
From Easy to Hopeless - Predicting the Difficulty of

Phylogenetic Analyses

Julia Haag1*, Dimitri Höhler1, Ben Bettisworth1 and Alexandros Stamatakis1,2

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies,
69118 Heidelberg, Germany.

2Institute for Theoretical Informatics, Karlsruhe Insititute of Technology, 76131
Karlsruhe, Germany.

*Corresponding author(s). E-mail(s): julia.haag@h-its.org;

Abstract

Phylogenetic analyses under the Maximum Likelihood model are time and resource intensive. To
adequately capture the vastness of tree space, one needs to infer multiple independent trees.
On some datasets, multiple tree inferences converge to similar tree topologies, on others to mul-
tiple, topologically highly distinct yet statistically indistinguishable topologies. At present, no
method exists to quantify and predict this behavior. We introduce a method to quantify the
degree of difficulty for analyzing a dataset and present Pythia, a Random Forest Regressor that
accurately predicts this difficulty. Pythia predicts the degree of difficulty of analyzing a dataset
prior to initiating Maximum Likelihood based tree inferences. Pythia can be used to increase
user awareness with respect to the amount of signal and uncertainty to be expected in phylo-
genetic analyses, and hence inform an appropriate (post-)analysis setup. Further, it can be used
to select appropriate search algorithms for easy-, intermediate-, and hard-to-analyze datasets.

Keywords: Phylogenetics, Maximum Likelihood, Machine Learning, Random Forest Regression

1 Introduction

The goal of a phylogenetic inference is to find the
phylogenetic tree that best explains the given bio-
logical sequence data. Since the number of possible
tree topologies grows super-exponentially with the
number of taxa, one cannot compute and score
every possible tree topology. Instead, one deploys
tree inference heuristics that explore the tree space
to find a tree with a ‘good’ score, for example
under the Maximum Likelihood (ML) criterion
[1]. However, these heuristics, do not guarantee
that the tree inference will converge to the globally
optimal tree. Therefore, under ML, one typically

infers multiple trees and subsequently summarizes
the inferred, locally optimal trees via a consensus
tree. One can observe that for some datasets, all
individual, independent ML tree searches converge
to topologically similar trees. This suggests that
the likelihood surface of such datasets exhibits a
single likelihood peak, yielding the dataset easy to
analyze. For other datasets, one observes that the
independent tree inferences converge to multiple
topologically distinct, yet, with respect to their
ML score, statistically indistinguishable, locally
optimal trees. These datasets are hence difficult
to analyze, and we say that they exhibit a rugged

1

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

2 2 RESULTS

likelihood surface. This diverse behavior of phylo-
genetic tree searches has already been reported in
several publications [2, 3, 6]. In general, the more
tree inferences we perform, the better our under-
standing of the dataset’s behavior and coverage of
the respective tree space will be. However, under
ML, inferring a single tree can already require mul-
tiple hours or even days of CPU time. In order to
save time and resources, an optimal analysis setup
will perform as few tree inferences as necessary.
For easy-to-analyze datasets with a single likeli-
hood peak, we require fewer and less involved tree
search heuristics and bootstrap replicate searches
to adequately sample the tree space and obtain
stable support values, as opposed to difficult-to-
analyze datasets with rugged likelihood surfaces.
To the best of our knowledge, and despite anec-
dotal reports on the behavior of difficult datasets,
there does not yet exist a quantifiable definition of
dataset difficulty.

Here, we initially introduce such a difficulty
quantification based on the result of 100 ML tree
inferences per dataset. We then show that this
quantification adequately represents the behavior
of the ML searches on the dataset. Since exe-
cuting 100 ML tree searches is computationally
prohibitive in general, we train a Random For-
est Regressor [23] that can predict the difficulty
of a given Multiple Sequence Alignment (MSA)
that is exclusively based on MSA attributes and
some fast and thus substantially less expensive
parsimony-based tree inferences [9, 10]. Our dif-
ficulty predictor Pythia predicts the difficulty of
a dataset on a scale ranging between 0.0 (easy)
to 1.0 (difficult). We attain a high prediction
accuracy, with a mean absolute prediction error
(MAE) of 0.09 and a mean absolute percentage
error (MAPE) of 2.9%. Computing the prediction
features and predicting the difficulty is on average
approximately five times faster than a single ML
tree inference.

Using Pythia prior to the actual phylogenetic
analyses allows for faster analyses, as the number
of required tree inferences can be carefully con-
sidered before performing costly tree inferences.
Note that the predicted difficulty does not directly
predict the number of tree inferences required to
sufficiently sample the tree space, as this number
also depends on the implemented tree inference
heuristic. We therefore suggest that Pythia should
be included in ML phylogenetic analysis pipelines.

The difficulty prediction we present here focuses
on ML analyses. However, we also provide anecdo-
tal evidence that the predicted difficulty correlates
with the convergence diagnostics of Markov chain
Monte Carlo (MCMC) based Bayesian phyloge-
netic inference. Besides informing the computa-
tional setup of phylogenetic analyses, Pythia can
also potentially adjust user expectations regard-
ing the stability and absolute values of bootstrap
support as well as related support measures. For
instance, the perhaps most common and recurrent
user inquiry on the RAxML Google user support
group concerns possible reasons for often unex-
pected and disappointingly low support values.

Pythia is available as open source software
libraries in C and Python. Both libraries include
the trained Random Forest Regressor and the
computation of the required prediction features.
The C library CPythia is an addition to the COre
RAXml LIBrary (Coraxlib) [15] and is available
at https://github.com/tschuelia/CPythia. Addi-
tionally, we provide PyPythia, a lightweight,
stand-alone Python library, including a respec-
tive command line interface. PyPythia is avail-
able at https://github.com/tschuelia/PyPythia.
Finally, by using the phylogenetic tree data that
is being collected by our dynamically growing
RAxML Grove [4] database, we regularly retrain
Pythia and update the predictor in both libraries.

2 Results

2.1 Difficulty Prediction Accuracy

Our training data contains 3250 empirical MSAs
obtained from TreeBASE [5]. We divide this train-
ing data into a training set (80%) and a test set
(20%). The training set is used for training the
predictor and the test set is exclusively used for
evaluating the trained predictor. Pythia predicts
the degree of difficulty on a scale between 0.0 to
1.0. A value of 1.0 indicates a difficult (hopeless)
MSA with a rugged tree space. We expect such
an MSA to exhibit multiple, statistically indistin-
guishable locally optimal yet topologically highly
distinct trees. In contrast, we expect an MSA with
a value of 0.0 to be easy to analyze by requir-
ing only few independent tree searches. Pythia
attains a mean absolute error (MAE) of 0.09.
This corresponds to a mean average percentage
error (MAPE) of 2.9%. The mean squared error

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://github.com/tschuelia/CPythia
https://github.com/tschuelia/PyPythia
https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

2.2 Runtime of Feature Computation 3

(MSE) is 0.02 and the R2 score is 0.79. Supplemen-
tary Figures S5a and S5b show the distribution of
prediction errors for the training data. When ana-
lyzing the prediction error, we notice that Pythia
tends to overestimate the difficulty of MSAs with
a difficulty ≤ 0.3 and underestimate the difficulty
for MSAs with a difficulty > 0.3 (Supplemen-
tary Figure S4). We suspect that this is caused
by an uneven distribution of difficulties in the
training data. Our training data contains substan-
tially more ‘easy’ MSAs than difficult MSAs: for
approximately 60% of MSAs the assigned diffi-
culty is ≤ 0.3 and only about 10% have a difficulty
≥ 0.7 (Supplementary Figure S2). We expect this
effect to cancel out in the long run as we regularly
retrain Pythia.

As stated above, the predicted difficulty is not
intended to predict the number of tree inferences
required to sufficiently sample the tree space, as
this number also depends on the implemented
tree inference heuristic. However, to demonstrate
the predictive power of Pythia, we analyze the
impact of the prediction on the quality of tree
inferences with RAxML-NG [7]. To this end, we
compare the log-likelihoods obtained from 100
independent RAxML-NG tree searches (LnLs100)
to the log-likelihoods of predicted difficulty · 100
tree searches (LnLspred) for all MSAs in our train-
ing data. We compare the respective best found
log-likelihoods LnL∗

100 and LnL∗
pred, as well as the

average log-likelihoods LnL100 and LnLpred.
For 81% of the MSAs, the best found log-

likelihoods LnL∗
100 and LnL∗

pred are identical. For
the remaining 19% of MSAs, LnL∗

pred is on aver-
age ≪ 0.01% worse than LnL∗

100. The average
log-likelihoods LnL100 and LnLpred deviate on
average by 0.01% only.

2.2 Runtime of Feature
Computation

Computing the selected set of prediction features
takes on average 5 ± 31 s (µ ± σ) with a median
runtime of 1 s. For our training data, this corre-
sponds to a runtime of 21.5 ± 88.6% relative to
the runtime for inferring a single ML tree using
RAxML-NG. The median is 6.8%. The high aver-
age compared to the median, and the large spread,
are due to the fact that the runtime of comput-
ing the prediction features predominantly depends
on the size of the MSA. The larger the MSA, the

faster the feature computation is compared to a
single ML tree inference. Supplementary Figure
S3 depicts this correlation. For benchmarking the
runtimes of the feature computation, we used
the implementation in our Python library. When
running a subsequent ML tree inference, the run-
time overhead induced by the prediction can be
amortized by passing the inferred maximum par-
simony trees as starting trees to the ML inference
tool (e.g, RAxML-NG). Instead of re-computing
parsimony starting trees, the RAxML-NG sim-
ply initiates its tree searches on the provided
parsimony starting trees.

2.3 Feature Importance

Pythia predicts how difficult an MSA will be to
analyze based on eight features. Four of these are
direct attributes of the MSA: the sites-over-taxa
ratio, the patterns-over-taxa ratio, the percent-
age of gaps, and the percentage of invariant sites.
Two features quantify the amount of information
in the MSA: the Shannon entropy [8] and the Boll-
back multinomial [21]. Two additional features are
based on the rapid parsimony tree inferences: we
infer 100 parsimony trees via a randomized step-
wise addition order procedure and compute their
average pair-wise topological distances using the
Robinson-Foulds distance metric (RF-Distance)
[11], as well as the proportion of unique topologies
in this set of 100 parsimony trees. In Section 4.5 we
provide a more detailed description of the features
as well as a rationale for selecting these features.
Table 1 shows the prediction importances of the
eight features upon which the difficulty prediction
is based. We use the permutation importance [16]
for computing feature importances. As the table
shows, the difficulty prediction heavily relies on
the average RF-Distance and the proportion of
unique topologies among the inferred parsimony
trees. This is expected, as our difficulty definition
under ML reflects the ruggedness of the tree space.

2.4 MCMC Convergence Prediction

The features we use to predict the difficulty of
an MSA are independent of the inference method
used for the subsequent analyses. However, as we
describe in Section 4.1, our difficulty quantifica-
tion is based on 100 tree inferences using RAxML-
NG which implements the ML method. Therefore,

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

4 3 DISCUSSION

Feature
Impurity
importance

% Unique topologies
parsimony trees

42.9%

RF-Distance
parsimony trees

33.2%

Entropy 17.0%
Patterns-over-taxa 13.6%
% Gaps 2.5%
Bollback 2.3%
Sites-over-taxa 1.5%
% Invariant 0.6%

Table 1 Importance of the subset of features we use to
train Pythia.

our predictions might be biased towards ML anal-
yses and potentially not describing the ruggedness
of the tree space in a model-independent manner.
To assess if our predictions can be generalized,
we anecdotally compare our difficulty prediction
to convergence diagnostics of MCMC based phy-
logenetic analyses. For three DNA MSAs (D27
[17], D125 [19], and D354 [20]) we perform MCMC
analysis using MrBayes [22]. We run four chains
for 10 million generations using the general time
reversible (GTR) model with four Γ rate cate-
gories to account for among site rate heterogene-
ity. MrBayes reports the average standard devia-
tion of split frequencies (ASDSF) as a convergence
diagnostic metric and suggests executing addi-
tional generations as long as the ASDSF is ≥ 0.01.
D125 is an easy dataset with a presumable clear,
single likelihood peak. As expected, the assigned
difficulty is low (≪ 0.1) and MrBayes appears
to converge: the ASDSF value drops below 0.01
after 150 000 generations and is ≪ 0.01 after 10
million generations. D27 exhibits at least two dis-
tinct likelihood peaks, suggesting that the MSA
is rather difficult to analyze [18]. The difficulty
according to our definition is 0.45 and after 10
million generations MrBayes reports an ASDSF of
0.011, indicating that the MCMC did not converge
to a single local optimum. D354 exhibits a rugged
likelihood surface [20], so we expect a high diffi-
culty and no convergence. The assigned difficulty
for D354 is 0.6 and after 10 million generations
the ASDSF is 0.007. According to MrBayes this
suggests convergence and adding more generations
should improve the ASDSF. However, we observe
that the ASDSF did not improve during the last 2

million generations, and adding more generations
did not further improve the ASDSF.

2.5 Bootstrap Support Values

As already mentioned, the perhaps most com-
mon question on the RAxML user support Google
group is related to disappointingly low support
values. Therefore, we anecdotally test the capabil-
ity of Pythia to adjust user expectations regard-
ing the stability of bootstrap support values
and related support measures by means of three
example MSAs. We use the same MSAs for the
same reasons as for the anecdotal MCMC conver-
gence prediction conducted above: D27, D125, and
D354. For each MSA, we run RAxML-NG using
its --all execution mode. This mode infers 20
ML trees for the MSA, infers 1000 bootstrap repli-
cate trees, and draws support values on the tree
with the highest log-likelihood (best-known tree).
To anecdotally show the correlation between the
difficulty prediction value and the bootstrap sup-
port values, we compute the average and standard
deviation µ ± σ of bootstrap support values on
the respective best-known trees. As stated above,
D125 is an easy dataset exhibiting a clear sig-
nal with an assigned difficulty ≪ 0.1. This is
reflected by the bootstrap support values: µ±σ =
97.64 ± 8.38%. The assigned difficulty for D27 is
0.45 and RAxML-NG reports the bootstrap sup-
port values as µ ± σ = 51.5 ± 29.02%. Dataset
D354 is the most difficulty among the three exam-
ple MSAs with a predicted difficulty of 0.6. Hence,
the bootstrap support values are the lowest among
the three MSAs with µ±σ = 43.41±32.48%. Since
computing bootstrap support values is time and
resource intensive, we decided against computing
the bootstrap support for all MSAs in our com-
prehensive training data. Instead, we only show
anecdotal evidence for three representative MSAs
in this paper.

3 Discussion

Predicting the difficulty of MSAs to gain a priori
insights into the expected behavior of phyloge-
netic tree searches and the shape of the likelihood
surface constitutes a vital step towards faster phy-
logenetic inference and a more targeted setup
of the computational analyses and post-analyses.

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

5

Our difficulty prediction allows for careful consid-
eration of the number of tree inference required
to sufficiently sample tree space prior to ML
analyses. Especially for easy MSAs, this has the
potential to save valuable time and resources. In
this paper, we presented a quantifiable definition
of difficulty for MSAs and showed that this defi-
nition adequately represents the tree space of the
dataset. Using this definition, we trained Pythia,
a Random Forest Regressor, to predict the diffi-
culty on a scale ranging between 0.0 to 1.0. We
showed that Pythia achieves a high prediction
accuracy. We further showed that the runtime to
compute the prediction features is on average only
approximately one fifth of the runtime required
for inferring a single ML tree with RAxML-NG.
The more taxa and sites the MSA has, the faster
the feature computation is relative to a single ML
tree inference, making Pythia especially valuable
for phylogenetic analyses on MSAs with many
sites and taxa. We conclude that predicting the
difficulty of an MSA prior to any tree inference
allows for faster analyses, informing user expecta-
tions regarding the stability of the inferred tree,
and Pythia should be included in ML phyloge-
netic inference pipelines. Using our dynamically
growing RAxML Grove database, we will perpet-
ually enlarge and diversify our training data, and
regularly retrain Pythia.

While the difficulty prediction is targeted
towards ML phylogenetic analyses, we anecdotally
showed that the predicted difficulty based on ML
phylogenetic inference correlates with convergence
diagnostics of MCMC methods. Investigating this
correlation more systematically will be subject of
future work.

Analogous, we anecdotally show that Pythia
can also potentially inform about the stability and
absolute values of bootstrap support. Confirming
this observation on a broader set of MSAs remains
future work.

Another avenue for future work is to imple-
ment a difficulty-aware tree inference heuristic.
Depending on the difficulty of the MSA, we
can, for example, apply different heuristic search
strategies. For instance, on easy MSAs it might
be sufficient to explore the tree space via a less
thorough exploration strategy, that is, by only
using Nearest-Neighbor-Interchange (NNI) moves.

In comparison to Subtree Pruning and Regraft-
ing (SPR) moves, this reduces the tree topology
search complexity from O(n2) to O(n) [27].

Further potential applications of Pythia
include, for instance, the assembly of benchmark
dataset collections for testing novel phylogenetic
models and tools which cover a broad and repre-
sentative difficulty range. Pythia can also serve as
a criterion during the empirical dataset assembly
process. For instance, additional sequences data
can be added to yield the dataset easier to analyze.

4 Materials and Methods

We formulate the difficulty prediction challenge as
a supervised regression task. The goal is to predict
the difficulty on a scale ranging between 0.0 (easy)
to 1.0 (difficult). We face two main challenges: (i)
obtaining a sufficiently large set of MSAs to train
Pythia on, ideally consisting of empirical MSAs,
and (ii) obtaining ground-truth difficulties that
represent the actual difficulty of the training data.
In the following, we present how we obtain the
training data and assign ground-truth difficulties.
We further present our trained regression model,
motivate how we select the features we use for dif-
ficulty prediction, and finally present our heuristic
for regularly retraining the regression model.

4.1 Quantification of Difficulty

In order to train a reliable difficulty predictor,
we need a reliable ground-truth label for each
training datum. To obtain such labels, we require
a quantifiable difficulty definition. To stringently
quantify the difficulty of an MSA, we would have
to explore the entire tree space. Since this is com-
putationally not feasible, we need to rely on a
heuristic definition. Our heuristic to quantify the
difficulty is based on 100 ML tree inferences. In
our analyses, we use RAxML-NG. First, we infer
Nall = 100 ML trees and compute the average
pairwise relative RF-Distance between all trees
(RFall), as well as the number of unique topologies
among the 100 inferred trees (N∗

all). We determine
the best tree among the 100 inferred trees accord-
ing to the log-likelihood, and compare all trees to
this best tree using statistical significance tests.
We assign trees that are not significantly worse
than the best tree to a so-called plausible tree set.
In our analyses, we use the statistical significance

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

6 4 MATERIALS AND METHODS

tests as implemented in the IQ-TREE software
package [12]. Due to the continuing debate about
the most appropriate significance test for com-
paring phylogenetic trees, we use the approach
suggested by Morel et al. [6]: we only include trees
that pass all significance tests in the plausible tree
set. We further refer to the number of trees in this
plausible tree set as Npl. We compute the average
pairwise relative RF-Distances between trees in
the plausible tree set (RFpl), as well as the number
of unique topologies (N∗

pl). Finally, we compute
the difficulty of the dataset based on the following
formula:

difficulty =
1

5
·
[
RFall +RFpl (1)

+
N∗

all

Nall
+

N∗
pl

Npl
(2)

+

(
1− Npl

Nall

)]
(3)

The reasoning for expression (1) is that if
the RF-Distance is high, the tree space consists
of multiple distinct, locally optimal tree topolo-
gies which characterize a dataset that is difficult
to analyze. With expression (2) the reasoning is
that the tree surface becomes more rugged, the
more distinct locally optimal tree topologies the
tree inference yields, and the more tree topolo-
gies are not significantly different from the best
tree. Finally, the rationale for expression (3) is
that, the more tree inferences yield a plausible
tree, the more informative the MSA will be about
the underlying evolutionary process and the easier
the MSA will be to analyze. Each term is a value
between 0.0 and 1.0, leading to an average value
between 0.0 and 1.0 that quantifies the overall
difficulty.

For each MSA in our training data, we com-
pute the difficulty according to this definition.
To this end, we implement a training data gen-
eration pipeline that automatically performs all
required tree inferences, statistical tests, and com-
putes the difficulty label alongside the features
required for training Pythia. We implement this
pipeline using the Snakemake workflow manage-
ment system [13] and Python 3. The pipeline
code is available at https://github.com/tschuelia/

difficulty-prediction-training-data. In Supplemen-
tary Section 5 we list the software versions we use
in the described pipeline.

4.2 Training Data

We train Pythia using empirical MSAs obtained
from TreeBASE [5]. To date, our training data
consists of 3250 MSAs, of which 74% contain DNA
data and 26% contain Amino Acid (AA) data.
The training data includes partitioned and unpar-
titioned MSAs. We provide a detailed overview
of the training data in Supplementary Section
1. Figure 1 depicts the workflow for training
data generation. For each MSA, we compute the
difficulty according to the above definition as
ground-truth label for supervised training using
the training data generation pipeline. We com-
pute the corresponding prediction features using
our Python library. The set of prediction features
and the corresponding difficulty label form our
training data. For training the regression model,
we split this training data into two sets: a train-
ing set and a test set. The training set comprises
80% of the training data and the test set the
remaining 20%. The test set is exclusively used
for evaluating the predictive power of the diffi-
culty predictor. To ensure an even distribution
of difficulty labels in the training and test sets,
we deploy stratified sampling. Stratified sampling
splits all difficulty labels into disjoint subsets and
draws random samples from each subset indepen-
dently. In principle, using simulated data would
allow us to increase the size of the training data.
However, since simulating data that is comparable
to empirical data constitutes a challenging task
[4], we decided against using additional simulated
data.

4.3 Label Validation

Due to the lack of absolute ground-truth labels,
we need to rely on the inferred difficulty labels.
The motivation of the difficulty prediction is to
limit the number of tree inferences required to
sufficiently sample the tree space and obtain a
representative consensus tree. To verify the label
assignment for each dataset, we conduct the fol-
lowing analysis. We compare the consensus tree
obtained from the plausible tree set constructed
from all 100 ML tree inferences (baseline tree)
to the consensus of the plausible trees we obtain

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://github.com/tschuelia/difficulty-prediction-training-data
https://github.com/tschuelia/difficulty-prediction-training-data
https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

4.3 Label Validation 7

Significance Tests Pairwise  
RF-Distance

Pairwise  
RF-Distance

100 ML tree inferences

 = 100 ML treesNin

 plausible treesNpl

RFpl N*pl

RFin N*in

100 maximum
parsimony tree

inferences

 = 100
parsimony trees

Npars

Pairwise  
RF-Distance

RFpars N*pars

MSA feature
computation

Sites-per-taxa 
Patterns-per-taxa 

% Gaps 
% Invariant  

Entropy 
Bollback

Prediction
FeaturesDifficulty Label

Training Difficulty
Predictor

Training Data Generation Pipeline PyPythia: Prediction Library

Training Data

Training Datum

Fig. 1 Schematic depiction of the training data generation procedure. For each MSA, we compute the difficulty label
based on our difficulty quantification using our training data generation pipeline (left dashed box). We further compute
the prediction features using our Python prediction library PyPythia (right dashed box). Using the difficulty label and the
corresponding prediction features for all MSAs in our training data, we train Pythia.

when inferring only 100 * difficulty trees (predic-
tion tree). Note that for this analysis we use the
difficulty we compute according to the above def-
inition rather than using a predicted difficulty.
We compare the topologies of the consensus trees
using the RF-Distance. The RF-Distance between
the baseline tree and the prediction tree is on

average 9.6 ± 15.8%. This noticeable topologi-
cal difference suggests that either a) the difficulty
labels do not sufficiently represent the tree search
behavior of the dataset, or b) 100 tree infer-
ences do not sufficiently sample the tree space. To
determine the impact of b), we repeatedly sam-
ple 99 trees out of the 100 tree inferences and
compute the consensus tree Ci of the respective

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

8 4 MATERIALS AND METHODS

plausible tree set. We then assess the average
RF-Distance between all consensus trees Ci. For
our training data, this RF-Distance is on average
8.1 ± 14.5%. We conclude that mostly b) causes
the high topological distances between the base-
line tree and the prediction tree. In fact, a high
RF-Distance between the consensus trees Ci for an
MSA is correlated with its difficulty. The Spear-
man’s rank correlation coefficient is 0.88 with a
p-value of 0.0 (≪ 10−300). Thus, the more diffi-
cult the MSA, the higher the topological distances
between the consensus trees Ci will be. Our dif-
ficulty quantification accounts for the remaining
1.5 ± 1.3% topological differences. With this low
RF-Distance, we conclude that our difficulty quan-
tification is sufficiently accurate to capture the
tree space complexity and the behavior of an MSA
under ML based phylogenetic analysis.

4.4 Machine Learning and
Evaluation

During our experiments, we trained distinct
regression algorithms and compared their predic-
tive power according to the R2 score, the MSE,
the MAE, and the MAPE. We divide the train-
ing data into two sets: a training set and a test
set. We use the training set to train the predic-
tion algorithms and the test set to evaluate the
trained predictors on unseen data. We train mul-
tiple different regression models, namely Linear
Regression, Lasso Regression [26], Random Forest
Regression [23], Adaptive Boosting (AdaBoost)
[24], and Support Vector Regression [25]. Random
Forest Regression proves to be the most suit-
able Machine Learning algorithm for the task at
hand, and outperforms all other tested regression
models according to all our metrics. In Supple-
mentary Information Section 3, we present the
results for all trained regression models. Random
Forest Regression is an ensemble method that
averages over the predictions of multiple indepen-
dently trained decision trees. To determine the
optimal set of hyperparameters for the Random
Forest Regression, we implemented a grid search
that tests various combinations of hyperparameter
values. For this grid search, we use an additional
validation set, obtained by further subdividing
the training set. We then perform hyperparameter
optimization using this validation set. Our final
difficulty predictor consists of 100 decision trees

with a maximum depth of 10. To prevent overfit-
ting, we set the minimum number of samples in a
leaf node to 10 and the minimum number of sam-
ples required for a split to 20. Further, we train the
individual decision trees on bootstrapped training
data. We set the sample size for the bootstrap-
ping to 75% of the training data size. Note that
this bootstrapping procedure samples the training
data (features and corresponding label) and is not
the phylogenetic bootstrap.

4.5 Feature Engineering

In our study, we analyze a plethora of distinct
features based on the MSA, trees inferred under
parsimony, and features based on a single ML tree
inference using RAxML-NG. In order to decrease
the runtime of our difficulty prediction, we ana-
lyze the runtime of computing each feature for
all MSAs in our training data, as well as the
importance of the feature for the prediction. Based
on these results, we select the following feature
subset:

• Sites-over-taxa ratio:

Sites

Taxa
=

Number of alignment columns

Number of taxa

• Patterns-over-taxa ratio:

Patterns

Taxa
=

Number of unique sites

Number of taxa

• % Invariant sites: Percentage of fully conserved
sites.

• % Gaps: Proportion of gaps in the MSA.
• Entropy: Shannon Entropy [8] as average over
all per-column/site entropies. See the sup-
plementary information for a more detailed
description.

• Bollback Multinomial: Multinomial test statis-
tic according to Bollback [21]. See the sup-
plementary information for a more detailed
description.

• RF-Distance Parsimony Trees: RF-Distances
between 100 trees inferred using parsimony.

• % Unique Topologies Parsimony Trees: Percent-
age of unique topologies among the 100 inferred
parsimony trees.

In Supplementary Information Section 2 we
present all features we analyzed in more detail,

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

4.6 Retraining the Model 9

alongside the respective feature importance and
runtime to justify the selection of features for this
subset.

4.6 Retraining the Model

Using the anonymized MSAs that we continu-
ously obtain during our RAxML Grove database
updates, we perpetually enlarge the training data
and retrain Pythia. Note that these MSAs are
only available internally in RAxML Grove and
are not publicly available. To limit the amount of
resources required for retraining, we do not include
every incoming, new MSA. We select MSAs based
on a heuristic instead. At the time of writing, we
select the set of new MSAs such that it diver-
sifies the distribution of features in our training
data. Algorithm 1 shows the heuristic for decid-
ing whether to use a given MSA for retraining.
For each feature fi, we compute the respective
histogram Hi on the training data using a pre-
defined number of bins nbins. Next, we compute
the respective feature value for the given MSA
and find the corresponding bin hist bin in the
histogram Hi. The goal is to attain an even dis-
tribution of features, that is, all histogram bins
should have the same height h̄i = 1/nbins. To
quantify the deviation vi from this even distribu-
tion, we divide this desired height h̄i by the actual
height hi of hist bin. The deviation vi is nega-
tively correlated to the number of samples in the
corresponding histogram bin. For bins with fewer
samples than the desired even distribution, the
deviation is > 1. We sum the deviations vi across
all features. We use the given MSA for retraining
if this sum is ≥ 14 or any of the deviations vi is
≥ 4. The rationale for the first threshold is that in
this case, on average, for each feature fi the cor-
responding bin hist bin has only half the desired
height. The rationale for the second threshold is
that in this case, one of the feature bins has only
1/4-th of the desired height.

For all MSAs we select, we compute the
ground-truth label and prediction features as
described in Section 4.2. Based on this enlarged
training data, we retrain Pythia and automatically
update the trained predictor in our Python and C
libraries.

Algorithm 1 Heuristic for deciding whether to
use a given MSA for retraining Pythia.

foreach feature fi do
Hi = histogram(training data, fi, nbins)
feat = compute feature value(MSA)
h̄i = 1/nbins

hist bin = find bin for value(Hi, feat)
hi = height(hist bin)
vi = h̄i/hi

end
V =

∑
vi

analyze msa = V ≥ 14 or max(vi) ≥ 4
return analyze msa

5 Code and Data availability

We provide Pythia as open source software
libraries in C and Python. Both libraries include
the trained Random Forest Regressor and the
computation of the required prediction features.
The C library CPythia is an addition to Coraxlib
and is available at https://github.com/tschuelia/
CPythia. Additionally, we provide PyPythia, a
lightweight, stand-alone Python library, including
a command line interface. PyPythia is available
at https://github.com/tschuelia/PyPythia. The
implemented pipeline to compute the prediction
features and ground-truth difficulty labels for the
training data is available at https://github.com/
tschuelia/difficulty-prediction-training-data. This
repository also contains the training data as par-
quet file.

6 Supplementary Information

Supplementary information is available online.

7 Acknowledgments and
Funding

The authors gratefully acknowledge the support
of the Klaus Tschira Foundation. This project
has received funding from the European Union’s
Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agree-
ment No 764840.

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://github.com/tschuelia/CPythia
https://github.com/tschuelia/CPythia
https://github.com/tschuelia/PyPythia
https://github.com/tschuelia/difficulty-prediction-training-data
https://github.com/tschuelia/difficulty-prediction-training-data
https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

10 7 ACKNOWLEDGMENTS AND FUNDING

References

[1] Yang, Z., Goldman, N. & Friday, A. Maximum
Likelihood Trees from DNA Sequences: A Pecu-
liar Statistical Estimation Problem. Systematic
Biology. 44, 384–399 (1995), https://doi.org/
10.2307/2413599

[2] Stamatakis, A. Phylogenetic Search Algo-
rithms for Maximum Likelihood. Algorithms In
Computational Molecular Biology: Techniques,
Approaches And Applications. 547–577 (2010),
https://doi.org/10.1002/9780470892107.ch25

[3] Lakner, C., Mark, P., Huelsenbeck, J., Larget,
B. & Ronquist, F. Efficiency of Markov Chain
Monte Carlo Tree Proposals in Bayesian Phylo-
genetics. Systematic Biology. 57, 86–103 (2008),
https://doi.org/10.1080/10635150801886156

[4] Höhler, D., Pfeiffer, W., Ioannidis, V.,
Stockinger, H. & Stamatakis, A. RAxML
Grove: an empirical phylogenetic tree database.
Bioinformatics. 38, 1741–1742 (2021), https:
//doi.org/10.1093/bioinformatics/btab863

[5] Piel, W., Donoghue, M., Sanderson, M. & Per-
son, C. TreeBASE: A database of phylogenetic
information. (2000)

[6] Morel, B., Barbera, P., Czech, L., Bettisworth,
B., Hübner, L., Lutteropp, S., Serdari, D.,
Kostaki, E., Mamais, I., Kozlov, A., Pavlidis,
P., Paraskevis, D. & Stamatakis, A. Phyloge-
netic Analysis of SARS-CoV-2 Data Is Difficult.
Molecular Biology And Evolution. 38, 1777–
1791 (2021), https://doi.org/10.1093/molbev/
msaa314

[7] Kozlov, A., Darriba, D., Flouri, T., Morel,
B. & Stamatakis, A. RAxML-NG: a fast, scal-
able and user-friendly tool for maximum like-
lihood phylogenetic inference. Bioinformatics.
35, 4453–4455 (2019), https://doi.org/10.1093/
bioinformatics/btz305

[8] Shannon, C. A mathematical theory of com-
munication. The Bell System Technical Journal.
27, 379–423 (1948), https://doi.org/10.1002/j.
1538-7305.1948.tb01338.x

[9] Farris, J. Methods for Computing Wagner
Trees. Systematic Biology. 19, 83–92 (1970),
https://doi.org/10.1093/sysbio/19.1.83

[10] Fitch, W. Toward Defining the Course of
Evolution: Minimum Change for a Specific
Tree Topology. Systematic Zoology. 20, 406–416
(1971), https://doi.org/10.2307/2412116

[11] Robinson, D. & Foulds, L. Comparison of
phylogenetic trees. Mathematical Biosciences.
53, 131–147 (1981), https://doi.org/10.1016/
0025-5564(81)90043-2

[12] Minh, B., Schmidt, H., Chernomor, O.,
Schrempf, D., Woodhams, M., Haeseler, A. &
Lanfear, R. IQ-TREE 2: New Models and Effi-
cient Methods for Phylogenetic Inference in the
Genomic Era.Molecular Biology And Evolution.
37, 1530–1534 (2020), https://doi.org/10.1093/
molbev/msaa015

[13] Köster, J. & Rahmann, S. Snakemake – a
scalable bioinformatics workflow engine. Bioin-
formatics. 28, 2520–2522 (2012), https://doi.
org/10.1093/bioinformatics/bts480

[14] Huelsenbeck, J. Performance of Phylogenetic
Methods in Simulation. Systematic Biology. 44,
17–48 (1995), https://doi.org/10.1093/sysbio/
44.1.17

[15] COre RAXml LIBrary (Coraxlib), https://
codeberg.org/Exelixis-Lab/coraxlib.

[16] Breiman, L. Random Forests. Machine
Learning. 45, 5–32 (2001), https://doi.org/10.
1023/A:1010933404324

[17] Hedges, S., Moberg, K. & Maxson, L. Tetra-
pod phylogeny inferred from 18S and 28S
ribosomal RNA sequences and a review of the
evidence for amniote relationships. Molecular
Biology And Evolution. 7, 607–633 (1990),
https://doi.org/10.1093/oxfordjournals.
molbev.a040628

[18] Lakner, C., Mark, P., Huelsenbeck, J., Larget,
B. & Ronquist, F. Efficiency of Markov Chain
Monte Carlo Tree Proposals in Bayesian Phylo-
genetics. Systematic Biology. 57, 86–103 (2008),
https://doi.org/10.1080/10635150801886156

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.2307/2413599
https://doi.org/10.2307/2413599
https://doi.org/10.1002/9780470892107.ch25
https://doi.org/10.1080/10635150801886156
https://doi.org/10.1093/bioinformatics/btab863
https://doi.org/10.1093/bioinformatics/btab863
https://doi.org/10.1093/molbev/msaa314
https://doi.org/10.1093/molbev/msaa314
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1093/sysbio/19.1.83
https://doi.org/10.2307/2412116
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1016/0025-5564(81)90043-2
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/sysbio/44.1.17
https://doi.org/10.1093/sysbio/44.1.17
https://codeberg.org/Exelixis-Lab/coraxlib
https://codeberg.org/Exelixis-Lab/coraxlib
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1093/oxfordjournals.molbev.a040628
https://doi.org/10.1093/oxfordjournals.molbev.a040628
https://doi.org/10.1080/10635150801886156
https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

11

[19] Poulakakis, N. & A. Stamatakis Recapitulat-
ing the evolution of Afrotheria: 57 genes and
rare genomic changes (RGCs) consolidate their
history. Systematics And Biodiversity. 8, 395–
408 (2010), https://doi.org/10.1080/14772000.
2010.484436

[20] Grimm, G., Renner, S., Stamatakis, A. &
Hemleben, V. A Nuclear Ribosomal DNA
Phylogeny of Acer Inferred with Maximum
Likelihood, Splits Graphs, and Motif Anal-
ysis of 606 Sequences. Evolutionary Bioin-
formatics. 2 (2006), https://doi.org/10.1177/
117693430600200014

[21] Bollback, J. Bayesian Model Adequacy and
Choice in Phylogenetics. Molecular Biology And
Evolution. 19, 1171–1180 (2002), https://doi.
org/10.1093/oxfordjournals.molbev.a004175

[22] Ronquist, F., Teslenko, M., Mark, P., Ayres,
D., Darling, A., Höhna, S., Larget, B., Liu, L.,
Suchard, M. & Huelsenbeck, J. MrBayes 3.2:
Efficient Bayesian Phylogenetic Inference and
Model Choice Across a Large Model Space.
Systematic Biology. 61, 539–542 (2012), https:
//doi.org/10.1093/sysbio/sys029

[23] Ho, T. Random decision forests. Proceedings
Of 3rd International Conference On Document
Analysis And Recognition. 1 278–282 (1995),
https://doi.org/10.1109/ICDAR.1995.598994

[24] Freund, Y. & Schapire, R. A Decision-
Theoretic Generalization of On-Line Learning
and an Application to Boosting. Journal Of
Computer And System Sciences. 55, 119–139
(1997), https://doi.org/10.1006/jcss.1997.1504

[25] Boser, B., Guyon, I. & Vapnik, V. A Train-
ing Algorithm for Optimal Margin Classifiers.
(Association for Computing Machinery, 1992),
https://doi.org/10.1145/130385.130401

[26] Tibshirani, R. Regression Shrinkage and
Selection via the Lasso. Journal Of The Royal
Statistical Society. Series B (Methodological).
58, 267–288 (1996)

[27] Heath, L. & Ramakrishnan, N. Problem Solv-
ing Handbook in Computational Biology and
Bioinformatics. (Springer-Verlag, 2010), https:

//doi.org/10.1007/978-0-387-09760-2

.CC-BY-NC 4.0 International licensepreprint in perpetuity. It is made available under a
this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the

The copyright holder forthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496790doi: bioRxiv preprint

https://doi.org/10.1080/14772000.2010.484436
https://doi.org/10.1080/14772000.2010.484436
https://doi.org/10.1177/117693430600200014
https://doi.org/10.1177/117693430600200014
https://doi.org/10.1093/oxfordjournals.molbev.a004175
https://doi.org/10.1093/oxfordjournals.molbev.a004175
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1093/sysbio/sys029
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/978-0-387-09760-2
https://doi.org/10.1007/978-0-387-09760-2
https://doi.org/10.1101/2022.06.20.496790
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Results
	Difficulty Prediction Accuracy
	Runtime of Feature Computation
	Feature Importance
	MCMC Convergence Prediction
	Bootstrap Support Values

	Discussion
	Materials and Methods
	Quantification of Difficulty
	Training Data
	Label Validation
	Machine Learning and Evaluation
	Feature Engineering
	Retraining the Model

	Code and Data availability
	Supplementary Information
	Acknowledgments and Funding

