material, (ii) glycine betaine and fecal material, (iii) carnitine and fecal 

material, (iv) butyrobetaine and fecal material, and (v) choline and fecal material. Each treatment was 

done in triplicate and consisted of 10% (wet weight/volume) anoxic, fecal slurry in sterile basal 

bicarbonate-buffered medium dispensed in Balch tubes sealed with butyl rubber stoppers and aluminum 

crimps under an atmosphere of N2/CO2 [80:20 (vol/vol)], with a final volume of 10mL. Before mixing 

with fecal slurry, the medium (per liter) included 0.25 g ammonium chloride, 0.60 g sodium phosphate, 

0.10 g potassium chloride, 2.5 g sodium bicarbonate, 10 ml DL-vitamin mixture, and 10 ml DL-mineral 

mixture and was brought to a pH of 7.0 using 1 mM NaOH58. Tubes were incubated at 37°C. Samples for 

metagenomics and metaproteomics were taken at the final (TF) timepoint, while metabolite samples were 

taken at the indicated times during the course of the 25-day incubation (Figure 4A).  Anoxic fecal 

reactors were primed with 40μM of each substrate from time of inoculation to day 3, then they were 

dosed with 1mM of each substrate 3 times at day 3, day 10, and day 17. Accounting for removal of 1mL 

samplings, a total of 27umol of each substrate was added. Samples were taken for subsequent analysis at 

T1 (10 days), T2 (17 days), and TF (25 days). For timepoints T1 and T2, samples were taken prior to 

substrate addition. Subject 74 fecal material, used for reactor inoculum, metabolite concentrations are 

given in Table S3.  

 

Methylated amine reactor metabolomic data acquisition and analysis 

Samples from microcosm experiments were filtered (0.2 μm) at time of collection and sent to the 

Pacific Northwest National Laboratory for metabolite analysis by NMR. Samples were diluted by 10% 

(vol/vol) with 5 mM 2,2-dimethyl-2-silapentane-5-sulfonate-d6 as an internal standard. All NMR spectra 

were collected using a Varian Direct Drive 600-MHz NMR spectrometer equipped with a 5-mm triple 

resonance salt-tolerant cold probe. The 1D 1H NMR spectra of all samples were processed, assigned, and 

analyzed using Chenomx NMR Suite 8.3 with quantification based on spectral intensities relative to the 

internal standard. Candidate metabolites present in each of the complex mixtures were determined by 

matching the chemical shift, J-coupling, and intensity information of experimental NMR signals against 

the NMR signals of standard metabolites in the Chenomx library. The 1D 1H spectra were collected 

following Chenomx data collection guidelines59, using a 1D NOESY presaturation (TNNOESY) 

experiment with at least 512 scans at 298K using a 100ms mixing time, with 12 ppm spectral width, a 4s 

acquisition time followed by a relaxation delay of 1.5 s during which a presaturation of the water signal 
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applied. Post-acquisition processing included time domain free induction decays (57472 total points) 

zero-filling to 132k points and multiplication by a decaying exponential function (line broadening of 0.5 

Hz) prior to Fourier Transform. Chemical shifts were referenced to the 1H methyl signal in DSS-d6 at 0 

ppm.  Additionally, 2D spectra (including 1H–13C heteronuclear single-quantum correlation 

spectroscopy, 1H-1H total correlation spectroscopy) were acquired on a subset of the fluid samples. 

Biological triplicates had similar metabolite pools, with all data reported (Table S3).  

 

Methylated amine reactor metaproteomic extraction, spectral analysis, and data acquisition  

Liquid culture (1.2 mL) from each microcosm sample was collected anaerobically, centrifuged 

for 15 min at 10,000 × g, separated from the supernatant, and stored at −80 °C until shipment to Pacific 

Northwest National Laboratory. Proteins in the pellet were precipitated and washed twice with acetone. 

Then the pellet was lightly dried under nitrogen.  

Each precipitated protein pellet was diluted in 200 µL of 8 M urea in 100 mM ammonium 

bicarbonate, pH 8 (ABC). A bicinchoninic acid (BCA) assay (Thermo Scientific, Waltham, MA USA) 

was performed to determine protein concentration. Following the assay, 10 mM dithiothreitol (DTT) was 

added to the samples and incubated at 60°C for 30 mins with constant shaking at 800 rpm. Samples were 

then diluted 8-fold for preparation for digestion with 100 mM ABC, 1 mM CaCl2 and sequencing-grade 

modified porcine trypsin (Promega, Madison, WI) was added to all protein samples at a 1:50 (w/w) 

trypsin-to-protein ratio for 3 h at 37˚C. Digested samples were desalted using a 4-probe positive pressure 

Gilson GX-274 ASPEC™ system (Gilson Inc., Middleton, WI) with Discovery C18 50 mg/1 mL solid 

phase extraction tubes (Supelco, St.Louis, MO), using the following protocol: 3 mL of methanol was 

added for conditioning followed by 2 mL of 0.1% TFA in H2O. The samples were then loaded onto each 

column followed by 4mL of 95:5: H2O:ACN, 0.1% TFA. Samples were eluted with 1mL 80:20 

ACN:H2O, 0.1% TFA. The samples were concentrated down to ~100 µL using a Speed Vac and a final 

BCA was performed to determine the peptide concentration and samples were diluted to 0.1 µg/µL with 

nanopure water for MS analysis.  

All mass-spectrometric data were acquired using a Q-Exactive Plus (Thermo Scientific) 

connected to a nanoACQUITY UPLC M-Class liquid chromatography system (Waters) via in-house 70-

cm column packed using Phenomenex Jupiter 3-μm C18 particles and in-house built electrospray 

apparatus. MS/MS spectra were compared with the predicted protein collections using the search tool 

MSGF+60. Contaminant proteins typically observed in proteomics experiments were also included in the 

protein collections searched. The searches were performed using ±20-ppm parent mass tolerance, parent 

signal isotope correction, partially tryptic enzymatic cleavage rules, and variable oxidation of methionine. 

In addition, a decoy sequence approach61 was employed to assess false-discovery rates. Data were 

collated using an in-house program, imported into a SQL server database, filtered to ∼1% false-discovery 

rate (peptide to spectrum level), and combined at the protein level to provide unique peptide count (per 

protein) and observation count (that is, spectral count) data. Spectral count data for each identified protein 

was normalized using normalized spectral abundance frequency (NSAF) calculations62,63, accounting for 

protein length and proteins per sample (Table S3). Note that metaproteomics were not done on raw fecal 

samples. Metaproteomes were mapped to dereplicated MAGICdb predicted amino acid sequences, as well 

as predicted amino acid sequences of unique MAGs recovered from enrichments.  

 

Mapping of published data to MAGICdb 

All reads were downloaded from EBI from Abu-Ali, et al.64, a study of metatranscriptomes from 

adult men. Adapters were stripped using bbduk.sh with the parameters ktrim=r, k=23, mink=11, hdist=1. 

Reads were trimmed using sickle with default parameters. Reads were mapped to MAGICdb genes using 

bbmap.sh (bbtools suite52) using perfectmode=t and ambiguous=random. Counts were extracted from the 

bbmap covstats output and compiled into a table. The counts were then transformed to geTMMs65. 

All proteome .mgf files were downloaded from Lloyd-Price, et al.66. Files were then searched 

against the MAGICdb using MSGF+60 using the parameters inst 3, tda 1, ti 1,3, ntt 1 and maxLength 50. 

After the search files were converted to TSVs using the parameter showDecoy 1. To determine hits, first 
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all hits with a pep q-value greater than .01 were removed. Then for each sample we identified proteins 

with more than one peptide hit. This list of proteins per sample were the ones considered present. 

 

CVD prediction from human gut metagenomic data 

All reads were downloaded from EBI from Jie, et al.32, a study of metagenomes from 218 

individuals with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls (15). Adapters 

were stripped using bbduk.sh with the parameters ktrim=r, k=23, mink=11, hdist=1. Reads were trimmed 

using sickle with default parameters. Reads were mapped to unique MA genes in MAGICdb genes using 

bbmap.sh (bbtools suite52) using perfectmode=t and ambiguous=random. Counts were extracted from the 

bbmap covstats output and compiled into a table. The counts were then normalized to geTMM, a gene 

length corrected (ge) trend means of m-values (TMM), which is a method for assessing intrasample 

variation for read map data65. For each individual we obtained the relative abundance profile of the MA 

genes (cutC, cntA, yeaW, grdI, mtxB, and mttB).   
The relative abundance MA gene profiles were then used in a logistic regression model using 

scikit-learn67 to predict ACVD status (0=No ACVD, 1=ACVD) as designated in Jie, et al32. Models were 

evaluated using stratified 10-fold cross-validation with mean false positive and true positive rates reported 

and used to calculate the area under the receiver operator characteristic curve (AUC-ROC)68. Feature 

coefficients for logistic regression model for the best performing model (Shannon’s diversity of each type 

of gene in MAGICdb) were reported. Gender was included in the models were noted and dichotomized so 

that male equals 1 and female equals 0. An AUC  value >0.7 was used to indicate a relatively good ability 

for the model to classify individual disease status69. To test for difference in model performance 

McNemar’s test was used70.  

Models were trained on the following to predict ACVD status:  

1. Shannon’s diversity of MAGICdb genes by gene type + gender (Fig 7B). Shannon 

diversity score was determined for each gene type using the scikit-bio (http://scikit-
bio.org/) and calculated using the geTMMs. Each individual had a Shannon’s diversity 

profile that included 6 MA gene diversity scores per individual.  

2. Blood markers (triglyceride mmol/L, LDL mmol/L and HDL mmol/L) + gender (Fig 7C) 

3. Abundance of cutC, cntA/yeaW summed per gene type + gender (genes used and model 

analysis similar to reported in Jie, et al32 (Fig S8A) 

4. Abundance of all genes from MAGICdb + gender (Fig S8B), each gene abundance in the 

unique MAGICdb gene database is included.  

5. Abundance summed per gene type + gender (Fig S8C) 

6. Abundance of all genes summed per atherogenic status (proatherogenic and 

nonatherogenic) + gender (Fig S8D).  

7. Shannon’s diversity of MAGICdb genes by gene type (no gender) (Fig S8E). Similar to 

above in number 1 but did not include gender.  

 

Data availability. All data will be made available upon submission.  
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Figure 1. Microbial proatherogenic or nonatherogenic methylated amine metabolic routes for 

dietary quaternary amine transformations in the gut. Foods in the human diet, including read meat 

and certain vegetables, have elevated quaternary amines71. Upon consumption, these compounds travel to 

the gut where they are degraded by microorganisms. Chemical structures for dietary quaternary amines 

(black circles) are shown for choline, glycine betaine, carnitine, and butyrobetaine, with the 

trimethylamine (TMA) moiety of these compounds noted in orange. Microbial proatherogenic 

conversions (orange arrow) of these compounds yield TMA (orange circle), which is exported to the liver 

where human enzymes convert TMA to Trimethylamine-N-oxide, a metabolite that promotes 

atherosclerosis. Alternatively, microorganisms catalyze demethylation reactions that subvert TMA 

concentrations (green arrows). In the first route, microbial dietary quaternary amine processing does not 

result in TMA production, but instead yields non-TMA metabolites (green circles) like 

dimethylethanolamine, dimethylglycine, norcarnitine, or 4-dimethylaminobutyrate. In a second TMA-

reducing route, TMA is directly microbially demethylated to dimethylamine (DMA, green circle). 

Sequential demethylations of DMA to MMA (monomethylamine) and MMA to ammonium are also noted 

by grey circles. For each conversion, the microbial abbreviated gene names are noted in grey or white 

boxes, with the full gene names, reactions, and citations included in Table S1.  
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Figure S1 The computational workflow for MAGICdb uses both homology and nonhomology based 

approaches to refine the annotation of MA gene content. Details can also be found in methods section.  
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Figure 2. Microbially methylated amine utilization is encoded by rare members with differential 

occupancy sampled across a human cohort. A A 113 human cohort study resulted in metabolite 

analysis (Metab) of fecal TMA concentrations, which were assigned to quartiles (Q1-Q4) based on 

concentration. Using these quartiles, 54 samples were selected for metagenomics (MetaG), with at least 

12 samples chosen from each quartile. B Quantification of the proatherogenic (orange) and nonTMA 

(green) genes inventoried in each fecal metagenome, organized by quartile, with quartile ranges noted in 
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the left panel and sex of the subject noted in the right panel. Red arrow denotes the fecal sample chosen 

for quaternary amine amendment in Figure 4. C MA discovery curve denotes the number of new genes 

recovered with increased sequencing depth. The dashed line indicates the plateau of new MA gene 

recovery. D A rank abundance curve of the average relative abundance of 1,436 MAGs (y axis) and their 

average rank (x-axis) in each sample sequenced as part of this cohort. The average ranked relative 

abundance of MA containing genomes are highlighted by colored bars along the x-axis. E The presence 

(filled) and absence (white) of MA containing MAGs, with the bar graphs at the top reporting the 

maximum relative abundance and average rank (numbers out of 1,436) of each genome. In B-E, colors 

correspond to proatherogenic (orange), nonTMA producing (green), or both (black), based on MA content 

as defined in Figure 1.  
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Figure S2 A Cohort statistics including sex, smoking status, and BMI category of 113 human subjects. B 

The median values of age, weight, and BMI statistics across the cohort (n=113). Points above or below 

boxplots signify outliers, or values outside one standard deviation of the median. C Dot plot shows the 

all-to-all correlations of MA gene diversity, MA gene abundance, and host lifestyle factors, with the 

significant (p-value<0.01) correlations shown by dots colored and sized by correlation coefficients.  
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Figure S3 A Fecal TMA concentrations, with color denoting the samples sequenced with metagenomics 

(n=54, black) and those not chosen (gray). Shape indicates the sex of the subject from which the fecal 

sample was derived. B Rarified metagenomes (8Gbp) were mapped to a database of 135 dereplicated MA 

genes to provide the mean relative abundance of each gene type across the cohort. The mean and standard 

deviation of the relative abundance of MA genes recovered from high (>145 nmol TMA/gram feces) and 

low (0-144 nmol TMA/gram feces) fecal TMA samples. C Comparison of the relative abundance (right) 

and count of MA genes recovered when >35Gbp and 4Gbp of reads were evaluated. D Prediction of fecal 

TMA from MA gene content using sparse Partial Least Squares (sPLS) regression revealed a significant 

relationship between the MA gene content predicted and measured fecal TMA concentrations. 
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Figure 3. MAGICdb indexes the TMA relevant gene and genome content in the human gut 

microbiome. Throughout this figure TMA classifications are based on MA gene or genomic content as 

outlined in Figure 1, with colors denoting TMA status as proatherogenic (orange), nonTMA producing 

(green), or both (black). A Alluvial plot shows the taxonomic assignment of the 6,341 genomes that 

encode MA potential in MAGICdb. Alluvia are colored by MA genome content and TMA classification 

noted by coloring. The total number of genomes and their TMA classification(s) are summarized for each 

genus as a barchart. B The origin of the 6,341 genomes in MAGICdb (gray bars) and the percent of 

genomes that remained in MAGICdb after dereplication (blue bars). C At the gene level, a stacked bar 

chart reports the total (gray) and dereplicated (black) genes in MAGICdb, with asterisk indicating genes 
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with a pyrrolysine amino acid. D The top 20 genera represented in MAGICdb and their TMA 

classification. For the genera with the most genomes sampled in the MAGICdb, the dot plot shows the 

percent of genomes surveyed within a genus with the capacity for MA metabolism, while the boxplots 

indicate the mean number and range of MA genes per genome within a genus. For each genus, the 

maximum number of MA genes in a genome is reported.  
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Figure 4. Fecal reactors stimulated with quaternary amines demonstrate MAGICdb contains 

microorganisms capable of MA transformations. A Schematic of fecal reactor study design. Fecal 

inoculum was provided by an individual in our cohort (see Figure 2B) and stimulated separately with each 

of the 4 quaternary amines at the dosing shown. Paired multi-omics collected at the beginning and end of 

the experiment indicated putatively active MA metabolizing microorganisms. B Area plots show MA 

metabolite concentrations in the reactors over time with the curve colored by quaternary amine substrate 

added (grey) and the microbially produced proatherogenic metabolite TMA (orange) or nonatherogenic 

metabolite(s) (green) noted. TMA, trimethylamine; DMG, dimethylglycine; Carn, Carnitine; Nor, 

norcarnitine; DAB, dimethylaminobutyrate; BB, butyrobetaine. C The bar chart shows the relative 

proportion of the metaproteome uniquely assigned to a MAGICdb genome. Microbial bars are colored 

based on MA gene expression with those potentially contributing to a proatherogenic (orange) or 

nonTMA producing (green) response denoted. Bars colored in pale gray are genomes that encode MA 

potential and recruit peptides, but the MA gene content was not expressed under the specific laboratory 

condition(s). The entire fecal microbial community metaproteome data set is included (Table S3).  
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Figure S4. Ordinations show community wide gene expression (A, non-metric multidimensional scaling 

of final timepoints only) and metabolome (B, principal component analysis of T2 and TF timepoints) 

profiles for each reactor, with sample points colored by quaternary amine addition. Reactor microbial 

communities are statistically different by treatment and timepoint (mrpp, p<0.001); while 42% and 17.2% 

of variance in the metabolome is explained by the first and second components.  
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Figure S5. Fold change in SCFA concentrations detected in final timepoint of MA gut reactors relative to 

no substrate controls, with boxplots representing the triplicate reactor concentration for each reactor 

substrate. SCFA production gene expression is given in Table S3. 
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Figure S6. Illustrations inventory the genome-resolved expressed metabolism of the key MA 

metabolizing microorganisms. Green arrows denote nonTMA producing reactions, orange arrows denote 

TMA producing reactions, and black arrows denote non MA reactions that are relevant to gut 

homeostasis. These non MA genes include glycoside hydrolases (GH) for processing carbohydrates, as 

well as genes for SCFA production (ack, buk, ach) and respiration (dsr, frd). More detailed gene 

descriptions are provided in Table S3. Background cloud shading represents the conditions under which 

these microorganisms were inferred to be active. Blue cloud highlights Eubacterium and Lactonifactor 

which are responsible for subverting TMA concentrations across the quaternary amine stimulated fecal 

reactors. Purple cloud highlights the TMA producing Dorea exclusive to the glycine betaine reactor. The 

red cloud highlights three genomes from Escherichia, Anaerovoraceae, and Oscillospiraceae responsible 

for TMA production exclusive to the choline reactor. The pink cloud highlights the two genomes from the 

genus Enterocloster with the capacity to produce TMA from choline and glycine betaine.  
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Figure 5. MAGICdb uncovered active microbial members and assigned their metabolic MA roles 

from in vivo human fecal analyses. A Schematic showing the use of MAGICdb to recruit expression 

data from 361 fecal metatranscriptomes (MetaT) collected from a human cohort of 96 individuals and 

from 447 fecal metaproteomes (MetaP) collected from a human cohort of 75 individuals. B For each MA 

gene type, the top 3 genera with the highest summed gene expression are reported, with some selected 

lower ranking but genera active in metaproteomes also reported. For each genus the within gene ranking 

(1 being most expressed) and the cohort occupancy (percentage of metagenomes where gene expression 

was detected) are quantified. C We next compared if these genes were also expressed in metaproteomic 

data sets derived from our reactors (Figure 4) and in vivo from a previously published study64,66. Shared 

gene expression data across studies is reported as presence (black) and absence (white). 
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Figure S7.  A Bar chart denotes the percentage of samples per study that members of MAGICdb are 

present or active. Studies include metagenomic data from a cohort of 218 individuals with atherosclerotic 

cardiovascular disease and 187 healthy controls, metatranscriptomic data from 361 adult men, and 

metaproteomic data from longitudinal sampling of 132 patients with irritable bowel syndrome. B 

Boxplots show the detection of MAGICdb genes in metatranscriptomics from 361 adult men from. Genes 

are colored by proatherogenic (orange) and nonTMA (green). C Boxplots show the detection of 

MAGICdb genes in metaproteomics from 132 patients with irritable bowel syndrome from 66. Genes are 

colored by proatherogenic (orange) and nonTMA (green). Across these studies, there was no significant 

difference in the number of expressed nonatherogenic and proatherogenic.   
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Figure 6. Taxonomy, prevalence, and expression of the MTTB superfamily in MAGICdb. A 

Sequence similarity network (SSN) of the MTTB superfamily within MAGICdb with each of the 1,031 

nodes (colored dots) representing one or more amino acid sequences (>99% identity) connected by an 

edge if the pairwise amino acid sequence similarity is >80%.  Nodes are colored to represent gene 

products that were previously biochemically characterized (yellow filled circles) or recruited to 

MAGICdb from publicly available microbial gene expression data in feces collected from two large 

human cohort studies, with metatranscriptome (orange filled circle), metaproteome (green filled circle), or 

both (purple filled circle) datasets. Nodes with a red outline were expressed in our fecal laboratory 

metaproteomic data. Previously biochemically characterized MTTB superfamily members are labeled A-

J. For these characterized enzymes the microorganisms and preferred substrate are reported in the shaded 

box with trimethylamine (TMA), Carnitine (Carn), Proline Betaine (PB), Butyrobetaine (BB), and 

Glycine Betaine (GB) noted. One yellow node, labeled “G”, contained a characterized enzyme from 

Eubacterium limosum ATCC 8486 that was >99% similar to a sequence recovered from a MAG 

reconstructed here that was expressed in our fecal reactors. Stacked bar charts show the content of each 

cluster within the SNN, with genus and expression shown in B and C, respectively.  
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Figure 7. MAGICdb gene content predicted cardiovascular disease in humans. A Boxplots display 

the relative abundance of MAGICdb genes in fecal metagenomes from ACVD patients (red) or non-

ACVD control subjects (grey), with significant differences by ACVD status denoted by double asterisk. 

Receiver operating curves show the area under curve (AUC) for predictions of ACVD status in humans 

by B richness and distribution of MAGICdb genes and C blood markers (LDL, HDL, and triglycerides). 

These microbiome and host derived AUC were not significantly different (McNemar’s, p-value >0.05).  
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Figure S8. ROC curves of logistic regression models built using A abundance of cutC, cntA/yeaW 
summed per gene type + gender (genes used and model analysis similar to reported in 32, B abundance of 

all genes from MAGICdb + gender, each gene abundance in the unique MAGICdb gene database is 

included, C Abundance summed per gene type + gender, D Abundance of all genes summed per 

atherogenic status (proatherogenic and nonatherogenic) + gender, and E Shannon’s diversity of 

MAGICdb genes (no gender). F Confusion matrix for logistic regression model built based on the 

Shannon’s diversity of each type of gene in MAGICdb. Values are averaged over results from 10-fold 

cross validation. 
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