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Abstract

Memories may be encoded in the brain via strongly interconnected groups of neurons,
called assemblies. The concept of Hebbian plasticity suggests that these assemblies are
generated through synaptic plasticity, strengthening the recurrent connections within
select groups of neurons that receive correlated stimulation. To remain stable in absence
of such stimulation, the assemblies need to be self-reinforcing under the plasticity rule.
Previous models of such assembly maintenance require additional mechanisms of fast
homeostatic plasticity often with biologically implausible timescales. Here we provide a
model of neuronal assembly generation and maintenance purely based on
spike-timing-dependent plasticity (STDP) between excitatory neurons. It uses
irregularly and stochastically spiking neurons and STDP that depresses connections of
uncorrelated neurons. We find that assemblies do not grow beyond a certain size,
because temporally imprecise spike correlations dominate the plasticity in large
assemblies. Assemblies in the model can be learned or spontaneously emerge. The
model allows for prominent, stable overlap structures between static assemblies.
Further, assemblies can drift, particularly according to a novel, transient overlap-based
mechanism. Finally the model indicates that assemblies grow in the aging brain, where
connectivity decreases.

Author summary

It is widely assumed that memories are represented by ensembles of nerve cells that
have strong interconnections with each other. It is to date not clear how such strongly
interconnected nerve cell ensembles form, persist, change and age. Here we show that
already a basic rule for activity-dependent synaptic strength plasticity can explain the
learning or spontaneous formation and the stability of assemblies. In particular, it is not
necessary to explicitly keep the overall total synaptic strength of a neuron nearly
constant, a constraint that was incorporated in previous models in a manner
inconsistent with current experimental knowledge. Furthermore, our model achieves the
challenging task of stably maintaining many overlaps between assemblies and generating
the experimentally observed drift of memory representations. Finally, the model predicts
that when the number of synaptic connections in the brain decreases, as observed during
aging, the size of the neuron ensembles underlying memories increases. This may render
certain memories in the aging brain more robust and prominent but also less specific.
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Introduction 1

A widely used model of long-term memory posits that items are stored in the brain by 2

strongly interconnected neuronal assemblies [1–3]. A memory item is represented by a 3

group of neurons that coactivate upon memory recall. The assembly structure allows for 4

associative recall from an incomplete input: due to the strong interconnections, 5

activation of a part of the neurons in an assembly can trigger reactivation of the entire 6

assembly and thus a recall of the full memory. The assemblies may each be created 7

through experience-dependent plasticity or they may already form during 8

development [4]. In the latter case, memories may form by connecting the pre-existing 9

assemblies to appropriate input and output neurons [5]. The theory of the formation 10

and maintenance of neuronal assemblies has been studied in much detail in previous 11

works. The creation of new memories is commonly modeled using Hebbian 12

plasticity [6–13]: if a set of neurons is co-activated, Hebbian plasticity increases the 13

strength of their mutual connections leading to the formation of what is called a 14

Hebbian assembly. However, memory networks in the brain also show ongoing 15

spontaneous and irregular activity. If plasticity still takes place during this activity, it 16

should not interfere with the existing memory assemblies – otherwise memories would 17

have implausibly short lifespans. Hebbian assemblies can be self-reinforcing under 18

plasticity since their interconnectedness leads to higher correlations in the activities, 19

which in turn leads to potentiation of the intra-assembly weights. Models of assembly 20

maintenance, however, found that fast homeostatic plasticity was needed in addition to 21

Hebbian learning. This introduces competition between synapses and prevents 22

pathological growth of assemblies and exploding activity [5, 7–9,11–13]. Homeostatic 23

plasticity has been observed in experiments, but it is much slower than Hebbian 24

plasticity and does therefore not suffice to prevent runaway potentiation [14–18] (see, 25

however, [19] for a different view and [10,20] for a small timescale implementation of 26

homeostasis via inhibitory STDP). 27

Experiments indicate that distinct memory assemblies have a fraction of shared 28

neurons, i.e. neurons that are part of both assemblies [21–23]; the size of these overlaps 29

appears to correspond to the strength of the associations between the concepts encoded 30

by the assemblies. Previous models of assemblies stabilized by recurrent synaptic 31

plasticity and fast homeostatic normalization usually do not show prominent 32

overlaps [5, 7–9,12]. An example of a network with weight plasticity, structural 33

plasticity, multiple synapses per connection and short-term depression that can store 34

two strongly overlapping assemblies was given in [24]. We will explore whether our 35

purely STDP-based model can maintain overlaps. 36

Another topic of interest in the study of memory networks is whether they can 37

generate the representational drift observed in recent experiments [25]. Such drift has 38

recently been modeled by drifting assemblies, which spontaneously exchange neurons 39

with each other, leading to a gradual resorting of the whole network [5]. The network 40

model incorporated fast homeostatic normalization to stabilize the assemblies. We will 41

explore whether also our purely STDP-based model can exhibit drifting assemblies. 42

Finally, many conditions, such as aging are associated with a decrease in overall 43

connectivity [26,27]. We will therefore explore how the assemblies in our networks adapt 44

to such a decrease. 45

The paper is structured as follows: We initially introduce the model of spiking 46

neurons and STDP and describe existing analytical approximations for the 47

time-averaged weight dynamics. As a first result, we show spontaneous assembly 48

formation. We then obtain an analytical approximation of the weight growth in 49

different assembly sizes to obtain an understanding of the numerically observed 50

assembly formation. Next we study whether assemblies can be learned by correlated 51

external input. The subsequent section shows that our networks can stably maintain 52
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overlapping assemblies. We then examine whether our model can be set up to exhibit 53

representational drift. Finally, we investigate the dependence of assembly sizes on 54

network sparsity and relate our results to effects of aging on the brain. 55

Materials and methods 56

Fig 1. Network, neuron and plasticity model. (a): A network consists of recurrently
connected excitatory neurons, which generate irregular, stochastic spiking. It may be
interpreted as the excitatory population of a neural network where excitatory and
inhibitory neurons generate a balanced state [28] of irregular spiking. Thus, an
inhibitory neuron population is implicitly contained in our model. (b): Poisson model of
stochastic single neuron spiking: each neuron is characterized by its instantaneous rate
λ(t) (upper subpanel), which depends on incoming spikes and determines the
probability of emitting a spike (lower subpanel). (c): Strength of STDP updates as a
function of the time difference between pre- and postsynaptic spikes for µ = 1.

Poisson neurons 57

Neural networks in the mammalian brain typically generate irregular and apparently 58

largely stochastic spiking. To guarantee that our model networks generate similar 59

spiking activity, we consider networks of stochastic linear Poisson (or “Hawkes”) model 60

neurons [9, 29–31]. Such networks are additionally analytically well tractable. We 61

explicitly model excitatory neurons. Since the irregular activity in biological neural 62

networks is likely due to a balanced state, where excitatory and inhibitory inputs to 63

each neuron balance [28,32–36], our model implicitly incorporates inhibitory neurons, 64

see Fig. 1. 65

The spiking activity of each neuron i is an inhomogeneous Poisson process whose 66

time-dependent instantaneous spike rate (intensity) λi(t) = ⟨Si(t)⟩ given input spike 67

trains Sk(t) =
∑

m δ(t− tmk ) up to time t and weights Wik is 68

λi(t) = λ0
i +

∑
k

Wik

∑
m

a(t− tkm). (1)

The angular brackets here denote trial-averaging with fixed input spike trains and 69

weights to neuron i. We use an exponentially decaying synaptic kernel 70

a(t) =
Θ(t)

τs
e
− t

τs , (2)

where Θ(t) is the Heaviside distribution, and a constant external drive λ0. 71

It is now useful to introduce quantities that are trial-averaged over the entire spiking 72

network dynamics. The trial-averaged instantaneous rate (intensity) of neuron i is 73

ri(t) = ⟨λi(t)⟩, where angular brackets now denote the trial-averaging over the network 74
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dynamics. For static W with spectral radius less than 1, the trial-averaged rate 75

dynamics relax to a fixed point where the vector r(t) is constant, 76

r = (1−W )
−1

λ0, (3)

see [9,30,37,38]. In addition, one can analytically compute the corresponding stationary 77

cross-correlation functions Cij(τ) = ⟨Si(t+ τ)Sj(t)⟩ of pairs of neurons i, j at arbitrary 78

t; in the frequency domain they read 79

C̃(ω) = 2πδ(ω)rrT +
(
1− ã(ω)W

)−1

D
(
1− ã(−ω)WT

)−1

, (4)

where we used matrix notation and Dij = δijri [9, 30,38]. The Fourier transform of a 80

function g(t) is defined as g̃(ω) =
∫∞
−∞ dte−iωtg(t). If the scale of the STDP updates is 81

sufficiently small, one can assume that the weight dynamics are quasistationary with 82

respect to neuronal dynamics. Then Eqs. 3,4 still approximately hold true despite W 83

changing over time due to plasticity. 84

Spike-timing-dependent plasticity 85

We consider networks of spiking neurons with pair-based STDP, i.e. the change of 86

synaptic strength depends on the time lags of pairs of pre- and postsynaptic spikes. The 87

characteristics of the plasticity function crucially determine how synaptic strengths 88

evolve in a network. Networks with symmetric plasticity functions can establish a 89

structure of neuronal assemblies whereas plasticity functions with a large antisymmetric 90

part tend to establish feedforward chains of connectivity; see, however, [10, 20] for 91

networks with asymmetric STDP maintaining assemblies and [12] for a triplet STDP 92

rule that forms assemblies despite an asymmetric two-spike interaction part. In the 93

present work, we consider symmetric plasticity functions because of their simplicity and 94

analytical tractability, building on previous theoretical work that has employed 95

them [5,9]. Symmetric STDP has been found in the CA3 region of the rodent 96

hippocampus [39], i.e. in a region that is assumed to serve as an associative memory 97

network and to store assemblies [1]. Recently, near-symmetric STDP has also been 98

observed in the primary motor cortex of primates [40]. 99

The change induced by a spike pair with time lag t is given by the STDP function F , 100

F (t) = µ

(
Ape

− |t|
τp +Ade

− |t|
τd

)
, (5)

where the scaling factor µ is the learning rate, Ap > 0, Ad < 0,
∣∣Ap

∣∣ > |Ad| and τp < τd, 101

see Fig. 1c. For the analytical treatment of our plasticity rule we set µ = 1. In all our 102

simulations the parameters are chosen such that the integral
∫∞
−∞ dt F (t) over F is 103

negative. 104

At each spike time, plasticity acts additively on the pre- and postsynaptic weights of 105

the spiking neuron, with amplitudes given by F . Specifically, at a spike time tki
of the 106

postsynaptic neuron there is a jump-like change in Wij of
∑

tkj
≤tki

F (tki − tkj ). At a 107

spike time tjk of the presynaptic neuron Wij jumps by
∑

tki
≤tkj

F (tki − tkj ). This can 108

be compactly written as 109

d

dt
Wij(t) =

∑
tki

,tkj
≤t

(
F (tki

− tkj
)δ(t− tki

) + F (tki
− tkj

)δ(t− tkj
)
)
. (6)

Here and henceforth we assume i ̸= j; there is no self-interaction in our networks, 110

Wii = 0. We further stipulate that no weight can become negative or exceed a maximum 111
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value ŵ due to STDP: if a synapse would be depressed below 0 it will be set to 0 112

instead and if a synapse would be potentiated to a value beyond ŵ it will be set to ŵ. 113

In the regime of quasistationary weight dynamics the time-averaged drift in synaptic 114

efficacy, ∆Wij , can be approximated by 115

∆Wij :=
1

T

∫ t+T

t

dt′
d

dt′
Wij(t

′) =

∫ ∞

−∞
dτ Cij(τ)F (τ), (7)

where Cij(τ) are again the correlations of the spike trains of neurons i and j [29]. 116

Plancherel’s theorem then yields 117

∆Wij =
1

2π

∫ ∞

−∞
dω C̃ij(ω)F̃ (−ω), (8)

with the Fourier transforms of the correlation function and of the STDP window.
Inserting the correlation function C̃ij(ω) of Eq. 4 gives

∆Wij = f0rirj

+
1

2π

∫ ∞

−∞
dω

∑
k

[
(1− ã(ω)W )−1

]
ik
rk

[
(1− ã(−ω)WT )−1

]
kj

× F̃ (−ω), (9)

see [9], where

f0 = F̃ (0) =

∫ ∞

−∞
dt F (t) = 2

(
Apτp +Adτd

)
. (10)

It is often useful to expand Eq. 4 into a power series with respect to W [30]. Inserting 118

the series into the right hand side of Eq. 8 (or directly expanding Eq. 9) results in a 119

series expansion for ∆Wij , [9]: 120

∆Wij = f0rirj +
∑
α,β

fαβ
∑
m

rm(Wα)im(W β)jm. (11)

The terms of the sum encode contributions from motifs in which a source neuron affects
post- and presynaptic neurons via a chain of α and β connections, respectively (the
same connection may be counted more than once). If α = 0 (β = 0) the
post(pre)synaptic neuron itself is the source. The coefficients fαβ contain integrals over
the Fourier transform of the STDP window and powers of the Fourier transform of the
synaptic kernel function,

fαβ =
1

2π

∫ ∞

−∞
dω F̃ (−ω)ã(ω)αã(−ω)β . (12)

Results 121

Spontaneous assembly formation 122

We first simulate the model described above with initially unstructured weight matrix 123

and without structured external stimulation, in order to test its capability of 124

spontaneous assembly formation and subsequent maintenance. We find that for 125

appropriately chosen parameters in the plasticity function the network weights indeed 126

converge towards a structure with segregated assemblies of a characteristic size. 127
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The mechanism underlying the increase of weights between assembly neurons is well 128

known: Initially basically randomly coincident spiking leads to strengthening of some 129

weights. These weights induce more near-simultaneous spiking, which further 130

strengthens them. The positive feedback loop leads to weights that increase until they 131

reach ŵ [41]. It has been shown that if the summed weight strength to and from a 132

neuron are additionally normalized by fast homeostasis, there can be spontaneous 133

emergence of assemblies [5, 9, 12,13]. The reason is that the homeostatic normalization 134

lets synapses compete, such that more slowly growing ones are suppressed. Once an 135

imbalance of connectivity and thus first assembly-like structures occur, the weight 136

increase of intra-assembly synapses prior to normalization is stronger, due to the 137

stronger co-spiking of the connected neurons. The normalization then suppresses the 138

inter-assembly connections and the assembly structure consolidates. 139

In our networks, there is no fast homeostatic normalization that could introduce 140

competition between synapses. Then, why do not all weights tend to ŵ? In other words: 141

why does the network not turn into one big assembly? 142

Fig 2. Spontaneous assembly formation. Several assemblies (strongly interconnected
ensembles of neurons) emerge in a network with initially random connectivity, due to
spontaneous activity.

Plasticity in homogeneously connected assemblies 143

In this section, we will argue that the assembly growth is in our model limited because 144

of the depression dominance of the learning rule. For this we consider the special case of 145

an isolated assembly of N neurons that is homogeneously connected with synaptic 146

strengths ŵ. We compute ∆Wij for weights within this type of assembly, disregarding 147
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the clipping at ŵ. This indicates whether and how vigorously weights that fall below ŵ 148

are restored towards it. Further, it indicates how successfully further neurons are 149

recruited, as recruitment relies on increasing the weights to new neurons once they are 150

randomly increased. Since assemblies compete for neurons, we therefore expect the 151

preferred assembly size to be the one that maximizes ∆Wij . 152

To analytically obtain ∆Wij as a function of the assembly size, we first compute 153

from Eq. 3 the average rate of an assembly neuron 154

r = λ0

∞∑
m=0

((N − 1)ŵ)m =
λ0

1− (N − 1)ŵ
=

λ0

1− ρ
, (13)

where ρ = (N − 1)ŵ is the branching parameter, which gives the average number of 155

spikes that are directly induced by a single spike in the assembly. A stable network 156

requires ρ < 1 [31,42,43]. Eqs. 4, 13 and 8 yield 157

∆Wij(N) =
2λ2

0(Apτp +Adτd)

(1− (N − 1)ŵ)2
+

+
λ0Apτpŵ

[
(2− (N − 2)ŵ)τp + (2− (N − 2)ŵ − (N − 1)ŵ2)τs

]
(1 + ŵ)(1− (N − 1)ŵ)2(τs + (1 + ŵ)τp)(τs + (1− (N − 1)ŵ)τp)

+

+
λ0Adτdŵ

[
(2− (N − 2)ŵ)τd + (2− (N − 2)ŵ − (N − 1)ŵ2)τs

]
(1 + ŵ)(1− (N − 1)ŵ)2(τs + (1 + ŵ)τd)(τs + (1− (N − 1)ŵ)τd)

,

(14)

see SI S.1 for details. Assuming that N ≫ 1, we can neglect N ’s discrete nature and
consider the limit where it approaches 1 + 1

ŵ . In this limit, the firing rates diverge and
Eq. 14 gives

lim
N→1+ 1

ŵ

∆Wij(N)

= lim
N→1+ 1

ŵ

(
2λ2

0(Apτp +Adτd)

(1− (N − 1)ŵ)2
+

λ0ŵ
(
Apτp +Adτd

)
τs(1 + ŵ)(1− (N − 1)ŵ)2

)
(15)

= lim
N→1+ 1

ŵ

f0

(
λ2
0

(1− (N − 1)ŵ)2
+

λ0ŵ

2τs(1 + ŵ)(1− (N − 1)ŵ)2

)
, (16)

where we used Eq. 10 to obtain the last line. It implies 158

lim
N→1+ 1

ŵ

∆Wij(N) = −∞ if f0 < 0, (17)

since the summands in the large bracket are positive. Thus, if f0 < 0 and there is an N 159

for which ∆Wij(N) is positive, ∆Wij(N) will have a maximum; we therefore expect 160

limited assembly growth and assume f0 < 0 throughout the article. Indeed, if f0 > 0, 161

∆Wij(N) diverges to positive values for N where also the firing rate diverges, 162

indicating that sufficiently large assemblies continue to grow until the network generates 163

pathological activity. 164

The first term in the bracket of Eq. 16 covers the impact of uncorrelated pre- and
postsynaptic spiking with rates rj and ri on the synaptic strengths (Cij(τ) = rirj for
uncorrelated spiking). As the firing rates increase with N , the contribution of the
STDP rule due to uncorrelated spiking tends to increasingly negative values, since
f0 < 0. The fact that the second term, which encodes the effects of connectivity motifs
on STDP, see Eq. 11, also becomes negative for sufficiently large N is due to
contributions from higher order motifs. We can see this by reconsidering Eq. 11: For
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homogeneously connected assemblies, it simplifies to

∆Wij = f0r
2 +

r

N

∑
α+β>0

fαβ

(
(N − 1)α+β − (−1)α+β

)
ŵα+β (18)

= f0r
2 +

r

N

∞∑
k=1

fk

(
(N − 1)k − (−1)k

)
ŵk, (19)

where 165

fk :=
∑

α+β=k

fαβ , (20)

see SI S.2. Since fαβ (cf. Eq. 12) and thus fk are independent of N , higher order terms 166

in k grow in Eq. 19 faster with N than lower order ones. Therefore higher order motifs 167

become more relevant for the weight change the larger N is. We find for high orders that 168

lim
k→∞

fk =
f0
2τs

, (21)

see SI S.2; therefore high order motifs induce synaptic depression. 169

Importantly, the relation Eq. 21 holds generally, for any plasticity window F , not 170

only for the considered symmetric one. We explain it as follows: A term with specific 171

exponents α and β in Eqs. 11, 18 covers the contribution of a specific connectivity motif 172

to the spike correlation. This motif consists of a common presynaptic neuron that is 173

separated from neurons j and i by a chain of β and α connections, respectively [9], see 174

Fig. 3b for an illustration. Higher orders of k = α+ β thus encode the effects of long 175

cascades of spiking activity in an assembly. The longer these cascades get, the more 176

spread-out and Gaussian the temporal distribution of their impacts becomes, due to the 177

summation of inter-spike-intervals and their jitters. (We note that since the considered 178

model is linear, one can indeed attribute the generation of each spike to a precursor 179

spike or to the external drive.) Eq. 20 homogeneously sums over motifs with different 180

connection chain lengths to the pre- and the postsynaptic neuron. For sufficiently large 181

k the evoked spike time differences are thus equidistant, broad, overlapping Gaussians 182

over the STDP window, which leads to the dependence on the integral of the STDP 183

function f0, as for uncorrelated pre- and postsynaptic spiking. 184

Fig. 3a shows ∆Wij(N) as in Eq. 14 for different values of ŵ: ∆Wij(N) is maximal 185

for a particular assembly size and becomes negative for large assembly sizes. We 186

confirmed these results using simulations of homogeneous assemblies, in which the 187

weight updates that would occur due to STDP without clipping are tracked but not 188

applied and then averaged over time. Further, Fig. 2 confirms the idea that the 189

observed assembly sizes are roughly at the maximum of ∆Wij(N): the first two 190

assemblies that emerged in Fig. 2 consist of 16 and 18 neurons, respectively, which is 191

roughly where the maximum of the corresponding curve in Fig. 3 is (ŵ = 0.40). 192

We note that in our simulations we also find sparser assemblies where some internal 193

connections are weak or basically missing. For these we expect the maximum of ∆Wij 194

to be at larger sizes compared to our estimates with fully connected ones. Consistent 195

with this, we observe that sparser assemblies in our simulations tend to be larger. 196

Storing new assemblies 197

Next we show how assemblies can be learned via correlated feedforward input. Neurons 198

recruited for a new assembly may previously have only weak connections, i.e. they may 199

belong to a background of neurons in front of which assemblies exist. Alternatively 200

recruited neurons may already be part of other assemblies. In our simulations, during 201

the learning phase, each neuron that is to be recruited receives Poisson spike input from 202
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Fig 3. Explanation of assembly formation. (a): Time-averaged weight change (tracked,
not applied; arbitrary units) for a synapse in an assembly (fully connected, no other
connections, all weights fixed at ŵ) as a function of its size N , for different values of ŵ.
Solid lines: theoretical prediction. (b): Illustration of zeroth, first and second order
contributions to the time-averaged weight change for a given rate and weight
configuration.

the same source. This stimulates the neurons to spike near-simultaneously, such that 203

the weights between them grow. Fig. 4 displays the resulting weight and spiking 204

dynamics in a network which prior to stimulation hosts one assembly in front of a 205

background of weakly coupled neurons. Before time t = 0s, the single assembly is stably 206

stored in the network, despite the ongoing plasticity. At t = 0 s a group of background 207

neurons receives correlated stimulation for Tstim = 180 s. This leads to the formation of 208

a rudimentary assembly. After the stimulation has ended, its synapses grow over a 209

longer period of time until a fully connected assembly is reached, where all 210

interconnections have synaptic strength close to ŵ. The remaining background neurons, 211

which do not receive correlated stimulation in the beginning, do not form assemblies. 212

The stimulation furthermore does not affect the already existing assembly and neither 213

does this assembly interfere with the formation of the new assembly. Fig. S2 shows 214

another example of assembly learning; here again mostly background neurons are 215

recruited, but also one neuron that is already part of two pre-existing assemblies. 216

Overlapping Assemblies 217

Experiments indicate that neurons can code for more than one memory item [21–23]. 218

For assembly models of memory this implies that neurons can be part of more than one 219

assembly, see Fig. 5a, i.e. assemblies have overlaps [44]. Such overlaps may encode 220

associations between memories. 221

We find that for appropriate parameters, our networks can stably store assemblies 222

with some overlaps, see Fig. 5b for an example weight matrix. However, we also observe 223

that overlapping assemblies present a challenge for our models: overlapping assemblies 224

either tend to merge or overlapping neurons tend to disconnect from one of the 225

assemblies they are a part of, dissolving the overlap. The first case occurred especially 226

when the sizes of the overlapping assemblies were significantly smaller than the sizes 227

that would maximize ∆Wij . We hypothesize that in this case a feedback loop emerges: 228

overlaps induce correlations between the assemblies, which facilitates the formation of 229
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Fig 4. Learning a new assembly in a network starting with a single assembly and
otherwise weak random connectivity. Initially, correlated external input stimulates the
neurons of the new assembly, which leads to an increase of their interconnecting weights
and thereby to the formation of a rudimentary assembly. The stimulation is then turned
off and the network evolves on its own; the new assembly becomes fully connected.

additional overlaps until the assemblies have completely fused. The other case occurred 230

when the sizes of the two assemblies were close to maximizing ∆Wij . We hypothesize 231

that here the higher firing rate of an overlap neuron and the resulting increased 232

negative contribution (from, for example, the first term in Eq. 14) imply that overlaps 233

become more likely to disappear due to fluctuations in the weight dynamics. 234

The hypotheses about the mechanism underlying the problems with overlap suggest 235

two solutions how networks may solve them: First, if the synaptic long-term depression 236

that occurs at high rates limits the connectivity of neurons, a neuron with a 237

significantly lower spontaneous rate may be able to connect to multiple assemblies at 238

the same time. In Fig. 6 we show how neurons with lower spontaneous firing rate join a 239

second assembly. In Fig. 6a a neuron with lowered spontaneous rate is already partially 240

connected to another assembly. This partial connection then causes enough correlation 241

with the second assembly to induce the completion of the connections. In this case both 242

the initial partial connection and the lower λ0 were necessary to create this overlap. For 243

an even lower λ0, an overlap emerged spontaneously, with a randomly selected assembly, 244
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Fig 5. Overlapping assemblies. (a): Illustration of overlaps. (b): Weight matrix of a
network with overlapping assemblies. The base assemblies (diagonal blocks) are each 20
neurons in size.

through the inherent stochasticity of the dynamics, as shown in Fig. 6b. 245

A second way of sustaining overlaps, is by having most, or all neurons be part of 246

more than one assembly. In this case fusion of two assemblies appears less likely, because 247

all assemblies and neurons are similarly saturated. Indeed, in the brain, we expect most

Fig 6. Creation of overlaps. (a): A partial overlap self-completes over time due to
plasticity. (b): An overlap emerges for a neuron with lower spontaneous firing rate.

248

or all neurons to be part of more than one assembly [21,44]. To test whether our 249

networks are capable of sustaining similarly prominent overlap structures, we consider a 250

network of intertwined assemblies in which each neuron is part of exactly two assemblies. 251

We choose equally sized assemblies of size nA and the overlap structure such that for 252

any given assembly each of its neurons is shared with a different assembly. In other 253

words, the overlap between any two assemblies consists of one neuron or a fraction of 254

1/nA of the population. This implies that there are in total nA + 1 assemblies and that 255

the setup requires a network with N = nA(nA + 1)/2 neurons. Notably, a network with 256

the same number and size of assemblies, where each neuron is only part of one assembly 257

(no overlap), would require twice as many, (nA + 1)nA, neurons. Fig. 7 shows that this 258

structure is stable under the STDP rule over long timescales. The assemblies have size 259

nA = 19; the typical overlap between two assemblies is thus 1/nA = 1/19 ≈ 5.3%. 260
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Random correlations cause additional, extra-assembly connections to appear (more 261

precisely: to strengthen) and intra-assembly connections to disappear (to weaken). To 262

demonstrate that these deviations of individual weights are transient, we have tracked 263

in Fig. 7b and c the strengthening of extra-assembly weights and the weakening of 264

intra-assembly weights, respectively. The upper panel of Fig. 7b displays the sum of the 265

extra-assembly weights over time, indicating that there is no positive drift, i.e. no 266

overall increase of weights that do not belong to the stored assembly structure over time. 267

The lower panel displays the Pearson correlations of the extra-assembly weights over 268

time with the extra-assembly weights observed at five reference time points. With 269

increasing distance to the reference time point, the correlations decay to chance level 270

showing that no persistent pattern of strengthened extra-assembly weights emerges. 271

Fig. 7c analogously displays the differences between the maximal (optimal) and the 272

actual intra-assembly weights. The upper panel shows that there is no overall increase 273

of this difference, i.e. no overall decay of the assembly structure. The lower panel shows 274

that the patterns of weakened intra-assembly weights are transient. 275

Fig 7. Intertwined assembly network. (a): Initial weight matrix (left hand side) and
weight matrix after simulation over 106 s (right hand side). (b, upper): Sum of the
extra-assembly weights, that is of those weights that are zero initially and when the
assembly structure is optimally realized. The sum is given as a fraction of the total
initial weights. (b, lower): Correlations of the extra-assembly weights with those at six
different reference points in time. (c,upper): Sum of the absent intra-assembly weights,
that is, the sum of distances of intra-assembly weights from their initial and optimal
value ŵ. The sum is given as a fraction of the total initial weights. (c,lower): As in
(b,lower) for absent intra-assembly weights.

Drifting assemblies 276

Experiments have shown that memory representations need not consist of the same 277

neurons over time but can in fact exchange neurons without affecting behavior [25], a 278

phenomenon called representational drift. It may occur because memory assemblies 279

drift, by gradually exchanging neurons between each other [5]. The gradual exchange 280

implies that at each point in time, each assembly is present and unambiguously 281

identifiable by following the course of its evolution from the beginning. In the following, 282

we show that our model networks can give rise to drifting assemblies. The drift happens 283

due to two alternative mechanisms: (i) Neuron exchange between assemblies due to high 284

weight plasticity noise, as in [5] and (ii) formation of temporal overlaps due to 285

modulations in the spontaneous spike rate. Whether drift occurs due to mechanism (i) is 286

chiefly determined by the learning rate µ: Fig. 8a displays the assembly dynamics in two 287

networks with different values of µ while all other parameters are kept the same. The 288

network with smaller µ has stationary assemblies. In contrast, the network with larger 289

µ exhibits drifting assemblies. Specifically, in this network the ensemble of neurons 290
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forming an assembly completely changes over time (SI Fig. S3a). Simultaneously, one 291

can track the identity of an assembly by comparing its constituent neurons over short 292

time intervals; the neurons forming it at one time can be unambiguously matched to the 293

neurons forming it shortly thereafter, since the difference between those two ensembles 294

is still small (SI Fig. S3b). We can explain the occurrence of this type of drift as an 295

effect of fluctuations in the weight dynamics. The time-averaged weight dynamics as 296

described by ∆Wij reinforce connections between neurons in the same assembly while 297

suppressing connections between neurons of different assemblies. However, large enough 298

fluctuations in the weight dynamics may nevertheless cause neurons to lose connections 299

within their assembly and form connections to other assemblies. The size of these 300

fluctuations is governed by µ, and if they are sufficiently large there is a finite 301

probability that a neuron switches assemblies, see [5] for a detailed discussion. If µ is 302

too large, the strong fluctuations prevent assemblies from forming at all. 303

In the second mechanism switching of assemblies by neurons is a two-step process. 304

In the first step a neuron with a sufficiently low λ0 spontaneously forms a connection to 305

an additional assembly, as in Fig. 6b. Then, when λ0 increases again this neuron loses 306

its connections to one of the assemblies. The neuron can thereby leave either of the 307

assemblies it is connected to – if it loses its connections to the assembly that it was 308

originally connected to, it has switched assemblies. If this happens sufficiently often for 309

many neurons in the network, this also causes overall drift on a slow timescale, as shown 310

in Fig. 6b. 311

Fig 8. Drifting assemblies. (a): Drift through noisy spiking activity and resulting
weight fluctuations. Assembly dynamics for lower (µ = 0.1, upper part) and higher
(µ = 0.145, lower part) learning rate. The panel shows connection matrices W at
different point in time. Initially, the weight matrices are random (left). After
t = 8× 105 s assemblies have spontaneously emerged (middle). The neuron indices are
sorted to reveal them (cf. Fig. 2). The simulation is thereafter continued, which shows
that for lower learning rate the assemblies are static. In contrast, for higher learning
rate the assemblies drift. Since the assemblies exchange neurons, the coupling matrix
appears increasingly unstructured. Reordering of the indices, however, reveals that the
assemblies are maintained at each point in time. (b): Drift through transient changes in
intrinsic neuron properties and resulting transient overlaps. The spontaneous firing
rates of neurons change on a slow timescale. This leads to the transient appearance of
overlaps, cf. Fig. 6b. When an overlap vanishes, the neuron randomly decides for one of
the assemblies, which leads to drifting assemblies.
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Aging 312

We finally apply our assembly model to networks that undergo changes in their synaptic 313

connectivity due to processes related to aging. Anatomical studies have shown that the 314

aging cortex is characterized by a decrease in the number of synaptic spines [26] and 315

presynaptic terminals [27]. These changes may be interpreted as an increase in sparsity 316

of connections between neurons and/or as an overall weakening of synaptic strengths 317

(since connections between neurons often consist of multiple synapses). We can model 318

the former by permanently setting a fraction of entries of the weight matrix, chosen at 319

random, to zero. We can model the latter by decreasing ŵ. Fig. 3a shows the effect of 320

decreasing ŵ: it shifts the potentiation maximum and thus the typical assembly size 321

towards larger N . Increased sparsity similarly lowers the branching parameter for an 322

assembly of a given size and thus also shifts the potentiation maximum and the 323

characteristic assembly size towards larger N , see Fig. 9a. As a result, spontaneously 324

forming assemblies are larger in networks with higher sparsity, see Fig. 9c. In addition 325

Fig. 9c suggests that smaller learning rates further increase the tendency to form larger 326

assemblies. We observe that if the assembly sizes in a network are significantly smaller 327

than the characteristic size predicted by Figs. 3a and 9a, assemblies will merge to form 328

larger ones, see Fig. 9b. This represents a loss in memory capacity. Assuming that in 329

the brain assemblies representing closely related memories merge (due to existing 330

overlaps), during this process the overall memory content becomes less detailed and 331

differentiated. At the same time the neuronal activity during recall increases due to 332

larger assembly sizes indicating a less efficient use of neural resources. 333

Fig 9. Effects of increasing network sparsity. (a): Time-averaged weight change like in
Fig. 3a, of an assembly with intra-assembly connection probability p, as a function of its
size for different values of p. Lower values of p lead to a shift of the optimal assembly
size to larger N . Simulations with low ∆Wij converge slowly, which is reflected by large
error bars. (b): An assembly structure becomes coarser (fewer, larger assemblies) as the
connectivity sparsity increases. The panel shows the weight matrices of the same
network when the probability p that a connection between neurons exists is decreased
from p = 1.0 (upper subpanel, after spontaneous assembly emergence) to p = 0.7 (lower
subpanel, after re-equilibration). (c): Dependence of the size of a typical assembly on
the network connection probability p and the learning rate µ. The panel shows the
median size of spontaneously forming assemblies in networks with random initial
connectivity. White areas denote parameter regions for which activity becomes
pathological, that is, firing rates diverge.
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Discussion 334

We have studied assemblies in networks with plasticity that is purely spike-timing 335

dependent. We find that the networks stably store assemblies, which may spontaneously 336

emerge or be learned. Further, the assemblies can have overlaps, spontaneously drift 337

and adapt to changing network properties. 338

In biological spiking neural networks the change of synaptic efficacies depends to a 339

large extent on STDP, where depression and potentiation are a function of the time lags 340

between pre- and postsynaptic spikes [45–47]. Assemblies may be kept up by the 341

co-spiking of their member neurons, which strengthens their interconnections. If the 342

total input to a neuron is not constrained, large assemblies generate large inputs to each 343

member neuron and thereby highly reliably co-activate them. Furthermore, larger 344

assemblies generate stronger input to other neurons and thereby tend to recruit them, 345

such that the assembly grows. This generates a positive feedback loop, which can 346

without restraining mechanisms lead to excessive assembly growth. Previous work on 347

assembly networks therefore usually added additional homeostatic plasticity that limits 348

the total input strength to a neuron by fast normalization [5, 7–9,11–13]. This curtails 349

the resulting excessive assembly growth. The homeostatic plasticity observed in 350

neurobiological experiments is, however, much slower than that required to prevent 351

runaway assembly growth [14–18]. 352

In the present work, we therefore studied assemblies in networks with purely 353

STDP-based plasticity. We find that our depression-dominated STDP-rule (the integral 354

of the STDP window is negative) restricts the growth of assemblies by two mechanisms: 355

On the one hand, the spike rate of the neurons in an assembly grows with the assembly 356

size, which increases the depressing effect of the rate-based term of the time-averaged 357

weight change. On the other hand, the contributions of the higher-order connectivity 358

motifs to the time-averaged weight change become more significant the larger the 359

assemblies are, because longer cascades of spikes become more likely. Further for 360

sufficiently high order the appropriately summed contributions of the motifs are 361

approximately proportional to the integral of the STDP window and thus negative. The 362

contributions of the purely firing rate-based and the higher-order motifs therefore 363

reduce or even invert the tendency of weights to grow in large assemblies. As a 364

consequence, neurons are more prone to leave a larger assembly and for example join 365

another, smaller one, which induces larger growth of the interconnecting weights. A 366

mechanism similar to the purely firing rate-based effect that we have described has been 367

shown to stabilize the output spike rate of a single neuron receiving feedforward input, 368

since a strong dominance of the rate-based term ultimately leads to the reversal of the 369

sign of plasticity [48]. Another related work, [10], demonstrated the learning of static, 370

non-overlapping assemblies in networks with STDP in the recurrent excitatory and the 371

inhibitory-to-excitatory connections. These assemblies are maintained at least over 372

several hours. The excitatory STDP is thereby balanced (the integral over the STDP 373

window is about zero) such that the inhibitory STDP is effectively much faster. This 374

yields rate homeostasis in the excitatory neurons. In our models the integral over the 375

excitatory STDP curve is negative. Like rate homeostasis, this restricts the maximal 376

average excitatory spike rates. In contrast to rate homeostasis, it also allows for smaller 377

weights, for example in our networks with assembly and background neurons. We note 378

that the fast weight homeostasis in [9] is implemented such that it also only constrains 379

the maximal summed input and output weight of a neuron. We further note that highly 380

diverse average spike rates are observed in biology [49]. 381

Our model networks generate irregular, probabilistic spiking activity. This is in 382

agreement with experimentally observed irregular spiking in the cortex. In our models 383

the irregularity of spiking is guaranteed by the usage of a Poisson spiking neuron model. 384

In biological neural networks, it is usually assumed to result from the input 385
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fluctuation-driven spiking dynamics of individual neurons, which occur when there is an 386

overall balance of excitatory and inhibitory input. When the excitatory synaptic 387

weights are plastic, as in our model, this balance might be maintained by inhibitory 388

plasticity [6–8,10]. 389

We observe that our networks are able to maintain prominent overlap structures, 390

where each neuron belongs to more than one assembly. The assembly structure is 391

saturated and remains stable. In particular, additionally increased connections are 392

sparse and transient. Previous related works have not shown similarly prominent 393

overlap structures [5, 7–10,12, 24], perhaps because the mostly assumed fast homeostatic 394

normalization induces a stronger competition between the assemblies. This may force 395

neurons to decide for one assembly. Networks with overlaps allow a more economic use 396

of neural resources, in the sense that more assemblies of a specific size can be stored, in 397

our example network twice as many as without overlaps. The overlap between 398

assemblies in our simulations is about 5%. This agrees with the overlap estimated for 399

assemblies representing associated concepts in the brain [44]. The overlap of randomly 400

chosen assemblies is smaller, about 1%. 401

Our model networks can stably maintain assemblies in front of a background of 402

neurons that are not part of any assembly. Such a scenario might be particularly 403

relevant for early development when not many memories have been stored yet. Previous 404

related works usually assume that the entire space is tiled by assemblies [5, 7–10,12]. 405

The reason may be similar as for the prominent overlap structures, namely that fast 406

homeostatic plasticity has a strong tendency to force neurons into assemblies. Ref. [24] 407

shows assemblies in front of a background of weakly connected neurons in networks with 408

structural plasticity and multiple synapses per connection between neurons. 409

The assemblies in our networks can drift. Such assembly drift may explain the 410

experimentally observed drift of memory representations in the brain [25]. In our model, 411

assemblies drift by exchanging neurons. This exchange can on the one hand originate 412

from sufficiently large synaptic weight fluctuations, as in [5]. These fluctuations occur in 413

our models for sufficiently large learning rates due to the noisy spiking. On the other 414

hand, our models also show a novel neuron exchange (and thus drift) mechanism: For 415

high spontaneous rate, each neuron belongs to one assembly. If the spontaneous rate of 416

a neuron in the network then transiently drops, the synaptic weights with another 417

assembly increase, such that the neuron belongs to two assemblies. When the intrinsic 418

rate recovers, the synaptic weights with one of the assemblies weaken. This may 419

eliminate the strong weights with the assembly that the neuron originally belonged to 420

and thus induce a switch to the other assembly. The observation suggests a new general 421

mechanism for representational drift in the brain: Transient (or persistent) changes in 422

single neuron properties may lead to changes in the synaptic weights. These in turn 423

induce a change in the features represented by the neuron. The changes in the synaptic 424

weights and the representation may thereby be much longer lasting than the changes in 425

the intrinsic neuronal properties. 426

Since in the aging brain the overall connectivity decreases [26, 27], we have explored 427

the impact of a such a decrease on the assemblies in our model networks. We observe 428

that the size of assemblies is inversely related to the connection probability in the 429

network. We expect that a similar relation can be observed rather generally, for 430

example also in model networks where the assemblies are stabilized by fast homeostasis. 431

In particular, sparser networks should, all other parameters being equal, lead to larger 432

assemblies that are activated during recall. This is consistent with the observation that 433

neural activity for the same task is stronger in aged individuals [50], where the neural 434

networks are more sparsely connected. An increased assembly size and the resulting 435

stronger activity during reactivation might also explain why episodic memories are 436

experienced more vividly in elderly subjects [51]. In our model networks, we observe 437
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that assemblies merge to larger ones when networks become increasingly sparse. Such 438

mergers might explain why episodic memories become less detailed in the aging 439

brain [51,52]. 440
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