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Abstract:

Advancements in rational drug design over the past decades have consistently produced new cancer

therapies, but such treatments are inevitably countered through an adaptive process that fosters therapy

resistance. Malignant cells achieve drug resistance through intrinsic and acquired mechanisms, rooted in

genetic and non-genetic determinants. In particular, recent work has highlighted the role of intrinsic cellular

heterogeneity in the emergence of transient drug-tolerant persister cells that survive drug treatment, as well as

non-genetically driven cell plasticity toward stable resistance. However, these models do not account for the

role of dose and treatment duration as extrinsic forces in eliciting cancer cell adaptation. Here, we show that

these two components together drive the resistance of ovarian cancer cells to targeted therapy along a

trajectory of cellular adaptation, that we denote the ‘resistance continuum’. We report that gradual dose

exposure and prolonged treatment promote a continuous increase in fitness, and show that this process is

mediated by evolving transcriptional, epigenetic and genetic changes that promote multiple cell state

transitions. The resistance continuum is underpinned by the assembly of gene expression programs and

epigenetically reinforced stress response regulation. Using both in vivo and in vitro models, we found that this

process involves widespread reprogramming of cell survival pathways, including interferon response, lineage

reprogramming, metabolic rewiring and oxidative stress regulation. Together, the resistance continuum reveals

the dynamic nature of cellular adaptation, and carries implications for cancer therapies, as initial exposure to

lower doses primes cells over time for increased resistance to higher doses. Beyond cancer, such continuous

adaptation exposes a basic aspect of cellular plasticity, which may also be deployed in other biological systems

such as development, immune response and host-pathogen interactions.
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INTRODUCTION

The ability of malignant cells to consistently evolve resistance to therapy poses one of the major obstacles to

cancer treatment (1). Models to explain the emergence of resistance have traditionally relied upon the

selection of genetic mutations that enable cells to escape a drug’s effect (2). More recently the roles of

non-genetic mechanisms – in conjunction with genetic changes – have been increasingly recognized in

promoting drug resistance (3). Evidence for the effect of epigenetic changes was observed in therapy-induced

transcriptional reprogramming of cells primed (4) or equipotent (5,6) to enter in a reversible drug-tolerant state

(7). Therapy-induced reprogramming eventually results in heritable adaptive states, imparting stable resistance

(8,9). However, by assessing drug resistance as a snapshot in time, these models do not explicitly account for

the intensity of the selective pressure (dose) and the duration of the treatment (time) (10), thereby obscuring

the dynamics of drug-induced adaptation. Here, we study the effects of dose and treatment duration on the

adaptive potential of malignant cells and reveal a landscape of resistant phenotypes that emerge according to

the tumor’s treatment history.

RESULTS

Dose-escalation facilitates drug adaptation along a resistance continuum

We hypothesized that drug-induced resistance occurs as a gradual process propelled by dose exposure and

treatment duration. As an experimental framework, we conceived a long-term dose escalation experiment

using a human BRCA2-deficient high grade serous ovarian cancer (HGSOC) cell line (Kuramochi (11)) treated

with olaparib – a PARP inhibitor that induces synthetic lethality in BRCA1/2 deficient tumors (12). While

olaparib is commonly used clinically, and constitutes the standard of care for treating homologous

recombination defective breast and ovarian cancers, the emergence of resistance is pervasive (13). We first

seeded the drug-naïve cells at low density (106 cells on 150 mm plates) and treated with 1 μM of olaparib until

they reached confluency, thus characterizing adaptation to this dose. The resulting population was then seeded

at the same initial density onto a new plate and treated with an escalated dose of 2.5 μM. We repeated this

process, each time doubling the drug concentrations, until cells were able to reach confluency at 320 μM,

thereby generating a panel of nine adapted cell populations (T1 to T320) over the course of 311 days (Fig. 1a).

To compare the dose-dependent responses between these populations – henceforth ‘lines’ – we measured cell

viability in each line with the same range of doses used to generate them (1 μM to 320 μM). We found that

throughout the dose-escalation treatment, the lines became progressively more resistant, with the half maximal

inhibitory concentration (IC50) shifting from ~2 μM for the control population (C) to ~60 μM for the cells

adapted to 320 μM (T320) (Fig. 1b). This shift depicts an increase in drug tolerance toward higher doses,

rather than full resistance, because their survival is higher relative to their parental populations, however even

the most adapted lines continue to exhibit sensitivity to the doses to which they had adapted. We also
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observed that the lines that had adapted to higher doses progressively changed their morphology toward a

mesenchymal-like phenotype (Fig. 1a).

To exclude the possibility that resistance emerged by the selection of pre-existing resistant clones, we

performed two rounds of treatment-recovery experiments on drug-naïve cells and found that the surviving cells

reverted to a sensitive state following recovery, suggesting a drug-tolerant persister (DTP) (7) phenotype

(Supplementary Fig. 1a). We next asked whether the duration of the treatment could alone elicit the resistant

phenotypes, without an increase in drug concentration. To test this, we maintained populations of T5, T20 and

T80 cells at the final concentrations to which they had adapted (5, 20 and 80 μM, respectively) for the number

of days that they had taken to adapt to their subsequent populations at increased concentrations (T10, T40,

T160) (Supplementary Fig. 1b-d). We observed that the prolonged exposure at constant doses did not

generate similarly resistant populations for the T5 and T20 extended treatments when compared to their

dose-escalated counterparts (T10 and T40), suggesting that dose increase elicits greater resistance. The

extended treatments did however lead to more resistant lines relative to their parental populations, either by

shifting their IC50s or better survival at the escalated doses (Supplementary Fig. 1b-d). The cells from the T80

extended treatments were similarly resistant to T160 (Supplementary Fig. 1d), thus highlighting the role of

treatment duration. Together, these observations indicate that both dose and time contribute to increased

drug-resistant phenotypes along the adaptive path.

To address the hypothesis that dose escalation indeed facilitates drug adaptation, we compared the drug

resistance phenotypes between cells that were dose-escalated from 1 to 10 μM with drug-naïve cells directly

exposed to the same doses for the same amount of time (Supplementary Fig. 1e-h). The emergence of

increasingly resistant phenotypes in dose-escalated cells was reproducible across three independent

experiments (Supplementary Fig. 1e). Dose-escalated cells were able to proliferate and reach confluency,

while drug-naive cells directly exposed to higher doses (5 and 10 μM) did not reach confluency over the same

treatment duration, revealing that previous drug exposure to lower doses primes adaptation to drug

(Supplementary Fig. 1g,h). Notably, the continuous long-term 10 μM treatment – comparable to a clinically

relevant dose (14,15) – led to very few viable cells, which prevented us from testing their fitness with the

viability assays. The populations that were dose-escalated up to 2.5 μM were significantly more resistant than

their continuous treatment counterparts (Supplementary Fig. 1f).

We also repeated the dose-escalation experiment with two additional BRCA-mutant ovarian cancer cell lines

(Ovsaho and COV362 (11)) and observed a similar pattern of fitness increase, providing further evidence that

dose escalation generates reproducible phenotypic outcomes in cells with diverse genetic backgrounds

(Supplementary Fig. 2a-d). Together, our results suggest that gradual drug exposure elicits incremental

adaptive responses that unfold along a continuum, as opposed to a transition to a full resistance. We therefore
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hypothesized that such fitness increase is accompanied by cell state transitions, dictated by cells’ history of

dose exposure and treatment duration.

Figure 1. Dose-escalation reveals a progressive fitness increase coupled with multiple cell state
transitions.
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a. Schematic of the experimental design for the generation of the drug-adapted lines. The Kuramochi cell line
was challenged by increasing drug concentrations (from 1 to 320 μM). Specific doses and duration of treatment
are indicated. Cell morphology is shown from representative microscopic images (5x magnification, scale bar =
50 μm).
b. Cell viability of the adaptive lines showing the olaparib response during 9 days of treatment. The range of
doses are the same as those used to generate the lines. All data points are normalized relative to
vehicle-treated controls (for each respective line) and represent the average of 3 independent experiments (6
technical replicates per experiment) and their respective standard error bars (s.e.m).
c. Spearman’s correlations among the averaged transcriptomes of the adapted cell lines.
d. UMAP representation of scRNA-seq data on the individual lines. Colors and numbers indicate
subpopulations determined by Louvain clustering.
e. Clustering of subpopulations based on their Spearman’s rank correlation coefficients across the adaptive
lines. The defined five major transcriptional states are indicated.
f. Frequency of cells for each population in each of the five states across the adaptive lines. Cells belonging to
a particular subpopulation were assigned to their respective states based on their subpopulation clustering
shown in Figure 1e.

Emergence of new cellular states recapitulates treatment history

To test whether transitional cellular states accompany the emergence of resistance, we assessed the

transcriptional states of the drug-adapted lines using single-cell RNA-seq (scRNA-Seq). Comparing the

average transcriptomes across the lines, we observed that treatment history could be recovered – with

adapted lines becoming progressively divergent relative to the untreated cells (Fig. 1c, Supplementary Fig.

3a,g for Ovsaho and COV362). To assess transcriptional states at the level of individual cells, we next

performed cell clustering on the data from each line. We accounted for confounding effects due to cell cycle by

restricting analysis to cells in G1 phase, as assigned by gene expression cell-cycle scoring (16). Cell clustering

revealed distinct subpopulations within the lines (Fig. 1d, Supplementary Fig. 3b,c and 3h,i), indicating

treatment induced heterogeneity. We wondered whether the emergence of these subpopulations followed a

hierarchical pattern, comprising shared subpopulations across the lines. Using a set of differentially expressed

genes across the subpopulations and clustering their average profiles, we found that subpopulations across

distinct lines clustered together into what we refer to as ‘states’. (Fig. 1e). For example, one subpopulation

from the T10 line (T10_1) clusters with a subpopulation from the T5 line (T5_0), while another subpopulation

from the T10 line (T10_3) clusters with a subpopulation from the T20 line (T20_1). We note that

subpopulations from earlier adaptive steps (e.g., T10_2, T20_2) cluster with subpopulations from later steps

(e.g., T40_0, T80_0), highlighting differential intrinsic plasticity within a population toward higher resistance.

Examining the change in the frequency of states across the lines reveals the state dynamics as they emerge

and become selected over time (Fig. 1f, Supplementary Fig 3d,j). Our results support the notion that drug

resistance occurs along a continuum driven by the emergence of multiple new cellular states.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496830doi: bioRxiv preprint 

https://paperpile.com/c/Gg4JE3/vOARH
https://doi.org/10.1101/2022.06.21.496830
http://creativecommons.org/licenses/by-nc-nd/4.0/


Assembly of gene module expression accompanies drug-induced adaptation

We next sought to identify the specific expression programs that underpin the identified adaptive states. We

implemented a gene module detection approach in which hierarchical clustering is applied to all cells and

nested clusters are evaluated according to their differential gene expression (17). The set of the most

differentially expressed genes for each particular cluster of cells, relative to the other cells, was used to define

gene signatures, and these were then clustered, yielding six gene modules (A-F, see Methods). Comparing

cells according to their module expression, we recovered the states defined in the previous analysis (Fig. 2a,

bottom).

The genes present in the six modules comprise a range of molecular functions that may contribute to the

survival mechanisms of the drug resistant cells (Fig. 2a, Supplementary Table 1). Cells in state 1 express gene

module A, which includes ovarian cancer lineage-defining transcription factors such as SOX17 and PAX8

(18–20) and the WT1 prognostic marker (20), as well as epithelial (KRT8, DSP) and interferon response

markers (IFI6, IFI27), indicating that untreated or lower-dose adapted cells retained their ancestral lineage

identity. Cells in state 3 express module B, which has a hybrid expression of epithelial (KRT8, KRT18) and

mesenchymal markers (FN1). Cells in state 2 express module C, which includes genes involved in the

epithelial-mesenchymal transition (EMT) (FN1, SOX4, VIM) and extracellular matrix (COL3A1, SERPINE2), but

have lower expression of epithelial markers. Cells in state 4 express module D, which also includes a diverse

set of EMT genes (SNAI2, VIM), including mediators of TGF-beta signaling (SMAD3, DAB2) and markers

known to maintain cancer stem cell properties (CD44, KLF4, SOX2) (21–23), suggesting a spectrum of EMT

states along the adaptive path as observed in highly metastatic (24) and resistant (25) tumors. The expression

of modules E and F by cells in state 5 suggests metabolic rewiring in these highly resistant cells, including the

hypoxia master regulator HIF1A, glycolytic enzymes (PFKP, GAPDH) and the pentose phosphate pathway

(TKT) — which counteracts oxidative stress and supports cancer cell survival in stress conditions (26,27).

Consistently, other important genes for oxidative stress regulation controlled by NFE2L2 (also known as NRF2)

such as DCXR, NQO1, HMOX1, GPX4, FTL, FTH1 are involved in prevention of DTP cell death (28) through

ferroptosis (29) and exert cytoprotective effects from iron toxicity (29,30). Moreover, a number of ribosomal

(RPL14, RPS15A) and mRNA translation genes (EIF1, EIF2D, RACK1) are included in modules D and E,

suggesting translation reprogramming — a process controlled by the ATF4 transcription factor through the

integrated stress response pathway during adaptation to stress and nutrient deprivation (31) – and is an

emerging axis of cell plasticity in tumor progression (32).

The gene module delineation did not enforce mutual exclusivity, and thus a particular gene can be associated

with multiple modules. Computing the gene overlap among the modules revealed a sequential pattern of

significantly shared genes, which corresponded to cell state emergence (Fig. 2b). For example, module D is

expressed in cells from state 4 and overlaps with module C and E, each expressed in cells from states 2 and 5,
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respectively. Scoring each cell by its module expression further highlighted this pattern: cells scoring highly for

a particular module also tended to score highly for the adjacent modules (Fig. 2c). For example, cells highly

scoring for module D (mostly state 4 cells), also exhibited high scores for module E (mostly state 5 cells),

suggesting that the states build on each other along the adaptive state transitions.

Analysis of the functional annotations captured by our module definitions revealed that a large number of the

highly expressed genes along the adaptive path are known to be involved in multiple cell survival programs

that confer drug tolerance (33). To put our module genes into the context of these drug tolerance programs, we

thus mapped prominent markers across the broad categories of changes in cell identity, interferon response,

proliferation and adapting metabolism. This analysis highlighted shared and unique gene expression patterns

across drug adaptation (Fig. 2d). Notably, many of these annotated genes were also highly expressed in the

most resistant populations of Ovsaho and COV362 cell lines, indicating transcriptional convergence

(Supplementary Fig. 3e,k, Supplementary Tables 2 and 3).

To further assess the underlying biological processes overrepresented according to each module, we queried

for the enrichment of specific functional gene sets (Fig. 2e). As expected, control cells were enriched for

functions related to a proliferative and metabolically active phenotype (E2F targets, oxphos, mTOR signaling)

when compared with the adapted cells, which, under drug treatment, slow down proliferation. Module A is

enriched for interferon response genes, an endogenous signature induced upon replication stress (34) and

DNA-damaging agents (35–37). As previously noted at the gene level analysis, cells related to modules A and

B retain epithelial features (keratinization), while a spectrum of EMT enrichment from modules B to E was

observed. Consistent with our marker gene analysis, increased resistance was accompanied by extensive

metabolic adaptation invoking general stress response programs such as hypoxia, glycolysis, ferroptosis,

translation and reactive oxygen species pathways (modules C-F). Again, a similar functional enrichment

pattern of highly resistant populations were also observed in our independent experiments using the Ovsaho

and COV362 cell lines (Supplementary Fig. 3f,l).

Our analysis suggests that continuous drug adaptation elicits the assembly of interconnected gene modules

according to the treatment history of the cells. Furthermore, it led us to hypothesize that subpopulations

present within the same line but exhibiting distinct transcriptional states have disparate fitness. To test this, we

searched for cell state markers and found that subpopulations from state 1, state 3 and control cells expressed

high levels of CD24 and low levels of CD44, while cells from state 2 expressed low levels of both markers. In

contrast, cells from states 4 and 5 express low levels of CD24 and high levels of CD44 (Fig. 2f). Using flow

cytometry, we validated this shift, revealing a gradual transition from CD24highCD44low to CD24lowCD44high as

cells become more adapted to the drug (Supplementary Fig. 4). We then performed cell viability assays on the

flow sorted populations from representative lines (C, T10, T40 and T320) in different CD24/CD44 states (Fig.

2g). We found that within the T10 population, CD24lowCD44high cells (state 4) were indeed more resistant than
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the CD24lowCD44low (state 2) ones. Comparing the CD24lowCD44high subpopulations, we found again that those

adapted to higher doses were more resistant (Fig. 2h). This supports the notion that within an individual

resistant line, multiple states are present with distinct levels of fitness, while further treatment with increased

doses drives higher resistance even among cells in similar states, suggesting ongoing adaptation.

Figure 2. Assembly of gene module expression accompanies drug adaptation.
a. Gene modules associated with distinct transcriptional states. The heatmap indicates the genes (rows) that
are highly expressed in a particular set of gene signatures (columns). Gene signatures are defined as gene
sets differentially expressed in a cluster of cells as determined by hierarchical clustering. Each gene module is
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defined by a set of gene signatures. Barplots (bottom) show for each signature the frequency of cells from the
adapted populations and their annotated states.
b. Overlap of genes across the gene modules showing interdependence in gene module composition.
c. Cell module scoring. Columns indicate cells from a particular treatment and state sorted by their highest
scaled module score.
d. Gene markers associated with the identified transcriptional states and gene modules, with their annotated
functions important for cell survival in drug tolerance. Gene functions were manually curated by literature
search in the context of drug tolerance and resistance and annotations from MSigDB hallmark, KEGG and
Reactome. Gene expression is represented by the scaled average expression across the states.
e. Gene set enrichment analysis indicating the relative enrichment of functional annotations for cells that
constitute each module. Untreated control cells were considered separately from the module A. Gene sets with
P-value < 0.01 were selected. Color scale indicates the normalized enriched score (NES) as calculated by
GSEA.
f. Scatter plot showing the average expression of CD24 and CD44 markers in each of the identified
subpopulations (d) colored by state.
g. Flow cytometry analysis recapitulates the transition from CD24highCD44low to CD24lowCD44high in
representative populations (C, T10, T40 and T320). The transition across all populations is shown in
Supplementary Fig. 4. Colored squares represent the sorted subpopulations used to test for resistance-level
differences. Black dashed lines indicate the gating for CD44high populations.
h. Cell viability assay of sorted subpopulations indicating differential resistance within (T10) and between (T10,
T40, T320) treatment conditions. Sorted subpopulations were labeled as “L” (low CD44) and “H” (high CD44).
Dots of the cell viability curves represent the average of 2 independent experiments (6 technical replicates per
experiment). Bar plot shows differences in IC50 between the sorted subpopulations (***P < 0.001, two-tailed
t-tests).

Persister cell states broadly match the early adaptive states

Given the distinct phenotypic outcomes observed between the adapted (Fig. 1b) and persister (Supplementary

Fig. 1a) cell populations, we investigated the differences in the transcriptional programs corresponding to these

phenotypes and the effects of acute drug exposure. To test this, we generated two drug-tolerant persister lines

treated with 10 μM (P10) and 320 μM (P320) of olaparib, respectively, and compared them with the lines

adapted at the same doses (Fig. 3a). This allowed us to assess the differences in gene expression programs

induced within days (persisters) versus those emerging on the order of months by dosage escalation. The

doses for comparison were chosen based on clinical relevance (14,15) (10 μM; sufficient to decrease viability

by 90% in drug-naïve cells, Fig. 1b) and with reference to the highest dose of adaptation in our escalation

experiment (320 μM). Interestingly, we observed that cells treated with the highest dose (P320) survived better

than those treated with the lower dose (P10) (Supplementary Fig. 5a). Cell cycle analysis showed that the 10

μM treatment caused higher mid-late S phase cell accumulation than the 320 μM (P = 0.0006), while the

proportion of cells in G1 was higher in the 320 μM condition (P = 0.002) (Supplementary Fig. 5b). Cell

cycle-related phenotypes are expected as olaparib is known to cause replication stress and DNA

damage-associated arrest at G2/M phase (38). This result suggests that extreme doses may trigger a

protective response preventing cells from undergoing cell cycle, possibly by off-target effects. Further studies

will be necessary to elucidate the mechanisms leading to these apparently paradoxical outcomes.
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As expected, although the P10 and P320 lines were treated with the same drug concentrations as the T10 and

T320 adapted lines, respectively, we found that they are transcriptionally distinct, indicating a dependence on

their treatment history (Fig. 3b). Comparing the overlap of differentially expressed genes in the P10 and P320

with the gene modules delineated for the adapted lines, we observed that the persister states were most

related to module A (associated with control and state 1), rather than modules B-F, which were expressed by

the highly resistant adapted cell lines (Fig. 3c). Moreover, correlations with the transcriptome profiles that

defined the states confirmed these observations, with persisters displaying a higher similarity to the untreated

and state 1 cells, while the replicates of adapted lines matched their own state definitions (Supplementary Fig.

5c).

While the extent of transcriptional changes during acute drug response present in the persister lines did not

elicit matched adaptive states, resistance markers such as CD44, VIM, HMOX1, NQO1, GPX4, DDIT4 and

PFKP, for example, were highly expressed in persisters relative to untreated cells. Although these genes were

expressed at lower levels relative to the adapted lines (Fig. 3d, Supplementary Table 4), their presence

suggests an early partial reprogramming, which may prime the subsequent adaptive path. In contrast, the

expression of ovarian cancer lineage-dependent factors such as SOX17 and PAX8 was retained in persisters

(with lower levels relative to C) but lost in the adapted lines (Fig. 3d, Supplementary Table 4). This is consistent

with results from other cancer models where differentiation plasticity is coupled with acquired drug resistance

(9,39,40), again suggesting that the extent of transcriptional reprogramming is coupled with dose and

treatment duration.

Comparing functional gene sets among persisters and untreated cells further revealed processes related to

stress response depicted in the adaptive lines (e.g., Interferon, EMT, hypoxia, ROS, ferroptosis) (Fig. 3e).

These were particularly enriched in P10, suggesting that treatment with 10 μM elicited a more pronounced

stress response compared to 320 μM. This is possibly linked to a higher efficacy of this dose in inducing cell

death in the absence of adaptive steps (Supplementary Fig. 5a,b) but also triggering the expression of survival

pathways to cope with a higher level of stress (compared to P320), thus highlighting a dose-dependent effect in

the generation of persister populations.
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Figure 3. Distinct transcriptional programs for dose-induced persisters and adapted lines.
a. Drug-tolerant persisters (DTPs) were generated by treating drug-naïve cells with 10 and 320 μM of olaparib
for 9 days in two replicates. The adapted T10 and T320 lines were maintained at the same doses. The
surviving cells were collected for scRNA-seq.
b. UMAP representation of the persister and adapted cell populations showing that each condition mainly
constitutes a separate cluster.
c. Gene overlap between the differentially expressed genes across conditions and the previously defined gene
modules. Color scale indicates the P-values determined from Fisher’s exact tests.
d. Differentially expressed genes across conditions highlighting shared and distinct marker gene expression
among the persister and adapted lines when compared to control cells. Gene functions are labeled according
to the annotation depicted in Figure 2d. Color bar represents the scaled mean gene expression for a particular
cluster and circle sizes are the fraction of cells expressing the gene. Blue and red indicate low and high
expression in a particular condition relative to the others, respectively. Small and big circles indicate low and
high percentage of cells expressing the gene, respectively.
e. Gene set enrichment analysis (GSEA) showing distinct functional enrichment between the persister
conditions relative to untreated cells. For the purpose of comparison, the pathways are ordered as in Figure
2e. Color scale indicates the normalized enriched score (NES) as calculated by GSEA.

Copy number alterations are associated with the emergence of the adapted cell states

We next asked whether the emergence of our delineated cell states is associated with large-scale copy

number alterations (CNAs). We used our scRNA-Seq data to infer CNAs (41) and found that inferred

alterations in the adapted lines largely agreed with our defined state subpopulations (Fig. 4a, Supplementary
11
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Fig. 6a), indicating a genetic clonal structure in the evolution of the lines. In contrast, clearly distinguishable

CNAs were not present among the persister cells (Supplementary Fig. 6a). As independent support for the

CNA profiles, we performed whole-exome sequencing (WES) on representative lines (C, T10, T40 and T320)

and found concordant patterns (Fig 4a). Interestingly, we found significant associations between the genes

present in the modules defined for the adapted lines and their gained or deleted status in the CNA regions

(Supplementary Fig. 6b). For example, genes present in deleted regions in T320 (relative to C) significantly

overlap with module A genes (lower expression in T320), while genes in the gained regions overlap with genes

from modules D and E (higher expression in T320). Notably, some CNAs are conserved across early and late

adapted lines (e.g., chromosomes 7 and 9), including a deleted region that spans CDKN2A (validated by

WES), an important cell cycle regulator recurrently deleted in multiple cancer types and associated with tumor

progression (42,43), thus highlighting a potential contribution to PARPi resistance.

The association between CNAs and cell states may reflect adaptive changes or they may be a consequence of

the PARPi treatment, as replication stress induces CNAs (44,45). Indeed, we observed that the dose

escalation experiment across other cell lines (Ovsaho and COV362) led to distinct CNA profiles

(Supplementary Fig. 6c), yet convergent transcriptional programs (Supplementary Fig. 3a-l). Moreover, we

found that cells belonging to a particular state can exhibit distinct CNA profiles. For example, T160 and T320

cells present in state 5 show distinct inferred CNA profiles (Fig. 4a).

A known genetic mechanism for PARPi resistance is the reversion of the BRCA1/2 mutations (46). However,

examining the single-nucleotide variants (SNVs) from the exome data we did not observe secondary mutations

in BRCA genes in the resistant lines (T10, T40, T320). These results together suggest that, despite the

association between genetic changes and cell states, genetics do not fully explain the emergence of states.

We thus next considered the possibility that the emergence of states has an epigenetic component.

Adaptation-induced chromatin remodeling for stress response and lineage reprogramming

To gain insight into the epigenetic mechanisms that underlie drug adaptation, we measured genome-wide

chromatin accessibility by ATAC-seq (47) in the adapted and persister lines. For the adapted lines, we sorted

CD24lowCD44high subpopulations (corresponding to the more resistant cells) from T5 to T320, allowing us to test

for continuous epigenetic reprogramming in subpopulations in shared states (Fig. 4b and Supplementary Fig.

4). Examining the chromatin accessibility profiles using principal component analysis (PCA), we observed that

PC1 and PC2 together captured the historical order from control cells to T320 (Fig. 4c), indicating an

adaptation trajectory of cumulative epigenetic changes and consistent with our transcriptome findings (Fig. 1).

Overall, the progression from T5 to T320 was distinguished by an increased number of differentially accessible

peaks (relative to C), with shared patterns that suggest heritable epigenetic changes (Fig. 4d). For the persister

cells, the chromatin state showed distinct accessibility patterns relative to the adapted lines, again consistent

with the transcriptional data (Fig. 4c,d). Of the two persister lines, P10 exhibited a greater number of chromatin
12
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changes relative to the P320 (Fig. 4d). We verified that the number of differentially accessible peaks across the

lines could not be attributed to peak detection bias (Supplementary Fig. 7a).

Figure 4. Copy number alterations and epigenetic reprogramming of the adapted and persister lines.
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a. Copy number alteration (CNA) analysis using scRNA-seq inference (top) and whole-exome sequencing
(bottom). The top heatmap shows hierarchical clustering of cells depicting the association between cell states
and inferred CNAs. Rows indicate inferred CNA profiles for each cell (30% of the cells from each condition
were considered for visualization). Whole-exome sequencing of representative lines indicates consistency with
inferred CNAs.
b. Schematic showing the generation of ATAC-Seq data for adapted and persister lines. Cell populations from
C and T5-T320 lines were sorted based on their CD24 and CD44 profiles (see Supplementary Fig. 4).
Persisters were generated as described in Figure 3a.
c. Principal component analysis (PCA) on top 2000 most variable peaks across conditions reveals an
adaptation trajectory along the PC1 axis. Dots represent data of two replicates for each condition.
d. Heatmap of the differentially accessible peaks (rows) relative to untreated cells (C). Total number of more
and less accessible regions are indicated on the top and bottom parts respectively. Circle sizes represent the
total number of differentially accessible peaks for each category per condition. Peaks are ordered based on the
method used in Levin et al. (48) and shown as scaled values of normalized peak signals.
e. Transcription factor (TF) motif enrichment analysis. Bar plots represent the percentage of differentially
accessible peaks for each condition (relative to C) containing motifs for representative enriched TF families.
More accessible peaks in treated conditions are enriched with motifs for stress regulators. Less accessible
peaks in treated conditions are enriched with motifs for cell lineage markers. Color bars represent the motif
enrichment P-values and circle sizes are the number of differentially accessible peaks containing motifs for a
particular TF. All significantly enriched motifs are shown in Supplementary Figure 7b.

We next assessed the enrichment of transcription factor (TF) binding sites among the adapted and persister

lines. For a given TF, we queried for an enrichment of its binding sites in the more and less accessible

chromatin regions of each sample (Supplementary Fig. 7b). We found that motifs for global stress response

regulators AP1 and ATF4 and the oxidative stress sensor NRF2 are enriched in the more accessible regions in

the adapted lines. This enrichment progressively increased across the dose-escalation from T5 to T320, in

terms of both the higher number of peaks containing such binding sites and their proportion within the

differentially accessible peaks (Fig. 4e, left), indicating a reinforcement of those TF stress-regulated programs

over time and increased doses. Comparing between the persister lines, we found that P10 showed a higher

proportion of peaks containing motifs for those TFs relative to P320 and suggesting that acute exposure at 10

μM, rather than 320 μM, elicits a more exacerbated stress response (Supplementary Fig. 5a,b), in line with our

transcriptome observations (Fig. 3d,e). While the P10 and T320 lines exhibited comparable proportions of

peaks containing motifs for those stress regulators, the latter accumulated an overall larger number of

accessible peaks (Fig. 4e), again highlighting the role of treatment history.

In contrast, peaks containing motifs for lineage-dependent ovarian cancer drivers such as SOX17, PAX8 and

the marker WT1 decreased in accessibility across the adapted lines (in terms of number of peaks), while

persisters did not show a similar decrease in accessible regions with such motifs (Fig. 4e, right). Overall, the

lower expression (Fig. 3d) and accessibility (Fig. 4e, right) for these TFs indicates a coordinated

dedifferentiation program during drug adaptation, a feature that was not observed to a similar extent during

acute drug exposure. Of note, we observed significant associations between the differentially accessible peaks

and CNAs determined by WES (Supplementary Figure 7d). However, after removing peaks that overlap CNAs,
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we found that the patterns of TF motif enrichment were not altered, implying widespread epigenetic changes

that are functionally independent of CNAs (Supplementary Fig. 7b,c). In summary, these results suggest that

drug-induced adaptation is concomitant with extensive chromatin remodeling, whereby stress-responsive

regulatory elements are increasingly recruited over dose escalation coupled with a lineage reprogramming-like

process.

In vivo analysis of persister and adapted drug-resistant states

We next sought to test for the recapitulation of the persister and adapted cellular states in vivo. For this, we

designed two sets of experiments using a BRCA2-mutant patient derived xenograft (PDX) model of HGSOC

(49). In the first set of experiments, we aimed to study whether treatment with different doses elicits a

persister-like state. Cohorts of PDX were treated with another PARPi, talazoparib, at four doses (low to high).

After 50-57 days of treatment, tumors were collected for scRNA-Seq (Fig. 5a). The corresponding growth

curves showed an expected dose-dependent response (Supplementary Fig. 8a). In the second set of

experiments, we asked whether prolonged treatment generates PARPi resistance and therefore elicits

adaptive-like states. For this, we treated PDX tumors over three serial passages. Vehicles and tumors from the

first and third rounds of treatment were collected for scRNA-Seq (Fig. 5b). In a first round, mice were treated

with a standard dose (50), which initially caused remission and treatment was interrupted. After an

off-treatment period, tumors relapsed and treatment was re-introduced. Tumors did not respond to therapy

upon relapse, thus indicating resistance (R1) (Supplementary Fig. 8b). One of the replicates (R1*) was

reimplanted for a second round (R2) of treatment and this was followed by a third round (R3), with both under

continuous therapy (Fig. 5b). Again, tumors did not respond to therapy in both passages (Supplementary Fig.

8c,d).

Analysis of the scRNA-seq data showed that cells from the persistence experiment (dose-response) were

largely intermixed (Fig. 5c), while cells from the resistance experiment showed greater heterogeneity with the

emergence of condition-specific clusters (Fig. 5d), supporting that treatment duration elicits distinct cell states.

Notably, a conspicuous cluster (9) is composed entirely of cells from the tumors of the third round of treatment

(Fig. 5d).

To assess whether the in vivo experiments recapitulate the state transitions seen in our in vitro models, we

computed the overlap among the differentially upregulated genes for each cluster with the gene modules from

the in vitro untreated, persisters and adapted states. Genes from clusters 0 and 6 (composed mostly of cells

from vehicle tumors in both PDX experiments) highly overlap with genes from the untreated Kuramochi cells,

showing correspondence between the in vivo and in vitro drug-naïve states (Fig. 5e). We found that cluster 4

genes (from the persistence experiment) overlap more significantly with the modules identified for persisters

(P10 and P320) and module A (expressed by the less adapted state 1 Kuramochi cells) (Fig. 5e), indicating a
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convergent persister-like program. Moreover, genes from cluster 7 (mostly composed of cells from R1 tumors)

overlap with persister and module (E) genes, whereas genes that distinguish cluster 9 overlap more

significantly with modules C, D and E, indicating convergent adaptive-like programs (Fig. 5e). These findings

were supported by scoring the gene modules among cells from these clusters (Fig. 5f).

Examining gene markers from the most resistant lines (states 4 and 5) that are differentially expressed among

clusters, we found that they are highly expressed specifically in cluster 9, including mesenchymal (CD44, VIM,

SMAD3), hypoxia (DDIT4, CITED2), glycolysis (PGK1, PFKP, SGK1), and oxidative stress markers (NQO1,

TXNRD1) (Fig. 5g and Supplementary Table 5). Again, consistent with our in vitro findings, the resistant tumors

lost the expression of lineage markers (SOX17, PAX8, WT1; clusters 7 and 9), while non-resistant tumors

retained their expression (Fig. 5g). We also highlight the recurrent loss of CDKN2A expression in the resistant

tumors (clusters 7 and 9), possibly a signature of resistance, while the non-resistant tumors exhibited high

expression, a signature of growth arrest (51) (Fig. 5g). In agreement with a partial reprogramming observed in

the in vitro persisters (Fig. 3), tumors from the persistence experiment highly expressed shared markers with

the resistant tumors (e.g., CCND1, SQSTM1, FTL, DUSP1, LGALS3). Increased expression of interferon

genes (IFI27, ISG15, MX1, JAK1) corroborated an early and acute response to PARPi as observed in vitro

(Fig. 5g, Supplementary Table 6) and exposes a therapeutic vulnerability with synergistic effects in combination

immunotherapy (52,53). In addition, we detected markers that show dose-dependent expression, including

genes involved with oxidative stress response (DCXR, QSOX1, SQSTM1) and its master regulator NFE2L2

(Supplementary Fig. 8), a signature of persister-cell survival in multiple cancer types (28).

Clusters composed mostly of untreated cells in both experiments (0 and 6) showed higher activity of pathways

related to a proliferative and metabolically active state, (e.g., E2F targets pathway, oxphos, mTOR, glycolysis)

(Fig. 5h), consistent with our in vitro observations. Notably, cluster 4 from the persistence experiment and

cluster 9 from the resistant model showed functional convergence, as demonstrated by the higher activity of

interferon response, hypoxia, TNFa signaling, apoptosis, EMT and ferroptosis, again reflecting our in vitro

findings. This corroborates our findings of pathway convergence elicited in both persister and adaptive

scenarios. However, the differences in gene expression and module composition between short and long-term

treatments underscores the dynamics of transcriptional adaptation over time.

Collectively, the emergence of adaptive states in this clinically relevant model during long-term therapy reveals

a pattern that is consistent with the one found during in vitro drug adaptation. When tumors were exposed to

different doses of PARPi for a shorter period, without the establishment of resistance, we observed a gene

expression signature that partially resembles the adaptive states, suggesting that treatment history drives

transitions to states of increased fitness along a resistance continuum.
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Figure 5. In vivo models of dose response and resistance recapitulate the resistance continuum.
a. Schematic of the experimental design for the PARPi dose-response models of high-grade serous ovarian
cancer (HGSOC). Two replicates of each condition (vehicles and talazoparib treated with four doses) were
generated. Tumors were collected for scRNA-seq at the humane endpoints (HEP) (vehicles) or after 50-57
days of treatment. The lines represent a schematic of the tumor response. Tumor growth curves are presented
in Supplementary Figure 8a.

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496830
http://creativecommons.org/licenses/by-nc-nd/4.0/


b. Schematic of the experimental design for the generation of PARPi resistance models of HGSOC. Three
rounds of talazoparib treatment were performed (with a drug holiday indicated in red). Two replicates of vehicle
and resistant tumors from rounds 1 and 3 (including a vehicle treated) were collected for scRNA-Seq at the
humane endpoint (2000 mm3). A replicate from round 1 (R1*) was used to seed the second round of treatment
(R2). The lines represent a schematic of the tumor response. Tumor growth curves are presented in the
Supplementary Figures 8b-d.
c. UMAP representation of the Louvain clusters identified across all the conditions and replicates for the
persistence experiment. Bar plot indicates the percentage of cells from each condition in each cluster.
d. Same as described in (c) for the resistance experiment. Bar plot indicates the percentage of cells from each
condition in each cluster.
e. Gene overlap between the differentially expressed genes across clusters from both experiments with the
previously defined gene modules. Color scales indicate the P-values determined from Fisher’s exact tests.
Clusters are highlighted based on their similarity with the untreated controls, persister and adaptive modules.
f. Boxplots of gene module scores across cells from the persistence and resistance experiments for clusters
highlighted in Figure 5e. Scores were determined using the top 100 genes from modules A-F and differentially
expressed genes among untreated (C) and persister (P10 and P320) Kuramochi cells. Values show scaled
(z-scored) module scores across clusters.
g. Differentially expressed genes among the clusters with high similarity with the in vitro experiments, indicating
consistent expression of markers from in vitro defined cell states (Figs. 2d and 3d). Gene functions are labeled
according to our previous annotations. Color bar represents the scaled mean gene expression for a particular
cluster and circle sizes are the fraction of cells expressing the gene.
h. Gene set enrichment analysis (GSEA) shows consistent functional enrichment for clusters that resemble the
persister and the adaptive states. For comparison purposes, the same pathways and order defined from Figure
2e are shown. The enrichment for all clusters are shown in Supplementary Figure 8e.

DISCUSSION

Our study provides a conceptual framework for understanding the pattern and mechanisms by which cancer

cells adapt to therapy. We find that increased challenges – in terms of drug concentration and duration of

treatment – drive malignant cells to progressive adaptation, a path that we have denoted as the ‘resistance

continuum’ (Fig. 6). The resistance continuum unfolds over time in cell populations as a set of state transitions

involving distinct functional configurations dictated by both genetic and epigenetic components. This process is

akin to the evolution of antibiotic resistance in bacteria, where prolonged and increased drug exposure

facilitates the emergence of resistant populations (54). Thus, in contrast with the notion of “fully resistant”

phenotypes (3,55–57), we argue that resistance is ongoing and dependent upon the historical events

experienced by cell lineages, with dose and treatment duration acting as extrinsic forces in driving the

emergence of adaptive states.

The resistance continuum model is based on the concept that non-lethal drug concentrations induce

stress-coping mechanisms that essentially prime cells to assume a more drug-tolerant state. Treatment with

higher doses consequently promotes enhanced adaptive states that confer higher fitness with respect to drug

resistance. Our model is supported by the observations that progressive transcriptional and epigenetic

reprogramming encode multilayered stress mitigation programs upon increasing doses and treatment duration.
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Figure 6. The ‘resistance continuum’ in cancer cell drug-induced adaptation.
Continuous treatment coupled with increased doses elicits multiple cell state transitions toward higher fitness.
Initial states of drug-naïve cells are represented in gray. Some cells show differential intrinsic plasticity, priming
them for state transitions (shades of green and blue) upon therapy. We define fitness as the relative capacity of
cells to survive and proliferate under treatment. Cells’ fitness improvement depends on extrinsic forces such as
treatment duration (time) and dose exposure. Local fitness gains are achieved from prolonged treatment at
constant and tolerable doses. Previous drug exposure and gradual dose increase facilitates adaptation to
increasing levels of drug tolerance. Adaptation is the outcome of a complex interplay between the epigenetic
reprogramming and genetic changes that affect multiple stress-response programs and resistance
mechanisms.

This adaptive process has aspects that are both stochastic – due to fluctuations in cell state transitions that

define intrinsic plasticity (4,7) – and deterministic. Upon the appearance of a more fit state – either by genetic

or epigenetic mechanisms – natural selection acts to fix it in the population, as evidenced by the clonality we

observed among the states (Fig. 4a). The process is deterministic in the sense that repeatable phenotypic

outcomes (58) – with convergent transcriptional states – are induced by the treatment despite carrying distinct

genotypes (Figs. 2, 5 and Supplementary Fig. 3). In contrast to the resistance continuum, drug-tolerant

persisters (DTPs) can be viewed as a product of non-adaptive outcomes. For DTPs, a high dose treatment,

without previous exposure to milder doses, elicits a “stress endurance mode” (6), but does not necessarily

reflect fitness increase in the long term because of their reversible behavior. While some genes or gene

programs are partially induced during acute drug response, continuous treatment and gradual dose exposure

produces heritable and cumulative changes that appear to facilitate adaptation to stress. In line with this view,

a “stochastic tuning” model for cell adaptation to new environments was proposed in yeast (59), whereby the

expression levels of individual genes are initially randomly adjusted, and reinforced when resulting in increased

cell survival, thus not requiring predetermined genetic mechanisms.
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The resistance continuum model provides insight into the adaptive consequences occurring under specific

clinical settings, such as intrapatient dose escalation strategies (60,61), short treatment intervals and repeated

therapeutic cycles, which may prime cancer cells for adaptation. Moreover, limited drug penetration into solid

tumors is a well-known challenge that affects drug diffusion and generates real-life drug gradients (62), due to

physical barriers within the tumor architecture (63). The dose escalation dynamics that we studied here may

mimic such naturally-created dose gradients, thus exposing cells to tolerable doses and allowing the resistance

continuum to unfold over time and space. Our results highlight the need for careful optimization of dose

regimen and treatment duration (64,65), coupled with longitudinal monitoring of adaptive outcomes (10,66,67).

Determining ‘sweet spot’ combinations of dose and treatment intervals to prevent drug-induced adaptation and

persistence may consist of a tangible approach to improve therapy response. Finally, it will be crucial to

establish how combination therapies can perturb the resistance continuum’s path for distinct drugs and cancer

types by targeting its specific vulnerabilities.
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. Dose escalation and treatment duration drives the emergence of
drug-adapted populations.
a. Generation of DTPs for Kuramochi cell line by treatment with 320 μM of olaparib for 9 days. The surviving
cells were allowed to recover for 9 days without treatment. Two rounds of treatment-recovery experiments
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were performed in triplicates and the viability of the recovering cells was tested. Cell viability curves are shown
as the average of three replicates (n = 6 technical replicates) and their respective standard errors (s.e.m). The
bar plot shows no significant IC50 increase for DTPs relative to the parental population (*P = 0.03; ns, not
significant; two-tailed t-tests).
b‒d. Extended treatments at constant doses. Representative Kuramochi adapted lines (T5, T20 and T80) were
maintained on olaparib treatment at the final concentrations to which they had adapted (5, 20 and 80 μM,
respectively) for the number of days that they had taken to adapt to their subsequent populations at increased
concentrations (T10, T40, T160, respectively) (see Fig. 1a), generating the extended T5-E, T10-E and T80-E
populations. Cell viability was measured by metabolic assays (CellTiter Glo 2.0) and by cell counting after 9
days of treatment at the respective escalated doses (10, 40 and 160 μM). IC50s (left bar plots) and relative cell
counts (right bar plots) were compared with their parental and dose-escalated populations (*P < 0.05; **P =
0.005; ***P = 0.008; ns, not significant; two-tailed t-tests).
e‒h. Dose escalation facilitates drug-induced adaptation. The dose escalation experiment (Fig. 1a) was
repeated in parallel for three replicates until Kuramochi cells reached confluency at 10 μM (e). Plots indicate
cell viability curves and shifts in their IC50 (bar plots). Parallel experiments were performed without dose
escalation, maintaining drug-naïve cells under continuous treatment at 2.5 (f), 5 (g) and 10 μM (h) for the same
duration as the escalation experiments. Cell viability assays and cell counts after the treatment periods are
shown and compared with the dose-escalated populations (**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not
significant; two-tailed t-tests). Microscopic photos depict T10 (dose-escalated) cells reaching confluency while
T10.C (continuous) did not.
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Supplementary Figure 2. Generation of drug-adapted populations for two additional BRCA mutant
ovarian cancer cell lines.
Drug-adapted lines were generated using the same dose escalation approach from Figure 1a until cells were
able to reach confluency at 40 μM of olaparib. The experiment was performed for Ovsaho (a) and COV362 (c)
and their respective shifts in IC50 are shown by cell viability experiments (b, d). Data are the means and s.e.m
of 6 technical replicates.
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Supplementary Figure 3. Gene expression in the Ovsaho and COV362 adapted lines.
a. Spearman’s correlations among the averaged transcriptomes of the Ovsaho adapted lines. Untreated control
and T5 to T40 were collected for scRNA-Seq.
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b-c. UMAP representation of Ovsaho scRNA-seq data on the individual adaptive lines colored by treatment (b)
and by cluster as determined by Louvain clustering (c).
d. Bar plot representing the percentage of cells from each condition in each cluster.
e. Differentially expressed genes indicating consistent patterns of marker expression with previously defined
cell states and functional annotation (Fig. 2d). Color bar indicates the scaled mean gene expression for a
particular cluster and circle sizes are the fraction of cells expressing the gene.
f. Gene set enrichment analysis (GSEA) shows consistent functional enrichment for clusters that resemble less
(cluster 0) and more adapted (cluster 2, 3, 4) states. For the purpose of comparison, the pathways are ordered
as in Figure 2e.
g-l. Same analyses as shown in a-f for COV362.
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Supplementary Figure 4. Representative plots of the flow cytometry analysis of CD24 and CD44 staining
across the Kuramochi adapted populations. Bottom left quadrants represent double negative staining for both
markers. A transition from CD24 highCD44low (top right) to CD24lowCD44high (bottom right quadrants) is observed.
Numbers indicate the percentage of cells in each quadrant. Colored squares indicate the subpopulations
sorted for ATAC-Seq (Fig. 4).
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Supplementary Figure 5. Dose-induced drug tolerant persisters.
a. Apoptosis assay on cells treated with 10 and 320 uM of olaparib for 9 days. Viable cells were considered
double negatively stained for Annexin V and DAP (bottom left quadrant). Percentages of DAPI and Annexin V
negatively stained cells and the total number (relative to the initial 1.2 × 106 seeded cells) of viable cells
(counted by trypan blue exclusion) are shown as bar plots (*P = 0.01, ***P = 0.001, two-tailed t-tests; error bars
are s.e.m of three replicates).
b. Cell cycle analysis after 2 days of treatment with 10 and 320 uM of olaparib. Histograms represent the cell
count in each cell cycle phase. Bar plots represent the fraction of cells in G1, S and G2/M phases (*P = 0.01,
**P = 0.001, ***P = 0.0001, two-tailed t-tests).
c. Frequency of cells presenting the highest transcriptome correlation with the average profile defined for the
adaptive states (Fig. 2).
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Supplementary Figure 6. Single-cell CNA inference analysis for the adapted and persister lines.
a. Heatmaps depicting scRNA-Seq inferred copy number alterations (CNAs) for Kuramochi adapted and
persister lines relative to untreated control (C). Gene expression signal is scaled along the chromosomes as
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calculated by inferCNV. Red represents genomic regions with inferred copy number gain and blue represents
regions with inferred copy number loss. Colors and labels on the left represent the subpopulations identified by
clustering cells based on their transcriptomes (Fig. 1d) showing correspondence between inferred CNAs and
transcriptional states.
b. Enrichment of genes within CNA regions identified by whole-exome sequencing overlapping with the genes
present in the transcriptional modules detected for the adaptive lines (Fig. 2) in respect to random distributions
(P-values determined by 10,000 permutations, see Methods). Blue and red lines indicate the observed overlap
of copy number loss and gain, respectively, and the gray lines indicate the significance threshold in an
expected random distribution.
c. Inferred CNAs defined for the adapted Ovsaho and COV362 lines relative to their untreated controls. Color
annotations represent sample and transcriptional clusters identified in Figure S3.
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Supplementary Figure 7. Transcription factor enrichment analysis for the differentially accessible
ATAC-Seq peaks and associations with CNAs.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.496830doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496830
http://creativecommons.org/licenses/by-nc-nd/4.0/


a. Correlation between the number of differentially accessible peaks and total number of detected peaks per
sample. The lack of a positive correlation indicates that the number of differentially accessible peaks are not
explained by peak detection bias (Spearman’s rho = -0.62, P = 0.07).
b. Heatmaps showing the hierarchical clustering (rows) of the enriched transcription factor binding sites in the
differentially accessible peaks. Green represents TFs with binding sites in peaks with higher accessibility in the
adapted lines relative to the untreated condition, and purple for peaks with lower accessibility in the adapted
lines. Color bar represents the scaled p-values for transcription factor binding site enrichment (only
transcription factors with P-value < 1e-5 were included). The analysis controlled by peaks not overlapping
CNAs (“no_CNA”) reveals the same patterns when compared to all peaks.
c. Transcription factor (TF) motif enrichment analysis controlling for peaks not overlapping with CNAs, showing
the same frequency of peaks containing motifs for specific TFs involved with regulation of general stress
response (AP1, NRF2, ATF4) and ovarian cancer TFs (SOX17, PAX8, WT1). Bar plots represent the
percentage of differentially accessible peaks for each condition (relative to C). Color bars represent the motif
enrichment P-values.
d. Enrichment of differentially accessible ATAC-Seq peaks overlapping CNA regions (relative to untreated
control) identified by whole-exome sequencing for representative adaptive lines (T10, T40 and T320) (P-values
determined by 1,000 permutations, see Methods). Blue and red lines indicate the observed overlap of copy
number loss and gain, respectively, and the gray lines indicate the significance threshold in an expected
random distribution. The proportion of peaks not overlapping CNAs ranged from 70% for less and 80-90% for
more accessible peaks, highlighting widespread global chromatin changes.
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Supplementary Figure 8. Tumor growth curves and transcriptome analysis of ovarian cancer
patient-derived xenografts.
a. Tumor growth curves for PDXs treated with four doses of talazoparib (shades of green) and vehicle controls
(gray). Each condition was collected in duplicates for scRNA-Seq. Two replicates of each condition were
generated (indicated by “.1” and “.2”).
b-d. Tumor growth curves for PDXs in first (b), second (c) and third (d) rounds of talazoparib treatment for the
emergence of resistant tumors. A drug holiday in the first round is indicated in red. Two replicates for each
condition were collected for scRNA-Seq: vehicles (gray), round 1 (solid pink) and round 3 (blue, with an
additional vehicle treated (R3.V)). A replicate tumor from round 1 (dashed pink) was seeded in a new cohort to
generate the round 2 treatment.
e. Gene set enrichment analysis (GSEA) for all the clusters identified by Louvain clustering in both experiments
showing convergent signatures with persistence (dose-response) and adaptive states (resistance). For
comparison purposes, the same pathways and order defined from Figure 2e are shown.
f. Heatmap of the scaled gene average expression across samples of the dose-response experiment,
highlighting differentially expressed genes that show a dose-dependent pattern.
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METHODS

Cell culture
Kuramochi cells (BRCA2-mutant (11)) were cultured in RPMI-1640 (ThermoFisher) with 10% Fetal Bovine
Serum (FBS), 1% MEM Non-Essential Amino Acids, 1% L-Glutamine 200 mM, 1% Antibiotic-Antimycotic
solution 100X and 0.25 U/mL insulin solution (Sigma-Aldrich). Ovsaho cells (BRCA2 homozygous deleted (11))
were cultured in RPMI-1640 (ThermoFisher) with 10% FBS, 1% L-Glutamine 200 mM and 1% Penicillin and
Streptomycin (10,000 U/mL, ThermoFisher). COV362 cells (BRCA1-mutant (11)) were cultured in DMEM
(ThermoFisher) supplemented with 10% FBS, 1% L-Glutamine and 1% Penicillin and Streptomycin. Cells were
maintained at 37°C with 5% CO2. All cell lines were kindly provided from the laboratory of Benjamin Neel (NYU
Langone Health). The cell line identities were confirmed by genotyping using short tandem repeat fingerprinting
and were tested negative for mycoplasma with Mycoplasma PCR Detection Kit (ABM).

Dose escalation experiments
To generate drug-induced resistant populations, 1×106 drug-naïve cells were initially seeded in 150 mm plates.
Twenty four hours after seeding, 1 μM of olaparib (Selleckchem, S1060) was added and cells were maintained
under treatment until reaching confluency (> 70%), thus characterizing resistance at this dose. Cells were
harvested (0.25% Trypsin/EDTA for 5 min at 37°C) and a fraction of the surviving population (1×106 cells) was
seeded again and treated with 2.5 μM until cells reached confluency. This process was repeated sequentially
by doubling the drug concentrations until the cell populations were able to achieve confluency at 320 μM of
olaparib (see schematics from Fig. 1a and Supplementary Fig. 2). The initial dose was determined by cell
viability assays (see below), indicating a low starting dose (< IC30). At each step, aliquots of the adapted
populations were frozen (10% DMSO, 50% FBS, 40% media) for further experiments. Using this approach, we
generated 9 drug-adapted lines for Kuramochi (T1-T320) and 6 adapted lines for Ovsaho and COV362
(T1-T40) plus the untreated controls (C).

To compare the resistant phenotypes generated by dose escalation versus constant dose treatment, we
repeated the dose escalation in triplicates for Kuramochi up to 10 μM, while initially drug-naïve cells were
maintained under treatment with the same doses (1, 2.5, 5 and 10 μM) for the same amount of time in each
step of the dose escalation experiment (see Supplementary Fig. 1e-h for schematics). Media with fresh drug
was replenished every 3 days. Olaparib was added 24 hours after plating, in the final concentrations from a
stock solution of 50 mM dissolved in DMSO and maintained at -80°C. Cell number was determined by trypan
blue exclusion (Sigma-Aldrich) and counted on a Countess II cell counter (Life Technologies).

Cell viability assays
Viability experiments to test the resistance phenotypes (here defined as fitness) were performed using the
CellTiter-Glo 2.0 Luminescent Cell Viability Assay (Promega) according to the manufacturer’s protocol. Before
performing the viability assays, frozen aliquots of the resistant cells were thawed and cells were recovered
without drug treatment for 7-10 days. Cells were plated in 96-well plates at seeding density of 700 to 800 cells
per well. After 24 hours, cells were treated with olaparib with the same concentrations used in the dose
escalation experiment (1 to 320 μM) for 9 days. DMSO without drug was used as a negative control to
normalize the cell viability of drug treated wells. Luminescence was determined using the BioTek Cytation 5
Cell Imaging Multi-Mode Reader (Agilent). Cell viability analysis was performed on GraphPad Prism 9 and
IC50 values were determined using a nonlinear regression curve fit. Pairwise significant differences between
IC50s were assessed by Student’s two-tailed t tests.

Cell cycle analysis
Cells were treated with 10 μM or 320 μM of olaparib 24 h after plating and cell cycle analysis was performed
after 48 h of treatment using propidium iodide staining. Cells were fixed in cold 70% ethanol overnight at 4°C,
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washed twice in PBS and resuspended in 1x PBS with 0.2 mg/ml RNase A (Sigma-Aldrich) and 25 mg/ml
propidium iodide (Biolegend). After 30 min incubation at room temperature in the dark, cells were analyzed on
a LSR II Flow Cytometer (BD Biosciences). Quantification of cell cycle phases was performed on FlowJo
software (FLOWJO).

Drug-tolerant persister generation
Persister cells (DTPs) were generated similar to Sharma et al. (7) and Hangauer et al. (68) by seeding 1×106

Kuramochi cells in 150 mm plates and treated with either 10 or 320 μM of olaparib for 9 days (> IC90). Fresh
media with drug was added every 3 days. Cells that remained attached to the plates were considered
persisters. To confirm that the resistant phenotypes were due to adaptation rather than selection of pre-existing
resistant clones, we performed two rounds of treatment-recovery of drug-naïve cells (Supplementary Fig 1a).
For this, we generated persisters in triplicates with 320 μM (the highest dose used in the escalation
experiment) and cells were allowed to recover without drug treatment for 9 days prior to performing viability
assays.

Apoptosis assay
To quantify apoptosis and cell viability of DTPs treated with different doses, we generated persister cells with
either 10 or 320 μM of olaparib as previously described. The adherent cells were harvested (0.25%
Trypsin/EDTA for 5 min at 37°C), stained with trypan blue and counted manually using hemocytometer or on a
Countess II cell counter. Cells were washed twice in cold PBS and stained with DAPI (ThermoFisher) and
Annexin V using the Annexin V Apoptosis Detection Kit (BD Biosciences) according to the manufacturer’s
instructions. Stained cells were analyzed on a LSR II Flow Cytometer (BD Biosciences). Quantification of
apoptotic and viable cells was performed on FlowJo software (FLOWJO).

CD24 and CD44 cell staining and sorting
The untreated and resistant Kuramochi populations were harvested and stained with DAPI (Cat No. D1306,
ThermoFisher), anti-CD24-PE (Cat No. 555428) and anti-CD44-APC (Cat No. 559942) (BD Biosciences).
Populations were sorted based on their CD24/CD44 profiles using a Sony SY3200 Highly Automated Parallel
cell sorted. Sorted cells were used either for ATAC-Seq or plating for cell viability experiments.

Generation of patient derived xenografts and drug treatments
All animal experiments were carried out under an approved animal protocol by the Institutional Animal Care
and Use Committee (IACUC) of NYU Langone Grossmann School of Medicine. Immunodeficient six-week-old
female NOD SCID gamma (NSG) (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice were purchased from Jackson
Laboratory and allowed to acclimate to housing conditions. To generate HGSOC (High-Grade Serous Ovarian
Cancer) PDX models of PARPi treatments, we used a previously characterized BRCA2 mutated tumor derived
from PDX models (49) (ID: 66799). Approximately 1×106 cells in a 1:1 ratio with Matrigel® Matrix (Corning,
USA) were subcutaneously injected with a 27-gauge needle (BD Micro-Fine, USA) into the right lower
mammary fat pad on the abdominal dorsal surface. Observation of animals including caliper measurements of
tumor volume and body weight continued twice a week. Mice were euthanized with CO2 (confirmed by cervical
dislocation) and tumors were excised for further procedures.

PARPi dose-response: To study the transcriptional changes that occur upon different dose regimen, the
BRCA2-mutant HGSOC cells were injected as previously described and mice were randomized into five
groups after reaching 100–200 mm3 tumor volume. Treatments were performed as follows: a) Vehicle controls
(10% dimethylacetamide, 5% Solutol HS15, 85% PBS) (n=2); b) Dose 1 (D1) was 0.13 mg/kg of talazoparib
(Selleckchem, S7048) (n=2); c) Dose 2 (D2) was 0.23 mg/kg (n=2); d) Dose 3 (D3) was 0.33 mg/kg (n=2) and
e) Dose 4 (D4) was 0.66 mg/kg (5 consecutive days a week, oral gavage). Mice were monitored by routine
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palpation and tumor sizes measured by caliper. Vehicle tumors were collected at the humane endpoint and
talazoparib treated tumors were collected after 50-57 days of treatment (Supplementary Fig. 8a).

PARPi resistance model: To establish a drug-resistance model, tumors were treated along three passages. In a
first passage, when the PDX tumors reached 100–200 mm3 tumor volume, Vehicle (10% dimethylacetamide,
5% Solutol HS15, 85% PBS) or talazoparib (0.0066mg per mouse = 0.33mg/kg (50), oral gavage) was
administered for 5 consecutive days a week. Talazoparib treatment caused tumor remission and treatment was
interrupted. Tumor sizes were followed until reappearance and treatment was reintroduced. Vehicle and drug
treated tumors that did not show further regression upon re-treatment — thus indicating resistance — were
collected for scRNA-Seq at the humane endpoint (1500-2000 mm3 or up to 20 mm in one dimension). A
replicate tumor was implanted in a second passage and maintained under treatment upon tumor detection.
The resulting tumor was implanted in a third passage, generating 3 replicates (2 talazoparib treated and 1
vehicle) (Supplementary Fig. 8b).

Tumor dissociation for scRNA-Seq
Upon arrival to the lab, tumors were minced with a razor blade and enzymatically dissociated in two steps.
First, minced samples were incubated with 5 mL of digestion mix 1 (9 mL Advanced DMEM/F12, 1 mL Gentle
Collagenase and 100 μL DNase I) at 37°C for 30 min, centrifuged at 1000 RPM for 4 min. After removing the
supernatant, samples were incubated with 5 mL of digestion mix 2 (3 mL Advanced DMEM/F12, 2 mL Dispase,
5 mL TrypLE, 100 μL DNase I) at 37°C for 15 min, placed on a 70 μm cell strainer and washed with Advanced
DMEM/F12 + 10% FBS. Samples were centrifuged at 1000 RPM for 4 min, incubated with 1 ml of ACK Lysing
Buffer (ThermoFisher) for 4 min, washed with PBS + 10% FBS, resuspended in PBS, placed on a 35 μm cell
strainer and viability was determined by Trypan Blue staining, which ranged from 65% to 90%. Dissociated
cells were collected for scRNA-Seq immediately (resistance experiment) or cryopreserved (dose-response
experiment) by resuspending in freezing media (50% FBS, 40% Advanced DMEM/F12 and 10% DMSO) and
stored at -80°C. Batches of replicates were processed on the same day. Frozen samples were thawed,
washed in media, resuspended in PBS and the cell concentration adjusted for the 10X Genomics single-cell
encapsulation protocol following library preparation and sequencing.

inDrop library preparation and sequencing
Cells from the Kuramochi dose escalation experiment (C, T1-T320) were harvested when they reached
confluency at their respective dose treatments and collected for single-cell encapsulation and library
preparation using the inDrop platform (69) as previously described (70). Libraries were sequenced on an
Illumina NextSeq 500 and reads were processed using a custom inDrop pipeline as described in Baron et al.
2020 (70) using the hg38/GRGh38 human genome assembly and the Ensembl 93 transcriptome annotation.

10X Genomics library preparation and sequencing
We used the 10X Genomics workflow for scRNA-Seq on cells collected from the experiments depicted in
Figure 3 (Kuramochi persisters (P10 and P320) and adapted (T10, T320)), Supplementary Figure 3 (Ovsaho,
COV362) and Figure 5 (PDX samples). Cell loading for droplet-based scRNA-Seq and library preparation were
performed using the 10X Genomics Chromium platform with the Chromium Single Cell 30 Library & Gel Bead
Kit v3.1 following the manufacturer’s instructions. Libraries were diluted to 2 nM and 75bp paired-end
sequencing was performed using the Illumina NextSeq 500 and 150-200 million paired reads were generated
for each library. Raw reads were processed with the CellRanger v3.1(10X genomics) pipeline (default
parameters) with the hg38/GRCh38 genome and Ensembl 93 transcriptome references. For PDX samples,
reads were processed with the CellRanger multi-species detection and only cells assigned to ‘human’ were
considered for further analysis.
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Cell hashing for pooled scRNA-Seq
To compare the expression among untreated (C), persister (P10 and P320; two replicates) and the adapted
cells (T10 and T320), we used the Cell Hashing method (71) to tag cells from different conditions based on the
expression of surface markers (TotalSeqA, Hashtag oligos (HTOs) 1-5, Biolegend). Five samples from each
condition were pooled into a single cell suspension in equal amounts and loaded on the 10X Genomics
Chromium Controller with Single Cell 3’ v3.1 system and libraries prepared according to the manufacturer’s
protocol. For the hashtag oligos, 1ul of HTO PCR additive primer was added to the 10X cDNA amplification
step, and the supernatant from the 0.6X cDNA cleanup was kept and processed according to the Cell Hashing
protocol, with 14 PCR cycles and a 1.2X cleanup after the PCR. The same procedure was applied to pool cells
from Ovsaho (C, T5-T40; HTOs 1-5) and COV362 (C, T5-T40; HTOs 6-10) experiments. Sample
demultiplexing was performed using the CITE-seq-Count pipeline (v1.4.3,
https://github.com/Hoohm/CITE-seq-Count) and Seurat (16).

ATAC-Seq sample preparation and sequencing
ATAC-Seq samples were prepared in duplicates using a modified version of the OMNI-ATAC protocol (72).
Briefly, cells grown in tissue culture were trypsinized, stained for expression of CD44 and CD24 and sorted as
previously described. Briefly, approximately 50,000 cells per condition were used for nuclei extraction using the
ATAC-Seq resuspension buffer as previously described (72). Nuclei were resuspended in 50 μl of transposition
mix (25 μl 2× TD buffer, 2.5 μl transposase (100 nM final), 16.5 μl PBS, 0.5 μl 1% digitonin, 0.5 μl 10%
Tween-20, and 5 μl water). Transposition reactions were incubated at 37°C for 40 min in a thermomixer with
shaking at 1,000 r.p.m. Reactions were cleaned up with Zymo DNA Clean and Concentrator 5 columns.
ATAC-Seq libraries were amplified using Ad2_noMx (universal forward) and Ad2.x (indexed reverse). Libraries
were diluted to 2nM and 75bp paired end sequencing was performed using the Illumina NextSeq 500/550.
Between 50-200 million paired reads were generated for each library.

Single-cell data analysis
Filtering: Raw gene expression matrices were TPM normalized (scale factor of 104) and log2 transformed. For
each cell, the number of transcripts, genes expressed, and the proportion of transcripts derived from
mitochondrial and ribosomal genes were determined. For each dataset, cells with transcript number lower than
500 or higher than 2 standard deviations, with less than 500 genes detected and with higher than 20% of
transcripts corresponding to mitochondrial genes were excluded from further analysis. Genes expressed in
less than 1% of the cells in each dataset were removed.

Cell clustering and differential gene expression: For all samples we observed that differences due to cell cycle
gene expression was a major source of variation. To mitigate this effect for the interpretation of cell states, we
used the Seurat function CellCycleScoring to assign cells in G1, S and G2/M phases. We then considered the
G1 cells for further analyses. Dimensionality reduction, clustering and differential expression were performed
using the Seurat R package. To control for unwanted sources of variation, the number of UMIs and the fraction
of mitochondrial and ribosomal UMIs were regressed out during data scaling. For the individual analysis of the
Kuramochi datasets (C-T320) we used the DrImpute method (k parameter = 5:10) (73) before clustering.
Highly variable genes were identified using the Seurat FindVariableGenes function (default parameters) and
these were used to compute the Principal Components (PCA) following Uniform Manifold Approximation and
Projection (UMAP) using the top 5 to 10 PCs (cutoffs determined by the elbow method). Louvain clustering was
performed using the FindClusters function using the selected PCs with resolution set to 0.3 to 0.6. For the
analysis of PDX dose-response samples, we observed a batch effect driven mostly by one of the vehicle
samples and we used the fastMNN method (74) for correction of the aggregated datasets before clustering.
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Differential gene expression across clusters was performed using the FindMarkers function using the MAST
test (logfc.threshold=0.25, min.pct=0.2, min.cells.genes=10).

Defining cell states across resistant populations: To study shared cellular states across the Kuramochi resistant
populations, we first assessed the differentially expressed genes among the cell clusters (i.e., cell
subpopulations) within each sample separately. The top 100 most differentially expressed genes (ranked by
their adjusted p-values) in each cluster were selected to generate a non-redundant list of genes (n = 1511).
These genes were used to build an average expression matrix of each cell cluster across all samples. A
correlation matrix (Spearman’s correlation coefficients) across these average profiles was used for average
linkage hierarchical clustering and the cell states were defined based on the cluster structure (k = 5).

Gene module identification: To identify gene expression programs across the Kuramochi lines from C to T320,
we implemented the Neftel et al. 2019 approach (17), with some modifications. First, we aggregated all G1
cells (non-imputed dataset) from all conditions and performed an average linkage hierarchical clustering using
the 1000 most highly variable genes (defined by the FindVariableGenes function) on the centered dataset
using one minus the Pearson correlation as the distance metric, as proposed previously (17). To evaluate all
possible clusters of cells that have a potential gene expression signature, we recovered all clusters excluding
by size (less than 30 cells and no more than 85% of all cells) and by signal of differential expression. Each
cluster of cells was evaluated for a signature of differential expression relative to the remaining cells using the
FindMarkers function as described above. Clusters with a signature of differentially expressed genes were
retained according to the following criteria: genes expressed > 1.8 average fold change, adjusted p-value <
0.001 and with more than 50 genes matching these criteria. Gene signatures (i.e., gene sets) were then
hierarchically clustered based on their Jaccard index and, for pairs with similarity above 0.75, the signature
with the largest number of genes was considered. To integrate the gene signatures into gene modules, clusters
with less than 3 signatures were excluded. The genes from all signatures that constitute a particular cluster
were merged and ranked based on the ratio of their average expression in cells from a particular cluster
relative to their average expression in cells from the other clusters. To assess the significance of gene overlap
across modules and differentially expressed gene lists from other analyses, p-values were computed with
Fisher’s Exact tests implemented in the GeneOverlap R package. Cells were scored by their module
expression (top 100 genes excluding mitochondrial and ribosomal genes) using Seurat's AddModuleScore
method and z-scored for visualization. To assess the significance of overlap among genes in modules and
genes in CNA (Copy Number Alteration) regions, permutation tests (10,000) were performed using the
regioneR package (75).

Identification of genes with dose-response patterns: Using the PDX datasets from the dose-response
experiments, we identified genes with dose-response patterns by first performing pairwise differential
expression across all treated conditions versus vehicles for each batch of replicates independently. Genes
differentially expressed in both of the replicates were considered. A non-redundant list of these differentially
expressed genes was used to generate an average expression matrix across conditions. The samples were
ordered from low to high doses (V, D1, D2, D3, D4) and the genes were clustered using the Mfuzz package
(76) setting the number of clusters to 7 and m parameter = 1.8. Genes with membership score higher than 0.3
were included and those with similar profiles of decreasing or increasing expression relative to high (or low)
doses in both replicates were aggregated.

Single-cell inferred copy number alterations (CNAs)
Large-scale chromosomal alterations from scRNA-Seq datasets were inferred by the inferCNV v1.4.0 package.
Untreated samples were used as a reference for CNA inference in the treated samples. The default options
were used except for a cutoff of 0.1 for the minimum average read counts per gene and clustering by groups
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was set based on the cluster annotations determined from the transcriptome analyses. The output consisting of
a denoised modified expression matrix as genes ordered by chromosomal location was used for heatmap
visualizations with ComplexHeatmap (77) in R.

Gene set enrichment analysis
Gene set enrichment using the hallmark annotations (MSigDB) (78), KEGG (79) and Reactome (80) pathways
was performed using the R package fgsea. Differential expression between groups was determined using the
MAST algorithm implemented in Seurat and the genes were ranked using the sign of the average log fold
change multiplied by the -log10 of p-value. Ranked lists were used as inputs for the fgsea package with a
minimum gene set size of 10 and a maximum of 500, and significance assessed by 10,000 permutations.
Terms were considered significantly enriched at p-values < 0.05.

ATAC-Seq data processing and analysis
Peak detection: Adapter sequences were removed using Trim Galore
(https://github.com/FelixKrueger/TrimGalore) (-q 20, - --length 30). Filtered reads were aligned to the human
genome (hg38/GRCh38) with Bowtie2 (81) (--very-sensitive, -k 10, -X 2000). After removing reads mapping to
mitochondrial DNA and duplicate reads removed with Picard Tools MarkDuplicates
(http://broadinstitute.github.io/picard/), only properly mapped pairs assigned by SAMTools (82) were included
for further analysis. To avoid peak detection bias due to sequencing depth differences, read depth across
samples was downsampled with SAMTools to match the lowest depth. Peak calling was performed with
MACS2 (83) and blacklisted regions were excluded (84). Reproducible peaks between replicates for each
sample were determined using the IDR framework (https://github.com/nboley/idr) and peaks with high
reproducibility (IDR score < 0.05) were considered. A consensus peak set across all samples was constructed
by merging the reproducible peaks from each sample using HOMER v4.1 (85). Finally, a read count table for
the consensus peaks was generated using deepTools 3.1 (86).

Differential peak accessibility and motif analysis: The count table of consensus peaks was normalized and
differentially accessible peaks were calculated using DESeq2 (87). Differentially accessible peaks relative to
the untreated sample (C) were considered as adjusted p-value < 0.001 and fold change ≥ 3. The top 2000
most variable peaks were used for Principal Component Analysis (PCA). To visualize the peak signal across
samples, ‘Zavit’ (48,88) was used to sort the mean peak signal (between replicates) across samples. Motif
enrichment analysis on the differentially accessible peaks was performed using HOMER’s ‘findMotifsGenome’
for known transcription factor motifs. To assess the significance of the overlap between the genomic regions of
the differentially accessible peaks and the regions that encompass copy-number alterations (CNAs determined
by WES), permutation tests (1,000 permutations) were performed using the regioneR package. To verify the
influence of CNAs on the motif enrichment patterns, the motif analysis was repeated by removing the more or
less differentially accessible peaks that overlap with gained or deleted copy-number regions, respectively.

Whole exome sequencing (WES) and analysis
Genomic DNA extraction for whole exome sequencing was performed using Qiagen Blood and Cell DNA kit
(Catalog no: 13323). The extracted DNA from representative samples (C, T10, T40 and T320) was sent to the
Broad Institute facility and processed according to the in-house pipeline. Briefly, 125ng in 50μL was prepared
for sequencing using the KAPA Hyper Prep Kit. Hybridization and capture were performed using the relevant
components of IDT’s XGen hybridization and wash kit and following the manufacturer’s suggested protocol.
Sequencing was performed using Illumina Novaseq.

Sequencing results were demultiplexed and converted to FASTQ format using Illumina bcl2fastq
software. The FASTQ files were processed using the Seq-N-Slide pipeline
(https://doi.org/10.5281/zenodo.5550459). Adapter sequences were trimmed with Trimmomatic (89) and then
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aligned to the human reference genome (build hg38/GRCh38) using the Burrows-Wheeler Aligner with the
BWA-MEM algorithm (90). Low confidence mappings (mapping quality < 10) and duplicate reads were
removed using Sambamba (91). Further local indel realignment and base-quality score recalibration were
performed using the Genome Analysis Toolkit (GATK) (92). Copy number profiles were calculated using
Control-FREEC (93) with untreated samples as the matched controls. ANNOVAR (94) was used to annotate
variants with genomic context such as functional consequence on genes and identify presence in public variant
databases gnomAD and COSMIC.
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