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Abstract 15 

Soil microbial networks play a crucial role in plant community stability. However, we lack knowledge 16 

on the network topologies associated with stability and the pathways that shape these networks. In a 17 

13-year mesocosm experiment, we determined how natural grassland soil and soil abandoned from 18 

agricultural practices 60 years before the start of the experiment affected soil microbial network 19 

topologies. Abandoned arable soil promoted destabilising properties both above- and belowground. 20 

Aboveground, instability was associated with invading plant species reaching dominance. 21 

Belowground, instability was associated with soil microbial networks coupled in prokaryote and fungal 22 

responses, which were both shaped by a few, dominating plant community parameters. Conversely, 23 

in stable, natural grassland communities, soil prokaryote and fungal responses were decoupled. This 24 

decoupling was associated with different sets of plant community parameters shaping prokaryote and 25 

fungal niches. We conclude that plant community stability is associated with soil microbial networks 26 

with a high niche differentiation.   27 

 28 

Introduction 29 

Plants live in complex, interactive networks with soil microbial communities. These interactive 30 

networks are increasingly found to act as a structuring force in a large array of plant community 31 

processes and characteristics such as plant community stability (Bardgett & Caruso, 2020; Bardgett & 32 

van der Putten, 2014; Bever et al., 2012; in ’t Zandt et al., 2021; van der Putten et al., 2016). Plant 33 

community stability describes the ability of communities to resist and recover from biotic and abiotic 34 
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perturbations, and has become an increasingly pressing issue with the ongoing change in climate and 35 

human interventions (Hernandez et al., 2021; IPCC, 2021). However, understanding the driving forces 36 

of community stability is a major challenge due to the complexity of the underlying plant-soil-37 

microbiota interactions. At the same time, the complexity of ecological interactions itself has long 38 

been considered to be a key component of community stability (Montoya et al., 2006; Pimm, 1985). 39 

To predict, protect and restore plant communities, we need to understand the role of plant-soil-40 

microbiota interactions and their complexity in community stability processes. 41 

Interactive networks between plants and soil microbiota result from both direct and indirect 42 

effects that plants and soil microbiota have on each other via, for example, pathogenicity, facilitation, 43 

and soil resource cycling (Bezemer et al., 2010; de Vries et al., 2013; Eisenhauer et al., 2010). Although 44 

complex, ecological networks have a comprehensible structure with well-defined patterns in relation 45 

to network stability (Montoya et al., 2006; Pimm, 1985). Network theory predicts that species 46 

connectiveness, negative interactions, few strong and many weak interactions and clustering of 47 

species increase the stability of ecological networks to perturbations (Coyte et al., 2015; Hernandez 48 

et al., 2021; Saint-Béat et al., 2015; Stouffer & Bascompte, 2011). In essence, these network properties 49 

minimise the risk of change when a perturbation occurs by creating dependencies between species, 50 

promoting species asymmetry and buffering against the propagation of perturbation effects among 51 

subsections of the network (Coyte et al., 2015; de Vries et al., 2018; McCann et al., 1998; Neutel et al., 52 

2002; Saint-Béat et al., 2015). Most of this network theory is derived from ecological food web theory, 53 

but has been shown to be applicable to microbial networks (Coyte et al., 2015; de Vries et al., 2018; 54 

Hernandez et al., 2021). However, in comparison to food webs, microbial networks lack a strong 55 

directional structure and are therefore based on co-occurrences of taxa alone (Coyte et al., 2015). Yet, 56 

plants play a critical role in shaping the environmental niches of soil microbial communities via the 57 

input of a large variety of chemical compounds into the soil environment via, for example, dead 58 

organic material and root exudates as well as the uptake of soil nutrients (Canarini et al., 2019; Sokol 59 

et al., 2022). The plant community may therewith play an essential role in shaping soil microbial 60 

network stability. We currently lack knowledge on the role of the plant community in shaping soil 61 

microbial networks and therewith the importance of these pathways as stabilising mechanisms. 62 

From a plant community perspective, plant diversity has long been considered to result in stability. 63 

In diverse plant communities, negative effects of perturbations on certain plant species are considered 64 

to be compensated for by positive effects on other species, temporarily taking over their function in 65 

the community (Loreau & de Mazancourt, 2013). In other words, plant community diversity increases 66 

the probability of finding resistance and/or recovery to a perturbation due to a higher sampling effect. 67 

At the same time, plant diversity may not guarantee stability if diversity itself does not create the 68 
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pathways that lead to stability (Lepš et al., 2001; Saint-Béat et al., 2015). Instead, plant species identity 69 

and therewith plant community composition is expected to act as a stabilising mechanism via 70 

reciprocal specialisation of plants and soil microbiota. This reciprocal specialisation creates complex 71 

networks and, in particular, negative feedback loops that avoid plant species dominance, species loss 72 

and communities tipping into alternative states (Bardgett & Caruso, 2020; Bever et al., 2012; in ’t 73 

Zandt et al., 2021; van der Putten et al., 2016). As a result, direct effects of plant community 74 

composition on microbial networks are likely critical pathways in community stabilising mechanisms. 75 

Conversely, inherently more generic effects of plant community diversity and indirect pathways via 76 

soil chemical changes may result in microbiota responding in tandem. If such more generic effects are 77 

strong or not compensated for, this may lead to plant community instability. To understand the drivers 78 

of plant community stability, we need to define the importance of both overall (i.e., plant diversity 79 

and productivity) and compositional (where plant identity plays a distinctive role) plant community 80 

components in shaping soil microbial networks and to test whether these plant community 81 

components create direct or indirect effects via soil chemical changes. 82 

Here, we test to what extent and via which pathways overall and compositional plant community 83 

components shape soil microbial biomass and networks after the growing season. We compare these 84 

pathways between dry grassland communities established on natural grassland soil and soil 85 

abandoned from agricultural practices 60 years before the start of the experiment. Plant communities 86 

on natural grassland soils are typically stable communities, while communities on abandoned arable 87 

soil are more strongly impacted by plant species invasion (Kulmatiski et al., 2006; Mattingly & Orrock, 88 

2013). We created plant communities by sowing a seed mixture of 44 perennial dry grassland species 89 

in outdoor mesocosms filled with natural grassland soil and abandoned arable soil (Münzbergová, 90 

2012). Plant communities were left to establish for 5 years, after which natural invasion by both native 91 

and exotic species from outside the sown species pool was allowed and occurred substantially the 92 

following 8 years. This long-term plant community development resulted in communities with natural 93 

variation in, amongst others, plant diversity and plant community composition. We combined four 94 

datasets: plant community aboveground measurements over the 13 years and after the 13th growing 95 

season: soil chemistry, total microbial biomass pools (PLFA/NLFA analysis) and soil microbial 96 

community composition (16S and ITS amplicon sequencing). First, we test whether plant communities 97 

on abandoned arable soil show a decreased long-term stability aboveground and whether this 98 

translates to soil microbial communities with destabilising properties in their prokaryote and fungal 99 

co-occurrence networks. Second, using structural equation modelling (SEM), we test whether the 100 

relative contribution of overall plant community (aboveground and belowground productivity, plant 101 

diversity) and plant compositional pathways in shaping soil microbial networks is affected by soil 102 
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origin. We distinguish past plant community factors (initial plant invasion impact and developmental 103 

trajectories) from factors in the year of sampling as well as direct plant-microbial pathways from 104 

indirect pathways occurring via soil chemical changes. Third, we determine the exact plant-soil-105 

microbiota pathways that are consistently changed between stable and instable plant communities, 106 

and whether these changes relate to particular putative functions and metabolic characteristics of the 107 

microbial communities involved. Taken together, these analyses unfold the pathways via which plant 108 

communities shape soil microbial networks and how these are associated with plant community 109 

stability. 110 

 111 

Results 112 

Plant invasion had a larger impact on plant communities on abandoned arable soil 113 

Plant community diversity gradually declined in time, but was drastically increased 1-2 years after the 114 

start of plant invasion on both natural grassland and abandoned arable soil (Fig 1A). Despite this 115 

decline in diversity, aboveground productivity of the communities remained relatively constant over 116 

time. In addition, aboveground productivity was not affected by the start of invasion and showed little 117 

difference between the two soil origins (Fig 1B). The proportion of invaded species biomass, on the 118 

other hand, was consistently higher in abandoned arable soil communities than in communities 119 

established on natural grassland soil (Fig 1C). 120 

Plant community composition in time was analysed using non-metric multidimensional scaling 121 

(NMDS) and was described by three axes representing: residence period of the plant species (early 122 

versus late residency in the communities; axis 1), residence time of the plant species (short versus 123 

long residency in the communities; axis 2) and compositional dominance of plant species (axis 3) (Fig 124 

S1-S2). The axis based on species residence period (NMDS1) showed a gradual turnover in plant 125 

composition in time, which was consistently higher in the abandoned arable compared to the natural 126 

grassland community (Fig 1D). The axis based on species residence time (NMDS2) showed similar 127 

patterns over time as plant diversity. Generally, plant communities consisted increasingly of species 128 

with longer residence times as communities developed, but invasion drastically increased the number 129 

of individuals with short residence times on both natural grassland and abandoned arable soil (Fig 1E). 130 

On natural grassland soil, these newly invaded species were gradually lost in time, while on abandoned 131 

arable soil, communities varied in whether the newly invaded species were lost or were able to occur 132 

permanently (Fig S3). These patterns did, however, not result in consistently different plant 133 

community composition between the two soil origins after plant invasion started (after 2012; Fig 1F). 134 

However, on abandoned arable soil, plant community composition showed a larger variation in 135 

dominance of plant species compared to natural grassland communities by the 13th growing season: 136 
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arable soil plant communities were either dominated by various invaded species or by the sown 137 

species Tanacetum corymbosum (Fig S1A-B). 138 

 139 

Soil origin affected soil chemistry and microbial soil communities 140 

After the 13th growing season, natural grassland and abandoned arable soils differed significantly in 141 

chemistry, microbial biomass pools and microbial community composition (Fig 2, S4). Abandoned 142 

arable soil was significantly higher in total N, plant available NO3
-, NO2

-, and NH4
+, total and organic C 143 

and total P. In addition, prokaryote and fungal richness as well as bacterial biomass were significantly 144 

higher in abandoned arable than natural grassland soil. Conversely, soil pH, fungal and AMF biomass, 145 

and belowground productivity were higher in natural grassland soil (Fig S4). Both prokaryote and 146 

fungal community composition were significantly different between natural grassland and abandoned 147 

arable soil (Fig 2). Microbial co-occurrence networks indicated highly connected prokaryote and fungal 148 

communities in both natural and abandoned soil with few dominating OTUs (Fig S5). Against 149 

Figure 1 Plant community development over time on natural grassland (green) and abandoned arable soil (yellow). Plant 
community (A) diversity, (B) total biomass, (C) biomass proportion of invaded plant species, and community compositional NMDS 
scores related to plant species (D) residence period, (E) residence time and (F) differential dominance. In D-F arrows with text 
indicate the interpretation of the NMDS scores. Note that in F, this interpretation only concerns the period after invasion started; 
2012 onwards. Grey shading indicates the time period in which communities established and no natural species invasion took 
place. From 2012 onwards, natural invasion of species from outside the sown species pool occurred. Averages ± SE are shown (n 
= 30) and results of linear mixed effect models including sowing density as a random effect are presented. Significance codes: *** 
= p < 0.001; ** = p < 0.01; ns = not significant, p > 0.05. For figures on species distribution on NMDS axes, see Fig S1-S2. 
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expectation, microbial network properties commonly associated with stability showed little difference 150 

between natural grassland and abandoned arable soil for both prokaryote and fungal networks (Table 151 

S1).  152 

Microbial networks in natural grassland soil were decoupled in prokaryote and fungal responses 153 

To understand the microbial network topologies in more detail, we clustered similarly responding 154 

OTUs across the 30 plant communities of each soil origin. We did this based on both positive and 155 

negative co-occurrences (Fig S5). Similarly responding prokaryote OTUs were captured in 9 and 10 156 

clusters for natural grassland and abandoned arable soil, respectively. For fungi, 21 and 18 clusters 157 

were needed for natural grassland and abandoned arable soil communities, respectively (Fig 3). 158 

Importantly, both for prokaryote and fungal networks, taxonomic families largely clustered together, 159 

indicating similar responses of closely related taxa and showing the validity of the clustering approach 160 

(Fig S6-S7; Table S2-S5). 161 

We summed the relative abundance of the different OTUs within each cluster. On average, three 162 

dominant prokaryote clusters occurred that held most of the 16S rRNA reads recovered for both soils. 163 

In abandoned arable soil, these patterns were similar for the fungal clusters showing 3 large clusters. 164 

On natural grassland soil, however, fungal networks showed 5 larger clusters (Fig 3). We then tested 165 

for correlations between all clusters in each soil origin. Most strikingly, in natural grassland soil, only 166 

a single correlation between the dominant prokaryote and fungal clusters occurred, while various 167 

strong positive and negative correlations occurred between the most dominant clusters in abandoned 168 

arable soils (Fig 3). In other words, responses of dominant prokaryote and fungal clusters in networks 169 

of natural grassland soils were decoupled, while in abandoned arable soil, dominant prokaryote and 170 

fungal clusters responded in tandem. 171 

  172 

Figure 2 PCoA on Bray-Curtis dissimilarity of (A) prokaryote 16S and (B) fungal ITS rRNA of communities established on natural 
grassland (green circles) and abandoned arable soil (yellow triangles). Amplicon sequencing was performed at the end of the 
13th growing season (n = 30 per soil origin). 
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Soil origin affected the pathways via which plant communities shaped microbial networks 173 

We hypothesised that the plant community plays an important role in shaping soil microbial networks 174 

and biomass pools, and, importantly, that these pathways are affected by soil origin. Because the plant 175 

community was sampled before the microbial soil communities, we were able to test this directional 176 

hypothesis using structural equation modelling (SEM). For each soil origin, we tested how plant 177 

community parameters from the year of sampling and from the past (plant invasion impact and plant 178 

community development trajectories) affected microbial biomass pools and clusters at the end of the 179 

13th growing season (Fig 4A). Moreover, we tested whether these effects resulted from overall plant 180 

community factors (belowground productivity, aboveground productivity and plant diversity) or plant 181 

community composition (NMDS scores). In addition, we determined whether these pathways 182 

occurred via direct plant-microbiota interactions or indirectly via soil chemical changes (Fig 4A). The 183 

obtained SEM models explained, on average, 55% of the variation in microbial biomass pools and 50% 184 

of the variation in the dominant microbial clusters over both soil origins. For the smaller microbial 185 

clusters, the explained variation varied more strongly (between 15 and 71%; Table S6).  186 

Figure 3 Correlation network of prokaryotes (dark grey) and fungal network clusters (light grey) in (A) natural grassland and (B) 
abandoned arable soil. Only significant correlations after Bonferroni correction for multiple testing are presented (p < 0.0017 and 
p < 0.0018 for natural grassland and abandoned arable correlations, respectively). Negative correlations are indicated in 
vermillion, positive in blue. Width of the lines indicate the strength of the correlation and size of the vertices indicate the average 
size of the microbial network cluster based on relative reads within prokaryote and fungal clusters each. Note that this means 
that cluster sizes can be compared between the two soils within the prokaryotes and fungal groups each, but that prokaryote and 
fungal clusters are not scaled to each other and are therefore not directly comparable (but see Fig S4 for bacterial and fungal 
biomass comparisons). Correlations result from linear mixed effect models including sowing density as a random factor. For 
taxonomic and putative soil functions of each microbial network cluster, see Fig S6-S7 and Table S2-S5. 
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We calculated the relative contribution of each group of plant community parameters in shaping 187 

soil microbial properties using the effect sizes of the SEM pathways. Overall, we found that both plant 188 

community parameters in the year of sampling and from the past contributed significantly to shaping 189 

soil microbial communities. Furthermore, the relative contribution of plant community parameters 190 

differed between plant communities established on natural grassland and abandoned arable soil (Fig 191 

4B). Three consistent differences occurred. (i) In natural grassland soil, microbial biomass was shaped 192 

by a multitude of pathways resulting from both the year of sampling as from the past. In abandoned 193 

arable soil, on the other hand, the year of sampling was more important in shaping soil microbial 194 

biomass. This effect resulted from microbial biomass being predominantly shaped by direct pathways 195 

of the overall plant community (Fig 4B). (ii) In the year of sampling, direct effects of plant community 196 

composition contributed with 15% to fungal network cluster formation in natural grassland soil. In 197 

contrast, in abandoned arable soil, plant community composition effects in the year of sampling 198 

occurred via indirect pathways and shaped both prokaryote and fungal networks clusters (Fig 4B). (iii) 199 

Past plant community composition effects in natural grassland soil were generally more important 200 

than in abandoned arable soil. Moreover, in natural grassland soil, past plant community effects 201 

resulted from a multitude of plant community factors via both direct and indirect pathways with 202 

microbial biomass, prokaryote clusters and fungal clusters each shaped by a unique set of pathways. 203 

In contrast, in abandoned arable soil, past plant community effects on microbial communities largely 204 

resulted from direct, plant compositional effects (Fig 4B). 205 

 206 

(i) Year of sampling: plant diversity effects overruled in abandoned arable soil 207 

In abandoned arable soil, the year of sampling had the strongest effects on shaping microbial biomass 208 

due to strong effects of plant diversity. In abandoned arable soil, a high plant diversity in the year of 209 

sampling was associated with a low bacterial, fungal and AMF biomass (Fig 5B; Table S7-S8). Plant 210 

diversity therewith also had dominant effects on soil microbial networks and, amongst others, 211 

increased the relative abundance of a large cluster of putative slow growing prokaryotes, while 212 

decreasing a large cluster of putative fungal soil saprotrophs (Table 1, S8). 213 

In contrast, in natural grassland soil, belowground productivity was most important in shaping soil 214 

bacterial biomass and networks in the year of sampling (Fig 5A, C). Belowground productivity 215 

increased putative fast cycling microbiota likely profiting from plant rhizodeposits, while decreasing 216 

putative slow cycling microbiota (Table S7). Moreover, in natural grassland soil, plant diversity effects 217 

were almost solely indirect and related to a decrease in soil nutrient availability: total N and P (Table 218 

1; Fig 5, S7-S8; Table S7). Via these soil chemical pathways, a high plant diversity decreased bacterial 219 

biomass and putative fast-growing microbiota in favour of slower-growing taxa (Table 1, S7).  220 
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 221 

Figure 4 Structural equation modelling (SEM) coupling natural variation in plant communities, soil chemistry and microbial 
biomass pools and co-occurrence networks in plant communities established on natural grassland and abandoned arable soil. 
(A) Plant community factors implemented in the SEM approach from the year of sampling (2019) and the past (2007-2019), 
the considered soil chemical factors as mediators in indirect pathways and the soil microbial properties that were affected 
either via direct or indirect pathways (n = 30). (B) Combined, relative contribution of each group of plant community factors 
in shaping soil microbial properties in natural grassland and abandoned arable soil. The relative contribution is based on the 
effect sizes of the SEM pathways scaled to the size of the microbial parameters affected and corrected for the number of 
potential pathways in the SEM to allow for direct comparison of the various microbial properties. Colours between A and B 
match the four main groups of plant factors. In B, dark colours indicate direct pathway contributions and faded colours 
indirect pathways. 
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(ii) Year of sampling: plant community composition via soil chemical changes shaped both prokaryote 222 

and fungal networks in abandoned arable soil 223 

In the year of sampling, the difference in contribution of plant community composition to microbial 224 

networks of the two soil origins was related to both the involved compositional axes as the pathways 225 

(direct versus indirect). In natural grassland soil, plant compositional effects in the year of sampling 226 

were largely related to plant species residence time (NMDS2) and were mostly important in affecting 227 

fungal networks via direct pathways (Fig 5E, S8): plant communities with a high proportion of species 228 

with long residence times associated with more putative soil and litter saprotrophs and fewer putative 229 

root endophytes and fast-growing soil saprotrophs (Table 1, S7-S8). 230 

In abandoned arable soil, on the other hand, plant compositional dominance (NMDS3) played a 231 

more prominent role (Fig 5, S8). These pathways occurred via soil chemical changes and shaped both 232 

prokaryote and fungal networks (Table 1, S7-S8). Plant communities dominated by invaded species 233 

had higher soil NO3
- and pH. These effects were associated with an increase in microbial communities 234 

typical for fast soil nutrient cycling: amongst others, ammonia oxidising archaea (AOA), putative plant 235 

pathogens and mycoparasites were increased, while fungal and AMF biomass, putative slow growing 236 

chemoheterotrophic bacteria and soil saprotrophs were decreased (Table 1; S7-8). 237 

 238 

(iii)  Past: a multitude of plant community pathways shaped microbial networks in natural grassland 239 

soil 240 

The differences in the contribution of past effects to microbial communities in natural grassland and 241 

abandoned arable soil were related to the diversity in involved pathways. In natural grassland soil, 242 

microbial biomass was mostly determined by the trajectory of plant compositional dominance in time 243 

(NMDS3) (Fig 5). Communities with increasing dominance of invaded species had higher bacterial and 244 

fungal biomass and putative fungal plant pathogens and nematode parasites. Conversely, a gradual 245 

increase in dominance of the sown species Tanacetum corymbosum was associated with an increase 246 

in, amongst others, a different set of putative fungal plant pathogens (Table S7). Past effects on 247 

prokaryote clusters in natural grassland soil occurred mainly via the trajectories of plant diversity and 248 

plant compositional residence time (NMDS2) (Fig 5). Both trajectories largely regulated the balance 249 

between two dominant prokaryote clusters carrying chemoheterotrophic bacteria (Table S7). Past 250 

effects on fungal clusters, on the other hand, largely resulted from the initial impact of invasion on 251 

plant diversity (the increase in diversity between 2011 and 2013) (Fig 5, S7). Communities in which 252 

plant diversity was drastically increased by this initial invasion event had an increased AMF biomass, 253 

various putative saprotrophs and plant pathogens, while various other putative saprotrophs, plant 254 

pathogens and nematode parasites were decreased (Table 1, S7). These changes occurred both via 255 
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direct pathways and indirect pathways: a decrease in organic C and an increase in pH (Table S7; Fig 256 

S9). 257 

In contrast, in abandoned arable soil, one pathway dominated in particular, namely the initial 258 

impact of invasion on plant community composition between 2011 and 2012 (Fig 5, S8). Plant 259 

communities that had many new plants establish in this first year of invasion had more prokaryotes 260 

associated with fast soil nutrient cycling and fewer putative fungal plant pathogens. Moreover, the 261 

putative fungal saprotroph community was strongly modified (Table S8). These microbial community 262 

changes were in part associated with a decreased total C and organic C (Table S8; Fig S9). 263 

Figure 5 continued on next page. 
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  264 

Figure 5 continued. Significant pathways obtained from structural equation models testing effects of plant community 
parameters in the year of sampling (2019) and the past (2007-2019) on soil microbial communities. Direct effects were separated 
from indirect effects that occurred via changes in soil chemical properties. Microbial community changes were measured in terms 
of (A, B) microbial biomass, (C, D) prokaryote and (E, F) fungal network clusters in communities established on (left; A, C, E) 
natural grassland and (right; B, D, F) abandoned arable soil. Plant vertices are indicated in green, soil chemical vertices in light 
grey and microbial vertices in dark grey. Plant vertice sizes indicate the summed direct and indirect pathway effect sizes onto 
microbial parameters. Soil chemical vertices indicate only the summed indirect pathway effect sizes. Microbial vertices indicate 
the summed direct and indirect pathway effect sizes that these microbial parameters were affected by. All summed pathway 
effect sizes were scaled to the size of the microbial parameters involved. Negative pathways are represented in vermillion, 
positive in blue. Arrows indicate the direction of the pathways and the width of the arrows its effect size. Soil chemical pathways 
are only included when the plant community affected the soil chemical variable. For plant-soil chemical pathways, see Fig S8. 
Plant year of sampling factors: BP – belowground productivity, AP – aboveground productivity, div – plant diversity, NMDS1 – 
plant composition related to species residence period, NMDS2 – plant composition related to species residence time, NMDS3 – 
plant composition related to species differential dominance. Plant past factors: inv div – initial invasion effect size on plant 
diversity (increase in diversity between 2011 and 2013), AP – aboveground productivity trajectory, div – plant diversity trajectory, 
inv NMDS2 – initial invasion effect size on plant composition NMDS2 (increase in new individuals between 2011 and 2012), 
NMDS1-3 – plant compositional trajectories (see Fig 4A, S1-S2 for more details). Only significant pathways are included (p < 0.05; 
n = 30). To increase figure readability, only fungal clusters 1-10 are presented in E and F, see Fig S8 for the other fungal clusters 
(plant and soil chemical vertices do indicate relative effect sizes based on all fungal clusters). 
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Discussion 265 

Plant community stability is associated with a decoupling in prokaryote and fungal responses 266 

We tested to what extent and via which pathways plant communities shaped end of season soil 267 

microbial networks. We compared these pathways between dry grassland communities established 268 

on natural grassland soil and soil abandoned from agricultural practices 60 years before the start of 269 

the 13-year long mesocosm experiment. Overall, abandoned arable soil created destabilising 270 

properties in plant-soil-microbial networks compared to natural grassland soil. In line with various 271 

studies, plant communities on abandoned arable soil were less resistant to plant species invasion than 272 

communities on natural grassland soil (Kulmatiski et al., 2006; Mattingly & Orrock, 2013). This 273 

aboveground instability was mirrored in the soil microbial networks occurring after the 13th growing 274 

season. In abandoned arable soil, strong positive and negative co-occurrences between, in particular, 275 

the dominant prokaryote and fungal network clusters indicated strong, in tandem responses of these 276 

Table 1 Summarised effects of the most consistent differences in plant community parameters in the year of 
sampling on microbial soil networks between natural grassland and abandoned arable soil communities. 
   

Pathway Natural grassland soil Abandoned arable soil 

Year of 
sampling 

Plant diversity Direct ↑ soil and litter saprotrophs, animal 
parasites (1 small) 
↓ unknown (1 small) 

↑ dominant slow chemoheterotrophs, 
slow N-cycling taxa, fast soil 
saprotrophs, fast plant pathogens (1 
large, 3 small) 
↓ bacterial, fungal and AMF biomass, 
slow chemoheterotrophs, dominant soil 
saprotrophs (1 large, 1 small) 

Indirect ↑ nitrifying taxa, soil and litter 
saprotrophs (4 small) 
↓ bacterial biomass, dominant fast 
chemoheterotrophs, fast plant 
pathogens (1 large, 4 small) 

 

Composition - 
residence time 
(NMDS2) 

Direct ↑ root endophytes, dominant soil 
saprotrophs (1 large, 3 small) 
↓ dominant fast and other soil and 
litter saprotrophs (1 large, 1 small) 

↓ chemoheterotrophs (1 small) 

Composition – 
differential 
dominance 
(NMDS3) 

Direct ↑ soil saprotrophs, plant pathogens 
(2 small) 

↓ AMF biomass, dung and litter 
saprotrophs, plant pathogens (1 small) 

Indirect  ↑ dominant AOA and N-fixing taxa, 
dominant fast and other soil 
saprotrophs, large diversity plant 
pathogens, mycoparasites (3 large, 2 
small) 
↓ fungal and AMF biomass, dominant 
slow chemoheterotrophs, soil and litter 
saprotrophs (1 large, 2 small) 

A high NMDS2 score indicates communities consisting of typically short-residence plant species. Vice versa, a low NMDS2 score 
indicates communities consisting of typically long-residence plant species. A high NMDS3 score indicates communities 
dominated by invaded plant species, while a low NMDS3 score indicates communities dominated by the sown Tanacetum 
corymbosum. Note that displayed functions and metabolic characteristics are all putative. See Table S7-S8 for more details and 
past plant community pathways, and Table S2-S5 for details on each cluster. 
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dominant groups. Since each microbial network cluster was related to a unique set of plant community 277 

and soil chemical properties, the observed in tandem patterns indicate that prokaryotes and fungal 278 

responses were coupled because these groups occupied the same soil niches (Davison et al., 2021; 279 

Dumbrell et al., 2010). Indeed we found that prokaryote and fungal networks were both shaped by 280 

the same, dominating pathways associated with the plant community. These observed patterns are 281 

typical for instable networks, since disturbance effects can easily propagate in networks that have 282 

strongly connected clusters (Fig 6) (Guimerà et al., 2010; Stouffer & Bascompte, 2011). As a result, 283 

perturbation effects are able to reshape microbial networks as a whole rather than affecting a small 284 

proportion. Aboveground plant community instability on abandoned arable soil was thus mirrored in 285 

soil microbial network topology. The latter networks indicated a low microbial niche differentiation, 286 

which was for an important part related to the plant community. 287 

In natural grassland soil, on the other hand, prokaryote and fungal responses were largely 288 

decoupled. Given that each microbial cluster was related to a unique set of plant community and soil 289 

chemical properties, this decoupling indicates that prokaryote and fungal communities largely 290 

occupied separate soil niches (Davison et al., 2021; Dumbrell et al., 2010). In line, we found that 291 

prokaryote and fungal networks were for an important part shaped by different plant community 292 

pathways, creating separate soil niches for the two groups. In addition, the fungal networks itself 293 

showed a higher niche differentiation in natural grassland soil than abandoned arable soil. 294 

Interestingly, fungal alpha-diversity (Shannon diversity and the number of unique taxa) was lower in 295 

natural grassland than abandoned arable soil, indicating that the structure of, in particular, fungal 296 

networks is more important to stability than fungal diversity per se. The observed microbial network 297 

topologies are associated with the capacity to buffer against the propagation of perturbation effects: 298 

a perturbation affecting one or a few of the microbial clusters will not cascade into affecting 299 

unconnected clusters (Fig 6; compartmentalization in Guimerà et al., 2010; Stouffer & Bascompte, 300 

2011). Plant community stability is thus associated with a decoupling of prokaryote and fungal 301 

responses, which likely plays a critical role in buffering the propagation of disturbance effects in plant 302 

communities.  303 

 304 

Plant diversity driven soil resource depletion plays a key role in microbial network stability 305 

One of the key differences between stable and instable plant communities resulted from the effect of 306 

plant diversity on soil microbial communities. Plant diversity in the year of sampling was one of the 307 

most important pathways shaping soil microbial communities in abandoned arable soil, likely 308 

overriding other plant community effects. In abandoned arable soil, a low plant diversity was 309 

associated with a high bacterial, fungal and AMF biomass, and a loss of slower-growing prokaryotes 310 
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and small microbial clusters. To understand these effects, it is important to realise that plant diversity 311 

differences in our communities resulted from local plant species extinction and invasion processes 312 

over time. Because species loss and invasion are typically non-random processes, a low plant diversity 313 

represented a situation in which certain plant species were successful and had excluded less successful 314 

species (Smith & Knapp, 2003). It is therefore likely that plant species with a certain successful strategy 315 

took over in low diversity communities and created plant communities low in plant functional diversity 316 

and effects on soil multifunctionality (Zavaleta et al., 2010). In other words, plant species in low diverse 317 

assemblies affected microbial communities in relative similar ways, resulting in the coupling of 318 

prokaryote and fungal responses, and therewith instable microbial networks (Fig 6).  319 

In contrast, in natural grassland soil, plant diversity effects were almost solely related to soil N and 320 

P depletion. Via these soil chemical pathways, plant diversity decreased bacterial biomass, and other 321 

possibly more opportunistic prokaryotes and fungi. Indeed, resource depletion by plant communities 322 

is often found to increase with plant diversity (Oelmann et al., 2021; Walde et al., 2021). Soil resource 323 

limitation typically limits growth of nutrient acquisitive plant species and therefore plays an essential 324 

role in avoiding exclusion of nutrient conservative plant species to maintain diversity at high levels 325 

(Grime, 1973). Similar mechanisms are likely to have promoted microbial niche differentiation in 326 

Figure 6 Conceptual framework reconciling the importance of the decoupling of prokaryote and fungal responses in 
buffering the propagation of local perturbation effects. In (A) stable settings, prokaryotes (circles, black border) and fungi 
(pentagons, white border) occur in separate clusters. This separation results from different factors shaping prokaryote 
and fungal niches. For example, fungal clusters are for an important part associated with different plant species (colours 
of fungal pentagons match colour of the plant species). The resulting microbial networks are likely to buffer local 
perturbation effects as effects on a subset of the occurring clusters are not likely to propagate to unconnected clusters 
(red arrows showing the spread among connected taxa). In (B) unstable settings, prokaryotes and fungi respond in tandem 
and create three dominating clusters. This coupling results from a few dominant factors shaping both prokaryote and 
fungal soil niches. The resulting microbial networks are likely to propagate disturbance effects throughout large parts of 
the network given the high connectiveness of microbial taxa into dominant clusters (red arrows). 
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natural grassland soil in the year of sampling (Fig 6). Moreover, such resource limitation mechanisms 327 

also occurred from past effects in which the increase of plant diversity with initial plant species 328 

invasion in 2012 created long-lasting reductions in organic C. Soil organic C was a particular important 329 

parameter associated with fungal networks and therewith decoupled fungal responses from 330 

prokaryote responses. While plant diversity is regarded to result in stability by increasing the chance 331 

that a plant species is present which can take over lost functions in a community during disturbances 332 

(Lepš et al., 2001; Loreau & de Mazancourt, 2013; Saint-Béat et al., 2015), plant diversity also 333 

promotes stability via soil resource depletion, driving niche differentiation of soil microbial 334 

communities (Fig 6). 335 

It has to be noted that the observed decreases in microbial biomass with increasing plant diversity 336 

in both soil origins are opposite to patterns found in many plant diversity experiments (Chen et al., 337 

2019). These opposing effects likely result from the difference in establishment of the plant diversity 338 

gradients. Here, local extinction and invasion of plant species resulted in natural variation of plant 339 

diversity over time and, therefore, likely resulted in dominant effects of successful plant species 340 

strategies at low diversity. In contrast, diversity experiments commonly use planted gradients and 341 

initial diversity instead of realised diversity measurements (Hagan et al., 2021). In line with our 342 

observations, various studies indicate that diversity gradients affected by extinction and invasion 343 

processes can result in negative relationships between realised diversity and ecosystem functioning 344 

(Hagan et al., 2021; Mouquet & Loreau, 2003). Such opposing patterns may especially occur if low 345 

diversity treatments in planted gradients do not represent groups of plant species which would be 346 

most successful in the particular environmental conditions and would naturally come to dominate at 347 

low diversity. To properly understand the importance of plant diversity in ecosystem dynamics, plant 348 

diversity effects will therefore have to be considered within the processes that created variation in 349 

plant diversity in the first place. 350 

 351 

Direct, plant compositional effects play a key role in microbial network stability 352 

The second key difference between stable and instable plant communities resulted from the effects 353 

of plant community composition on soil microbial communities. In stable, natural grassland soil, plant 354 

community composition affected microbial communities via direct pathways. For fungi, these effects 355 

occurred mainly in the year of sampling, while for prokaryotes these mainly occurred via 356 

developmental trajectories in time. These direct, plant community compositional effects therewith 357 

played an important role in decoupling prokaryote and fungal responses in natural grassland soil.  358 

In natural grassland soil, in the year of sampling, plant communities consisting of a large proportion 359 

of long-resident plant species were associated with a putative saprotroph community likely specialised 360 
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to less available C sources. Plant compositional effects in the year of sampling therefore likely related 361 

to a slowing of organic matter turnover in communities consisting largely of species with long 362 

residence times (Mayer et al., 2021). Plant compositional trajectories in time mainly regulated 363 

dominant chemoheterotrophs. In addition, compositional trajectories suggested putative fungal plant 364 

pathogen accumulation associated with a gradual increase in dominance of various invading plant 365 

species or the sown species Tanacetum corymbosum. Importantly, different sets of putative plant 366 

pathogens were involved with the gradual increase of invading species and T. corymbosum. An 367 

increased plant pathogen accumulation with plant species dominance is a well-known ecological 368 

mechanism that is key to plant stabilising processes in, amongst others, grasslands ecosystems (Bever 369 

et al., 2012). Indeed, this so-called self-limitation mechanism was also found to increase with plant 370 

species time since establishment in a new range (Aldorfová et al., 2020; Diez et al., 2010) and similar 371 

temporal processes have been suggested to occur within plant communities itself (in ‘t Zandt et al., 372 

2022). We conclude that direct effects of plant community composition play a key role in microbial 373 

niche differentiation and are  essential components to stability in plant and microbial networks (Fig 374 

6).  375 

In contrast, in abandoned arable soil, direct plant compositional effects in the year of sampling 376 

were almost completely absent. Instead, plant compositional effects in the year of sampling were 377 

driven by indirect effects resulting from plant species compositional dominance: dominance of various 378 

invading plant species was associated with increased nutrient cycling after the 13th growing season. 379 

Moreover, past compositional effects were dominated by the initial impact of invasion in 2012. The 380 

latter also suggested that soil nutrient cycling had been increased when many new species established 381 

between 2011 and 2012 (the initial invasion event). Indeed, increased nutrient cycling is commonly 382 

observed when ruderal plant species invade communities (Kulmatiski et al., 2006; Zhang et al., 2019). 383 

Given the involvement of many N-cycling prokaryotes and ammonia oxidising archaea (AOA), highly 384 

plant-controlled processes such as rhizosphere priming (the acceleration of organic matter turnover 385 

via root exudation) may play an important role in these self-promotional pathways (Kuzyakov & Xu, 386 

2013; Thion et al., 2016). The plant community pathways via soil resource cycling affected large parts 387 

of the microbial community in tandem, coupling prokaryote and fungal responses. We therefore 388 

conclude that soil resource cycling is critical in mediating community stability. 389 

 390 

Conclusion 391 

We found remarkably different topologies in soil microbial networks in plant communities established 392 

on natural grassland soil and plant communities established on soil abandoned from extensive 393 

agricultural practices 60 years before the start of the experiment. Microbial networks in stable, natural 394 
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grassland soil were largely decoupled in prokaryote and fungal responses, while prokaryote and fungal 395 

networks in instable, abandoned arable soil largely responded in tandem. We were able to link this 396 

coupling/decoupling of prokaryote and fungal soil networks to the way that, amongst others, plant 397 

diversity and plant community composition shaped soil microbial niches. Both aboveground 398 

parameters therefore likely provide important, easy to measure predictors of belowground microbial 399 

network stability of grassland globally (Bardgett & Caruso, 2020). Similarly, both these plant 400 

community factors are promising aspects to consider in designing plant communities that are both 401 

diverse in plant species and diverse in plant species’ effects on soil microbial networks to increase 402 

stability of agricultural systems (Isbell et al., 2017). At the same time, we showed that soil chemical 403 

pathways played an important role in both stable and instable microbial networks. Future challenges 404 

therefore lie in connecting plant and microbial community stability to its driving forces across a 405 

multitude of ecosystems, soil resource conditions, land management and perturbation types (Bardgett 406 

& Caruso, 2020; Ingrisch & Bahn, 2018). 407 

 408 

Materials and methods 409 

Experimental design 410 

Experimental plant communities consisting of 44 perennial dry grassland species were sown in May 411 

2007 (Table S9) (Münzbergová, 2012). Plant species were sown in equal proportions with three sowing 412 

densities on two soil types: a dry natural grassland soil (excavated near Encovany, Czech Republic; 413 

50°31'44.6"N, 14°15'12.6"E) and a soil on which dry natural grasslands was turned into agricultural 414 

land, extensively managed and abandoned 60 years before soil was collected (excavated near Institute 415 

of Botany, Czech Academy of Sciences; 50°0'7.11"N, 14°33'20.66"E) (n = 10, 60 plant communities in 416 

total; Fig S10A). The two soils mainly differed in soil nutrient availability with the natural grassland soil 417 

being significantly lower in total N, organic C and plant available P and K than the abandoned arable 418 

soil (Münzbergová, 2012). The three sowing densities represent 25%, 100% and 400% of the seed 419 

density per m-2 as estimated at the natural dry grassland location (see Supplementary methods and 420 

(Münzbergová, 2012)). Despite significant effects of sowing density in the first three years of the 421 

experiment (Münzbergová, 2012), sowing density did not significantly affect above- and belowground 422 

plant, microbial and chemical properties in the current study (data not shown). Sowing density was 423 

therefore incorporated as a random effect rather than a fixed factor in all analyses.  424 

Plant communities were grown in 90 L mesocosms (diameter 65 cm, height 36 cm) in the 425 

experimental garden of the Institute of Botany, Czech Academy of Sciences (Münzbergová, 2012). This 426 

location provided similar environmental conditions to the natural grassland location. Plant 427 
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communities did not receive any watering or fertiliser. Only in rare periods of extreme drought when 428 

plants showed signs of wilting, communities were watered with rain water.  429 

Importantly, mesocosms were regularly inspected and all species from outside the sown species 430 

pool were weeded until September 2011. After this, plant species from the experimental surroundings 431 

of the mesocosms were allowed to invade into the established plant communities (Fig S10B; Table S9).   432 

 433 

Plant species aboveground proportions 434 

Plant community aboveground biomass was harvested every July and September from 2007 until 435 

2011. From 2012 onward, aboveground biomass was harvested only once a year in July. These time 436 

points are similar to management practises at the natural grassland site. Aboveground biomass was 437 

cut off 3 cm above the soil and from 2007 until 2011, biomass was sorted per plant species, dried at 438 

60 ֯C for at least 48 h, after which dry weight was determined. From 2012 onward, plant species 439 

biomass was estimated by determining the percentile abundance of each plant species per mesocosm 440 

and multiplying this by the total aboveground biomass cut at 3 cm height and dried at 60 ֯C for at least 441 

48 h. In 2014 and 2015, aboveground biomass was cut, but no species proportions were determined. 442 

 443 

Soil sampling 444 

After the growing season in December 2019, soil cores of 6 cm in diameter and 36 cm length were 445 

taken at six random positions in each plant community (Fig S10B). Aboveground plant parts were 446 

removed and soil of the six cores was thoroughly mixed by passing it through a 2 mm mesh. Roots that 447 

did not pass the mesh were collected, dried at 60 ֯C for at least 48 h after which dry weight was 448 

determined. Subsamples from the mixed soils were taken for soil chemical determination of total 449 

nitrogen (N), total and organic C, plant available NO3
-, NH4

+ and NO2
-, K, P and pH (see Supplementary 450 

methods). Furthermore, subsamples for analyses of total bacterial, fungal and arbuscular mycorrhizal 451 

fungi (AMF) biomass using PLFA and NLFA analyses were taken as well as microbiome community 452 

composition using 16S and ITS amplicon sequencing (see Supplementary methods).  453 

 454 

Plant community diversity and composition 455 

All analyses were performed in R version 3.6.1 (R Core Team, 2019). Plant community diversity was 456 

calculated based on the Shannon index using the function diversity of the vegan package (Oksanen et 457 

al., 2018). Plant community compositional changes were assessed using non-metric multidimensional 458 

scaling (NMDS) based on square root transformed plant community dissimilarity (Bray-Curtis). For this, 459 

aboveground biomass of species with in total > 10 observations over all replicates and all years was 460 

analysed using metaMDS from the vegan package (Oksanen et al., 2018). Community composition 461 
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effects were distributed over three axes, which separated communities based on plant species 462 

residence period and residence time for axis 1 and 2, respectively, and differential dominance of plant 463 

species for axis 3 (Fig S1-2).  464 

 465 

Plant community developmental trajectories in time 466 

Plant community development in time was calculated to describe variation in developmental 467 

trajectories between the communities and used in the SEM models (see below). In all cases, 468 

parameters were calculated based on only the July aboveground measurements to avoid the earlier 469 

years to have a relative stronger effect on the trajectories. The overall increase/decrease trend in 470 

aboveground productivity and NMDS axis score 3 over time were estimated by a linear model of which 471 

the beta slope was taken using a linear model and lm.beta (R Core Team, 2019). Shannon diversity 472 

and NMDS axis score 2 showed gradual increases/decreases before and after invasion in 2012 with a 473 

drastic increase when invasion started. Trajectories before and after the start of invasion in 2012 were 474 

estimated by a linear model of which the beta slope was taken. For NMDS2, scores in the first year 475 

2007 were excluded as scores were often very different from the following years, yet had a large 476 

influence on the obtained slopes. The drastic increase in diversity due to invasion took place over 2 477 

years. The effect size of this increase was calculated as the Shannon diversity index before invasion in 478 

2011 minus the diversity index in 2013. The drastic change in community composition with invasion 479 

largely occurred in one year. The effect size of invasion on community composition was calculated as 480 

the NMDS2 score before invasion in 2011 minus the NMDS2 scores in 2012. NMDS axis 1 scores over 481 

time showed a gradual increase that levelled off over time. These temporal patterns were described 482 

by a Michaelis Menten saturation curve of the form: y = a · t / (1 + b · t) + c, where t is time in years, 483 

using nls2 (Grothendieck, 2013). Parameter b from this formula indicates the extent to which the line 484 

levels off with a low value indicating a fast levelling off and a high value a slow levelling off. In other 485 

words, parameter b indicates compositional turnover speed.  486 

 487 

Microbial community analyses 488 

Demultiplexed raw FASTQ files were analysed using the SEED2.0 pipeline (Větrovský et al., 2018) for 489 

prokaryote 16S and fungal ITS rRNA sequences. In short, sequences were quality trimmed, clustered 490 

into OTUs at ≥ 97% sequence similarity and chimeric sequences were removed. Taxonomic 491 

information was obtained using the RDP (v16) and UNITE (v8.3) databases for 16S and ITS, respectively 492 

(Cole et al., 2014; Nilsson et al., 2019). Beta-diversity (Bray-Curtis) was calculated based on center log 493 

ratio (clr) transformed read counts and visualised using PCoA with the phyloseq package (McMurdie 494 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.21.496867doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.496867
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

& Holmes, 2013). Significant separation between soil origins was tested with PERMANOVA using 495 

adonis from the vegan package (Oksanen et al., 2018). 496 

We constructed co-occurrence networks across the 30 plant communities on each soil type for 497 

both prokaryote (bacteria and archaea) and fungal communities. We first filtered each dataset to 498 

exclude rare OTUs with total < 100 reads and OTUs that were present in < 5 samples per soil origin. 499 

Co-occurrence networks were then calculated using the SpiecEasi package (Kurtz et al., 2015). In brief, 500 

networks were inferred based on clr transformed read counts, neighbourhood selection (MB method) 501 

and we selected optimal stability parameters using the StARS selection approach (threshold 0.05, 502 

nlambda 20 with 999 replications) (Liu et al., 2010). We clustered similarly responding OTUs in each 503 

network using the Spin-glass algorithm of the igraph package (Newman & Girvan, 2004; Reichardt & 504 

Bornholdt, 2006; The igraph Core Team, 2020; Traag & Bruggeman, 2009). This approach clusters 505 

OTUs based on both positive and negative edges as well as their weight. Present and absent edges as 506 

well as positive and negative edges were given a similar importance, and unlimited spins (clusters) 507 

were provided. Relative read counts were summed per cluster per sample and used in further 508 

correlation and structural equation models (SEM).  509 

We inferred putative dominant metabolic and functional characteristics of each microbial 510 

network cluster. This was done based on the significant relations between the relative abundance of 511 

the cluster to soil chemical and plant community parameters from SEM (see section Structural 512 

Equation Modelling) in combination with knowledge on the dominant microbial families and genera 513 

present in each cluster. The latter information was obtained from literature, and, for fungal 514 

communities, from the FungalTraits database (Põlme et al., 2020). It has to be noted that such an 515 

inference on putative microbial traits has to be treated with caution, however, our approach of 516 

including relations with soil chemistry and plant community parameters is more rigorous than solely 517 

relying on microbial family and genera knowledge. Moreover, the use of network clusters avoids the 518 

common issue of excluding unidentified taxa or taxa with unknown putative functions and, at the 519 

same time, informs on the co-occurrence of taxa with different putative traits. 520 

 521 

Overall statistics 522 

Analysis of variances were performed using linear mixed-effects models in R version 3.6.1 (R Core 523 

Team, 2019). All models in which ‘time’ (continuous, scaled) and ‘soil origin’ were included as a 524 

dependent variable, included ‘mesocosm’ and ‘sowing density’ as random effects to take repeated 525 

measures and initial sowing densities into account. Models were fitted using lmer of the lme4 package 526 

(Bates et al., 2015). Mesocosm position in the garden had negligible effects, in many cases resulted in 527 

overfitting of the models and was therefore dropped as a random effect.  528 
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Correlations between plant, soil chemistry and microbial parameters including network clusters 529 

were performed using lme of the nlme package (Pinheiro et al., 2019) and included sowing density as 530 

a random factor. For these multiple correlations, p-values were corrected for multiple testing using 531 

the Bonferroni correction (Bonferroni, 1936). In all models, data was ln- or sqrt-transformed when 532 

model residuals did not follow a normal distribution. In case of heterogeneity of variances, data 533 

weighting per soil type using varIdent from the nlme package was incorporated (Zuur et al., 2009). 534 

Following Tukey HSD post-hoc tests were performed using emmeans (Lenth, 2018). 535 

 536 

Structural equation modelling 537 

We hypothesised that plant community parameters in the year of sampling and developmental 538 

trajectories in time affected plant available and total resources in the soil with potential cascading 539 

effects onto microbial communities. Alternatively, these plant parameters could have had direct 540 

effects on microbial communities. We used structural equation models (SEM) to test this hypothesis, 541 

which specifically allowed us to separate direct effects of plant communities on soil microbial 542 

communities from indirect effects via soil chemical changes. All SEMs were fit using piecewiseSEM 543 

(Lefcheck, 2016) and lme of the nlme package (Pinheiro et al., 2019) with initial sowing density as a 544 

random effect (n = 30). Overall model fit was assessed using direction separation tests (d-sep) based 545 

on Fisher’s C statistics with models being accepted if p > 0.1. We simplified our models using a 546 

backward stepwise elimination procedure for which we consecutively removed pathways with the 547 

highest p-value (in ‘t Zandt et al., 2020). Endogenous variables were allowed to drop from the model 548 

in case effects were not significant (p > 0.05). The model with the lowest Akaike information criterion 549 

(AIC) was then selected as the best fit base model (see Supplementary Methods).  550 

We created 64 unique SEM models (3 microbial pools natural soil + 3 microbial pools abandoned 551 

soil + 9 16S clusters natural soil + 10 16S clusters abandoned soil + 21 ITS clusters natural soil + 18 ITS 552 

clusters abandoned soil). We extracted the direction and effect size of each significant pathway of 553 

each model (p < 0.05). We then calculated the contribution of each plant parameter to changes in 554 

microbial biomass pools and microbial co-occurrence clusters both via direct and indirect pathways. 555 

For each plant community parameter, its importance in affecting microbial biomass pools, prokaryote 556 

clusters and fungal clusters was calculated including both direct and indirect pathways. For each 557 

significant, direct plant-microbial pathway, we multiplied the path effect size with the relative size of 558 

the microbial pool or cluster it was affecting. This multiplication sized the pathway effect to its relative 559 

importance to the microbial community as a whole. For indirect pathways, we multiplied the effect 560 

size of the plant parameter onto the soil chemical variable with the effect size of the soil chemical 561 

variable onto the microbial variable. The obtained effect sizes were again scaled to the relative size of 562 
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the microbial variable they were affecting. We then created an overview of the importance of plant 563 

community parameters in the year of sampling and from the past, in which we separated overall from 564 

compositional plant community effects and direct from indirect pathways (Fig 4A). For this we 565 

summed the above effect sizes of each plant community parameter belonging to each group, scaled 566 

these to the number of potential pathways within each group to be able to compare the various 567 

groups directly and calculated each groups relative contribution in affecting microbial biomass, 568 

prokaryote and fungal clusters in each soil origin (Fig 4B). 569 
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