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ABSTRACT:	18	
	19	
The	basal	ganglia	are	known	to	control	actions	and	modulate	movements.	Neuronal	activity	in	20	
the	two	efferent	pathways	of	the	dorsal	striatum,	a	major	input	to	the	basal	ganglia,	is	critical	21	
for	appropriate	behavioral	control.	Previous	evidence	has	led	to	divergent	conclusions	on	the	22	
respective	engagement	of	both	pathways	during	actions.	We	used	calcium	imaging	to	evaluate	23	
how	 neurons	 in	 the	 direct	 and	 indirect	 pathways	 in	 the	 dorsal	 striatum	 encode	 behaviors	24	
during	self-paced	spontaneous	explorations	in	an	open	field.	We	observed	that	the	two	striatal	25	
pathways	 exhibit	 distinct	 tuning	 properties	 during	 spontaneous	 behaviors.	 We	 applied	26	
supervised	 learning	 algorithms	 and	 found	 that	 direct	 pathway	 neurons	 encode	 behaviors	27	
through	 their	 activation,	 whereas	 indirect	 pathway	 neurons	 exhibit	 behavior-specific	28	
silencing.	These	properties	remain	stable	for	weeks.	Our	findings	highlight	a	complementary	29	
encoding	 of	 behaviors	 in	 the	 two	 striatal	 pathways	 that	 supports	 an	 updated	 model,	30	
reconciling	previous	conflicting	conclusions	on	motor	encoding	in	the	striatum.	31	
	 	32	
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INTRODUCTION:	1	
	2	
The	 basal	 ganglia	 are	 certainly	 well	 known	 to	 control	 both	 goal-directed	 behaviors	 and	3	
natural,	 self-paced	 behaviors.	 The	 proper	 initiation	 and	 execution	 of	 these	 behaviors	 relies	4	
heavily	on	appropriate	functioning	within	the	basal	ganglia,	as	basal	ganglia	dysfunction	is	at	5	
the	core	of	various	disorders,	 including	Parkinson’s	disease,	autism	spectrum	disorders,	and	6	
schizophrenia1.	The	striatum,	which	is	the	main	entry	nucleus	of	the	basal	ganglia,	consists	of	7	
two	types	of	striatal	projection	neurons	(SPNs)	that	differ	based	on	their	expression	of	either	8	
dopamine	D1	or	D2	receptors	and	their	respective	direct	or	indirect	projections	to	the	output	9	
nuclei	of	the	basal	ganglia	(dSPNs	or	iSPNs).	This	functional	organization	provides	differential	10	
control	of	basal	ganglia	outputs	by	dSPNs	or	 iSPNs,	 that	 leads	to	net	activating	or	 inhibiting	11	
effects	of	 thalamocortical	circuits,	 respectively2,3.	This	dichotomy	between	prokinetic	dSPNs	12	
and	 antikinetic	 iSPNs	 has	 been	 documented	 using	 loss-of-function	 or	 gain-of-function	13	
experiments4-10,	bolstering	the	traditional	go/no-go	description	of	striatal	functioning2,3.	This	14	
view	has	been	challenged	by	correlative	descriptions	of	striatal	activity	based	on	recordings	of	15	
both	types	of	SPNs,	which	demonstrated	a	coactivation	of	the	dSPN	and	iSPN	pathways	during	16	
locomotion	and	more	generally	during	actions11-16.	These	results	indicate	that	concerted	and	17	
cooperative	activity	between	both	striatal	pathways	is	needed	for	proper	action	initiation	and	18	
execution.	19	
As	a	result,	two	antagonistic	models	of	striatal	functioning	have	been	developed	that	explain	20	
how	 neuronal	 activity	 is	 organized	 in	 the	 striatum.	 The	 selection-suppression	 model17	21	
postulates	that	proper	action	execution	relies	on	the	concurrent	activation	of	a	small	discrete	22	
subpopulation	 of	 dSPNs	 that	 encode	 the	 ongoing	 action	 and	 the	widespread	 activation	 of	 a	23	
large	 number	 of	 iSPNs	 that	 inhibit	 all	 other	 actions,	 with	 the	 iSPNs	 associated	 with	 the	24	
ongoing	action	remaining	silent.	This	model	predicts	that	dSPNs	are	more	selective	for	actions	25	
than	iSPNs.	However,	recent	investigations	highlighted	that	both	pathways	encode	behaviors	26	
with	 similar	properties	and	dynamics13-16.	Consequently,	 a	 cooperative	 selection	model	was	27	
proposed13	 in	which	dSPNs	and	iSPNs	coordinate	their	activities	to	select	 the	proper	action,	28	
with	 subsets	 of	 dSPNs	 and	 iSPNs	 displaying	 the	 same	 targeted	 activation	 patterns	 toward	29	
actions.	 Although	 this	 model	 considers	 the	 coactivation	 of	 small	 ensembles	 of	 dSPNs	 and	30	
iSPNs,	 this	model	 likely	 fails	 to	 take	 into	 account	 the	 functional	 opposition	 between	dSPNs	31	
and	 iSPNs4-10.	 In	summary,	 these	models	predict	different	patterns	of	neuronal	activation	 in	32	
response	 to	 various	 behaviors,	 particularly	 the	 activity	 of	 iSPNs.	 Therefore,	 additional	33	
investigations	 are	 needed	 to	 clarify	 the	 function	 of	 the	 two	 SPN	 pathways	 as	well	 as	 their	34	
relative	organization	into	functional	subpopulations	for	behavior	encoding.	35	
Here,	we	studied	the	behavior-encoding	properties	of	dSPNs	and	iSPNs	in	the	dorsal	striatum	36	
using	 one-photon	 microendoscopy	 in	 mice	 that	 freely	 explored	 an	 open	 field	 and	 thus	37	
expressed	 a	 large	 behavioral	 repertoire	 at	 their	 own	pace.	We	 observed	 that	 the	 behavior-38	
encoding	 properties	 of	 dSPNs	 and	 iSPNs	 differ	 in	 a	way	 that	 challenges	 the	 above	models.	39	
Furthermore,	we	used	support	vector	machine	classifiers	to	precisely	analyze	the	neural	code	40	
of	 dSPNs	 and	 iSPNs	 and	 their	 activation	 patterns	 during	 behaviors.	We	 found	 that,	 despite	41	
their	 differences	 in	 encoding	 properties,	 both	 populations	 contain	 the	 same	 amount	 of	42	
information	to	reliably	infer	behaviors.	Moreover,	we	classified	neurons	as	activated	or	silent	43	
during	 behaviors	 to	 evaluate	 the	 predictions	 of	 the	 selection-suppression	 and	 cooperative	44	
selection	 models,	 and	 we	 found	 that	 neural	 codes	 are	 organized	 differently	 in	 dSPNs	 and	45	
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iSPNs.	 Similar	 to	 previous	 observations	 in	 different	 brain	 systems,	 the	 most	 important	1	
behavior-encoding	 feature	 of	 dSPNs	 is	 their	 specific	 activation	 during	 some	 behaviors.	2	
Remarkably,	 the	 most	 important	 behavior-encoding	 feature	 of	 iSPNs	 is	 their	 consistent	3	
silencing	 during	 specific	 behaviors.	 Our	 findings	 are	 reinforced	 by	 observations	 that	 these	4	
properties	remain	stable	 for	weeks.	These	results	provide	the	first	correlative	evidence	that	5	
dSPNs	and	iSPNs	have	distinct	encoding	properties,	supporting	an	updated	model	for	motor	6	
encoding	among	SPNs	in	the	dorsal	striatum	that	relies	on	the	congruent	activation	of	dSPNs,	7	
which	 encode	multiple	 accessible	 behaviors	 in	 a	 given	 context	 to	 promote	 these	 behaviors,	8	
and	iSPNs,	which	encode	for	and	inhibit	competing	behaviors.	As	a	result,	the	coactivation	of	9	
specific	subsets	of	dSPNs	and	 iSPNs	would	result	 in	 the	selection	and	execution	of	only	one	10	
motor	 program.	 This	 updated	 model	 bridges	 the	 gap	 between	 various	 interpretations	 of	11	
experimental	 observations	 that	 promoted	 antagonistic	 models	 on	 striatal	 functional	12	
organization.	13	
	14	
	15	
RESULTS:	16	
	17	
Behavior	encoding	properties	differ	between	dSPNs	and	iSPNs	18	
To	 investigate	 the	 behavior-encoding	 properties	 in	 both	 subpopulations	 in	 the	 dorsal	19	
striatum,	we	 tracked	and	 reconstructed	 the	behavior	of	mice	 freely	 exploring	 an	open	 field	20	
and	 simultaneously	 recorded	 the	 neuronal	 activity	 of	 either	 dSPNs	 or	 iSPNs	 using	21	
microendoscopic	one-photon	imaging	of	GCaMP6s	(Fig.	1a).	Mouse	self-paced	behaviors	were	22	
identified	and	 labeled	using	a	combination	of	deep	 learning	tools	and	clustering	methods	to	23	
generate	 a	 predictive	 model	 (Fig.	 1b,	 Extended	 Data	 Figs.	 1	 and	 2a-c).	 The	 behavior	24	
distributions	 of	 the	 experimental	 groups	 were	 similar.	 The	 calcium	 activity	 was	 extracted	25	
from	 simultaneously	 recorded	microendoscopic	 images	 using	 the	 CaImAn	 pipeline18,19,	 and	26	
the	reconstructed	temporal	traces	of	calcium	activity	were	deconvolved	using	MLspike20	(Fig.	27	
1c-f,	Extended	Data	Figs.	1	and	2d-k).	On	average,	179	±	18	dSPNs	and	216	±	16	iSPNs	were	28	
identified	in	each	recording	session	(Fig.	1f).	First,	we	observed	that	the	average	population	29	
activity	of	the	dSPNs	was	higher	than	that	of	the	iSPNs	(Fig.	1f).	Then,	the	population	activity	30	
was	 decomposed	 according	 to	 the	 identified	 behaviors,	 which	 revealed	 that	 the	 average	31	
population	activity	was	consistently	higher	for	dSPNs	than	for	iSPNs	during	many	behaviors,	32	
including	straight	locomotion,	locomotion	with	right	and	left	turns,	remaining	still	with	right	33	
and	 left	 turns,	 rearing,	 grooming,	 and	 locomotion	 sniffing,	 with	 the	 notable	 exception	 of	34	
immobility,	 during	which	 the	 average	population	 activity	was	 significantly	 lower	 for	 dSPNs	35	
than	for	iSPNs	(Fig.	1g).	This	result	indicates	a	substantial	difference	in	the	behavioral	tuning	36	
properties	of	dSPN	and	iSPN	ensembles.	37	
To	 better	 characterize	 this	 potential	 difference	 among	 the	 SPN	 subpopulations,	 we	 first	38	
evaluated	whether	SPN	activation	was	consistent	during	30	min	of	open-field	exploration.	For	39	
each	 behavior,	 we	 computed	 the	 neuronal	 activation,	 which	was	 calculated	 as	 the	 average	40	
frequency,	 during	 the	 first	 and	 the	 second	 halves	 of	 each	 recording,	 and	we	 evaluated	 the	41	
similarity	between	these	two	neuronal	activation	maps	(Fig.	2a).	We	observed	that	neuronal	42	
activation	similarity	was	higher	 for	dSPNs	 than	 for	 iSPNs	 for	all	 identified	behaviors	except	43	
grooming,	still	sniffing,	and	immobility	(Fig.	2b,	Extended	Data	Fig.	3a,b).	This	result	suggests	44	
that,	 for	 each	 behavior,	 the	 same	 dSPNs	 are	 more	 consistently	 activated,	 whereas	 iSPN	45	
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activation	is	inconsistent.	Conversely,	this	observation	between	the	first	and	second	halves	of	1	
the	recordings	could	result	from	the	fact	that	both	subpopulations	are	differentially	affected	2	
by	internal	drives	that	accumulate	or	dissipate	during	open-field	exploration,	such	as	stress21,	3	
novelty22,23,	 or	 tiredness24.	 To	 account	 for	 this	 temporal	 factor,	 we	 computed	 the	 same	4	
similarity	metric	 by	 using	 all	 possible	 partitions	 of	 time	 into	 two	 15-min	 sets	 (e.g.,	 30	min	5	
segmented	 into	 5	min	 long	 slices).	 Regardless	 of	 the	 time	 partition,	we	 observed	 the	 same	6	
difference	in	neuronal	activation	similarity	between	dSPNs	and	iSPNs	(Extended	Data	Fig.	3c).	7	
Furthermore,	 the	neuronal	 activation	 similarity	was	 computed	by	 comparing	 odd	 and	 even	8	
frames	 and	 by	 comparing	 one	 episode	 out	 of	 two	 to	 complementary	 episodes,	 yielding	 the	9	
same	observations	as	described	above	(Extended	Data	Fig.	3d,e).	Moreover,	as	an	additional	10	
control	 to	 verify	 the	 reliability	 of	 the	 similarity	 measure,	 we	 disturbed	 SPN	 signaling	 by	11	
artificially	 increasing	 dopamine	 release	 through	 acute	 injection	 of	 amphetamine.	 The	12	
neuronal	 activation	 similarity	 of	 both	 dSPNs	 and	 iSPNs	 was	 strongly	 alleviated	 after	13	
amphetamine	 administration	 (Extended	 Data	 Fig.	 4a,b).	 All	 the	 above	 results	 demonstrate	14	
that	the	difference	in	neuronal	activation	similarity	is	a	substantiated	time-invariant	property	15	
of	 behavior	 encoding	 in	 dSPNs	 and	 iSPNs;	 for	 each	 behavior,	 the	 same	 dSPNs	 are	 more	16	
consistently	 activated,	 whereas	 iSPN	 activation	 displays	 either	 a	 milder	 specificity	 toward	17	
behaviors	or	is	more	variable.	18	
Moreover,	 a	 comparison	 of	 pairs	 of	 behaviors	 revealed	 that	 in	 the	 dorsal	 striatum,	 similar	19	
behaviors	 are	 encoded	by	highly	 similar	 neuronal	 ensembles,	whereas	dissimilar	 behaviors	20	
are	 encoded	 by	mildly	 overlapping	 neuron	 groups.	 Furthermore,	 this	 encoding	 property	 is	21	
equivalent	 for	both	SPN	subtypes14.	For	each	pair	of	behaviors,	we	compared	 the	 similarity	22	
between	 the	 average	 neuronal	 activity	 (neuronal	 activation	 similarity)	 to	 the	 similarity	23	
between	behaviors	 (behavioral	 similarity).	The	 latter	quantifies	 the	 similarity	 in	movement	24	
trajectories	and	body	shape	between	each	pair	of	behaviors.	We	observed	a	strong	positive	25	
correlation	 between	 pairwise	 neuronal	 activation	 similarity	 and	 pairwise	 behavioral	26	
similarity	for	both	dSPNs	and	iSPNs	(Fig.	2a,c-e).	However,	when	the	correlation	coefficients	27	
of	pairwise	neuronal	and	behavioral	similarities	were	compared,	we	observed	a	significantly	28	
higher	correlation	for	dSPNs	than	for	iSPNs	(Fig.	2f).	This	result	indicates	that	the	behavioral	29	
space	 representation	 differs	 between	 the	 two	 populations.	 This	 result	 contradicts	 that	 of	 a	30	
previous	report14.	To	understand	this	result,	we	first	verified	that	this	difference	was	not	due	31	
to	 the	 use	 of	 a	 different	 neuronal	 similarity	measure	 (Extended	Data	 Fig.	 5a).	 Another	 key	32	
difference	 is	 the	duration	over	which	animals	explored	the	open	 field:	 the	animals	explored	33	
the	 field	 for	 10-15	min	 in	Klaus,	Martins	 et	 al.,	 201714,	whereas	 our	 experiments	 lasted	 30	34	
min.	 Thus,	 we	 calculated	 the	 correlation	 coefficients	 between	 the	 neuronal	 and	 behavioral	35	
similarities	 for	 different	 recording	 lengths.	No	 difference	was	 detected	 between	dSPNs	 and	36	
iSPNs	for	durations	of	up	to	10	min	(Extended	Data	Fig.	5b-d).	Therefore,	extended	recordings	37	
may	 be	 required	 to	 collect	 more	 samples	 of	 neuronal	 activity	 during	 a	 larger	 variety	 of	38	
internal	or	external	contexts	in	order	to	properly	uncover	differences	in	neuronal	activation	39	
variability	 for	 episodes	 of	 different	 behaviors.	 Overall,	 these	 results	 demonstrate	 that	 the	40	
coupling	 between	 behavior	 similarity	 and	 neuronal	 similarity	 is	 tighter	 among	 dSPNs	 than	41	
among	iSPNs.	42	
The	 above	observations	demonstrate	 fundamental	 differences	between	dSPNs	 and	 iSPNs	 in	43	
terms	of	their	dynamical	behavior-encoding	properties.	Moreover,	this	new	set	of	evidence	is	44	
inconsistent	with	existing	models	of	striatal	organization.	 In	particular,	 these	models	do	not	45	
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account	for	the	existence	of	different	neuronal	activation	patterns	during	different	episodes	of	1	
the	 same	 behavior.	 Thus,	 our	 results	 call	 for	 a	 deeper	 analysis	 of	 the	 neural	 codes	 and	2	
properties	of	dSPNs	and	iSPNs	that	may	convey	different	behavior-relevant	information.	3	
	4	
Behaviors	can	be	reliably	decoded	from	either	dSPNs	or	iSPNs	5	
The	first	step	in	our	analysis	of	the	neural	code	in	the	dorsal	striatum	was	to	assess	whether	6	
animal	 behaviors	 can	 be	 reconstructed	 based	 on	 instantaneous	 neuronal	 activity	 recorded	7	
from	either	dSPNs	or	iSPNs.	We	thus	trained	several	support	vector	machine	linear	classifiers	8	
for	 each	 pair	 of	 behaviors	 and	 used	 the	majority	 rule	 to	 combine	 the	 outputs	 of	 individual	9	
classifiers	 to	 predict	 animal	 behavior	 (one	 vs.	 one	multiclass	 support	 vector	machine)	 (Fig.	10	
3a).	 The	 behavior	 reconstruction	 error	 was	 calculated	 for	 each	 prediction	 using	 the	11	
behavioral	 distance	 between	 the	 predicted	 behavior	 and	 the	 actual	 behavior.	 The	12	
instantaneous	 prediction	 of	 behaviors	 using	 either	 dSPN	 or	 iSPN	 activity	 performs	13	
significantly	better	than	chance,	which	was	estimated	by	decoding	behaviors	using	classifiers	14	
trained	on	time-lagged	data.	Moreover,	dSPNs	and	iSPNs	have	similar	decoding	accuracies	and	15	
average	reconstruction	errors	(Fig.	3b,c).	The	prediction	accuracy	associated	with	individual	16	
classifiers	 (separation	 between	 pairs	 of	 behaviors)	 is	 similar	 for	 dSPNs	 (81.8	 ±	 1.1%)	 and	17	
iSPNs	 (82.5	 ±	 0.8%)	 (p	 =	 0.295).	 Strikingly,	 this	 result	 appears	 to	 contradict	 previous	18	
observations,	which	 indicate	differences	 in	behavior	 encoding	between	dSPNs	and	 iSPNs.	A	19	
lower	 prediction	 accuracy	 would	 be	 expected	 when	 using	 iSPNs	 (because	 of	 their	 lower	20	
activation	 similarity)	 and	 a	 larger	 prediction	 error	 would	 be	 expected	 when	 using	 iSPNs	21	
(because	 of	 the	 lower	 coupling	 between	 pairwise	 neuronal	 and	 behavioral	 similarities).	 To	22	
confirm	the	relevance	and	robustness	of	our	classification	strategy,	we	evaluated	whether	the	23	
decoding	 accuracy	 is	 affected	 when	 SPN	 activity	 is	 strongly	 disturbed	 after	 amphetamine	24	
administration.	 We	 observed	 that	 the	 decoding	 performance	 was	 considerably	 reduced	25	
following	amphetamine	administration	(Extended	Data	Fig.	4a,	c-d).	A	closer	inspection	of	the	26	
performance	 of	 individual	 classifiers	 revealed	 that	 the	 decoding	 accuracy	was	 higher	when	27	
distinguishing	 dissimilar	 behaviors,	 and	 lower	 when	 distinguishing	 similar	 behaviors	 (Fig.	28	
3d).	This	property	 is	 the	same	for	dSPNs	and	 iSPNs.	For	example,	 for	dSPNs,	 the	separation	29	
between	 considerably	 different	 behaviors,	 such	 as	 locomotion	 turn	 right	 and	 immobility	30	
(behavior	distance:	3.93	±	0.06),	is	more	accurate	(accuracy:	90.2	±	1.1%)	than	the	separation	31	
between	 more	 similar	 behaviors,	 such	 as	 locomotion	 turn	 right	 and	 locomotion	 turn	 left	32	
(behavior	 distance:	 1.79	±	 0.06;	 accuracy:	 76.1	 ±	 1.3%).	 These	 results	 indicate	 that	 despite	33	
previous	 evidence	on	differences	 in	dynamical	 behavior	 encoding,	 both	 striatal	 populations	34	
contain	and	encode	the	same	amount	of	information	in	response	to	behaviors.	35	
	36	
Neural	code	in	dSPNs	is	biased	toward	activation	37	
To	better	characterize	the	neural	code	in	the	dorsal	striatum,	we	attempted	to	identify	which	38	
features	in	the	response	properties	of	individual	cells	contribute	most	to	behavior	encoding.	39	
We	first	 identified	which	neurons	were	significantly	activated	during	specific	behaviors	and	40	
defined	these	neurons	as	behavior-active	when	the	mutual	information	between	the	behavior	41	
time	 series	 and	 the	 recorded	 neuronal	 activity	 (behavior	 information)	 was	 statistically	42	
significant25,26	 (Fig.	4a,b,	Extended	Data	Fig.	6a,b).	Based	on	this	criterion,	 the	proportion	of	43	
behavior-active	 cells	 is	higher	among	dSPNs	 than	among	 iSPNs	 (Fig.	4b,	Extended	Data	Fig.	44	
6c).	 According	 to	 this	 classification	 of	 whether	 individual	 neurons	 are	 behavior-active,	 we	45	
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evaluated	whether	 behaviors	 could	 be	 decoded	 based	 on	 the	 activity	 of	 behavior-active	 or	1	
non-behavior-active	 neurons.	 For	 dSPN	 recordings,	 the	 prediction	 was	 significantly	 more	2	
efficient	when	using	behavior-active	cells	than	when	using	non-behavior-active	cells,	whereas,	3	
for	iSPN	recordings,	the	prediction	performance	was	similar	when	either	behavior-active	cells	4	
or	 non-behavior-active	 cells	 were	 used	 (Fig.	 4c,d,	 Extended	 Data	 Fig.	 6d,e).	 Moreover,	 the	5	
decoding	 performance	 was	 similar	 when	 non-behavior-active	 dSPNs	 or	 iSPNs	 were	 used,	6	
whereas	 the	 decoding	 performance	 was	 significantly	 higher	 when	 behavior-active	 dSPNs	7	
were	 used	 than	 when	 behavior-active	 iSPNs	 were	 used	 (Fig.	 4c,d).	 This	 observation	 was	8	
maintained	when	the	level	of	significance	of	behavior	 information	for	classifying	neurons	as	9	
behavior-active	 was	 changed	 (Extended	 Data	 Fig.	 6f).	 Taken	 together,	 these	 findings	10	
demonstrate	 that	 the	 neural	 code	 for	 behaviors	 is	 biased	 toward	 behavior-active	 dSPNs,	11	
whereas	this	feature	is	more	evenly	distributed	among	iSPNs.	12	
	13	
Neural	code	in	iSPNs	is	biased	toward	silencing	14	
According	 to	 the	 selection-suppression	 model17,	 indirect	 pathway	 SPNs	 are	 activated	 to	15	
suppress	all	motor	programs	except	the	one	being	executed.	As	a	result,	iSPNs	responsible	for	16	
suppressing	a	particular	behavior	are	never	active	during	this	behavior.	Thus,	following	this	17	
postulate,	 we	 investigated	 the	 relative	 contribution	 of	 neurons	 that	 remain	 silent	 during	18	
behaviors	 to	 the	 neural	 code.	 We	 thus	 identified	 SPNs	 that	 are	 consistently	 silent	 during	19	
episodes	 of	 each	 behavior	 by	 computing,	 for	 each	 neuron,	 how	 often	 this	 neuron	 is	 active	20	
during	all	episodes	of	this	behavior	(Fig.	5a).	For	each	behavior,	if	this	activation	occurrence	is	21	
sufficiently	 low	 (threshold	 of	 2.5%	of	 episodes;	 Fig.	 5a),	 the	neuron	 is	 labeled	 as	 behavior-22	
silent	 for	 this	 behavior.	 Strikingly,	 the	 proportion	 of	 behavior-silent	 neurons	was	 higher	 in	23	
iSPNs	than	in	dSPNs	for	each	behavior	(Fig.	5b),	with	the	notable	exception	of	immobility,	for	24	
which	the	proportion	was	similar	in	dSPNs	and	iSPNs.	Then,	we	separated	SPNs	classified	as	25	
behavior-silent	or	non-behavior-silent	and	evaluated	the	information	content	of	these	groups	26	
of	cells	to	accurately	separate	the	associated	behavior	from	other	behaviors	(one	behavior	vs.	27	
rest	 decoding	 accuracy)	 (Fig.	 5c).	 For	 dSPNs,	 the	 separation	 accuracy	 of	 all	 behaviors	 was	28	
similar	 when	 behavior-silent	 cells	 or	 non-behavior-silent	 cells	 were	 used,	 except	 fast	29	
locomotion	and	immobility.	On	the	other	hand,	we	observed	that	the	separation	accuracy	was	30	
consistently	 higher	 for	 behavior-silent	 iSPNs	 than	 non-behavior-silent	 iSPNs	 during	31	
ambulatory	 behaviors	 (e.g.,	 behaviors	 involving	 locomotion	 or	 right	 and	 left	 turns	without	32	
locomotion),	 indicating	 that	 silencing	 is	 an	 important	 feature	 of	 the	 neural	 code	 in	 iSPNs	33	
during	these	behaviors.	Conversely,	this	difference	in	separation	accuracy	between	behavior-34	
silent	 and	 non-behavior-silent	 iSPNs	 was	 not	 observed	 for	 static	 behaviors	 (e.g.,	 head	 up,	35	
rearing,	 grooming,	 still	 sniffing,	 and	 immobility).	 This	 distinction	 between	 ambulatory	 and	36	
static	 behaviors	 could	 be	 because	 the	 detected	 static	 behaviors	 may	 contain	 additional	37	
substates	 that	 were	 not	 separated	 in	 our	 classification.	 Furthermore,	 this	 distinction	 may	38	
represent	different	modes	of	encoding	in	iSPNs	during	ambulatory	and	static	behaviors,	such	39	
as	 spatial	 mapping	 in	 the	 dorsal	 hippocampus,	 which	 is	 characterized	 by	 place	 cells	 that	40	
display	their	specific	place	fields	mostly	during	locomotion27,28.	Additionally,	we	observed	the	41	
same	results	 for	both	dSPNs	and	 iSPNs	when	we	used	an	alternate	cell	 classification,	which	42	
was	based	on	a	threshold	on	the	average	activity	during	behaviors	(Extended	Data	Fig.	7).	In	43	
conclusion,	 these	 observations	 support	 a	 key	 distinctive	 feature	 of	 iSPNs	 for	 behavior	44	

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.20.496781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496781
http://creativecommons.org/licenses/by-nd/4.0/


encoding,	namely,	 that	 iSPNs	are	consistently	silent	during	behaviors,	a	property	that	 is	not	1	
observed	for	dSPNs.	2	
	3	
Long-term	stability	of	neural	code	over	weeks	4	
To	reinforce	our	previous	findings	and	assess	their	reliability,	we	investigated	their	long-term	5	
stability.	Thus,	for	each	animal,	we	performed	a	longitudinal	registration	of	neurons29	across	6	
pairs	of	recording	sessions	over	one	month	(Extended	Data	Figs.	1	and	8a).	The	registration	7	
performance	was	similar	for	dSPN	and	iSPN	recordings	(Extended	Data	Fig.	8b).	On	average,	8	
104	 ±	 5	 cells	 were	 recovered	 between	 any	 pair	 of	 sessions	 (Extended	 Data	 Fig.	 8c),	9	
corresponding	to	an	overlap	of	33.9	±	0.8%	in	the	subset	of	cells	identified	in	both	sessions,	10	
ranging	from	36.2	±	1.5%	after	approximately	5-7	days	to	32.5	±	1.4%	after	approximately	30	11	
days.	 As	 described	 above,	 we	 first	 quantified	 the	 neuronal	 activation	 similarity	 for	 each	12	
behavior	between	pairs	of	sessions.	For	all	behaviors,	the	neuronal	activation	similarity	was	13	
higher	for	dSPNs	and	iSPNs	than	for	their	respective	shuffles,	as	evaluated	by	either	random	14	
permutations	 of	 registered	 cell	 pairs	 or	 by	 replacing	 one	 cell	 or	 each	 pair	 with	 its	 closest	15	
neighbor	(Extended	Data	Fig.	8d,e).	These	controls	provide	an	additional	post-hoc	validation	16	
of	 the	 longitudinal	 registration	 procedure.	 Then,	 comparisons	 between	 dSPNs	 and	 iSPNs	17	
revealed	 that,	 with	 the	 exception	 of	 immobility,	 the	 neuronal	 activation	 similarity	 was	18	
consistently	higher	over	time	for	dSPNs	than	for	iSPNs	(Fig.	6a,	Extended	Data	Fig.	8d,e).	This	19	
result	 appears	 to	 indicate	 that	 neuronal	 activation	patterns	 are	preserved	better	 for	dSPNs	20	
than	 for	 iSPNs,	 which	may	 reflect	 the	 previously	 established	 bias	 toward	 activation	 in	 the	21	
neuronal	code	of	behaviors	in	dSPNs.	22	
Following	 this	 idea,	 we	 evaluated	 the	 stability	 of	 the	 behavior-coding	 properties	 across	23	
sessions	by	comparing	the	classification	of	cells	 into	 the	behavior-excited	or	behavior-silent	24	
categories	 using	 the	 Jaccard	 index	 (intersection	 over	 union)	 for	 binary	 attributes.	 We	25	
observed	 that	within	 registered	 cells	 between	 pairs	 of	 sessions,	 the	 proportion	 of	 neurons	26	
that	remained	classified	as	behavior-active	for	the	same	behaviors	was	higher	among	dSPNs	27	
than	among	iSPNs	(Fig.	6b).	Conversely,	during	ambulatory	behaviors,	behavior-silent	 iSPNs	28	
overlapped	between	sessions	more	often	than	behavior-silent	dSPNs	(Fig.	6b,	Extended	Data	29	
Fig.	 9c).	 This	 result	 indicates	 that	 the	 classification	 of	 dSPNs	 as	 behavior-active	 and	 the	30	
classification	of	iSPNs	as	behavior-silent	are	more	consistent	over	time	than	their	respective	31	
counterparts	in	the	other	striatal	population.	32	
To	deepen	 this	 observation	on	 the	 categorization	 of	 single	 neurons	 and	 extend	 it	 to	 neural	33	
ensembles,	we	quantified	whether	support	vector	machines	trained	on	neuronal	activity	and	34	
behavior	 time	 series	 on	 a	 given	day	 can	 efficiently	predict	 the	behavior	using	 the	neuronal	35	
activity	of	 the	same	neurons	on	a	different	day.	For	both	dSPNs	and	 iSPNs,	 the	 longitudinal	36	
prediction	of	behaviors	using	support	vector	machines	is	consistently	more	accurate	than	the	37	
predictions	obtained	with	classifiers	trained	on	time-lagged	data	(Fig.	6c,	Extended	Data	Fig.	38	
9a,b).	Interestingly,	the	longitudinal	prediction	of	behaviors	performs	better	with	dSPNs	than	39	
with	iSPNs,	which	might	reflect	the	higher	long-term	stability	of	neuronal	activation	similarity	40	
for	dSPNs.	41	
Finally,	we	analyzed	whether	the	activity	of	dSPNs	and	iSPNs	categorized	as	behavior-active	42	
or	behavior-silent	on	a	given	day	can	be	used	 to	efficiently	predict	behaviors	on	a	different	43	
day.	We	observed	that	for	dSPNs,	behavior	predictions	were	significantly	more	accurate	when	44	
only	behavior-active	cells	were	used	than	when	non-behavior-active	cells	were	used	(Fig.	6d).	45	
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In	contrast,	the	accuracy	is	similar	when	behaviors	are	predicted	with	either	behavior-active	1	
iSPNs	or	non-behavior-active	iSPNs	(Fig.	6d).	This	finding	indicates	that	the	bias	of	the	neural	2	
code	toward	behavior-active	dSPNs	and	the	information	content	of	these	cells	in	response	to	3	
behaviors	 remain	 conserved	 for	 weeks.	 For	 behavior-silent	 neurons	 (or	 behavior-inactive	4	
neurons,	using	the	alternate	definition),	we	noted	that	the	prediction	of	ambulatory	behaviors	5	
is	significantly	more	accurate	with	behavior-silent	 iSPNs	than	with	non-behavior-silent	cells	6	
(Fig.	6e,	Extended	Data	Fig.	9d),	whereas	no	difference	was	observed	for	static	behaviors.	On	7	
the	other	hand,	there	is	no	difference	in	the	prediction	accuracy	when	either	behavior-silent	8	
or	non-behavior-silent	dSPNs	are	used	(Fig.	6e,	Extended	Data	Fig.	9d).	This	finding	highlights	9	
the	 long-term	 preservation	 of	 the	 bias	 toward	 behavior-silent	 iSPNs	 in	 the	 striatal	 neural	10	
code.	 Overall,	 these	 results	 demonstrate	 the	 long-term	 stability	 of	 the	 neuronal	 encoding	11	
properties	 established	 in	 individual	 recording	 sessions,	 reinforcing	 the	 reliability	 of	 our	12	
findings.	13	
	14	
Thus,	 our	 findings	 demonstrate	 that	 neuronal	 representations	 of	 spontaneous	 self-paced	15	
behaviors	in	striatal	ensembles	are	biased	toward	activation	in	dSPNs	and	silencing	in	iSPNs	16	
and	 that	 these	representations	are	preserved	 for	weeks.	These	results	provide	new	original	17	
insights	into	both	the	neuronal	organization	of	striatal	ensembles	for	behavior	encoding	and	18	
efficient	 motor	 program	 selection.	 In	 addition,	 our	 observations	 allow	 us	 to	 propose	 an	19	
updated	model	 for	behavior	encoding	in	the	two	striatal	pathways	that	solves	discrepancies	20	
raised	by	previously	formulated	hypotheses.	21	
	22	
	23	
DISCUSSION:	24	
	25	
Neurons	 in	 the	 dorsal	 striatum	 exhibit	 diverse	 and	 heterogeneous	 responses	 to	 different	26	
external	 variables11,13,14,30.	 These	 responses	 cannot	 be	 easily	 interpreted	 and	 highlight	 the	27	
challenge	of	identifying	the	distinct	encoding	properties	of	the	two	parallel	efferent	pathways	28	
in	 the	dorsal	 striatum.	 In	 this	 study,	we	evaluated	 the	neuronal	encoding	properties	of	SPN	29	
ensembles	 during	 self-paced	 natural	 behaviors	 in	 an	 open	 field.	 In	 this	 experimental	30	
paradigm,	 animals	 can	 express	 unconstrained	 naturalistic	 behaviors	 forming	 a	 large	31	
behavioral	 repertoire.	 In	 our	 experiments,	 we	 observed	 previously	 unreported	 differences	32	
between	direct	 and	 indirect	 pathway	 SPNs.	 These	 differences	most	 likely	 reflect	 the	 higher	33	
variability	of	 iSPNs	 in	neuron	ensembles	 that	 are	activated	during	different	 episodes	of	 the	34	
same	behavior,	which	could	be	observed	only	during	long	sessions	of	open-field	exploration.	35	
However,	despite	 these	heterogeneous	 response	properties,	 the	behaviors	 could	be	 reliably	36	
decoded	from	the	activity	of	either	dSPNs	or	iSPNs,	demonstrating	that	both	pathways	contain	37	
the	same	level	of	 information	with	respect	to	the	ongoing	behaviors.	Therefore,	 it	questions	38	
the	respective	organization	of	the	neural	code	in	both	pathways.	39	
	40	
Many	formulations	have	been	proposed	to	explain	the	organization	of	neuronal	activity	in	the	41	
two	 striatal	 pathways.	 Among	 them,	 a	 “complete	 selection-suppression”	 model	 proposes	42	
prokinetic	 and	 antikinetic	 functions	 for	 the	 direct	 and	 indirect	 pathways,	 respectively4-6,17	43	
(Extended	Data	Fig.	10a).	This	model	proposes	that	proper	motor	program	execution	relies	on	44	
the	congruent	activation	of	a	 small	discrete	 subpopulation	of	dSPNs	 that	encode	 this	motor	45	
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program	and	a	large	number	of	iSPN	ensembles	associated	with	all	other	motor	programs	that	1	
inhibit	all	other	behaviors.	 Such	a	model	predicts	 that	dSPNs	are	more	selective	 for	actions	2	
than	iSPNs,	which	is	inconsistent	with	observations	in	previous	reports11,14-16	and	our	results.	3	
However,	this	model	is	compatible	with	our	observation	that	the	neural	code	among	dSPNs	is	4	
biased	 toward	 activation,	 whereas	 the	 neural	 code	 is	 biased	 toward	 inhibition	 in	 iSPNs	5	
because	during	a	given	behavior,	dSPNs	associated	with	this	behavior	are	activated,	whereas	6	
iSPNs	associated	with	the	same	behavior	remain	silent	(Extended	Data	Fig.	10d).	On	the	other	7	
hand,	the	“cooperative	selection”	model13	(Extended	Data	Fig.	10b)	proposes	the	cooperative	8	
activation	of	discrete	dSPNs	and	iSPNs	ensembles	that	are	similarly	tuned	toward	behaviors	9	
to	 select	 proper	 motor	 programs.	 Although	 this	 model	 accurately	 incorporates	 the	10	
coactivations	of	similar	size	dSPN	and	iSPN	ensembles	during	actions,	it	does	not	account	for	11	
the	functional	dissimilarities	of	dSPNs	and	iSPNs4-6	or	our	observations	of	dissimilar	encoding	12	
dynamics	between	the	two	striatal	pathways,	in	particular	the	bias	toward	silencing	in	iSPNs	13	
(Extended	 Data	 Fig.	 10d).	 As	 a	 result,	 the	 current	 models	 of	 striatal	 organization	 must	 be	14	
reevaluated.	This	 reevaluation	needs	 to	 take	 into	 account	 our	novel	 observations.	Here,	we	15	
report	 for	 the	 first	 time	divergent	behavior-encoding	properties	between	dSPNs	and	 iSPNs,	16	
which	may	reflect	their	 functional	dissimilarity.	 In	particular,	our	observation	that	the	same	17	
dSPNs	are	more	 consistently	 activated	 for	 each	behavior,	whereas	 iSPNs	activation	 is	more	18	
inconsistent,	 reveals	 that	 behavior	 specificity	 is	 milder	 in	 iSPNs	 than	 in	 dSPNs.	 This	19	
consideration	 is	 compatible	 with	 the	 general	 framework	 of	 the	 “complete	 selection-20	
suppression”	model.	Additionally,	one	aspect	of	our	recordings	 that	should	be	considered	 is	21	
the	high	variability	 in	neuronal	activation	 in	both	dSPNs	and	iSPNs	for	different	episodes	of	22	
the	 same	 behavior.	 This	 feature	 has	 not	 been	 integrated	 into	 current	 models	 and	 likely	23	
reflects	the	large	effect	of	external	and	internal	contexts	for	all	occurrences	of	a	given	motor	24	
program.	 We	 thus	 propose	 a	 novel	 formulation	 we	 call	 “adaptive	 selection-suppression”	25	
(Extended	Data	Fig.	10c),	which	attempts	to	reconcile	the	abovementioned	models,	previously	26	
reported	observations,	and	our	observations	(Extended	Data	Fig.	10d).	We	hypothesize	 that	27	
dSPNs	 encode	 a	 small	 subset	 of	 accessible	 behaviors	 in	 the	 overall	 behavioral	 repertoire,	28	
including	 the	 observed	 behavior,	 and	 are	 highly	 dependent	 on	 the	 ongoing	 context	 and	29	
activated	 to	 promote	 these	 behaviors.	 Furthermore,	 specific	 iSPNs	 that	 encode	 competing	30	
behaviors,	which	 are	 also	 highly	 dependent	 on	 the	 context,	 are	 activated	 to	 suppress	 these	31	
competing	 behaviors.	 In	 the	 subsequent	 basal	 ganglia	 nuclei,	 the	 comparison	 between	32	
selecting	 dSPN	 activations	 and	 suppressing	 iSPN	 activations	 dictates	 the	 ongoing	 motor	33	
program.	 This	 model	 supports	 our	 observation	 that	 similar	 behaviors	 correspond	 to	34	
comparable	neuronal	activations	in	dSPNs	and	iSPNs,	as	adjacent,	highly	similar	behaviors	are	35	
more	likely	to	compete	with	each	other	than	considerably	different	behaviors.	Moreover,	an	36	
important	 feature	 of	 the	 neural	 code	 in	 this	model	 is	 that	 specific	 subgroups	 of	 dSPNs	 are	37	
activated	in	response	to	the	expressed	motor	program,	whereas	specific	subgroups	of	 iSPNs	38	
are	 consistently	 inactive.	 This	 finding	 is	 substantiated	 by	 our	 observation	 that	 the	 most	39	
relevant	 information	 for	 predicting	 behaviors	 is	 located	 in	 dSPNs	 that	 are	 activated	 during	40	
behaviors	 and	 iSPNs	 that	 remain	 silent	 during	 behaviors.	 This	 model	 guarantees	 the	41	
coactivation	of	discrete	 subsets	of	dSPNs	and	 iSPNs	during	each	behavior	and	 supports	 the	42	
broad	 prokinetic	 and	 antikinetic	 functions	 of	 the	 direct	 and	 indirect	 striatal	 pathways,	43	
respectively.	44	
	45	
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As	described	above,	for	each	observed	motor	program,	our	model	incorporates	the	notion	of	1	
interepisode	variability,	which	depends	on	the	context	dictated	by	both	internal	and	external	2	
factors.	 Indeed,	 the	 dorsal	 striatum	 incorporates	 different	 representations	 of	 various	3	
contextual	 modalities,	 such	 as	 spatial	 information30,31,	 visual	 and	 tactile	 cues32,	 timing33,	4	
rewarding	 and	 aversive	 drives34,	 task	 constraints15,	 and	 sleep	 drive24.	 These	 studies	5	
substantiate	 the	 idea	 of	 rich,	 highly	 context-dependent	 behavior	 representations	 supported	6	
by	SPNs.	These	representations	likely	originate	in	cortical	areas35,36	and	are	transferred	to	the	7	
dorsal	 striatum	 for	 subsequent	 processing	 and	 integration37-39.	 Our	 model	 proposes	 that	8	
dSPNs	are	activated	not	only	 in	 response	 to	 the	expressed	behavior	but	also	 in	 response	 to	9	
additional,	 often	 similar	 behaviors.	 The	 concurrent	 activation	 of	 specific	 iSPN	 ensembles	10	
enables	 the	proper	 filtering	of	only	one	action,	most	 likely	 the	most	appropriate	action	 in	a	11	
given	 context.	 This	 mode	 of	 organization	 likely	 supports	 efficient	 shifts	 in	 the	 behavioral	12	
strategy	depending	on	an	animal’s	internal	state	or	task	contingencies40.	13	
	14	
In	 addition,	 in	 our	 study,	 we	 did	 not	 observe	 a	 bias	 toward	 silencing	 among	 iSPNs	 during	15	
static	behaviors.	This	could	be	because	these	behaviors	contain	supplemental	substates	that	16	
we	could	not	separate	with	our	analysis	pipeline.	Alternatively,	this	could	be	a	consequence	of	17	
different	 modes	 of	 encoding	 in	 iSPNs	 during	 ambulatory	 and	 static	 behaviors,	 similar	 to	18	
spatial	 mapping	 in	 the	 dorsal	 hippocampus,	 which	 is	 prominent	 mainly	 during	19	
locomotion27,28.	This	alternation	between	encoding	modes	may	rely	on	functional	interactions	20	
between	the	dorsal	hippocampus	and	the	dorsal	striatum41,42.	21	
	22	
Furthermore,	 we	 demonstrated	 the	 long-term	 stability	 of	 the	 neural	 code	 in	 SPNs.	 We	23	
observed	that	behavior-related	information	was	retained	for	weeks	in	behavior-active	dSPNs	24	
and	 behavior-silent	 iSPNs,	 reinforcing	 our	 findings.	 More	 precisely,	 behavior-coding	25	
ensembles	 display	 a	 fluctuating	 membership	 that	 ultimately	 preserves	 behavior-related	26	
information.	This	finding	supports	the	idea	of	stable	behavioral	representations	in	the	dorsal	27	
striatum	 that	 exhibit	 some	 day-to-day	 fluctuations	 at	 the	 single-cell	 level.	 This	 coding	28	
turnover	could	preserve	a	certain	level	of	flexibility	within	the	system,	which	may	enable	the	29	
formation	 of	 new	 traces	 for	 encoding	 similar	 motor	 programs	 that	 occur	 in	 different	30	
environments	 or	 varied	 contexts.	 This	 mechanism	 could	 be	 critically	 engaged	 during	31	
procedural	or	episodic	memory	formation43.	32	
	33	
In	summary,	we	identified	clear functional	differences	between	SPNs	in	the	direct	and	indirect	34	
pathways	 in	 the	dorsal	 striatum	 in	 response	 to	 self-paced	 spontaneous	behaviors.	Our	data	35	
indicate	 that	 ongoing	 behaviors	 can	 be	 decoded	 based	 on	 dSPN	 and	 iSPN	 activity	 patterns,	36	
despite	 the	 fact	 that	 these	 patterns	 resemble	 those	 associated	 with	 similar	 behaviors.	37	
Behavior-specific	 firing	and	silencing	are	more	prominent	 in	dSPNs	and	 iSPNs,	 respectively.	38	
Our	 observations	 are	 consistent	 with	 a	 model	 in	 which	 dSPN	 activations	 represent	 the	39	
ongoing	behavior	alongside	competing	motor	programs,	while	iSPNs	specific	for	the	ongoing	40	
behavior	 become	 silent	 and	 iSPNs	 specific	 for	 competing	 behaviors	 become	 active.	 These	41	
observations	 are	 critical	 for	 a	 deeper	 understanding	 of	 striatal	 functional	 organization	 and	42	
strengthen	 the	 view	 that	 direct	 and	 indirect	 pathways	 cooperatively	 orchestrate	 motor	43	
programs	 in	a	manner	 that	 is	highly	dependent	on	 the	ongoing	context	by	selecting	a	small	44	
subset	of	accessible	behaviors	while	suppressing	competing	behaviors.	45	
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FIGURES:	1	
	2	

	3	
	4	

Fig.	1:	Simultaneous	calcium	imaging	and	behavioral	 identification	 in	 freely	behaving	5	
mice.	6	
a,	Mice	expressing	GCaMP6s	in	either	dSPNs	or	 iSPNs	and	equipped	with	a	microendoscope	7	
freely	exploring	a	well-known	open	field.	8	
b,	Temporal	evolution	of	identified	behaviors	during	30	min	of	open-field	exploration	for	all	9	
recording	 sessions	 (left	 panel;	 5	 min	 long	 bins;	 n	 =	 73	 sessions	 in	 17	 mice)	 and	 average	10	
distribution	of	behaviors	over	30	min	(right	panel)	in	mice	expressing	GCaMP6s	in	dSPNs	(D1	11	
mice;	 n	 =	 33	 sessions	 with	 8	 mice)	 or	 iSPNs	 (A2A	 mice;	 n	 =	 40	 sessions	 in	 9	 mice).	12	
Abbreviations:	l.,	locomotion;	st.,	still;	immo.,	immobility.	13	
c-d,	 Representative	 image	 from	 one	 A2A	 mouse	 of	 the	 maximum	 fluorescence	 intensity	14	
projection	 of	 iSPNs	 labeled	 with	 GCaMP6s	 (c)	 and	 the	 corresponding	 isolated	 spatial	15	
components	identified	using	CNMF-E	(d).	16	
e,	Representative	fluorescence	traces	(top	panel,	red	lines)	and	deconvolved	calcium	activity	17	
(top	panel,	black	lines)	from	selected	SPNs	(red	in	d)	aligned	with	detected	behaviors	(bottom	18	
panel).	19	
f,	Quantification	for	each	recording	session	of	the	identified	neuron	number	(top	panel)	and	20	
deconvolved	calcium	activity	(bottom	panel)	 for	dSPNs	(red;	n	=	33	sessions	 in	8	mice)	and	21	
iSPNs	(blue;	n	=	40	sessions	in	9	mice)	(dSPNs	vs.	iSPNs:	***	p	<	0.001).	22	
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g,	 Average	 population	 activity	 is	 significantly	 higher	 in	 dSPNs	 than	 in	 iSPNs	 during	 many	1	
behaviors	and	significantly	lower	during	immobility	(dSPNs	vs.	iSPNs:	*	p	<	0.05,	**	p	<	0.01,	2	
***	p	<	0.001).	Abbreviation:	loco.,	locomotion.		 	3	
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	1	
	2	

Fig.	2:	Dynamical	properties	of	behavior	encoding	differ	between	dSPNs	and	iSPNs.	3	
a,	Representative	neuronal	activation	maps	of	dSPNs	(top	panels)	and	iSPNs	(bottom	panels)	4	
from	one	session,	 illustrating	 the	averaged	activation	of	neurons	 in	 the	 first	half	 (0-15	min)	5	
and	second	half	(15-30	min)	of	the	recording	session	for	two	behaviors	(locomotion	straight,	6	
left;	still	turn	left,	right).	Note	that	the	neuronal	activation	appears	highly	similar	during	the	7	
first	and	second	halves	of	the	recording	in	dSPNs	during	the	two	behaviors	and	less	similar	in	8	
iSPNs	during	the	same	behavior.	9	
b,	 Neuronal	 activation	 similarity	 between	 the	 first	 and	 second	 halves	 of	 the	 open-field	10	
exploration	was	higher	in	dSPNs	(red;	n	=	33	sessions	in	8	mice)	than	in	iSPNs	(blue;	n	=	40	11	
sessions	in	9	mice)	for	all	behaviors	except	grooming,	still	sniffing,	and	immobility	(dSPNs	vs.	12	
iSPNs:	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).	13	
c-d,	Examples	of	matrices	of	pairwise	neuronal	activation	similarity	between	behaviors	(left	14	
panels)	 and	matrices	 of	 pairwise	 behavioral	 similarity	 between	 behaviors	 (right	 panels)	 in	15	
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one	 session	 from	 one	 representative	 dSPNs	 recording	 (c)	 and	 one	 representative	 iSPNs	1	
recording	(d).	2	
e,	 For	 pairs	 of	 behaviors,	 the	 neuronal	 activation	 similarity	 and	 behavioral	 similarity	 are	3	
significantly	correlated	in	both	dSPNs	and	iSPNs,	as	illustrated	by	the	examples	displayed	in	c-4	
d	(Spearman	correlation:	***	p	<	0.001).	5	
f,	 Average	 correlation	 coefficient	 (Spearman	 correlation)	 between	 pairwise	 behavioral	 and	6	
neuronal	similarities	is	higher	for	dSPNs	(red;	n	=	33	sessions	in	8	mice)	than	iSPNs	(blue;	n	=	7	
40	sessions	in	9	mice)	(dSPNs	vs.	iSPNs:	***	p	<	0.001).		 	8	
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	1	
	2	

Fig.	 3:	 Predicting	 behaviors	 is	 equally	 efficient	 when	 using	 either	 dSPN	 or	 iSPN	3	
ensembles.	4	
a,	 Example	 of	 behavior	 decoding	 using	 support	 vector	machines	 (SVM).	 Using	 deconvolved	5	
calcium	signal	(top	panel),	support	vectors	are	trained	to	predict	ongoing	behaviors	(middle	6	
panel).	 The	 prediction	 error	 (bottom	 panel)	 is	 calculated	 by	 using	 the	 behavioral	 distance	7	
between	the	observed	and	predicted	behaviors.	8	
b,	Behavior	decoding	accuracy	was	 similar	when	dSPNs	 (red;	n	=	31	sessions	 in	8	mice)	or	9	
iSPNs	(red;	n	=	38	sessions	in	9	mice)	were	used	(dSPNs	vs.	iSPNs:	ns	p	>	0.05).	Gray,	chance	10	
level	when	decoding	from	time-lagged	data	(dSPNs	or	iSPNs	vs.	shuffle:	***	p	<	0.01).	11	
c,	Decoding	error	evaluated	as	 the	average	behavioral	error	 for	 the	entire	 time	series	using	12	
dSPNs	(red;	n	=	31	sessions	 in	8	mice)	or	 iSPNs	(red;	n	=	38	sessions	 in	9	mice)	(dSPNs	vs.	13	
iSPNs:	ns	p	>	0.05).	Gray,	chance	level	when	decoding	from	time-lagged	data	(dSPNs	or	iSPNs	14	
vs.	shuffle:	***	p	<	0.01).	15	
d,	 Relationship	 between	 the	 behavioral	 distance	 and	 decoding	 accuracy	 for	 each	 individual	16	
SVM	 binary	 classifier	 using	 dSPNs	 (left	 panel)	 or	 iSPNs	 (right	 panel).	 The	 data	 for	 each	17	
classifier	 are	 presented	 as	 the	mean	 (dots)	 ±	 SEM	 across	 sessions	 for	 both	 the	 behavioral	18	
distance	 and	 accuracy.	 Colored	 straight	 lines	 represent	 the	 average	 regression	 line,	 and	19	
shaded	areas	illustrate	the	95%	confidence	interval.		 	20	
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	2	

Fig.	4:	Relevant	information	for	decoding	behaviors	lies	primarily	in	excited	dSPNs.	3	
a,	Information	content	of	neuronal	activity	in	response	to	behaviors	was	derived	based	on	the	4	
behavior	information,	which	was	calculated	as	the	mutual	information	between	the	behavior	5	
time	series	and	neuronal	activity.	As	illustrated	for	5	representative	neurons,	a	higher	level	of	6	
behavior	 information	 reflects	 a	 stronger	 degree	 of	 tuning	 of	 neuronal	 activation	 toward	7	
behaviors.	8	
b,	 Cells	 are	 identified	 as	 behavior-active	 when	 the	 level	 of	 significance	 of	 behavior	9	
information	 exceeds	 4	 sigma	 of	 the	 shuffled	 distribution	 (gray	 area;	 left	 panel;	 threshold	10	
indicated	by	the	black	dashed	vertical	 line).	A	larger	proportion	of	behavior-active	cells	was	11	
identified	among	dSPNs	 (n	=	29	sessions	 in	8	mice)	 than	 iSPNs	 (n	=	37	sessions	 in	9	mice)	12	
(right	panel;	dSPNs	vs.	iSPNs:	***	p	<	0.001).	13	
c-d,	Decoding	accuracy	(c)	and	average	decoding	error	(d)	when	predicting	behaviors	using	14	
behavior-active	 neurons	 (plain	 bars)	 and	 non-behavior-active	 cells	 (unfilled	 bars).	 The	15	
decoding	performance	is	better	for	behavior-active	cells	than	for	non-behavior-active	cells	in	16	
dSPNs	 recordings	 (red	 bars;	 n	 =	 29	 sessions	 in	 8	 mice),	 whereas	 it	 is	 similar	 in	 iSPNs	17	
recordings	 (blue	 bars;	 n	 =	 37	 sessions	 in	 9	 mice)	 ensembles.	 Moreover,	 the	 decoding	18	
performance	 is	 better	 for	 behavior-active	 dSPNs	 than	 for	 behavior-active	 iSPNs	 (dSPNs	 vs.	19	
iSPNs:	ns	p	>	0.05,	**	p	<	0.01;	behavior-active	vs.	other	cells:	ns	p	>	0.05,	###	p	<	0.001).		 	20	
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Fig.	5:	Relevant	information	for	decoding	behaviors	lies	primarily	in	silent	iSPNs.	3	
a,	 Behavior-silent	 cells	 are	 identified	 according	 to	 how	 often	 these	 cells	 are	 active	 during	4	
episodes	 of	 a	 given	 behavior,	 as	 illustrated	 by	 5	 representative	 neurons	 (left	 panel;	 6	5	
representative	episodes	displayed)	that	displayed	various	levels	of	activation	occurrence	for	6	
each	behavior	(middle	panel).	Some	neurons	are	rarely	or	never	active	during	all	episodes	of	a	7	
given	behavior	(middle	panel,	yellow	bars	and	arrows).	The	activation	occurrence	threshold	8	
was	set	to	0.025	according	to	the	distribution	of	activation	occurrence	values	for	all	behaviors	9	
in	dSPNs	and	iSPNs	(right	panel;	threshold	indicated	by	the	black	dashed	vertical	line).	10	
b,	 Average	 fraction	of	 dSPNs	 and	 iSPNs	 identified	 as	 behavior-silent	 for	 each	behavior	 (left	11	
panel)	 and	 average	 fraction	 of	 dSPNs	 and	 iSPNs	 categorized	 as	 behavior-silent	 during	 no	12	
behavior	or	one	to	five	behaviors	(right	panel).	13	
c,	 One	 behavior	 vs.	 rest	 decoding	 accuracy	 (simple	 matching	 coefficient)	 for	 prediction	 in	14	
separating	 each	 behavior	 from	 other	 behaviors	 using	 neurons	 that	 were	 classified	 as	15	
behavior-silent	during	this	behavior	(hatched	bars)	or	nonsilent	(unfilled	bars)	in	dSPNs	(red;	16	
n	=	29	sessions	 in	8	mice)	or	 iSPNs	recordings	 (blue;	n	=	37	sessions	 in	9	mice)	 (behavior-17	
silent	vs.	nonsilent	neurons:	ns,	p	>0.05,	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).	Note	that	the	18	
decoding	 performance	 is	 higher	 for	 behavior-silent	 iSPNs	 than	 for	 nonsilent	 cells	 during	19	
ambulatory	behaviors	(top	panel),	whereas	this	result	is	not	observed	during	static	behaviors	20	
(bottom	panels).		 	21	
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	2	

Fig.	6:	Long-term	stability	of	the	respective	coding	properties	of	dSPNs	and	iSPNs.	3	
a,	 Differences	 in	 neuronal	 activation	 similarity	 during	 identified	 behaviors	 between	 dSPNs	4	
(red;	n	=	52	pairs	of	sessions	in	8	mice)	and	iSPNs	(blue;	n	=	62	pairs	of	sessions	in	9	mice)	are	5	
preserved	for	weeks,	as	illustrated	for	locomotion	straight	(left),	still	turn	right	(middle),	and	6	
grooming	(right)	(dSPNs	vs.	iSPNs:	***	p	<	0.001).	7	
b,	Quantification	of	the	long-term	stability	of	coding	properties	of	neurons	using	the	Jaccard	8	
similarity	 coefficient	 between	binary	 classification	of	 longitudinally	 registered	neurons	 that	9	
were	 labeled	as	behavior-active	 (left	panel)	or	behavior-silent	during	ambulatory	behaviors	10	
(right	 panel)	 in	 dSPN	 (red;	 behavior-active:	 n	 =	 58	 pairs	 of	 sessions	 meeting	 criterion;	11	
behavior-silent:	 n	 =	 16	 pairs	 of	 sessions	 meeting	 criterion)	 and	 iSPN	 recordings	 (blue;	12	
behavior-active:	 n	 =	 70	pairs	 of	 sessions	meeting	 criterion;	 behavior-silent:	 n	 =	 34	pairs	 of	13	
sessions	meeting	criterion)	(dSPNs	vs.	iSPNs:	*	p	<	0.05,	**	p	<	0.01).	Note	that	the	similarity	is	14	
higher	for	behavior-active	dSPNs	and	behavior-silent	iSPNs.	15	
c,	 Accuracy	 in	 predicting	 the	 behavior	 according	 to	 the	 activity	 of	 longitudinally	 registered	16	
neurons	using	SVM	classifiers	trained	on	different	recording	sessions	for	dSPNs	(red;	n	=	121	17	
pairs	of	sessions)	and	iSPNs	(blue;	n	=	171	pairs	of	sessions)	(dSPNs	vs.	iSPNs:	**	p	<	0.01).	18	
d,	Decoding	accuracy	for	longitudinal	predictions	of	behaviors	using	behavior-active	neurons	19	
(circles,	plain	line,	colored	confidence	interval)	or	non-behavior-active	cells	(crosses,	dashed	20	
line,	 unfilled	 confidence	 interval)	 in	dSPN	 (top	panel;	 red;	n	=	93	pairs	of	 sessions	meeting	21	
criterion)	 or	 iSPN	 recordings	 (bottom	 panel;	 blue;	 n	 =	 132	 pairs	 of	 sessions	 meeting	22	
criterion).	The	accuracy	remained	higher	for	behavior-active	dSPNs	than	non-behavior	-active	23	
dSPNs	for	many	days,	whereas	the	accuracy	was	similar	for	both	groups	of	iSPNs	(behavior-24	
active	vs.	other	cells:	ns	p	>	0.05,	***	p	<	0.001).	25	
e,	 Simple	 matching	 coefficient	 for	 long-term	 predictions	 on	 separating	 one	 behavior	 from	26	
other	 behaviors	 using	 neurons	 classified	 as	 behavior-silent	 (circles,	 plain	 line,	 hatched	27	
confidence	 interval)	 or	 nonsilent	 (crosses,	 dashed	 line,	 unfilled	 confidence	 interval)	 during	28	
this	behavior	and	pooled	for	ambulatory	behaviors	(top	panels)	and	static	behaviors	(bottom	29	
panels)	 for	 dSPNs	 (left	 panels;	 red;	 ambulatory:	 n	 =	 18	pairs	 of	 sessions	meeting	 criterion;	30	
static:	n	=	46	pairs	of	sessions	meeting	criterion)	and	iSPNs	(right	panels;	blue;	ambulatory:	n	31	
=	52	pairs	 of	 sessions	meeting	 criterion;	 static:	 n	 =	69	pairs	 of	 sessions	meeting	 criterion).	32	
Note	 that	 the	 only	 difference	 between	 behavior-silent	 and	 non-behavior-silent	 cells	 is	33	
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observed	for	iSPNs	during	ambulatory	behaviors	(behavior-silent	vs.	other	cells:	ns	p	>	0.05,	1	
**	p	<	0.01).		 	2	
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EXTENDED	DATA	FIGURES:	1	
	2	

	3	
	4	

Extended	Data	Fig.	1:	General	pipeline	for	behavioral	and	calcium	data	extraction.	5	
The	 synchronous	 video	 tracking	 and	microendoscope	 recordings	were	 analyzed	 as	 follows.	6	
For	 video	 tracking	 recordings,	 images	 are	 first	 processed	using	DeepLabCut	 to	 identify	 and	7	
track	the	position	of	8	body	parts	(nose,	camera,	ear	left,	ear	right,	neck,	body	center,	tail	start,	8	
and	tail	end).	Using	these	points,	6	features	describing	the	animal’s	posture	are	computed	and	9	
fed	 into	 multiple	 iterations	 of	 t-SNE	 dimension	 reduction	 and	 clustering	 using	 a	 Gaussian	10	
mixture	model.	The	resulting	set	of	clusters	is	clustered	(Hamming	distance)	to	identify	and	11	
isolate	 consistent	 behavioral	 clusters	 and	 define	 their	 corresponding	 distributions	 in	 the	12	
feature	space.	These	distributions	are	used	to	label	all	video	tracking	frames	using	likelihood-13	
based	 estimators.	 In	 parallel,	 calcium	 imaging	 videos	 are	 first	 processed	 using	 CaImAn	 to	14	
separate	and	identify	neurons	and	extract	the	temporal	evolution	of	the	calcium	signal.	This	15	
signal	 is	 then	deconvolved	using	 the	MLspike	algorithm.	The	cells	 that	are	 identified	during	16	
different	 recording	 sessions	 in	 the	 same	 mouse	 are	 aligned	 and	 longitudinally	 registered	17	
using	CellReg.		 	18	
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	1	
	2	

Extended	Data	Fig.	2:	Mice	behavior	in	the	open-field	and	one-photon	calcium	imaging	3	
analyses.	4	
a-c,	Description	of	mouse	behavior	architecture	during	30	min	of	undisturbed	exploration	in	5	
an	open	field	(n	=	73	sessions	in	17	mice),	evaluated	according	to	the	number	of	episodes	of	6	
each	 behavior	 (a),	 the	 average	 duration	 of	 behavior	 episodes	 (b),	 and	 the	 sequential	7	
organization	of	behaviors,	as	illustrated	by	the	averaged	matrix	of	the	number	of	transitions	8	
(c,	 left	 panel)	 from	 one	 behavior	 (lines)	 to	 a	 different	 behavior	 (columns),	 and	 the	 same	9	
normalized	matrix	(c,	right	panel),	to	evaluate	the	probability	when	stopping	one	behavior	to	10	
begin	any	of	the	other	11	behaviors.	11	
d,	Photomicrograph	of	a	coronal	section	from	the	brain	of	a	mouse	implanted	with	a	GRIN	lens	12	
in	the	striatum.	13	
e,	Reconstruction	of	the	GRIN	lens	positions	for	all	D1	mice	(n	=	8)	and	A2A	mice	(A2A(Tg),	n	14	
=	6;	A2A(AAV),	n	=	3).	15	
f-h,	Representative	 image	of	the	maximum	fluorescence	intensity	projection	of	SPNs	labeled	16	
with	GCaMP6s	in	a	D1	mouse	(f),	A2A(Tg)	mouse	(g),	and	A2A(AAV)	mouse	(h).	17	
i,	Quantification	for	each	recording	session	of	the	identified	neuron	number,	calcium	transient	18	
average	 frequency,	 average	 transient	 decay	 characteristic	 time,	 and	 deconvolved	 calcium	19	
activity	for	dSPNs	(red;	n	=	33	sessions	in	8	mice)	and	iSPNs	(blue;	n	=	40	sessions	in	9	mice)	20	
(dSPNs	vs.	iSPNs:	**	p	<	0.01;	***	p	<	0.001).	21	
j,	Same	as	i,	averaged	per	mouse	(D1	mice,	n	=	8;	A2A	mice,	n	=	9)	(D1	vs.	A2A:	*	p	<	0.05;	**	p	22	
<	0.01).	23	
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k,	 Comparison	 of	 the	 above	 parameters,	 targeting	 GCaMP6s	 expression	 in	 iSPNs	 using	1	
transgenic	reporter	mice	(A2A(Tg),	n	=	6)	or	AAV	injection	(A2A(AAV),	n	=	3).	No	significant	2	
difference	was	observed	between	A2A(Tg)	mice	and	A2A(AAV)	mice.		 	3	
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	1	
	2	

Extended	Data	Fig.	3:	Time	 invariance	of	differences	 in	neuronal	activation	similarity	3	
between	dSPNs	and	iSPNs.	4	
a-b,	 Neuronal	 activation	 similarity	 between	 the	 first	 and	 second	 halves	 of	 open-field	5	
exploration	in	dSPNs	(a)	(red;	n	=	33	sessions	in	8	mice)	and	iSPNs	(b)	(blue;	n	=	40	sessions	6	
in	9	mice)	compared	with	the	spatial	shuffle	of	neurons	between	the	first	and	second	halves	of	7	
open-field	exploration	(gray	bars)	(dSPNs	or	iSPNs	vs.	shuffle:	***	p	<	0.001).	8	
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c,	The	30	min	open-field	recording	is	split	into	6	segments	lasting	5	min	each	(top	left	panel),	1	
and	 the	difference	between	 the	dSPN	and	 iSPN	neuronal	activation	similarities	 is	calculated	2	
for	all	 combinations	of	5	min	segments	 into	 two	15	min	segments	 (3	segments	per	groups)	3	
(top	middle	and	right),	highlighting	that	the	difference	in	similarity	between	dSPNs	and	iSPNs	4	
is	 a	 time-invariant	 property	 of	 the	 neuronal	 code.	 (Bottom)	 Detailed	 representation	 of	5	
neuronal	activation	similarity	for	two	splitting	schemes,	indicated	by	colored	arrows	(dSPNs	6	
vs.	iSPNs:	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).	7	
d,	Neuronal	activation	similarity	between	dSPNs	(red;	n	=	33	sessions	 in	8	mice)	and	 iSPNs	8	
(blue;	n	=	40	sessions	in	9	mice)	for	each	behavior,	as	computed	by	comparing	odd	and	even	9	
frames	(dSPNs	vs.	iSPNs:	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).	10	
e,	Neuronal	activation	similarity	between	dSPNs	(red;	n	=	33	sessions	 in	8	mice)	and	 iSPNs	11	
(blue;	n	=	40	sessions	in	9	mice),	as	computed	by	comparing	one	episode	out	of	two	for	each	12	
behavior	to	complementary	episodes	(dSPNs	vs.	iSPNs:	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).		 	13	
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	1	
	2	

Extended	 Data	 Fig.	 4:	 Amphetamine	 administration	 reduces	 the	 neuronal	 activation	3	
similarity	of	dSPNs	and	iSPNs	and	disrupts	SVM-based	behavior	predictions.	4	
a,	Mice	expressing	GCaMP6s	in	either	dSPNs	or	iSPNs	freely	explored	a	well-known	open	field	5	
for	30	min	(baseline	period),	received	an	injection	of	either	saline	or	amphetamine	(3	mg/kg),	6	
and	were	placed	back	into	the	open	field	for	an	additional	45	min.	The	post-injection	period	7	
began	10	min	after	the	injection	and	lasted	30	min.	The	SVM	classifiers	were	trained	on	the	8	
baseline	 period,	 and	 the	 predictions	were	 performed	 based	 on	 the	 neuronal	 activity	 in	 the	9	
post-injection	period.	10	
b,	 Neuronal	 activation	 similarity	 between	 baseline	 and	 postinjection	 periods	 of	 open-field	11	
exploration	in	dSPNs	(red)	and	iSPNs	(blue)	for	all	detected	behaviors	following	saline	(top;	12	
dSPNs:	n	=	12	sessions	in	8	mice;	iSPNs:	n	=	11	sessions	in	9	mice)	or	amphetamine	(3	mg/kg)	13	
injection	(bottom;	dSPNs:	n	=	7	sessions	in	7	mice;	iSPNs:	n	=	8	sessions	in	8	mice)	(dSPNs	vs.	14	
iSPNs:	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001;	saline	vs.	amphetamine:	#	p	<	0.05,	##	p	<	0.01,	###	p	15	
<	0.001).	16	
c-d,	Accuracy	of	behavior	prediction	(c)	and	mean	behavioral	reconstruction	error	(d)	using	17	
dSPNs	(red)	or	iSPNs	(bleu)	after	saline	(left	panels;	dSPNs:	n	=	10	sessions	in	6	mice;	iSPNs:	n	18	
=	13	sessions	in	9	mice)	or	amphetamine	administration	(right	panels;	dSPNs:	n	=	6	sessions	19	
in	6	mice;	iSPNs:	n	=	9	sessions	in	9	mice),	as	compared	with	time-lagged	data	(gray).	(dSPNs	20	
vs.	iSPNs:	*	p	<	0.05;	saline	vs.	amphetamine:	#	p	<	0.05,	##	p	<	0.01,	###	p	<	0.001;	dSPNs	or	21	
iSPNs	vs.	shuffle:	+	p	<	0.05;	+++	p	<	0.001).		 	22	
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	1	
	2	

Extended	Data	Fig.	5:	Complements	related	to	correlations	between	pairwise	neuronal	3	
similarity	and	behavioral	similarity	between	behaviors.	4	
a,	 Examples	 of	 matrices	 of	 pairwise	 neuronal	 activation	 similarity	 between	 behaviors	5	
computed	 using	 the	 cross-validated	 Euclidean	 distance	 between	 odd	 and	 even	 frames,	6	
matrices	 of	 pairwise	 behavioral	 similarity	 between	 behaviors	 (left	 panels),	 and	 the	7	
corresponding	scatterplot	for	pairs	of	behaviors	(middle;	Spearman	correlation,	***	p	<	0.001)	8	
for	 one	 session	 from	one	 representative	D1	mouse	 (top)	 and	one	 representative	D2	mouse	9	
(bottom).	 The	 average	 correlation	 coefficient	 (right)	 between	 the	 pairwise	 behavioral	 and	10	
neuronal	 similarities	was	 higher	 for	 dSPNs	 (red;	 n	 =	 33	 sessions	 in	 8	mice)	 than	 for	 iSPNs	11	
(blue;	n	=	40	sessions	in	9	mice)	(dSPNs	vs.	 iSPNs:	***	p	<	0.001).	The	results	are	similar	to	12	
those	displayed	in	Fig.	2c-f.	13	
b,	Same	as	a,	with	both	the	neuronal	and	behavioral	similarities	computed	for	only	the	first	10	14	
min	 of	 open-field	 exploration.	 In	 this	 condition,	 the	 average	 correlation	 between	 the	15	
behavioral	and	neuronal	 similarities	was	similar	 for	dSPNs	(red;	n	=	24	sessions	 in	8	mice)	16	
and	iSPNs	(blue;	n	=	21	sessions	in	9	mice)	(dSPNs	vs.	iSPNs:	ns	p	>	0.05).	17	
c,	 Comparison	 of	 correlation	 coefficients	 between	 behavioral	 and	 neuronal	 similarities	18	
evaluated	for	different	durations	of	open-field	exploration	in	 increments	of	5	min	for	dSPNs	19	
(red;	n	=	33	sessions	in	8	mice)	and	iSPNs	(blue;	n	=	40	sessions	in	9	mice)	(dSPNs	vs.	iSPNs:	20	
ns	p	>	0.05;	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).	21	
d,	Neuronal	activation	similarity	between	the	first	5	min	and	subsequent	5	min	of	open-field	22	
exploration	remained	higher	in	dSPNs	(red;	n	=	24	sessions	in	8	mice)	than	in	iSPNs	(red;	n	=	23	
21	sessions	in	9	mice)	during	locomotion	(loco.)	straight,	locomotion	turn	right	and	left,	still	24	
turn	right	and	left,	rearing,	and	locomotion	sniffing	(dSPNs	vs.	iSPNs:	*	p	<	0.05,	**	p	<	0.01,	25	
***	p	<	0.001).		 	26	
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	2	

Extended	 Data	 Fig.	 6:	 Significance	 of	 mutual	 information	 and	 characterization	 of	3	
behavior-active	cells.	4	
a-b,	Scatterplots	of	the	relationship	between	the	behavior	information	(left)	or	significance	of	5	
the	behavior	 information	(right)	and	the	average	activity	of	dSPNs	(a)	and	 iSPNs	(b)	 in	one	6	
representative	session.	Note	the	significant	inverse	correlation	(Spearman	correlation:	ns	p	>	7	
0.05,	***	p	<	0.001)	between	the	behavior	information	and	event	rate,	which	indicates	that	the	8	
behavior	information	is	biased	toward	neurons	firing	at	a	 low	rate.	Using	the	significance	of	9	
the	 behavior	 information,	 which	 is	 computed	 by	 comparing	 the	 observed	 value	 of	 the	10	
behavior	information	to	random	shuffles,	removes	this	bias.	11	
c,	Average	fraction	of	dSPNs	and	iSPNs	identified	as	behavior-active	(significance	of	behavior	12	
information	 above	 4)	 for	 each	 behavior	 (left	 panel)	 and	 the	 average	 fraction	 of	 dSPNs	 and	13	
iSPNs	 labeled	 as	 behavior-active	 during	 no	 behavior	 or	 one	 to	 five	 behaviors	 (right	 panel)	14	
(dSPNs:	n	=	29	sessions	from	8	mice;	iSPNs:	n	=	37	sessions	from	9	mice).	15	
d-e,	Decoding	accuracy	(d)	and	average	reconstruction	error	(e)	of	SVM	classifiers	applied	to	16	
behavior-active	 (plain	 bars)	 or	 non-behavior-active	 (unfilled	 bars)	 dSPNs	 (red;	 n	 =	 29	17	
sessions	in	8	mice)	or	iSPNs	(blue;	n	=	37	sessions	in	9	mice),	compared	with	the	chance	level	18	
when	decoding	 classifiers	 trained	on	 time-lagged	data	 (gray	bars)	 (dSPNs	vs.	 iSPNs:	 ns	p	>	19	
0.05,	***	p	<	0.01;	behavior-active	vs.	other	cells:	#	p	<	0.05,	###	p	<	0.001	observed	data	vs.	20	
time-lagged:	 +++	 p	 <	 0.001).	 Note	 that	 the	 decoding	 performance	 based	 on	 either	 behavior-21	
active	neurons	or	other	cells	is	better	than	that	based	on	time-shuffled	data,	and	the	decoding	22	
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performance	is	better	with	behavior-active	cells	than	with	non-behavior-active	cells	in	dSPN	1	
recordings	(red	bars;	n	=	29	sessions	from	8	mice),	whereas	performance	is	similar	between	2	
both	cell	groups	in	iSPNs	recordings	(blue	bars;	n	=	37	sessions	from	9	mice).	Moreover,	the	3	
decoding	performance	is	better	for	behavior-active	dSPNs	than	for	behavior-active	iSPNs.	4	
f,	Effect	of	modifying	the	threshold	used	for	the	level	of	significance	of	behavior	information	5	
for	 labelling	 neurons	 as	 behavior-active	 (left	 panel)	 on	 the	 decoding	 accuracy	 (right	 panel)	6	
when	predicting	behaviors	using	behavior-active	neurons	(plain	bars)	or	non-behavior-active	7	
neurons	(unfilled	bars)	in	dSPN	(red	bars;	n	=	29	sessions	from	8	mice)	and	iSPN	(blue	bars;	n	8	
=	37	sessions	from	9	mice)	recordings	(dSPNs	vs.	 iSPNs:	ns,	p	>	0.05,	**	p	<	0.01;	behavior-9	
active	vs.	other	cells:	#	p	<	0.05,	###	p	<	0.001).	The	use	of	5	different	thresholds	(ranging	from	10	
3	to	5	SD,	corresponding	to	the	position	of	the	actual	behavior	information	in	comparison	to	11	
the	distribution	of	the	behavior	information	calculated	from	random	permutations)	maintains	12	
significantly	 higher	 decoding	 performance	 when	 using	 behavior-active	 dSPNs	 than	 when	13	
using	behavior-active	iSPNs.		 	14	
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	1	
	2	

Extended	Data	 Fig.	 7:	 Contribution	 of	 behavior-inactive	 cells	 to	 neural	 code	 using	 an	3	
alternate	definition.	4	
a,	 Behavior-inactive	 cells	 are	 identified	 according	 to	 their	 average	 activity	 during	 each	5	
behavior,	as	illustrated	by	5	representative	neurons	(left	panel)	displaying	different	average	6	
activities	for	each	behavior	(right	panel).	The	threshold	for	identifying	an	inhibited	cell	during	7	
a	 given	 behavior	 is	 set	when	 the	 cell	 displays	 an	 average	 activity	 of	 less	 than	 0.1	 events/s	8	
(right	panel,	yellow	bars).	9	
b,	 Average	 fraction	 of	 dSPNs	 and	 iSPNs	 labeled	 behavior-inactive	 for	 each	 behavior	 (left	10	
panel)	and	average	fraction	of	dSPNs	and	iSPNs	labeled	behavior-inactive	during	no	behavior	11	
or	one	to	five	behaviors	(right	panel).	12	
c,	 Simple	 matching	 coefficient	 for	 separating	 each	 behavior	 from	 other	 behaviors	 using	13	
neurons	that	are	classified	as	either	behavior-inactive	during	proper	behavior	(hatched	bars)	14	
or	 non-behavior-inactive	 (unfilled	 bars)	 in	 dSPN	 (red;	 29	 sessions	 in	 8	 mice)	 or	 iSPN	15	
recordings	 (blue;	n	=	37	sessions	 from	9	mice)	 (behavior-inactive	vs.	non-behavior-inactive	16	
neurons:	ns,	p	>0.05,	*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001).	The	results	are	similar	 to	 those	17	
obtained	when	the	neurons	are	classified	as	behavior-silent	and	non-behavior-silent.		 	18	

ca

lo
co

. 
fa

st

lo
co

. 
st
ra

ig
h
t

lo
co

. 
tu

rn
 r
ig
h
t

lo
co

. 
tu

rn
 le

ft

st
ill
 t
u
rn

 r
ig
h
t

st
ill
 t
u
rn

 le
ft

h
e
a
d
 u

p

re
a
ri
n
g

g
ro

o
m

in
g

sti
ll s

nif
fin

g

loc
o. 

sn
iffi

ng

im
m

o
b
ili
ty

Behaviors
head up rearing grooming still  

sniffing
immobility

loco. fast loco.  

straight

loco.  

turn right

loco.  

turn left

loco.  

sniffing

Ambulatory behaviors

Static behaviors

*
ns

***

ns

***

ns

***
ns

***

ns ns ns

ns ns

ns

ns

still 

turn right

still 

turn left

***
*

ns

nsns ns

*** ***

O
n

e
 b

e
h

a
v
io

r 
v
s
. 

re
s
t 
 

d
e

c
o

d
in

g
 a

c
c
u

ra
c
y

O
n

e
 b

e
h

a
v
io

r 
v
s
. 

re
s
t 
 

d
e

c
o

d
in

g
 a

c
c
u

ra
c
y

5 s lo
c
o
. 
fa

s
t

lo
c
o
. 
s
tr

a
ig

h
t

lo
c
o
. 
tu

rn
 r

ig
h
t

lo
c
o
. 
tu

rn
 l
e
ft

s
ti
ll
 t
u
rn

 r
ig

h
t

s
ti
ll
 t
u
rn

 l
e
ft

h
e
a
d
 u

p

re
a
ri
n
g

g
ro

o
m

in
g

st
ill 

sn
iffi

ng
lo

co
. s

ni
ffi

ng
im

m
o
b
il
it
y

B
e

h
a

v
io

r
C

a
lc

iu
m

 r
a

s
te

r

b

P
ro

p
o

rt
io

n
 o

f 
 

b
e

h
a

v
io

r-
in

a
c
ti
v
e

 c
e

ll
s

P
ro

p
o

rt
io

n
 o

f 
 

b
e

h
a

v
io

r-
in

a
c
ti
v
e

 c
e

ll
s

behavior-inactive

non-inactive cells

behavior-inactive

non-inactive cells

Number of behaviors

(excluding immobility)
A

v
e

ra
g

e
 a

c
ti
v
it
y

iSPNs

dSPNs

dSPNs

iSPNs

#1

#2

#3

#4

#5

#1

#2

#3

#4

#5

cells

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.20.496781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496781
http://creativecommons.org/licenses/by-nd/4.0/


	1	
	2	
Extended	Data	 Fig.	 8:	 Validation	 of	 longitudinal	 registration	 of	 cells	 and	 longitudinal	3	
evaluation	of	neuronal	activation	similarity	during	behaviors.	4	
a,	 Representative	 example	 of	 spatial	 footprints	 of	 neurons	 detected	 during	 three	 different	5	
sessions	recorded	from	the	same	mouse	and	an	overlay	of	the	aligned	spatial	footprint	maps,	6	
which	are	color-coded	according	to	the	sessions	during	which	the	cells	were	detected.	7	
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b,	Distribution	of	register	scores	between	sessions	(left	panel)	and	mean	register	score	(right	1	
panel)	averaged	for	all	D1	(red;	n	=	8)	and	D2	(blue;	n	=	9)	mice.	2	
c,	Number	of	registered	cells	between	pairs	of	sessions	from	the	same	mouse	as	a	function	of	3	
the	number	of	days	between	sessions	for	dSPN	(red;	n	=	72	pairs	of	sessions	in	8	mice)	and	4	
iSPN	recordings	(blue;	n	=	80	sessions	in	9	mice).	5	
d-e,	Evolution	of	the	neuronal	activation	similarity	during	identified	behaviors	across	days	for	6	
dSPNs	(red;	n	=	52	pairs	of	sessions	in	8	mice)	and	iSPNs	(blue;	n	=	62	pairs	of	sessions	in	9	7	
mice)	compared	to	their	respective	controls	(gray),	which	were	obtained	by	shuffling	pairs	of	8	
registered	 neurons	 (d)	 or	 by	 replacing	 one	 neuron	 in	 each	 pair	 of	 registered	 cells	 by	 its	9	
spatially	closest	neighbor	(e)	(dSPNs	vs.	iSPNs:	ns	p	>	0.05,	**	p	<	0.01,	***	p	<	0.001;	observed	10	
data	vs.	control:	#	p	<	0.05,	##	p	<	0.01,	###	p	<	0.001).		 	11	
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	1	
	2	

Extended	Data	Fig.	9:	Complements	related	to	longitudinal	prediction	of	behaviors.	3	
a,	 Accuracy	 in	 predicting	 the	 behavior	 according	 to	 the	 activity	 of	 longitudinally	 registered	4	
neurons	using	SVM	classifiers	trained	on	a	different	recordings	for	dSPNs	(red;	n	=	121	pairs	5	
of	sessions)	and	iSPNs	(blue;	n	=	171	pairs	of	sessions)	and	their	respective	controls,	which	6	
were	 obtained	using	 classifiers	 trained	on	 time-lagged	data	 (gray)	 (observed	data	 vs.	 time-7	
lagged:	###	p	<	0.001).	8	
b,	Average	behavioral	reconstruction	error	in	predicting	the	behavior	according	to	the	activity	9	
of	longitudinally	registered	neurons	using	SVM	classifiers	trained	on	different	recordings	for	10	
dSPNs	(red;	n	=	121	pairs	of	sessions)	and	iSPNs	(blue;	n	=	171	pairs	of	sessions)	(dSPNs	vs.	11	
iSPNs:	**	p	<	0.01;	observed	data	vs.	time-lagged:	###	p	<	0.001).	12	
c,	 Quantification	 of	 the	 long-term	 stability	 of	 the	 coding	 properties	 of	 neurons	 using	 the	13	
Jaccard	 similarity	 coefficient	 between	 the	 binary	 classification	 of	 longitudinally	 registered	14	
labeled	behavior-inactive	in	dSPN	(red;	n	=	16	pairs	of	sessions	meeting	criterion)	and	iSPN	15	
recordings	(blue;	n	=	29	pairs	of	sessions	meeting	criterion)	(dSPNs	vs.	iSPNs:	**	p	<	0.01).	16	
d,	Simple	matching	coefficient	 for	 the	 long-term	prediction	of	separating	one	behavior	 from	17	
other	 behaviors	 using	 neurons	 that	were	 classified	 as	 behavior-inactive	 (circles,	 plain	 line,	18	
colored	 confidence	 interval)	 or	 non-behavior-inactive	 (crosses,	 dashed	 line,	 unfilled	19	
confidence	 interval)	 during	 this	 behavior,	 pooled	 for	 ambulatory	 behaviors	 (top	 panels)	 or	20	
static	behaviors	(bottom	panels)	for	dSPNs	(red;	ambulatory:	n	=	20	pairs	of	sessions	meeting	21	
criterion;	static:	n	=	67	pairs	of	sessions	meeting	criterion)	and	iSPNs	(blue;	ambulatory:	n	=	22	
46	 pairs	 of	 sessions	 meeting	 criterion;	 static:	 n	 =	 75	 pairs	 of	 sessions	 meeting	 criterion)	23	
(behavior-inactive	vs.	non-behavior-inactive:	ns	p	>	0.05,	 **	p	<	0.01).	Note	 that	 the	 results	24	
obtained	 for	 behavior-inactive	 neurons	 are	 highly	 similar	 to	 those	 observed	 for	 behavior-25	
silent	neurons.		 	26	
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	1	
	2	

Extended	Data	 Fig.	 10:	Comparison	 of	 theoretical	models	 describing	 SPN	 encoding	 of	3	
behaviors.	4	
Multiple	models	have	been	 formulated	to	describe	 the	organization	of	 the	basal	ganglia	and	5	
capture	the	properties	of	striatal	neurons.	6	
a,	 In	 the	 “complete	 selection-suppression”	 model17,	 subsets	 of	 dSPNs	 and	 iSPNs	 are	7	
concurrently	activated	during	behaviors.	While	a	specific	subpopulation	of	dSPNs	is	activated	8	
to	 promote	 a	 given	 motor	 program,	 all	 iSPN	 subpopulations	 associated	 with	 other	 motor	9	
programs	are	active	to	simultaneously	suppress	these	competing	motor	programs.	This	model	10	
predicts	the	widespread	activation	of	iSPNs	and	the	focused	activation	of	specific	dSPNs.	11	
b,	 Alternatively,	 some	models	 hypothesized	 a	 cooperative	 selection	 function	 for	 dSPNs	 and	12	
iSPNs	 based	 on	 concurrent	 coordinated	 activation	 in	 both	 pathways	 to	 select	 proper	13	
behaviors13.	 In	 this	 model,	 comparable	 populations	 of	 dSPNs	 and	 iSPNs	 are	 tuned	 toward	14	
specific	behaviors	and	activated	simultaneously	to	select	proper	motor	programs.	This	model	15	
predicts	 a	 high	 and	 equivalent	 level	 of	 neuronal	 activation	 similarity	 in	 dSPNs	 and	 iSPNs	16	
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during	episodes	of	the	same	behavior,	as	well	as	comparable	neuronal	activation	similarities	1	
between	behaviors	in	both	SPN	pathways.	2	
c,	 In	 this	 study,	 we	 propose	 a	 new	 model,	 referred	 to	 here	 as	 the	 “adaptive	 selection	3	
suppression”	model.	We	 postulate	 that	 at	 any	 time,	 only	 a	 few	 reachable	 behaviors	 in	 the	4	
overall	behavioral	repertoire	actual	compete	with	the	ongoing/most-desired	behavior.	These	5	
competing	behaviors	are	highly	dependent	on	the	ongoing	external	context	 (and	potentially	6	
dependent	on	the	internal	state	of	the	animal)	and	thus	differ	between	different	episodes	of	a	7	
given	behavior.	We	hypothesize	that,	as	a	result,	dSPNs	that	encode	the	ongoing	behavior	and	8	
competing	behaviors	are	activated,	while	dSPNs	that	encode	other	behaviors	remain	silent.	At	9	
the	 same	 time,	 in	 the	 indirect	 pathway,	 iSPNs	 specifically	 associated	 with	 competing	10	
behaviors	are	activated	to	suppress	these	competing	behaviors,	while	 iSPNs	associated	with	11	
the	 ongoing	 behavior	 remain	 silent.	 As	 a	 consequence,	 the	 activations	 in	 the	 direct	 and	12	
indirect	 pathways,	 which	 select	 and	 suppress	 motor	 programs,	 respectively,	 result	 in	 the	13	
proper	selection	of	only	one	ongoing	motor	program.	14	
d,	When	assessing	the	adequacy	between	model	predictions	and	experimental	observations,	15	
we	 trust	 that	 the	 adaptive	 selection-suppression	 model	 captures	 more	 SPN	 properties,	 as	16	
established	in	previous	studies.	First,	despite	its	accurate	account	of	the	antagonistic	function	17	
of	 dSPNs	 and	 iSPNs4-10,	 which	 implies	 a	 bias	 in	 the	 neural	 code	 toward	 activation	 and	18	
inhibition,	 respectively,	 the	complete	selection-suppression	model	proposes	 the	widespread	19	
activation	of	iSPNs	and	focused	activation	of	dSPNs	during	actions,	which	is	not	supported	by	20	
recordings	of	neuronal	activity11-16.	Additionally,	this	model	cannot	explain	the	differences	in	21	
neuronal	activation	similarity	we	observed	 in	 the	present	study,	as	 this	model	predicts	 that	22	
populations	of	neurons	 that	are	activated	during	episodes	of	 the	same	behaviors	are	highly	23	
similar	 for	 dSPNs	 and	 iSPNs	 and	 almost	 identical	 when	 comparing	 dSPNs	 and	 iSPNs.	24	
Furthermore,	 the	 cooperative	 selection	 model	 properly	 captures	 the	 simultaneous	 and	25	
targeted	 activation	 of	 subsets	 of	 dSPNs	 and	 iSPNs	 during	 actions12-14.	 However,	 this	model	26	
does	 not	 explain	 the	 antagonistic	 functions	 of	 dSPNs	 and	 iSPNs,	 and	 because	 it	 proposes	27	
similar	 neuronal	 activation	 patterns	 for	 both	 dSPNs	 and	 iSPNs,	 it	 does	 not	 account	 for	 the	28	
differences	 in	 the	 tuning	 properties	 in	 the	 two	 pathways	 we	 observed	 in	 this	 study.	 Our	29	
proposed	 novel	 adaptive	 selection-suppression	 formulation	 aims	 to	 reconcile	 some	 of	 the	30	
above	discrepancies.	This	model	accounts	for	the	prokinetic	and	antikinetic	effects	associated	31	
with	activating	dSPNs	and	 iSPNs,	 respectively.	This	 finding	 is	 supported	by	our	observation	32	
that	the	neural	code	for	behaviors	is	biased	toward	activation	in	dSPNs	and	silencing	in	iSPNs.	33	
Importantly,	 by	 incorporating	 the	 idea	 that	 neuronal	 activation	 patterns	 during	 self-paced	34	
spontaneous	 exploration	 of	 the	 behavioral	 repertoire	 are	 highly	 dependent	 on	 the	 current	35	
external	 and	 internal	 contexts,	we	propose	 that	dSPNs	and	 iSPNs	activated	during	different	36	
occurrences	 of	 the	 same	 behavior	 differ.	 This	 result	 supports	 the	 context-dependent	37	
variability	 in	 activation	 patterns	 that	 we	 observed	 using	 the	 neuronal	 activation	 similarity	38	
measure.	 Moreover,	 the	 neuronal	 clusters	 in	 dSPNs	 that	 are	 associated	 with	 the	 ongoing	39	
behavior	are	consistently	active,	whereas	there	may	be	instances	when,	for	the	same	observed	40	
behavior,	 the	 sets	 of	 activated	 iSPNs	 drastically	 differ	 (to	 inhibit	 different	 competing	41	
behaviors;	 see,	 for	 example,	 behavior	 A	 context	 #1	 vs.	 behavior	 A	 context	 #3);	 thus,	 the	42	
proposed	model	 predicts	 a	 higher	neuronal	 activation	 similarity	 in	dSPNs	 than	 in	 iSPNs.	 In	43	
addition,	 our	 model	 incorporates	 an	 important	 feature	 of	 the	 neural	 code,	 namely,	 that	 in	44	

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 20, 2022. ; https://doi.org/10.1101/2022.06.20.496781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496781
http://creativecommons.org/licenses/by-nd/4.0/


response	to	the	expressed	motor	program,	specific	subgroups	of	dSPNs	are	activated,	whereas	1	
specific	subgroups	of	iSPNs	are	consistently	inactive.	 	2	
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METHODS:	1	
	2	
Animal	care	and	use.	3	
All	 procedures	 were	 performed	 according	 to	 the	 Institutional	 Animal	 Care	 Committee	4	
guidelines	and	were	approved	by	the	Local	Ethical	Committee	(Comité	d’Ethique	et	de	Bien-5	
Être	Animal	du	pôle	santé	de	l’Université	Libre	de	Bruxelles	(ULB),	Ref.	No.	646	N).	Mice	were	6	
maintained	on	a	12-hour	dark/light	cycle	 (lights	on	at	8	pm)	with	ad	libitum	 access	 to	 food	7	
and	water.	The	room	temperature	was	set	to	22	±	2	°C	with	constant	humidity	(40–60%).	The	8	
behavioral	 tests	 were	 performed	 during	 the	 dark	 photoperiod.	 Both	 male	 and	 female	9	
transgenic	mice	(≥	8	weeks)	were	used	in	all	behavioral	experiments.	10	
	11	
Transgenic	mouse	generation.	12	
The	genetic	background	of	all	transgenic	mice	used	in	this	paper	is	C57Bl/6J.	The	mice	were	13	
heterozygous	and	maintained	by	breeding	with	C57Bl/6	mice.	All	lines	were	backcrossed	with	14	
C57Bl6	mice	for	at	least	8	generations.	Three	transgenic	mouse	lines	were	used:	A2A-Cre7,	D1-15	
Cre	 (EY262;	GENSAT)44	and	Ai162/TIT2L-GC6s-ICL-tTA2	(Ai162D;	Allen	 Institute)45.	Simple	16	
transgenic	A2A-Cre	or	D1-Cre	mice	 (A2A(AAV)	and	D1	mice,	 respectively)	were	used	 for	 the	17	
virally	 mediated	 targeting	 of	 iSPNs	 or	 dSPNs,	 respectively.	 Double	 transgenic	 A2A-Cre	 x	18	
Ai162/TIT2L-GC6s-ICL-tTA2	mice	(A2A(Tg)	mice)	were	generated	by	breeding	and	used	for	19	
targeting	 iSPNs	 without	 virus	 injection.	 For	 this	 breeding,	 mice	 were	 maintained	 with	20	
doxycycline	 food	 pellets	 (A03	 1	 g/kg	 doxycycline	 hyclate	 pellet;	 SAFE,	 France)	 to	 prevent	21	
GCaMP6s	expression	during	development	and	early	life	stages	in	offspring.	Standard	food	was	22	
introduced	 when	 offspring	 were	 weaned	 (3	 weeks	 postnatal).	 The	 results	 of	 A2A-Cre	 mice	23	
expressing	GCaMP6s	through	a	virus-mediated	strategy	(A2A(AAV)	mice)	or	through	a	double	24	
transgenic	 strategy	 (A2A(Tg)	 mice)	 were	 compared,	 and	 no	 differences	 were	 observed	25	
(Extended	Data	Fig.	2g-h,	k).	As	a	consequence,	these	animals	were	pooled.	26	
	27	
Viral	injections	and	chronic	lens	implantation.	28	
Under	 isoflurane	 anesthesia	 (induction	 4%,	 maintenance	 1%	 in	 O2;	 0.5	 L/min),	 male	 and	29	
female	 A2A-Cre	 and	 D1-Cre	 mice	 (≥	 8	 weeks	 old),	 which	 targeted	 iSPNs	 and	 dSPNs,	30	
respectively,	 received	 two	 injections	 (500	 nL	 per	 site	 at	 100	 nL/min)	 under	 stereotaxic	31	
control	in	the	dorsal	striatum	(AP:	+1.2	mm;	ML:	–1.75	mm;	DV:	–3	mm;	and	AP:	+1.2	mm;	ML:	32	
–1.75	 mm;	 DV:	 –3.3	 mm	 relative	 to	 Bregma)	 of	 a	 Cre-dependent	 virus	 encoding	 GCaMP6s	33	
(AAV-Dj-EF1α-DIO-GCaMP6s;	Stanford	Vector	Core,	titer	5.02	x	1012	vg/ml;	UNC	Vector	Core,	34	
titer	 3.9	 x	 1012	 vg/ml),	 which	 was	 delivered	 through	 a	 cannula	 connected	 to	 a	 Hamilton	35	
syringe	 (10	 µL)	 placed	 in	 a	 syringe	 pump	 (KDS-310-PLUS,	 KDScientific).	 Cannulas	 were	36	
lowered	into	the	brain	and	left	in	place	for	10	min	after	infusion.	Mice	(4–5	weeks	after	virus	37	
injection	or	≥	8	weeks	old	for	A2A(Tg)	mice)	were	then	prepared	for	in	vivo	calcium	imaging.	38	
A	 gradient	 index	 (GRIN)	 lens	 (1.0	 mm	 or	 0.6	 mm	 diameter,	 ID-1050-004605	 or	 ID-1050-39	
004608;	 Inscopix,	 Palo	 Alto,	 CA)	was	 implanted	 into	 the	 dorsal	 striatum	 under	 stereotaxic	40	
control	directly	above	the	injection	site	(AP:	+1.2	mm;	ML:	–1.9	mm;	DV:	–2.8	mm	relative	to	41	
Bregma).	 Once	 the	 lens	 was	 positioned,	 the	 lens	was	 secured	 to	 the	 skull	 using	Metabond	42	
(C&B,	 Sun	 Medical	 Co.	 Ltd,	 Japan)	 and	 protected	 using	 tape.	 Two	 weeks	 after	 lens	43	
implantation,	 a	microendoscope	 baseplate	 (ID-1050-004638;	 Inscopix)	was	 attached	 to	 the	44	
skull	with	Metabond	 in	 the	 optimal	 imaging	 plane	 (550	 µm	 above	 the	 lens	 for	 the	 0.6	mm	45	
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diameter	 lens	 and	~300	 µm	 above	 the	 lens	 for	 the	 1.0	mm	diameter	 lens).	 The	 behavioral	1	
experiments	began	at	least	one	week	after	the	baseplate	was	fixed	to	ensure	that	the	field	of	2	
view	was	adequately	cleared.	3	
	4	
Open-field	behavior.	5	
The	behavior	experiments	were	conducted	 in	an	open	 field	arena	 (40	cm	x	40	cm	x	40	cm,	6	
length	 x	 width	 x	 height)	 with	 white	 walls	 in	 a	 dark	 environment	 (0	 lux).	 Before	 the	 first	7	
recording	session,	mice	were	habituated	to	the	open	field	and	the	microendoscope	for	at	least	8	
5	 consecutive	 days	 by	 using	 a	 dummy	microscope	 (ID-1050-003762;	 Inscopix)	mounted	 in	9	
place	of	the	actual	microscope.	The	animal	behavior	was	recorded	for	30	min	for	4–5	sessions	10	
spaced	 over	 5–7	 days	 using	 a	 camera	 (sampling	 rate:	 40	 fps)	 mounted	 on	 the	 ceiling	11	
approximately	 1.5	 m	 above	 the	 arena	 controlled	 through	 EthoVision	 XT14	 (Noldus).	 One	12	
photon	calcium	imaging	was	sampled	at	20	fps	using	a	nVista	3.0	microendoscope	(Inscopix).	13	
A	 commutator	 (Inscopix)	 attached	 to	 the	 ceiling	 was	 placed	 between	 the	 camera	 and	 the	14	
acquisition	box	to	minimize	cable	entanglement.	To	prevent	photobleaching,	calcium	frames	15	
were	acquired	with	a	2	min	OFF	/	3	min	ON	pattern,	and	time	synchronization	between	the	16	
calcium	recordings	and	open-field	videos	was	programmed	and	managed	through	EthoVision	17	
XT14.	18	
At	 the	 end	 of	 some	 recording	 sessions,	 mice	 received	 an	 intraperitoneal	 (i.p.)	 injection	 of	19	
either	saline	or	amphetamine	(3	mg/kg	in	saline)	and	were	immediately	placed	back	into	the	20	
open-field	arena	for	an	additional	45	min	of	behavior	and	calcium	imaging	following	the	same	21	
acquisition	protocol.	Amphetamine	treatment	always	occurred	on	the	last	day	of	recording	to	22	
prevent	any	effect	on	neuronal	activity	due	to	the	long-lasting	effects	of	amphetamine.	23	
	24	
Histology.	25	
After	 the	 behavioral	 experiments	 were	 completed,	 mice	 were	 deeply	 anesthetized	 with	26	
avertin	(2,2,2-tribromoethaol	1.25%,	2-methyl-2-butanol	0.78%;	20	µL/g,	i.p.;	Sigma	Aldrich)	27	
and	transcardially	perfused	with	PBS	followed	by	4%	paraformaldehyde	 in	PBS.	Brain	were	28	
removed	and	postfixed	overnight	at	4°C.	Then,	40-µm	coronal	slices	containing	the	striatum	29	
were	cut	with	a	vibratome	(VT1000	S;	Leica)	and	stored	in	PBS.	Sections	were	washed	for	10	30	
min	in	PBS,	incubated	for	10	min	with	Hoechst	33258	(1:10000	in	PBS),	and	mounted	on	glass	31	
slides	 and	 coverslipped	 with	 Fluoromount.	 Slices	 were	 imaged	 using	 a	 microscope	 (V16;	32	
Zeiss)	confirming	for	all	mice	the	adequate	localization	of	the	lens	in	the	dorsal	striatum.	33	
	34	
Identification	of	behaviors.	35	
To	 identify	 the	 behaviors	 that	 mice	 displayed	 during	 open-field	 explorations	 recorded	36	
through	EthoVision	XT14	(Noldus),	we	combined	deep	learning	tools	and	clustering	methods	37	
to	generate	a	predictive	model	 for	 labelling	behaviors.	First,	 the	x-y	coordinates	of	different	38	
mouse	body	parts	 (nose,	 neck,	 left	 ear,	 right	 ear,	microendoscope	 camera,	 body	 center,	 tail	39	
start,	and	tail	end)	were	identified	using	a	DeepLabCut46	deep	neural	network	trained	using	40	
800	randomly	selected	and	manually	annotated	 frames	 taken	 from	40	different	videos.	The	41	
training	 regimen	 was	 set	 to	 the	 DeepLabCut	 default46.	 Any	 coordinate	 detected	 by	42	
DeepLabCut	with	a	 likelihood	of	 less	 than	0.9	was	 removed	 from	 further	analysis.	 For	each	43	
video	 frame,	 the	 above	 body	 parts	 were	 used	 compute	 six	 features	 describing	 the	 mouse	44	
posture:	 the	 body	 speed,	 which	 was	 computed	 as	 the	 projection	 of	 the	 body	 center	 speed	45	
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vector	 along	 the	 mouse	 body	 axis;	 the	 head	 speed,	 which	 was	 defined	 as	 the	 norm	 of	 the	1	
difference	between	the	body	center	speed	vector	and	the	camera	speed	vector;	the	movement	2	
angle,	which	was	calculated	as	the	angle	between	the	body	center	speed	vector	in	the	previous	3	
and	 subsequent	 frames;	 the	 body	 length,	 which	 was	 calculated	 as	 the	 sum	 of	 the	 distance	4	
between	the	neck	and	body	center	and	 the	distance	between	the	body	center	and	 tail	 start;	5	
the	neck	elongation,	which	was	measured	as	the	distance	between	the	neck	and	body	center;	6	
and	the	head	elevation,	which	was	calculated	as	the	distance	between	the	neck	and	the	point	7	
defined	by	the	orthogonal	projection	of	the	camera	position	along	the	vector	orthogonal	to	the	8	
vector	defined	by	ears	positions.	The	temporal	evolution	of	these	six	features	was	smoothed	9	
over	 20	 frames.	 Then,	 using	 a	 quarter	 of	 the	 data	 points,	 a	 nonlinear	 dimension	 reduction	10	
algorithm	(t-distributed	stochastic	neighbor	embedding,	t-SNE)	was	applied	to	identify	potent	11	
clusters	in	3	dimensions.	Ten	replications	of	the	t-SNE	algorithm	were	computed	for	the	same	12	
data.	 The	 clusters	 were	 then	 identified	 using	 a	 Gaussian	 mixture	 model	 (GMM).	 Fifty	13	
replications	 of	 the	 GMM	 clustering	 with	 random	 initializations	 were	 calculated	 for	 each	14	
individual	t-SNE	replicate.	The	resulting	500	classifications	of	the	frames	were	subsequently	15	
clustered	 using	 the	 Hamming	 distance	 to	 identify	 groups	 of	 frames	 that	 were	 consistently	16	
classified	 together	 by	 the	 tSNE	 and	GMM	methods.	 Clusters	with	 less	 than	 20	 frames	were	17	
removed.	 The	 remaining	 clusters	 were	 merged	 in	 ascending	 order	 using	 the	 Wasserstein	18	
distance	(aka	earth	mover’s	distance)	until	a	cutoff	of	1	was	reached.	The	resulting	clusters	19	
were	 manually	 registered	 by	 visually	 inspecting	 the	 corresponding	 video	 frames	 and	20	
evaluating	 the	 distribution	 of	 cluster	 elements	 in	 the	 feature	 space	 as	 one	 of	 the	 following	21	
behaviors:	locomotion	fast	(body	speed	greater	than	~15	cm/s);	locomotion	straight	(nonzero	22	
body	speed,	movement	angle	of	approximately	0);	locomotion	turn	right	(nonzero	body	speed,	23	
nonzero	 positive	 movement	 angle);	 locomotion	 turn	 left	 (nonzero	 body	 speed,	 nonzero	24	
negative	 movement	 angle);	 still	 turn	 right	 (body	 speed	 of	 approximately	 0	 cm/s,	 nonzero	25	
positive	 movement	 angle);	 still	 turn	 left	 (body	 speed	 of	 approximately	 0	 cm/sec,	 nonzero	26	
negative	 movement	 angle);	 head	 up	 (body	 speed	 of	 approximately	 0	 cm/s,	 small	 neck	27	
elongation,	 high	 head	 elevation);	 rearing	 (body	 speed	of	 approximately	 0	 cm/s,	 small	 body	28	
length,	small	neck	elongation,	high	head	elevation);	grooming	(speed	of	approximately	0	cm/s,	29	
nonzero	 camera	 speed,	 small	 body	 length,	 large	 movement	 angle	 variations);	 locomotion	30	
sniffing	 (nonzero	 body	 speed,	 large	 body	 length,	 high	 neck	 elongation);	 still	 sniffing	 (body	31	
speed	of	approximately	0	cm/s,	large	body	length,	high	neck	elongation);	or	immobility	(body	32	
speed	of	approximately	0	cm/s,	camera	speed	approximately	of	0	cm/s).	Finally,	using	these	33	
defined	clusters	and	their	distributions	in	the	feature	space,	we	evaluated	for	each	frame	its	34	
likelihood	of	belonging	to	each	behavior	cluster.	The	behavior	was	determined	according	to	35	
the	highest	likelihood.	Any	behavior	episode	of	less	than	100	ms	(i.e.,	4	frames)	was	removed.	36	
In	 cases	 in	 which	 some	 video	 frames	 were	 unlabeled,	 the	 first	 half	 of	 these	 series	 were	37	
attributed	 to	 the	 previous	 behavior,	 while	 the	 second	 half	 was	 attributed	 to	 the	 following	38	
behavior.	 The	 resulting	 identification	 of	 spontaneous	 mouse	 behavior	 in	 the	 open	 field	39	
exploration	was	systematically	visually	inspected	to	ensure	proper	classification.	40	
	41	
Calcium	signal	extraction,	deconvolution	and	longitudinal	cell	registration.	42	
The	 calcium	 movies	 were	 preprocessed	 for	 spatial	 binning	 (downsampled	 by	 4;	 OpenCV,	43	
Python)	and	subsequently	motion-corrected	and	analyzed	using	CaImAn18	to	take	advantage	44	
of	the	capabilities	offered	by	the	constrained	nonnegative	matrix	factorization	for	endoscopic	45	
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data	 (CNMF-E)	 algorithm	 to	 estimate	 and	 correct	 for	 background	 neuron	 somata19.	 The	1	
temporal	 CNMF-E	 components	 were	 manually	 curated	 to	 remove	 components	 with	 poor	2	
signal-to-noise	 ratios	 (peak-to-noise	 ratio	 of	 less	 than	 ~3),	 large	 baseline	 fluctuations,	 or	3	
inappropriate	 spatial	 footprints.	 The	 selected	 temporal	 calcium	 components	 were	 also	4	
deconvolved	 to	 estimate	 spike	 trains	 in	 the	 calcium	 measurements	 using	 MLspike20.	 To	5	
register	 cells	 across	 imaging	 sessions	 for	 the	 same	animal,	we	used	CellReg29,	which	uses	a	6	
probabilistic	method	to	automatically	register	cells	that	are	present	in	two	or	more	recordings	7	
from	the	same	mouse.	8	
To	control	for	longitudinal	registration,	two	control	 lists	of	registered	pairs	of	cells	between	9	
pairs	of	sessions	were	generated:	the	first	relied	on	a	random	shuffling	of	registered	neurons	10	
in	one	of	the	two	sessions,	while	the	second	relied	on	replacing	all	the	neurons	identified	in	11	
one	of	the	two	sessions	with	their	closest	neighbor.	12	
	13	
Quantification	of	neuronal	activation	similarity	and	behavioral	similarity.	14	
Two	measures	of	neuronal	similarity	were	used:	 the	 first	 compared	 the	neuronal	activation	15	
during	each	behavior	over	time	during	one	recording	session	(or	between	recording	sessions	16	
using	 pairs	 of	 longitudinally	 registered	 cells	 present	 in	 both	 sessions),	 while	 the	 second	17	
compared	neuronal	activation	between	different	behaviors	within	a	given	recording	session.	18	
For	the	measure	of	the	neuronal	activation	similarity	for	each	behavior	during	one	session	(30	19	
min	 long),	 we	 first	 split	 this	 session	 into	 two	 15-min	 halves.	 For	 each	 time	 period,	 we	20	
calculated	for	each	behavior	the	average	value	over	time	(15	min)	of	the	deconvolved	activity	21	
for	 each	 neuron,	 denoted	 as	 X1	 and	 X2.	 The	 similarity	 was	 evaluated	 as	 1	 –	 ||	 X1/||X1||	 –	22	
X2/||X2||	||,	where	||X||	is	the	Euclidean	norm	of	X.	As	a	control,	the	same	similarity	metric	was	23	
computed	by	calculating	X1	and	X2	based	on	all	possible	partitions	of	30	min	into	two	periods	24	
using	5-min-long	segments.	We	also	calculated	the	neuronal	similarity	between	odd	and	even	25	
frames	 by	 computing	 X1	 and	 X2	 in	 odd	 and	 even	 calcium	 frames.	 Finally,	 the	 neuronal	26	
activation	 similarity	was	 also	 evaluated	 for	 each	 behavior	 by	 calculating	X1	 in	 one	 episode	27	
every	two	episodes	and	calculating	X2	in	the	remaining	episodes	of	each	behavior.	The	spatial	28	
shuffle	similarity	was	calculated	as	the	mean	of	10	random	permutations	of	indices	from	X2.	29	
In	addition,	the	neuronal	activation	similarity	between	pairs	of	behaviors	was	calculated	using	30	
the	 same	 formula	as	above.	The	average	neuronal	activity	 for	each	behavior	was	 calculated	31	
over	 the	 duration	 of	 the	 entire	 session	 (30	 min)	 except	 otherwise	 mentioned,	 and	 the	32	
similarity	 was	 computed	 for	 each	 pair	 of	 behaviors.	 The	 distance	 between	 behaviors	33	
(behavioral	distance)	was	estimated	for	each	pair	of	identified	behaviors	as	the	summation	of	34	
the	Wasserstein	 distances	 for	 each	 of	 the	 six	 features	 describing	 the	mouse	 posture	 (body	35	
speed,	head	speed,	movement	angle,	body	 length,	neck	elongation,	and	head	elevation).	The	36	
similarity	 between	 behaviors	 (behavioral	 similarity)	 was	 calculated	 as	 the	 opposite	 of	 the	37	
behavioral	 distance.	 Similar	 results	 were	 obtained	 using	 similarity	 metrics	 based	 on	 the	38	
Wasserstein	 distance	 or	 Bhattacharyya	 distance.	 To	 evaluate	 the	 relationship	 between	 the	39	
neuronal	 activation	 similarity	 and	 the	 behavioral	 similarity,	 we	 used	 the	 Spearman	40	
correlation	coefficient.	41	
For	all	of	the	above	experiments,	if	the	sampling	duration	over	which	the	average	activity	was	42	
computed	was	less	than	5	s,	the	data	were	excluded	from	further	analyses.	43	
	44	
Support	vector	machine	decoding	of	behavior	based	on	SPNs	activity.	45	
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To	 decode	 behaviors	 based	 on	 neuronal	 activity,	we	 trained	 a	 set	 of	 binary	 support	 vector	1	
machine	 (SVM)	classifiers	 for	multiclass	classification	using	 the	one-vs.-one	strategy	 (scikit-2	
learn	Python	package)47.	The	training	was	performed	using	5-fold	cross	validation	to	predict	3	
the	detected	behavior	time	series,	with	the	deconvolved	calcium	activity	convolved	over	a	500	4	
ms	square	window.	The	outputs	of	the	classifiers	were	combined,	and	the	behavior	with	the	5	
highest	 number	 of	 votes	was	 identified	 as	 the	most	 likely	 behavior.	 The	 decoding	 accuracy	6	
was	estimated	as	the	fraction	of	time	bins	during	which	the	predicted	behavior	corresponded	7	
to	 the	 observed	 behavior.	 The	 behavior	 reconstruction	 error	 was	 calculated	 using	 the	8	
behavior	distance	between	 the	predicted	and	observed	behaviors.	Alternatively,	 to	estimate	9	
the	 capability	 of	 SVM	 classifiers	 to	 separate	 one	 given	 behavior	 from	 any	 other	 behavior,	10	
which	is	referred	in	the	text	as	one	behavior	vs.	rest	decoding,	we	calculated	the	accuracy	as	11	
the	simple	matching	coefficient	between	the	observed	and	predicted	behaviors	(i.e.,	the	true	12	
positive	prediction	for	this	behavior	and	the	true	negative	prediction	for	this	behavior).	13	
The	chance	 level	 for	 the	decoding	performance	was	obtained	by	 training	SVM	classifiers	on	14	
time-lagged	data.	Briefly,	we	flipped	the	behavior	time	series	(the	first	element	becomes	the	15	
last	and	vice	versa)	and	applied	a	cyclic	permutation	with	a	random	time	lag.	This	procedure	16	
destroys	 the	 relationships	 between	 the	 behavior	 and	 calcium	 activity	 time	 series	 but	17	
preserves	the	time	correlations	of	the	neural	activity	time	series.	For	each	recording	session,	18	
10	 random	 time	 lags	 were	 used.	 For	 each	 random	 time	 lag,	 we	 trained	 a	 new	 set	 of	 SVM	19	
classifiers	and	evaluated	its	performance	in	predicting	the	original	behavior	using	the	original	20	
calcium	 time	 series.	 When	 plotted,	 the	 individual	 points	 for	 SVM	 decoding	 based	 on	 the	21	
shuffled	data	represent	the	average	of	the	10	random	time	lags.	22	
For	 longitudinal	 predictions	 between	 pairs	 of	 recording	 sessions,	 the	 SVM	 classifiers	 were	23	
trained	on	one	session	using	only	neurons	that	were	registered	in	these	two	sessions	and	the	24	
corresponding	behavior	time	series.	The	decoding	performance	was	evaluated	using	calcium	25	
events	 from	 the	 second	 session	of	 cells	 registered	 in	both	 sessions.	 If	 less	 than	40	neurons	26	
were	identified	in	both	sessions,	the	analysis	was	discarded.	27	
	28	
Detection	of	behavior-active	neurons.	29	
To	characterize	the	statistical	significance	of	neuronal	activation	during	identified	behaviors,	30	
we	employed	a	behavior	information	criterion	that	was	calculated	as	the	mutual	information	31	
score	 between	 the	 calcium	 event	 occurrence	 and	 the	 mouse	 behavior.	 The	 behavior	32	
information	for	each	cell	was	calculated	using	the	following	formula:	33	

𝐵𝐼 = 𝑝!
𝑓!
𝑓

!

!!!

𝑙𝑜𝑔2
𝑓!
𝑓 	

where	i	is	the	behavior,	pi	is	the	fraction	of	time	spent	performing	behavior	i,	fi	is	the	average	34	
event	frequency	during	behavior	i,	and	f	is	the	overall	average	event	frequency.	We	corrected	35	
this	measure	for	sampling	bias	in	the	information	measures	by	using	shuffled	distributions	of	36	
the	 events.	 For	 each	 cell,	 we	 generated	 1000	 random	 permutations	 of	 the	 events	 and	37	
calculated	a	behavior	information	value	for	each	permutation,	thus	generating	1000	random	38	
behavior	 information	values	 to	which	 the	actual	behavior	 information	value	was	compared.	39	
We	labeled	a	cell	as	a	behavior-active	cell	if	the	behavior	information	value	was	more	than	4	40	
sigma	from	the	shuffled	distribution	(significance	of	BI	above	4)25,26.	41	
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When	 this	 method	 was	 used	 in	 conjunction	 with	 SVM-based	 predictions,	 analyses	 were	1	
discarded	if	less	than	40	neurons	were	labeled	as	behavior-active	in	a	given	session.	2	
	3	
Detection	of	behavior-silent	(and	behavior-inactive)	neurons.	4	
To	characterize	cells	that	were	consistently	silent	during	a	given	behavior,	we	calculated	for	5	
each	neuron	and	each	behavior	 the	average	event	 rate	 for	all	 episodes	of	 this	behavior.	We	6	
then	 evaluated	 for	 each	 cell	 and	 each	 behavior	 an	 activation	 occurrence	 value,	 which	7	
described	how	often	this	neuron	was	active	during	episodes	of	this	behavior	(event	rate	>	0).	8	
For	 each	behavior,	 a	 neuron	was	 labeled	 as	 behavior-silent	 if	 its	 activation	occurrence	was	9	
less	 than	0.025.	Alternatively,	 for	each	behavior,	we	 labeled	a	cell	as	behavior-inactive	 if	 its	10	
average	event	rate	during	this	behavior	was	less	than	0.1	Hz.	11	
When	 this	 method	 was	 used	 in	 conjunction	 with	 SVM-based	 predictions,	 analyses	 were	12	
discarded	if	 less	than	20	neurons	were	labeled	as	behavior-silent	(or	behavior-inactive)	in	a	13	
given	session.	14	
	15	
Quantification	and	statistical	report.	16	
Unless	 otherwise	 stated,	 the	mean	±	 standard	 error	 of	 the	mean	 (SEM)	was	used	 to	 report	17	
data.	For	all	statistics,	we	used	a	linear	mixed-effects	model	followed	by	analysis	of	variance	18	
to	 account	 for	 between-subject	 and	within-subject	 effects	 in	 the	 case	 of	 incomplete	 design	19	
(exclusion	criteria	mentioned	in	the	above	sections).	To	compare	the	dSPN	and	iSPN	groups,	20	
post	 hoc	 analyses	were	 performed	 using	 permutation-based	 t	 tests.	 For	 hypothesis	 testing,	21	
the	significance	was	set	to	0.05.	Statistical	analyses	were	performed	in	MATLAB	(MathWorks).	22	
Animals	were	 excluded	 prior	 to	 data	 acquisition	 if	 the	 imaging	 quality	 or	 focal	 plane	were	23	
poor	or	after	acquisition	but	before	secondary	analyses	if	movement	artifacts	were	impossible	24	
to	correct	using	CaImAn.	The	details	of	the	statistical	procedures	and	results	are	provided	in	25	
Supplementary	Table	1.	26	
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