1	Title: Two major epidemics of highly pathogenic avian influenza virus H5N8 and H5N1 in
2	domestic poultry in France, 2020-2022
3	
4	Authors: Sébastien Lambert ¹ , Benoit Durand ² , Mathieu Andraud ³ , Roxane Delacourt ¹ , Axelle
5	Scoizec ³ , Sophie Le Bouquin ³ , Séverine Rautureau ⁴ , Billy Bauzile ¹ , Claire Guinat ^{5,6} , Lisa
6	Fourtune ¹ , Jean-Luc Guérin ¹ , Mathilde C. Paul ¹ and Timothée Vergne ¹
7	
8	Affiliations:
9	¹ IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
10	² Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail,
11	Université Paris-Est, Maisons-Alfort, France
12	³ Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail,
13	Ploufragan, France
14	⁴ Direction Générale de l'Alimentation, Paris, Fance
15	⁵ Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
16	⁶ Swiss Institute of Bioinformatics, Lausanne, Switzerland
17	
18	Correspondence: Sébastien Lambert, IHAP, Université de Toulouse, INRAE, ENVT,
19	Toulouse, France
20	Email: sebastien.lambert@envt.fr
21	
~~	

23 Summary

24	The spread of highly pathogenic avian influenza (HPAI) viruses worldwide has serious
25	consequences for animal health and a major economic impact on the poultry production
23	consequences for annual nearth and a major economic impact on the pounty production
26	sector. Since 2014, Europe has been severely hit by several HPAI epidemics, with France
27	being the most affected country. Most recently, France was again affected by two devastating
28	highly pathogenic avian influenza epidemics in 2020-21 and 2021-22. We conducted a
29	descriptive analysis of the 2020-21 and 2021-22 epidemics, in a first step towards identifying
30	the poultry sector's remaining vulnerabilities regarding HPAI viruses in France. We examined
31	the spatio-temporal distribution of outbreaks that occurred in France in 2020-21 and 2021-22,
32	and we assessed the outbreaks' spatial distribution in relation to two High-Risk Zones
33	recently incorporated into French legislation to strengthen HPAI prevention and control.
34	There were 468 reported outbreaks during the 2020-21 epidemic, and 1,223 outbreaks during
35	the 2021-22 epidemic. In both epidemics, most outbreaks (80.6% and 74.0%) were located
36	into the two High-Risk Zones. The southwestern High-Risk Zone was affected in both
37	epidemics, while the western High-Risk Zone was affected for the first time in 2021-22,
38	explaining the extremely high number of outbreaks reported. We showed that the spatial
39	distribution model used to create the two High-Risk Zones was able to predict the location of
40	outbreaks for the 2020-21 and 2021-22 epidemics. These zones were characterized by high
41	poultry farm densities; future efforts should therefore focus on reducing the density of
42	susceptible poultry in highly dense areas.
43	
44	Keywords: Influenza A Virus, H5N1 Subtype; Influenza A Virus, H5N8 Subtype; Disease
45	Outbreaks; Incidence; Basic Reproduction Number; Area Under Curve

46

47 Introduction

48	Unprecedented spread of highly pathogenic avian influenza (HPAI) viruses was
49	observed across Europe, Asia, Africa and North America in the winter of 2021-22, infecting
50	tens of millions of poultry birds and hundreds of thousands of wild birds (Miller, 2022; Wille
51	and Barr, 2022). These viruses may cause severe clinical signs and high mortality rates in
52	birds, causing serious economic losses in poultry and raising issues for the conservation of
53	vulnerable wild bird species (Miller, 2022; Wille and Barr, 2022). HPAI viruses are also
54	concerning for public health because of their zoonotic potential and the risk of spillover to
55	people, which increases as the number of bird outbreaks increases (Miller, 2022; Wille and
56	Barr, 2022).
57	In Europe, several HPAI subtype H5Nx epidemic waves occurred since the emergence
58	of the current circulating lineage 2.3.4.4 and its introduction by wild migratory birds in late
59	2014. In particular, during the winter of 2016-17, Europe was affected by an unexpectedly
60	large HPAI subtype H5N8 epidemic, with 1,218 poultry farm outbreaks reported across 29
61	countries (EFSA et al., 2022). During this epidemic, France was the most heavily affected
62	European country, with 464 poultry farm outbreaks (Guinat et al., 2018). The control
63	measures implemented included culling of infected farms (IFs) and pre-emptive culling of
64	farms around IFs. These measures led to more than 6.8 million poultry being culled and
65	caused a substantial economic impact on the French poultry industry (Guinat et al., 2018).
66	Several studies highlighted the role of biosecurity practices, poultry farm density, and duck
67	transportation in the spread of HPAI viruses between French farms during the 2016-17
68	epidemic (Guinat et al., 2019; Guinat, Comin et al., 2020; Guinat, Durand et al., 2020;
69	Bauzile, Sicard et al., 2022).
70	Following the 2015-16 and 2016-17 HPAI epidemics, new regulations on biosecurity
71	for poultry farms and live bird transportation came into effect in France (DGAl, 2016, 2018).

72	A national training program was made mandatory for poultry producers, and the French
73	veterinary authorities performed biosecurity audits on poultry farms between 2016 and 2018
74	to verify compliance with the new regulations (Delpont et al., 2021). Two "High-Risk Zones"
75	(HRZ) were also incorporated into French legislation in September 2021 (DGAl, 2021),
76	where pre-emptive measures (such as confining ducks indoors and timely pre-movement
77	testing) were implemented in autumn and winter when the risk of HPAI introduction
78	increased. These two HRZ, located in the southwestern and western parts of France, were
79	created based on a spatial distribution model of the 2016-17 outbreaks, and were
80	characterized by high poultry farm densities and high duck movement numbers (Guinat et al.,
81	2019).
82	In the winters of 2020-21 and 2021-22, France and Europe were affected by two other
83	major HPAI epidemics (subtypes H5N8 and H5N1, respectively), with the number of poultry
84	farm outbreaks exceeding those caused by the 2016-17 epidemic. Given the improved
85	biosecurity and drastic control measures implemented in France, these latest epidemics are
86	worrying. Our study therefore aimed to characterize the spatio-temporal patterns of the 2020-
87	21 and 2021-22 epidemics in France and to assess the outbreaks' spatial distribution in
88	relation to the two HRZ. This constitutes a first step towards identifying the poultry sector's
89	remaining vulnerabilities regarding HPAI viruses in France.
90	
91	Materials and Methods
92	Data collection
93	We obtained data on the HPAI poultry farm outbreaks for the 2020-21 (December 2,
94	2020-March 20, 2021) and 2021-22 (November 21, 2021-April 12, 2022) epidemics from the
95	French General Directorate for Food (DGAl) of the French Ministry of Agriculture. An
96	outbreak was defined as detection of at least one laboratory confirmed HPAI-infected bird (by

97	virus isolation or polymerase chain reaction) in a commercial poultry farm. Data included the
98	species involved, type of production, date of suspicion (by clinical or active surveillance) and
99	geographical location of each outbreak. Spatial data were obtained from DGAl for the HRZ,
100	and from Guinat et al. (Guinat et al., 2019) for the predicted probability of having at least one
101	HPAI outbreak in a commune (the smallest administrative unit in France, corresponding to
102	Nomenclature of Territorial Units for Statistics level 5).
103	
104	Descriptive analysis
105	All analyses were conducted using R statistical software version 4.1.1 (R Core Team,
106	2021). Epidemic curves were plotted using the R package incidence (Kamvar et al., 2019;
107	Jombart et al., 2020). All maps were produced using the R package tmap (Tennekes, 2018).
108	Geographic data of all countries and administrative areas were downloaded from the GADM
109	(https://gadm.org/) database using the R package raster (Hijmans, 2021). Outbreaks for which
110	the precise location was missing were given the coordinates of the centroid of the commune
111	where they occurred. The coordinates of the communes' centroids were obtained from the
112	French National Institute of Geographic and Forest Information (IGN) ADMIN EXPRESS
113	database (https://geoservices.ign.fr/adminexpress). To assess the ability of the 2016-17 model
114	(Guinat et al., 2019) to predict the location of outbreaks for the 2020-21 and 2021-22
115	epidemics, we calculated the area under the receiver operator characteristic curves (AUC) for
116	both epidemics using the R package pROC (Robin et al., 2011).
117	

119 Transmission dynamics (effective reproduction number)

120	To study the transmission dynamics, we estimated the effective reproduction number
121	$R_{\rm e}$ between farms (i.e., the average number of secondary farms infected by each infectious
122	farm) using the approach of Wallinga and Teunis (Wallinga and Teunis, 2004). The approach
123	of Wallinga and Teunis allows estimating R_e based on the time variations of incidence and on
124	the distribution of the serial interval (time interval between symptom onset in a farm and that
125	of its secondary cases). Because the distribution of the serial interval distribution was
126	unknown, we first used the approach of White and Pagano (White and Pagano, 2008) to
127	estimate simultaneously the basic reproduction number R_0 and the mean and standard
128	deviation of the discretized serial interval distribution (assumed to follow a gamma
129	distribution), based on the initial exponential phase of the epidemic. This approach was
130	implemented using the R package R0 (Obadia et al., 2012; Boelle and Obadia, 2015). With
131	the estimates of the serial interval distribution parameters, we were then able to estimate the
132	effective reproduction number using the approach of Wallinga and Teunis (Wallinga and
133	Teunis, 2004), implemented in the R package EpiEstim (Cori, 2021).
134	The estimates of the approach of White and Pagano (White and Pagano, 2008)
135	implemented in the R package R0 can be sensitive to the selected time period over which
136	epidemic growth is considered exponential (Obadia et al., 2012). By default, the time period
137	considered is from the date of the first case up to the date of the maximum daily incidence
138	(Obadia et al., 2012; Boelle and Obadia, 2015). Another possibility is to select the time period
139	producing the largest R-squared value, corresponding to the period over which the model
140	fitted the data best (Obadia et al., 2012). To assess the sensitivity of the R_e estimation to the
141	parameters of the serial interval distribution, we used the approach of Wallinga and Teunis
142	(Wallinga and Teunis, 2004) again, this time using the mean and standard deviation of the
143	serial interval distribution that produced the highest R-squared value.

144 **Results and Discussion**

145	The 2020-21 epidemic consisted of a single wave with 468 outbreaks (Figure 1A)
146	clustered in southwestern France (Figure 2A). In contrast, the 2021-22 epidemic was
147	characterized by 1,223 outbreaks (as of April 12, 2022) divided into two spatio-temporal
148	clusters, the first in the southwest and the second in the western part of the country (Figure 1B
149	and Figure 2B), with a higher incidence during the second wave. Most outbreaks were located
150	in the HRZ both in 2020-21 (80.6% of the outbreaks) and 2021-22 (74.0% - Figure 1A and B,
151	Figure 2). The AUCs of the 2016-17 model were 0.86 (95% confidence interval: 0.83-0.89)
152	for the 2020-21 epidemic and 0.86 (95%CI: 0.85-0.88) for the 2021-22 epidemic.
153	In both epidemics, the vast majority of farm outbreaks in the southwestern HRZ
154	(82.7% and 69.9%) were reported in ducks (Table 1), mainly in farms raising ducks for <i>foie</i>
155	gras production (breeding and/or force-feeding production stages in Table 1). Conversely, in
156	the western HRZ in 2021-22, only half of the outbreaks were reported in duck farms, mainly
157	in breeder and broiler farms (Table 1). Most of the other outbreaks were reported in galliform
158	farms (mainly chickens and turkeys - Table 1).
159	The estimates of the average serial interval were 4.78 days (standard deviation: 4.63
160	days) for the 2020-21 epidemic, and 8.9 days (standard deviation: 4.08 days) for the 2021-22
161	epidemic (Supporting Information Figure S1). In the winter of 2020-21, the R_e peaked at 2.2
162	(95%CI: 1.7-2.5) in late December 2020, when the incidence increased in the southwestern
163	HRZ, then decreased below 1 from mid-January 2021 (Figure 1C). In 2021-22, the R_e first
164	peaked at 2.8 (95%CI: 2.5-3.1) in early January 2022, when the virus was mostly circulating
165	in the southwestern HRZ, and then decreased below 1 in the second half of January 2022
166	(Figure 1D). At the beginning of February 2022, the R_e increased again dramatically when the
167	virus reached the western HRZ, peaked at 3.8 (95%CI: 3.4-4.3) at the end of February 2022
168	and then decreased below 1 by mid-March 2022 (Figure 1D).

169	The temporal variations of the R_e estimated using the serial interval distribution
170	parameters of White and Pagano's default model (Figure 1C-D) matched qualitatively and
171	quantitatively with the R_e dynamics estimated using the serial interval distribution parameters
172	of White and Pagano's model with the highest R-squared value (Supporting Information
173	Figure S2), although in the latter the R_e seemed to peak at higher values in 2021-22.
174	During the 2020-21 and 2021-22 epidemics, the virus circulated extensively in the
175	southwestern HRZ. In that region, where the density of farms raising ducks for foie gras
176	production is extremely high, it is worth noting that the number of reported outbreaks
177	decreased from 375 to 276 between the two epidemics, likely the result of a higher level of
178	awareness among farmers, more effective implementation of control strategies and a decrease
179	of duck flock density. However, in the winter of 2021-22, a second spatio-temporal cluster of
180	outbreaks occurred in the western HRZ, with no clear epidemiological link with the
181	southwestern cluster (EFSA et al., 2022). The spread of HPAI within the western HRZ
182	occurred for the first time during the 2021-22 epidemic and explains the extremely high
183	number of outbreaks reported. The species composition in poultry farms in this zone,
184	combined with a higher flock size on average, may have had a significant impact on the
185	pattern of the epidemic in this area. Why the virus spread in the western HRZ in 2021-22 but
186	not in the previous epidemics remains to be determined.
187	Biosecurity and control measures were significantly improved after 2016. The
188	occurrence of these two major epidemics would suggest that these improvements were not
189	sufficient to prevent the spread of the virus. Interestingly, although the 2016-17 outbreaks
190	only clustered in the southwest part of France, Guinat et al. (Guinat et al., 2019) identified
191	two HRZ that predicted with high accuracy the two spatial clusters observed during the 2021-
192	22 epidemic (Figure 2B). The main risk factors identified were density of poultry farms and
193	activities related to duck movements. The latter risk factor has already been the target of

194 considerable improvement measures. To increase the resilience of the poultry sector in 195 France, and other hardly-hit European countries, future efforts should therefore focus on 196 reducing the density of susceptible poultry farms and the number of susceptible birds on 197 farms in high-density areas during the high risk periods (Bauzile, Durand et al., 2022). 198 Vaccinating domestic poultry against avian influenza is generally prohibited in the 199 European Union due to the trade restrictions it would generate (European Commission, 2006). 200 However, this once-tabooed prevention strategy is currently being given full consideration in 201 Europe, as it is becoming clear that the accelerating pace of occurrence of devastating HPAI 202 epidemics is generating new challenges that cannot be addressed with more traditional 203 prevention and control approaches alone (EFSA et al., 2021; Stokstad, 2022; Wille and Barr, 204 2022). In the long term, restructuration of the European poultry sector in densely populated 205 poultry areas, although challenging, may be required alongside vaccination to control HPAI 206 epidemics (EFSA et al., 2021; Stokstad, 2022). Therefore, further research is needed to devise 207 new suitable and sustainable HPAI mitigation strategies in Europe. 208 209 Acknowledgements: This study was performed in the framework of the "Chair for Avian 210 Biosecurity", hosted by the National Veterinary College of Toulouse and funded by the 211 Direction Générale de l'Alimentation, Ministère de l'Agriculture et de l'Alimentation, France. 212 Claire Guinat is funded by the European Union's Horizon 2020 research and innovation 213 program under the Marie Sklodowska-Curie grant agreement No 842621. The funders had no 214 role in the design of the study; in the collection, analyses, or interpretation of data; in the 215 writing of the manuscript, or in the decision to publish the results. The authors wish to thank 216 Grace Delobel for language editing. 217

218 **Conflict of interest:** The authors declare no conflict of interest.

219 **References**

220	Bauzile, B., B. Durand, S. Lambert, C. Guinat, L. Fourtune, S. Rautureau, A. Andronico, S.
221	Cauchemez, M.C. Paul, and T. Vergne, 2022: Interplay between duck farm density
222	and the resilience of the poultry sector to highly pathogenic avian influenza H5N8 in
223	France. In: SVEPM 2022. Presented at the SVEPM 2022, Belfast, Northern Ireland.
224	Bauzile, B., G. Sicard, C. Guinat, M. Andraud, N. Rose, P. Hammami, B. Durand, M.C. Paul,
225	and T. Vergne, 2022: Unravelling direct and indirect contact patterns between duck
226	farms in France and their association with the 2016–2017 epidemic of Highly
227	Pathogenic Avian Influenza (H5N8). Prev. Vet. Med. 198, 105548, DOI:
228	10.1016/j.prevetmed.2021.105548.
229	Boelle, PY., and T. Obadia, 2015: R0: Estimation of R_0 and Real-Time Reproduction
230	Number from Epidemics. R Package Version 1.2-6.
231	Cori, A., 2021: EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic
232	Curves. R Package Version 2.2-4.
233	Delpont, M., C. Guinat, JL. Guérin, E. Le leu, JP. Vaillancourt, and M.C. Paul, 2021:
234	Biosecurity measures in French poultry farms are associated with farm type and
235	location. Prev. Vet. Med. 195, 105466, DOI: 10.1016/j.prevetmed.2021.105466.
236	DGAl Arrêté du 8 février 2016 relatif aux mesures de biosécurité applicables dans les
237	exploitations de volailles et d'autres oiseaux captifs dans le cadre de la prévention
238	contre l'influenza aviaire. (2016), 0034 Journal Officiel de la République Française 5.
239	DGAl Arrêté du 14 mars 2018 relatif aux mesures de prévention de la propagation des
240	maladies animales via le transport par véhicules routiers d'oiseaux vivants. (2018),
241	0065 Journal Officiel de la République Française 5.
242	DGAl Arrêté du 29 septembre 2021 définissant les zones à risque de diffusion du virus de
243	l'influenza aviaire. (2021), 0228 Journal Officiel de la République Française 16.
244	EFSA, (European Food Safety Authority), (European Centre for Disease Prevention and
245	Control) ECDC, (European Reference Laboratory for Avian Influenza) EURL, C.
246	Adlhoch, A. Fusaro, J.L. Gonzales, T. Kuiken, S. Marangon, E. Niqueux, C. Staubach,
247	C. Terregino, I. Aznar, I. Muñoz Guajardo, and F. Baldinelli, 2021: Avian influenza
248	overview September – December 2021. EFS2 19, DOI: 10.2903/j.efsa.2021.7108.
249	EFSA, (European Food Safety Authority), (European Centre for Disease Prevention and
250	Control) ECDC, (European Reference Laboratory for Avian Influenza) EURL, C.
251	Adlhoch, A. Fusaro, J.L. Gonzales, T. Kuiken, S. Marangon, E. Niqueux, C. Staubach,
252	C. Terregino, I. Aznar, I. Muñoz Guajardo, and F. Baldinelli, 2022: Scientific report:
253	avian influenza overview December 2021 – March 2022. EFSA Journal 20, 64, DOI:
254	10.2903/j.efsa.2022.7289.
255	European Commission Council Directive 2005/94/EC of 20 December 2005 on Community
256	measures for the control of avian influenza and repealing Directive 92/40/EEC.
257	(2006), Official Journal of the European Union 16–65.
258	Guinat, C., J. Artois, A. Bronner, JL. Guérin, M. Gilbert, and M.C. Paul, 2019: Duck
259	production systems and highly pathogenic avian influenza H5N8 in France, 2016–
260	2017. Sci. Rep. 9, 6177, DOI: https://doi.org/10.1038/s41598-019-42607-x.
261	Guinat, C., A. Comin, G. Kratzer, B. Durand, L. Delesalle, M. Delpont, JL. Guérin, and
262	M.C. Paul, 2020: Biosecurity risk factors for highly pathogenic avian influenza
263	(H5N8) virus infection in duck farms, France. Transb 67, 2961–2970, DOI:
264	10.1111/tbed.13672.
265	Guinat, C., B. Durand, T. Vergne, T. Corre, S. Rautureau, A. Scoizec, S. Lebouquin-Leneveu,
266	JL. Guérin, and M.C. Paul, 2020: Role of live-duck movement networks in

267 268	transmission of avian influenza, France, 2016–2017. <i>Emerg. Infect. Dis.</i> 26 , 472–480, DOI: 10.3201/eid2603.190412.
269	Guinat, C., G. Nicolas, T. Vergne, A. Bronner, B. Durand, A. Courcoul, M. Gilbert, JL.
270	Guérin, and M.C. Paul, 2018: Spatio-temporal patterns of highly pathogenic avian
271	influenza virus subtype H5N8 spread, France, 2016 to 2017. <i>Euro Surveill.</i> 23,
272	1700791, DOI: 10.2807/1560-7917.ES.2018.23.26.1700791.
273	Hijmans, R.J., 2021: Raster: Geographic Data Analysis and Modeling. R Package Version
274	3.4-13.
275	Jombart, T., Z.N. Kamvar, R. FitzJohn, J. Cai, S. Bhatia, J. Schumacher, and J.R.C. Pulliam,
276	2020: Incidence: Compute, Handle, Plot and Model Incidence of Dated Events. R
277	Package Version 1.7.3.
278	Kamvar, Z.N., J. Cai, J.R.C. Pulliam, J. Schumacher, and T. Jombart, 2019 (31. January):
279	Epidemic curves made easy using the R package <i>incidence</i> . F1000Reserach 8, 139,
280	DOI: https://doi.org/10.12688/f1000research.18002.1.
281	Miller, B.J., 2022: Why unprecedented bird flu outbreaks sweeping the world are concerning
282	scientists. Nature 606, 18–19, DOI: 10.1038/d41586-022-01338-2.
283	Obadia, T., R. Haneef, and PY. Boëlle, 2012: The R0 package: a toolbox to estimate
284	reproduction numbers for epidemic outbreaks. BMC Med. Inform. Decis. Mak. 12,
285	147, DOI: https://doi.org/10.1186/1472-6947-12-147.
286	R Core Team, 2021: R: A Language and Environment for Statistical Computing. R
287	Foundation for Statistical Computing, Vienna, Austria.
288	Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, JC. Sanchez, and M. Müller, 2011:
289	pROC: an open-source package for R and S+ to analyze and compare ROC curves.
290	BMC Bioinform. 12, 77, DOI: https://doi.org/10.1186/1471-2105-12-77.
291	Stokstad, E., 2022: Wrestling with bird flu, Europe considers once-taboo vaccines. Science
292	376 , 682–683, DOI: https://doi.org/10.1126/science.adc9450.
293	Tennekes, M., 2018: tmap: thematic maps in R. J. Stat. Softw. 84, 1-39, DOI:
294	https://doi.org/10.18637/jss.v084.i06.
295	Wallinga, J., and P. Teunis, 2004: Different epidemic curves for severe acute respiratory
296	syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160, 509–516,
297	DOI: https://doi.org/10.1093/aje/kwh255.
298	White, L.F., and M. Pagano, 2008: A likelihood-based method for real-time estimation of the
299	serial interval and reproductive number of an epidemic. Stat. Med. 27, 2999–3016,
300	DOI: https://doi.org/10.1002/sim.3136.
301	Wille, M., and I.G. Barr, 2022: Resurgence of avian influenza virus. <i>Science</i> 376 , 459–460,
302	DOI: 10.1126/science.abo1232.
303	

		202	0-21		2021-22					
	Sou	th-West*	Т	OTAL	Sou	th-West*	1	West [†]	TC	DTAL
Type of species										
Duck	310	(82.7%)	389	(83.1%)	193	(69.9%)	315	(50.1%)	711	(58.1%
Goose	1	(0.3%)	1	(0.2%)	4	(1.4%)	4	(0.6%)	8	(0.7%)
Chicken	34	(9.1%)	42	(9.0%)	45	(16.3%)	172	(27.3%)	287	(23.5%
Turkey	-	-	-	-	-	-	77	(12.2%)	101	(8.3%)
Other galliformes	6	(1.6%)	7	(1.5%)	5	(1.8%)	35	(5.6%)	44	(3.6%)
Multispecies (galliformes)	2	(0.5%)	2	(0.4%)	1	(0.4%)	-	-	4	(0.3%)
Multispecies (palmipeds + galliformes)	22	(5.9%)	27	(5.8%)	5	(1.8%)	6	(1.0%)	14	(1.1%)
Pigeon	-	-	-	-	-	-	2	(0.3%)	2	(0.2%)
Unknown	-	-	-	-	23	(8.3%)	18	(2.9%)	52	(4.3%)
TOTAL	375	(100%)	468	(100%)	276	(100%)	629	(100%)	1,223	(100%
Type of production for duc	k farn	ns								
Breeding	211	(68.1%)	260	(66.8%)	120	(62.2%)	64	(20.3%)	276	(38.8%
Force-feeding	76	(24.5%)	97	(24.9%)	52	(26.9%)	40	(12.7%)	132	(18.6%
Breeding + force-feeding	1	(0.3%)	1	(0.3%)	-	-	-	-	-	-
Broiler	2	(0.6%)	7	(1.8%)	6	(3.1%)	126	(40.0%)	178	(25.0%
Breeder	7	(2.3%)	8	(2.1%)	1	(0.5%)	53	(16.8%)	68	(9.6%)
Other	2	(0.6%)	3	(0.8%)	2	(1.0%)	19	(6.0%)	25	(3.5%)
Unknown	11	(3.5%)	13	(3.3%)	12	(6.2%)	13	(4.1%)	32	(4.5%)
TOTAL	310	(100%)	389	(100%)	193	(100%)	315	(100%)	711	(100%
Type of production for chi	cken fa	arms								
Broiler	26	(76.5%)	33	(78.6%)	32	(71.1%)	101	(58.7%)	164	(57.1%
Layer	4	(11.8%)	5	(11.9%)	7	(15.6%)	32	(18.6%)	65	(22.6%
Breeder	3	(8.8%)	3	(7.1%)	1	(2.2%)	20	(11.6%)	26	(9.1%)
Other	-	-	-	-	-	-	15	(8.7%)	22	(7.7%)
Unknown	1	(2.9%)	1	(2.4%)	5	(11.1%)	4	(2.3%)	10	(3.5%)
TOTAL	34	(100%)	42	(100%)	45	(100%)	172	(100%)	287	(100%

Table 1: Distribution of HPAI virus outbreaks in commercial poultry farms in France during the 2020-21 (H5N8) and 2021-22 (H5N1) epidemics

307 * Southwestern high-risk zone,

[†] Western high-risk zone (note that in 2020-21, only two outbreaks were located in the western high-risk zone, and were therefore not detailed here).

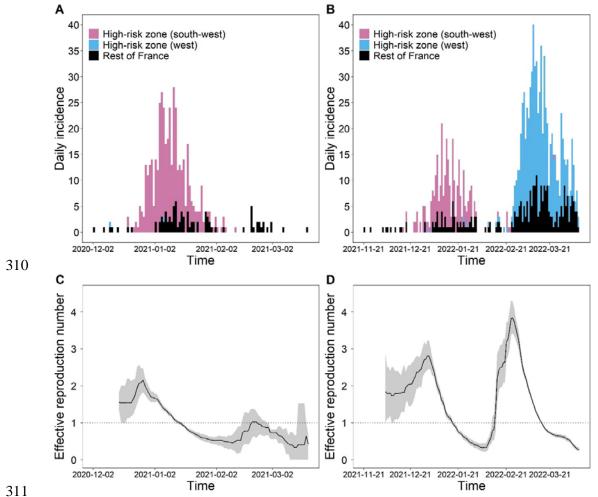


Figure 1: Incidence (A, B) and estimated effective reproduction number (C, D) of the 2020-21 (A, C) and 2021-22 (B, D) HPAI virus epidemics in commercial poultry farms in France. In panels C and D, the graph shows, at each day, the estimate of the effective reproduction number over the 14-day window finishing on that day. The line represents the mean and the grey area represent the 95% confidence interval.

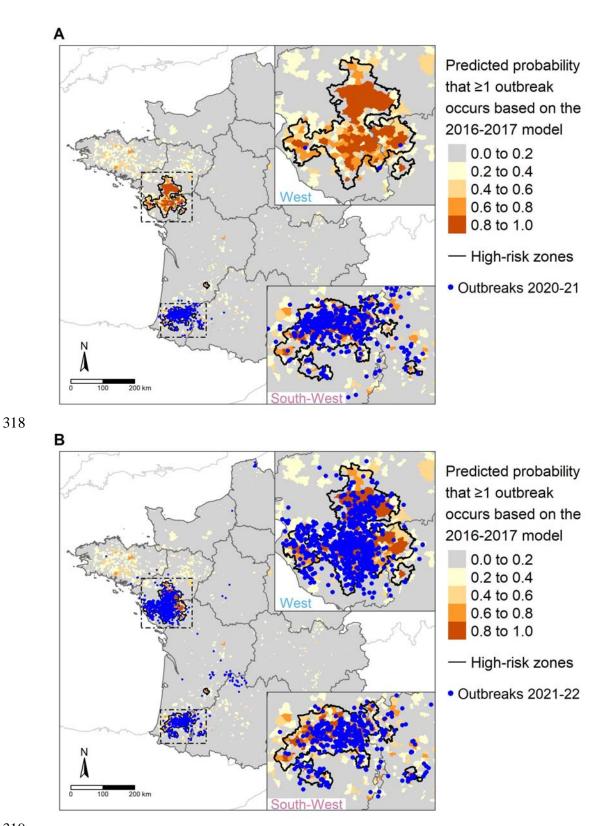


Figure 2: HPAI virus outbreaks in commercial poultry farms in France in 2020-21 (A) and 2021-22 (B), and predicted probability of having at least one outbreak in a commune according to the 2016-2017 model of Guinat *et al.* (2019) (2019).