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Abstract

Understanding the ecological impacts of global change forces us to consider the antagonistic and1

synergistic interactions between the multiple stressors that ecosystems may face. At the community-2

level, such interactions are quantified based on the responses of various ecosystem-functioning or3

diversity metrics. Worryingly, in empirical data, we find that community metrics often observe4

opposite interactions between the same two stressors - sometimes even systematically. Here, we5

investigate this puzzling pattern via a series of geometrical abstractions. By representing stressors6

and their interactions as displacement vectors in community state-space, and community metrics as7

directions in this space, we show that the angle between two directions determines the probability,8

over random stressor combinations, that the metrics will observe opposite interactions. We find9

that diversity and functioning can easily be associated to opposing directions, which explains the10

systematic mismatches seen in empirical data.11
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1 Introduction12

Predicting the combined effects of multiple stressors on ecological communities is a difficult task.13

The crux of the problem is that stressors often interact in complex ways resulting in unexpected14

non-additive effects (Côté, Darling, & Brown, 2016; Kroeker, Kordas, & Harley, 2017). Thousands15

of studies have reported non-additive interactions (antagonistic or synergistic) between specific16

combinations of stressors on specific biological responses (Jackson, Loewen, Vinebrooke, & Chimimba,17

2016; Darling & Côté, 2008; Crain, Kroeker, & Halpern, 2008; Yue et al., 2017), showcasing a huge18

amount of context-dependency, and highlighting the need, and difficulty, to develop general theory on19

multiple stressor interactions (Schäfer & Piggott, 2018; De Laender, 2018). Furthermore, although20

chemists, biologists and ecotoxicologists can sometimes gather detailed knowledge of the mechanisms21

of stressor interactions at the individual and population levels (Boyd & Brown, 2015; Didham,22

Tylianakis, Gemmell, Rand, & Ewers, 2007; Rillig, Lehmann, Orr, & Waldman, 2021), research into23

stressor interactions at the community level is underdeveloped (Orr et al., 2020). Some progress24

has been made, for example towards understanding the role of species co-tolerance (Vinebrooke25

et al., 2004; MacLennan & Vinebrooke, 2021) and species interactions (Thompson, MacLennan,26

& Vinebrooke, 2018; Beauchesne, Cazelles, Archambault, Dee, & Gravel, 2021), but fundamental27

knowledge gaps remain.28

Here we ask a basic, but crucial question: how much does the interaction between stressors depend on29

the way community-level responses are observed and quantified? To clarify the problem, consider a30

scenario where an ecologist studies the interactive effects of two stressors on an ecological community31

(Fig. 1A), using experimental data of the responses to the stressors individually and in combination32

(Fig. 1B). Suppose they quantify the interaction between those stressors based on the observed33

responses of species richness and total biomass (Fig. 1C). For species richness they find a synergistic34

interaction (the combination of stressors caused more extinctions than expected), but for total35

biomass they find an antagonistic interaction (the combination of stressors caused less change in36

total biomass than expected). It is concerning that the ecologist’s conclusion about whether the37

stressors interact antagonistically or synergistically depends on how they chose to observe the effects38

of the stressors on the community.39

Different community metrics observing opposite stressor interactions is not a hypothetical problem.40

In empirical studies of stressor interactions, community metrics often observe qualitatively different41

stressor interactions (Box 1, Fig. 2). In fact, when function (i.e. biomass) and diversity are both42

used to quantify stressor interactions, the meta-analysis reported in Box 1 reveals a systematic bias:43

roughly 75% of observations of interactions are qualitatively different (Box 1, Fig. 2A).44
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Figure 1: (A) An ecological community is impacted by two stressors individually and combined (i.e., a

factorial study design). (B) Population-level responses are shown by timeseries of biomass where each curve is

a single species. The dashed lines represent equilibrium biomasses, the vertical grey bars represent the onset of

the (press) stressors and asterisks indicate extinctions. (C) The impact of the stressors is observed at the

community level using changes in species richness and changes in total biomass. The interaction between the

two stressors is quantified using an additive null model (i.e., the combined effect of stressors is predicted to be

the sum of the individual effects). Species richness observes a synergistic interaction between the two stressors

– there are more extinctions than predicted. Conversely, total biomass observes an antagonistic interaction

between the two stressors – there was less change in total biomass than predicted.

Motivated by the concerning empirical patterns reported in Box 1, our goal here is to develop a45

general theory capable of explaining why community metrics often observe qualitatively different46

stressor interactions. Our theoretical construction strives to be simple enough to have a chance47

to be generally applicable to multiple-stressor research, yet complex enough to be informative.48

Specifically, we convert this ecological problem into a geometric one by representing stressors and49

their interactions as displacement vectors and community metrics as directions in community state-50

space. We find that the central ingredient is the co-linearity of observations, which we show can predict51

the probability of mismatches. Furthermore, we uncover an intriguing link between mismatches at52

the community level and useful population-level information. Based on our theoretical results we53

give some recommendations for empiricists interested in multiple-stressor interactions but we also54

discuss how our approach of comparing observations at the community level to gain insights about55

the underlying system can be applied more broadly in ecology.56
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Box 1: Synthesis of empirical data

To determine how common it is for community metrics to observe opposite stressor interactions,

we analysed a database of multiple-stressor experiments in freshwater systems collected for

meta-analyses by Jackson et al. (2016) and Morris et al. (2022). 59 of the 125 studies in the

database quantified stressor interactions at the community level. There were 16 cases where

stressor interactions were reported for both biomass and diversity (Table S1). There were

also 12 cases where stressor interactions were reported for both biomass and decomposition

(Table S2). Interactive effects between stressors were quantified using Hedges’ d (Hedges,

1981). Annotated code for analysis of the empirical data is available in an R notebook at

https://github.com/jamesaorr/observation-stressor-interactions.

Figure 2. Empirical results where two community metrics were used to observe the interactive effects of
the same two stressors on the same community. Both axes show Hedges’ d for interactive effects where
positive values indicate synergism and negative values indicate antagonism. When points fall in the blue
quadrants both community metrics observe the same type of stressor interactions (synergism in the top
right and antagonism in the bottom left). However, when points fall in the red quadrants there is a
mismatch in the stressor interactions observed. (A) Cases where stressors interactions were quantified
using a metric describing the biomass of a community and a metric describing the diversity of that same
community. (B) Cases where stressor interactions were quantified using measures of both biomass and
decomposition. See tables S1 and S2 for further details about each data point.

2 Methods57

To understand why community metrics often observe opposite stressor interactions, we transform58

this ecological puzzle into a relatively simple geometric one by making a number of abstractions,59
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which are described more formally in Box 2.60

First, we consider the effects of stressors on populations as displacement vectors in state-space61

representations of ecosystems where axes report the species’ biomasses (Fig. 3A). Stressor interactions,62

or non-additivity, can be depicted in these state-spaces by plotting the initial sate of the community,63

the state of the community following exposure to the stressors individually, the predicted state of the64

community following exposure to both stressors (based on additivity), and the realised state of the65

community following exposure to both stressors. The vector of differences between predicted and66

realised states encodes the non-additivity at the species level, also seen as a displacement vector.67

The second level of abstraction is to consider ecosystem functions as positive directions in state-space68

(Fig. 3B). Total biomass for example is the sum of all the species’ biomass and its direction lies exactly69

between all the axes, giving equal weight to all species. Other functions may not be influenced by the70

biomass of all species equally. In the hypothetical example shown in Fig. 3B, general decomposition is71

slightly more sensitive to the biomass of fungi than to the biomass of bacteria, plastic decomposition72

is primarily carried out by bacteria, and chemical production is primarily carried out by fungi. In73

general, a positive direction is spanned by a vector of positive values representing the per-capita74

contribution of each species to the function of interest. The “broadest” function, total biomass, is75

made up entirely of ones. The “narrowest” functions, are made up entirely of zeroes, expect on the76

entry associated to the only species contributing to the function (Rivett & Bell, 2018).77

Next, we combine these two levels of abstraction to propose a useful representation of the way78

functions observe non-additivity. To do so, we recenter the state space so that the axes now represent79

the non-additive effect on each species, with the origin consequently being the predicted state of the80

community following exposure to both stressors if they did not interact (Fig. 3C). Projecting the81

non-additivity displacement vector (multi-dimensional) onto the direction of an ecosystem function82

(one dimension) gives the non-additivity “observed” by that function, which is equivalent to measuring83

non-additivity as84

∆f(N12)− (∆f(N1) + ∆f(N2)) (1)

where ∆f(Nk) refers to the change in a function caused by stressor k. Positive and negative values85

of non-additivity therefore reflect synergistic and antagonistic interactions respectively.86

For each function, drawing a line through the origin and perpendicular to the direction of the function87

delineates two zones. One where the projection is negative, and thus the function observes an88

antagonistic interaction (negative non-additivity, less impact than predicted) and the other where the89

projection is positive and thus the function observes a synergistic interaction (positive non-additivity,90

more impact than predicted). If the two directions associated to the two functions are not perfectly91

co-linear, there will be zones of state-space where non-additivity will be qualitatively different when92

observed by one function or the other. These zones are the two symmetrical cones centered on the93

origin, formed by the the delineation lines of the functions, perpendicular to their respective directions94

(red zones in Fig. 3D). The larger the angle between two functions, the larger the zones of mismatches.95
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Consequently, if species’ non additive responses were random and unbiased, the probability of finding96

a qualitative mismatch between the two measurement of community-level non-additivity would be:97

P(Mismatch) =
θ

π
(2)

where θ is the angle between the two functions measured in radians. As the exact species contributions98

to a function may be challenging to acquire in empirical data, it is noteworthy that the angle between99

two functions can be approximated using only the knowledge, or estimation, of their respective100

broadness (Eq. (9) in Box 2). Indeed, in a community of S species and functions F1 and F2:101

cos θ ≈ cos θdiv =
√

2D (F1) /S × 2D (F2) /S (3)

where 1/S ≤ 2D(F )/S ≤ 1 is the broadness of the function F , defined here as the Gini-Simpson102

diversity index (Hill, 1973) of the vector of species contributions to the function, and normalized by103

species richness S. Expression (3) quantifies the intuitive expectation that two broad functions ought104

to be highly colinear, whereas two two narrow functions can be independent (i.e. orthogonal to one105

another) if they are not performed by the same set of species.106

Our final level of abstraction is the realization that measures of diversity, which are highly non-linear107

functions of species biomass (in the mathematical sense of a function of variables, not in the sense108

of ecological functioning), can still be placed into this geometric setting by considering their (state-109

dependent) gradients. The gradient of a diversity metric is a vector encoding its sensitivities to small110

variations in each species biomass. Importantly, gradients of diversity metrics span non-positive111

directions in state-space because increasing the biomass of some species (the more abundant ones)112

decreases diversity.113

We carried out basic simulations to compare the observations between and within ecosystem functions114

of varying broadness and diversity metrics from the family of Hill diversity indices encompassing115

species richness (q = 0), the Shannon index (q = 1) and the Gini-Simpson index (q = 2) (Roswell,116

Dushoff, & Winfree, 2021; Hill, 1973). For each pair of community metrics we performed many in117

silico multiple-stressor experiments and recorded the proportion of mismatches of observations of118

stressor interactions at the community level. Given the generality of our theory, these simulations only119

need to generate vectors describing non-additivity at the population level, which we can then observed120

at the community level, and are therefore not required to be highly realistic. We also recorded121

two pieces of information about the non-additivity at the population level: (i) the consistency of122

non-additivity (whether or not most species observe antagonistic or synergistic response) and (ii) the123

scaling of non-additivity by the biomass of species (whether or not more abundant species have larger124

non-additive responses). Annotated code for our simulations is available in a Jupyter Notebook at125

https://github.com/jamesaorr/observation-stressor-interactions.126
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Box 2: Geometrical theory of stressor interactions at the community-level

Here bold symbols denote S−dimensional vectors, where S is the richness of the community. Let N0 be the initial state

of a community: the vector of species biomass prior to stressor exposure. Let N1 and N2 be the community states after

exposure to stressor 1 and 2, respectively. Let N12 be the state following exposure to both stressors. The observed-non

additive response, quantified via an ecosystem function f(N), is

∆f = f(N1) + f(N2)− f(N12)− f(N0). (4)

The interaction type –antagonistic or synergistic– is determined by the sign of ∆f . If positive, more change occurred than

expected, thus a synergistic interaction. If negative, less change occurred, thus an antagonistic interaction took place between

the two stressors. For a linear function there exist a constant c (that will play no role in what follows) and a vector φ –the

gradient– such that

f(N) = c+ ⟨φ,N⟩ (5)

with ⟨·, ·⟩ the scalar product of vectors. The elements of the gradient vector φ encode the per capita contribution of species

to the function. For us it will not matter what those exact contributions are, only relative species contributions which

determine the direction spanned by the vector φ. A positive function is such that the elements of the gradient are positive.

If we rewrite the non additive response of the function, we get that

∆f = ⟨φ,∆N⟩ (6)

where ∆N = N1 + N2 − N12 − N0 is the vector of species-level non additivity. For non-linear functions the (state

dependent) gradient vector can be computed as φi(N0) =
∂f
∂Ni

|N0
. In this case, expression (6) will be an approximation,

exact only for weak stressors. Now, for two functions, f , g associated to two directions spanned by the two gradient vectors

φ and ϕ, we define their colinearity as the angle 0 ≤ θ < 2π whose cosine is

cos θ =
⟨φ,ϕ⟩

∥φ∥ ∥ϕ∥
(7)

where ∥·∥ denotes the Euclidian norm of vectors. A graphical argument (Fig. 3D) tells us that the fraction of non-additive

vectors ∆N that will lead to a qualitative interaction mismatch between the observations of f and g is

P(sign(∆f) ̸= sign(∆g)) =
θ

π
(8)

In such cases, one of the functions will observe a synergistic interaction between stressors, while the other function will

observe an antagonistic interaction. For random positive directions, we can evaluate the cosine of the angle based on a

notion of functional broadness. Indeed, given a random choice of positive functions

⟨φ,ϕ⟩
∥φ∥ ∥ϕ∥

≈
1

S

∑
φi

∑
ϕi√∑

φ2
i

∑
ϕ2
i

=
1

S

√√√√ 1∑
( φi∑

φi
)2

1∑
( ϕi∑

ϕi
)2

=

√
2Df

S

2Dg

S
(9)

where qD denotes Hill’s diversity index. We will call the fraction
2Df

S
the broadness of the function f , which is maximal

(and equal to one) if all species contribute equally to the function (i.e. total biomass).

We can modify the above theory to account for an additional piece of species-level information in the form of a biomass

scaling of species-level non-additivity. It is indeed reasonable that more abundant species will, in absolute terms, show a

larger response to stressor exposure. For some scaling exponent α ≥ 0, if we denote D the diagonal matrix whose elements

are the species biomass prior to stressor exposure, we may assume that the non additive displacement vector takes the form

∆N = Dα∆. We then have that

∆f = ⟨Dαφ,∆⟩ (10)

the relevant angle to consider then becomes

cos θα =

〈
φ, D2αϕ

〉
∥Dαφ∥ ∥Dαϕ∥

(11)

giving the fraction of rescaled vectors ∆ that would lead to a qualitative mismatch.
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3 Results127

3.1 Mismatches between functions128

As predicted by our geometrical arguments, in simulations, the proportion (over random in silico129

experiments) of mismatches between the observations of two ecosystem functions closely reflects130

their co-linearity, as defined by the angle between their respective directions (Eq. 2, Fig. 3E). We131

also confirm that this angle can be estimated using only the functions’ respective broadness (Eq. 3,132

Fig. 3E inset). However, we see that the probability of mismatches is accurately predicted only when133

non-additivity is unbiased at the population level; that is when approximately half the species show134

synergistic responses and half antagonistic ones. On the other hand, if population-level non-additivity135

is biased towards antagonism or synergism, the prediction based on the angle between functions136

will overestimate the proportion of mismatches (Fig. 3E). This could be seen as a limitation, but137

it actually provides a useful link between mismatches in observations at the community level and138

information on population-level responses. This effect occurs because when non-additivity vectors139

are mostly synergistic or antagonistic, they tend to fall in the areas where positive linear functions140

must always observe the same non-additivity (top right and bottom left quadrants in Fig. 3D). The141

empirical data showing a 50% rate of mismatches between total biomass and decomposition (Box142

1, Fig. 2B) suggests that decomposition is typically a more narrow function than total biomass,143

sensitive to the biomass of a subset of the community, and that the non-additive effect of stressors at144

the species-level (in the ecosystem context) is largely inconsistent, with species as likely to perceive145

synergistic or antagonistic interactions between stressors.146

3.2 Mismatches between diversity metrics147

From the angle between the gradients of diversity metrics, we can still predict the probability of148

mismatches. Here we are comparing metrics from the family of Hill diversity, which unifies the classic149

notions of diversity that ecologists use (richness, Shannon index, Simpson index) into one general150

framework where metrics vary based on q, the hill exponent, which controls their sensitivity to151

common or rare species (Roswell et al., 2021). Consequently, we see that the difference in the q values152

between two diversity metrics correlates to the size of the angle between their gradients (Fig. 4A).153

Here, the consistency of population-level non-additivity has a weak effect due to the non-linearity of154

diversity metrics. In fact, this non-linearity of diversity metrics is capable of introducing non-additivity155

between stressors even if there is no non-additivity at the population-level (Fig. 4B). Furthermore,156

the evenness of the biomass distribution of a community determines how similar gradients of diversity157

metrics are to positive functions. For uneven communities, increasing the biomass of most species158

will increase diversity so gradients will behave similarly to positive linear functions. However, for159

perfectly even communities, increasing the biomass of any single species will decrease diversity so160

gradients of diversity will effectively be negative functions of biomass.161
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Figure 3: (A) Stressors and their non-additive interactions can be viewed as displacement vectors in
community state-space. Here a community of bacteria and fungi is impacted by two stressors, represented
by the black arrows from the initial state of the community (I) to the points A and B. The predicted state
following exposure to both stressors (+) is based on an additive null model. The points AB1 and AB2 are two
examples of realised states following exposure to both stressors. The thick black lines between the predicted
and realised states therefore represent examples of non-additive effects. (B) Measures of ecosystem function
can be represented as positive directions in this state-space. (C) Realised states are plotted in state space
where the additive expectation is at origin and each axis describes the non-additive effect on each species.
Here the non-additive vectors associated with the realised states AB1 and AB2 from (A) are projected onto
total biomass and plastic decomposition. For AB1, both community metrics observe antagonism. However, for
AB2 there is a mismatch in the observations of non-additivity: total biomass observes synergism while plastic
decomposition observes antagonism. (D) For two functions, the zones of mismatches in their observations
can be found by drawing lines perpendicular to the functions that go through the origin. Community metrics
will observe different stressor interactions for non-additive vectors that fall between these lines (i.e., in the
red zones). (E) Over many simulated multiple-stressor experiments, the proportion of mismatches between
linear functions can be predicted by the angle between them in radians (θ) divided by the number π. When
non-additivity is consistent at the species-level there are less mismatches than predicted as non-additivity
vectors tend to fall in the mostly positive or mostly negative areas of state-space, which happen to overlap
with the zones of consistent observations for linear functions (i.e., blue zones in (D)). The inset shows how the
angle between two functions can be predicted using their diversities.
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Figure 4: (A) The proportion of mismatches between two diversity metrics is predicted by the angle between

their gradient vectors. Increasing the difference between the q values of diversity indices increases the angle

between their gradients, therefore increasing the proportion of mismatches. (B) Heat map with contour lines

depicting the Simpson’s Diversity of a two-species community overlain on community state-space where each

axis depicts the biomass of a single species. Other measure of diversity (e.g., Shannon index) have different

spacing between their contour lines. Here the two species are being impacted by two stressors, represented by

the black arrows from the initial state of the community (I) to the points A and B. There is no non-additivity

at the population level (the point AB is exactly where an additive null model would have predicted). Linear

functions (e.g. total biomass) will therefore observe no non-additivity. However, the non-linearity of functions

such as diversity can introduce non-additivity at the community level as is the case in this example. (C)

The angle between the direction of total biomass and the gradient of a diversity index (here q = 2) predicts

the proportion of mismatches between these two very different community metrics. Specifically, the relevant

angle is between total biomass and the gradient of diversity after they have also been scaled by the biomass of

each species (θ∗). When non-additivity is scaled by species biomass (α > 0) total biomass and diversity can

effectively become opposite functions. Points above the dashed red line show cases where there is a systematic

mismatch in the observations of total biomass and diversity. (D) The empirical results from Fig. 2A can

be recreated by simulating multiple-stressor experiments where population-level non-additivity is relative to

species’ biomass.
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3.3 Mismatches between function and diversity162

Bringing these groups of community metrics together, the angle between a positive function and163

the gradient of a diversity metric can be used to predict the probability of mismatches in their164

observations (Fig. 4C)). Like before, consistency of non-additivity at the population level causes the165

prediction to overestimate the actual proportion of mismatches. However, we now see that the angle166

between these two community metrics can exceed 90 degrees leading to a systematic bias towards167

mismatches of observations. This intriguing result is connected to a second piece of population-level168

information: the scaling of non-additivity by species biomass (Eq. (11) in Box 2).169

When non-additive effects are significantly larger for more abundant species (α > 0.5), function170

and diversity are expected to observe opposite stressor interactions (larger points are above the red171

line in Fig. 4C). If non-additivity causes the biomass of abundant species to decrease, total biomass172

will decrease but diversity will increase. If on the other hand, non-additivity causes the biomass of173

abundant species to increase, total biomass will increase but diversity will decrease. It is important174

to note, that when non-additivity is scaled by biomass, the relevant angle, θ∗, is between the function175

and the gradient of diversity after they have been scaled in the same way by biomass. The empirical176

data (Box 1, Fig. 2A), can be easily replicated by simulating many multiple-stressor experiments177

and comparing how function and diversity observe stressor interactions. To recreate the empirical178

results (i.e., 75% mismatches), the only requirement is that non-additivity must be scaled by biomass179

(Fig. 4D).180

4 Discussion181

Our geometric approach has shed some light on multi-stressor interactions at the community level.182

Qualitative mismatches between the observations of community metrics should no longer be surprising,183

even metrics describing the same aspect of a community (i.e., either its functioning or diversity) can184

easily observe opposite interactions between the same two stressors. With our theory, mismatches185

between observations at the community level are predictable, and can even reveal useful information186

about lower-levels of biological organization. Mismatches between measures of functioning indicate187

their broadness (i.e., how many species contribute to the functions) while mismatches between188

diversity metrics indicate their sensitivity to rare or common species (i.e., hill exponent).189

Ecological research is typically reductionist, using information about individuals and populations190

to understand communities and ecosystems (Loreau, 2010). Our work demonstrates the reverse191

approach by using information about communities to understand population-level responses. Firstly,192

we found that when species’ responses are consistently antagonistic or synergistic the co-linearity of193

community-level observations will overestimate the probability of mismatches. This consistency of194

population-level non-additivity will be determined by the sources of non-additivity. If non-additivity195

is generated between the stressors themselves (Boyd & Brown, 2015; Rillig et al., 2021) – perhaps via196

strong chemical or physical interactions (e.g., two benign chemicals could become very toxic when197
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combined) – then all species may observe the same interaction and the probability of mismatches,198

even between very different community metrics, could be low. On the other hand, if non-additivity is199

coming from a range of sources (e.g., species interactions, invasions, extinctions) then population-level200

responses may be inconsistent and the co-linearity of observations will predict the probability of201

mismatches. Secondly, comparing observations of function and diversity can reveal whether or not202

there is some biomass scaling of population-level non-additivity. Indeed, if stressors (and their203

interactions) impact species in similar ways, it is expected that more abundant species would show204

larger responses in absolute terms (Arnoldi, Loreau, & Haegeman, 2019; Supp & Ernest, 2014). It is205

this scaling by biomass that allows function and diversity to systematically observe opposite stressor206

interactions. For instance, non-additivity that increases the biomass of abundant species will increase207

total biomass but decrease diversity. As such, the meta-analysis in Box 1 opens a window through208

which we can study population-level non-additivity from the top down.209

Our research focused on multiple-stressor interactions as their direction (antagonism versus synergism)210

carries so much weight for researchers in that field; there is evidence of a publication bias towards211

synergism (Côté et al., 2016) and vote-counting of interaction types is a common, but flawed, approach212

for generalisation (Griffen, Belgrad, Cannizzo, Knotts, & Hancock, 2016). More broadly, the link213

between mismatches at the community level and population-level information is not specific to214

stressor interactions. Our geometric approach could have focused on single stressors rather than on215

the non-additive effects of multiple stressors. Mismatches between community-level observations of216

a single stressor would reveal the consistency of species’ responses to that stressor (i.e., response217

diversity sensu Elmqvist et al. (2003)), and the relationship between species’ responses and their218

biomass (i.e., perturbation type sensu Arnoldi et al. (2019)). Perhaps multi-functional approaches219

can be leveraged to gain insights into population-level dynamics from the top down, and in an220

ecosystem context, by contrast to controlled experiments where populations or even organisms are221

studied in isolation (Bergelson, Kreitman, Petrov, Sanchez, & Tikhonov, 2021). It is well appreciated222

in ecology that by reducing the complexity of an ecosystem down to a single number, community223

metrics can hide important information about the underlying system (Hurlbert, 1971; Tilman, 1996).224

We have found, however, that comparing the observations of multiple community metrics gives us an225

opportunity to regain some useful information about population-level dynamics.226

4.1 Recommendations for empiricists227

Returning to the highly applied field of multiple-stressor research, we have some recommendations228

for empiricists arising from our theory that we hope will reduce context-dependency in the field and229

may help to uncover generalities.230

(i) Recognise that stressor interactions at the community level heavily depend on the231

way we observe the system. Since two community metrics can observe opposite interactions232

between the same stressors, it is unwise to think of stressor interactions at the community level233

as “intrinsic” to the stressors themselves. As there is growing interest in the existence of context234
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dependency of stressor interactions (Turschwell et al., 2022; King et al., 2022), development of general235

theory is sorely needed. Our work offers a mechanistic explanation for one of the drivers of this236

context dependency: observations at the community level. More broadly, our work illustrates a237

common form of context-dependence in ecology that is caused by methodological differences between238

studies (Catford, Wilson, Pyšek, Hulme, & Duncan, 2021).239

(ii) Do not aggregate community metrics in meta-analyses. It is common practice for240

meta-analyses to aggregate the observations of different community metrics to make generalisations241

about multiple-stressor interactions at the community level (Jackson et al., 2016; Crain et al., 2008;242

Morris et al., 2022). In light of our theory, this approach does not provide useful insights. Even243

combining different measures of function (e.g., total biomass and decomposition) or of diversity (e.g.,244

richness, evenness) is not a sensible approach. Moving forward, meta-analyses should only aggregate245

results obtained using the exact same community metric to make generalisations about combinations246

of stressors or study systems.247

(iii) Be careful interpreting stressor interactions observed by diversity metrics. As248

mentioned before, diversity metrics are highly non-linear functions of species biomass. Consequently,249

linear responses of species’ biomass can easily be observed as non-linear responses of diversity.250

The non-linearity of diversity metrics can of course translate into non-additivity between stressors251

even if there are no direct interactions between the stressor and there are no biological sources of252

non-additivity (Fig. 4B). It therefore does not make sense to use an additive null model to predict253

multiple-stressor impacts on diversity. Furthermore, non-linear aggregate properties, such as diversity,254

are sensitive to dimensional effects when scaling up predictions from the species level to the community255

level (Orr, Piggott, Jackson, & Arnoldi, 2021).256

(iv) Measure and report stressor interactions at the community level using multiple ob-257

servations. When studying multiple-stressor impacts at the community level, we suggest measuring258

and reporting multiple complementary observations describing both the diversity and functioning259

of the community. It is only by comparing multiple observations that we can study the biological260

mechanisms of stressor interactions at the community level. The interactions observed by each261

observation, and the probability of their mismatches (revealing the consistency and biomass scaling262

of population-level non-additivity), will give insights into potential mechanisms of non-additivity263

such as species interactions, extinctions and invasions.264

4.2 Conclusions265

Our work offers a platform from which to study stressor interactions at the community-level, explaining266

why qualitative mismatches are to be expected, but also revealing what can be learned from those267

mismatches about underlying population-level processes. Given the overwhelming context-dependency268

of multiple-stressor research, basic theoretical developments, such as our geometric approach, have269

potential to add clarity and direction to the field. The fact that our very simple theory could provide270

14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.20.496833doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.20.496833
http://creativecommons.org/licenses/by-nc-nd/4.0/


useful insights demonstrates that there is still much to learn about stressor interactions at the271

community level. Building on our work, a promising approach would be to use the rich theoretical272

frameworks developed in community ecology to build general expectations for the ecological impacts273

of multiple stressors.274
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