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Abstract

Synthetic Biology aims to rationally engineer biological systems. Current methods often employ
an initial human designed circuit topology and utilise iterative approaches, e.g. directed evolution,
to fine-tune part function. This approach can be extremely time consuming and resource intensive
whilst often reaching sub-optimal solutions. A design workflow in which circuits and parts are
designed in silico can overcome such limitations. Here we describe a method to automatically
design synthetic gene circuits with user-specified dynamics; unlike some previous contributions our
algorithm is able to design circuits with analog, not just digital behaviours. We demonstrate the
capabilities of our approach benchmarking it on a number of different gene circuits design tasks.
We review and compare the performance of our method against state of the art and outline future
opportunities for development. Finally, to foster adoption, we make our algorithm available through
a web app.

Background

The design of gene circuits aims to produce biological organisms which can be controlled by arbitrar-
ily complex programmable logical functions. At present, workflows for the design and construction
of gene circuits require many iterations even for the most simple circuits. In cases where rational
design methodologies are applied (Elowitz et al. [1]) physical models produced are specific to the
function of the device in question. As our ability to build larger, more complex gene circuits ex-
pands, for example thanks to the availability of Biofoundries [27], scalable circuit design techniques
become the bottleneck in the process of advancing synthetic biology towards applications.

The evolution of electronic design automation (EDA) has been seen as painting a potential
roadmap for progress in gene circuit design automation. Prior to the adoption of EDA in the 1970s,
the design of integrated electronic circuits was a laborious process. Circuits were constructed
manually based on hand-drawn designs. The advent of EDA and creation of hardware description
languages such as VHDL and Verilog to describe the topology and behaviour of electronic circuits
catalysed the widespread production of complex electronic circuits. In turn, this paved the way for
the modern information age. A number of authors in Synthetic Biology have now advocated for
BioDesign Automation (BDA) or Gene Circuit Design Automation (GCDA), a biological equivalent
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of EDA aimed at facilitating a similar leap forward in genetic engineering realising the promise of
Synthetic Biology.

Figure 1 demonstrates that whilst it is tempting to aim to apply EDA techniques to gene circuit
design automation in a 1-to-1 manner, there are important functional differences between electronic
and genetic circuits which hinder such an endeavor.

Figure 1: Synchronous and Asynchronous Circuits. a. In synchronous circuits state changes of
components are synchronised by a regular clock signal. Hence the speed of signal transmission
(s) and time for a signal to pass from one component to another is uniform. b. Gene Circuits
are asynchronous circuits in which the speed of signal transmission (s) is determined by chemical
interactions and hence highly irregular. It is very unlikely that signals pass between components
at the same time.

Electronic circuits are Synchronous Circuits in which state changes of components are kept
in time by a regular clock signal. This paradigm has the benefit that individual components are
context independent. For example in the electronic context an XOR Gate and an AND Gate taking
the same input signals would provide their output at the same time. By contrast gene circuits
are Asynchronous circuits, state changes of components (genes products) are determined by the
kinetics of upstream biochemical/regulatory interactions that, in general, take place at different
speeds, therefore making the “synchronous” assumption is inappropriate in GCDA. Considering
again the XOR and AND gate example in the biological context; logically minimal gates based
in a synchronous paradigm are not equivalent to functional gates in an asynchronous paradigm.
Functional logic gates in the gene circuit context are likely to have a counter-intuitive topology
which accounts for mismatches in signal transmission between parts.

Gene Circuit Design Automation became an active area of research over the past decade. Pre-
vious works in this field adopted a variety of different approaches to automatically design biological
networks with user defined dynamic behaviour. Francois et al. [2] used an evolutionary Genetic
Algorithm-like approach to design both bistable switches and oscillators. Otero-Muras et al. [3] for-
mulated GCDA as a Mixed Integer Nonlinear Programming problem and provided a Matlab-based
toolkit which they use to design a number of gene circuits based on a built-in parts library. Cello [4]
seeks to borrow from EDA and allows users to define gene circuits in Verilog code within a web app.
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The Cello system is demonstrated by implementing 60 designed circuits in Escherichia coli with a
92% success rate when built in the wet lab. Our work draws inspiration from Hiscock et al. [5]
who developed Genenet a gradient descent-based Python module with an emphasis on speed which
utilises Theano [6] and Tensorflow [7] to optimize a user defined ODE system. In comparison to the
work of Francois et al [2] we demonstrate that Particle Swarm Optimization converges to a solution
more quickly than a Genetic Algorithm in Gene Circuit Design Problems. Whilst Otero-Muras et
al. [3] and Cello [4] simplify the design problem by working from a built-in parts library even the
largest libraries contain parts covering only a negligible section of the possible sequence space and
hence limit the types of circuits which can be generated. Finally, the methods used by Otero-Muras
et al. [3], Cello [4] and Hiscock et al. [5] all require complex computer programming knowledge
which render them inaccessible to non-technical users.

Motivated by a comparison between the performance of different optimization techniques we
build on the body of previous work using Global Particle Swarm Optimization (PSO) [8] to opti-
mize gene circuits in silico for a user defined function. To allow access to the full sequence space
of parts, our algorithm provides parameters describing the behaviour of parts perfectly calibrated
to produce a specific circuit rather than working from a pre-characterised library. Crucially, the
optimization process we propose is able to identify rather counter intuitive solutions which circum-
vent the signal mismatching problem inherent to asynchronous genetic circuits. We demonstrate
that PSO outperforms other techniques on this optimization problem. Whilst previous work in
GCDA mainly catered to a computer science audience, here we aim to increase adoption, making
our program available via a graphical user interface packaged in a web app. In the following we
present our solution, along with some example circuit designs.

Methodology

Modelling Gene Circuits using Ordinary Differential Equations

As a modelling formalism for the circuits our method will design, we selected Ordinary Differential
Equations (ODE) which can be adapted to model a circuit with arbitrary regulatory interactions.
Although it is computationally intensive to evaluate the results of many ODE systems we chose to
pursue this methodology given the highly descriptive nature of the output of the candidate circuits
in both static and dynamic phases. Transcription and translation for each gene in a candidate
solution are formalised as 2 ODEs - one for production of RNA and one for production of protein.

d[RNA]

dt
= α+ k1 ∗

i+g∏
j=1

f([speciesj ], n,Kmj)− γ1 ∗ [RNA]

d[Protein]

dt
= k2 ∗ [RNA]− γ2 ∗ [Protein]

α is used to model promoter leakiness and gives the transcription rate irrespective of regulation.
k1 and k2 account for the basal transcription and translation rate respectively. Similarly γ1 and γ2
represent the RNA and protein degradation rates.

Function f uses Michaelis Mentens kinetic to model the regulatory effect of each input species
(provided as a time series by the user) and of g genes in the candidate gene circuit. Function f is
formalised as a piecewise version of the Hill function which compactly represents both activation
and repression.
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f([speciesj ], n,Kmj) =



[speciesj ]
n

(Kmj − 100)n + [speciesj ]
n , if Kmj > 100,

(|Kmj | − 100)n

(|Kmj | − 100)n + [speciesj ]
n , if Kmj < −100,

1, else.

[speciesj ] gives the quantity (in arbitrary units) of some regulator (either input chemical or
protein) at single time point. n gives the Hill coefficient describing the degree of cooperative binding
of the ligand [speciesj ]. For our purposes we bound n between 1 and 5. These bounds ensure a state
of negative cooperative binding in which affinity for ligand binding decreases as more molecules bind
to the promoter. Kmj encodes both the type of regulatory interaction (activation if greater than
100, repression if less than -100 and else no interaction) and the Michaelis Mentens constant for the
regulation. Kmj is bounded between -300 and 300. When greater than 100 Kmj − 100 represents
the concentration of activator to express at half the maximal rate, similarly when less than -100
|Kmj| − 100 represents the concentration of repressor to express at half the maximal rate. In the
range -100 to 100 inclusive Kmj encodes that no regulatory interaction exists.

The design of a gene circuit for a user defined function is hence the search for such an ODE
system which defines behaviour matching as closely as possible the target output signal.
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Figure 2: Typical workflow of our approach. a. The target functionality of the gene circuit is
specified by providing time series for the input and output signals. b. A weighted network graph
represents the regulatory interactions of a potential solution. Edge weights greater than 100 indicate
an activation, less than -100 indicates a repression otherwise no interaction is present. Gene nodes
each have a hill coefficient indicating the extent of cooperative binding in their regulation. Such
a graph can be encoded as a position in g + g2 + ig dimensional space where g is the number of
genes and i the number of input signals. c. A position in g + g2 + ig dimensional space is used
to parameterize a system of ordinary differential equations which models the dynamic behaviour
of a gene circuit. d. Particle Swarm Optimization is used to explore new positions and hence
new gene circuits. Based on the difference between circuit behaviour and target output particles
move through the search space according to the best known position across all particles, an inertia
towards the particles previous position and the best position an individual particle has previously
inhabited. Steps c. and d. are applied for each particle in each iteration of the optimization before
the gene circuit encoded by the best particle position explored is returned as a solution.

Regulatory Interactions as a Network Graph

The set of regulatory interactions which characterise a candidate gene circuit can be encoded as a
network graph. A gene circuit with G genes and I input signals will contain G+ I nodes, each of
the G gene nodes will have a parameter encoding its Hill coefficient. To represent all the regulatory
interactions possible between G genes and I input signals the gene circuit graph must contain
G2 + IG edges. Each edge from node A to node B represents the regulation of gene B by species A
(either input signal or gene). Edges in the gene circuit graph are weighted by Kmj which encodes
the kind of regulatory interaction and that interactions Michaelis Menten constant.

Given this formalisation for representing the regulatory interactions of arbitrary candidate gene
circuits, any gene circuit can be encoded as a position in G + G2 + IG dimensional space. The
search for an ODE system which defines gene circuit behaviour matching as closely as possible the
target output signal can hence be defined as a search through this G+G2 + IG dimensional space.
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Figure 3: Regulatory Interactions as Network Graphs. Example topologies for network graphs
encoding the regulatory interactions in gene circuits. Candidate gene circuits are parametizations
of graphs of this structure containing G+ I nodes and G2 + IG edges.

Optimization Methods

We adopt an optimization to minimize an error function which accounts for the distance between
the output signal of a candidate gene circuit and (as evaluated by solving a system of ODEs) the
number of regulatory interactions in a solution.

E =

o∑
k=1

(
1

t

t∑
l=1

(ylk − ŷlk)2) + (p ∗ e)

The error (E) is the sum of the average square distance over each time point for each output
signal plus a regularisation factor for each regulatory interaction (to encourage minimal solutions).

After a performance comparison between a number of potential approaches (Supplementary)
we chose to use Particle Swarm Optimization (PSO) to solve the gene circuit design problem. We
begin by defining a swarm of particles each with a position in G + G2 + IG dimensional space
encoding a candidate gene circuit. The ODE system for each particle (solution) is then solved:
the error function for each solution is evaluated at this stage. Based upon the evaluation of the
candidate solutions in the swarm the position (Eq. 2.) and velocity (Eq.1.) are iteratively updated
to generate new and improved candidate gene circuits.

vi(t+ 1) = wvi(t) + c1r1[x̂i(t)− xi(t)] + c2r2[g(t)− xi(t)] (1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

The position xi of particle i is updated in accordance with the velocity vi. The velocity vi of
particle i is updated according to the sum of wvi(t) - an inertia towards the particles previous
velocity, c1r1[x̂i(t) − xi(t)] - a randomly weighted cognitive factor towards the best position ever
inhabited by particle i and c2r2[g(t) − xi(t)] - a randomly weighted social factor towards the best
position ever inhabited by any particle in the swarm.

6

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 21, 2022. ; https://doi.org/10.1101/2022.06.21.497000doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497000


1 Results

We detail here some example circuit designs for a variety of functions. The repressilator is a
simple circuit with an oscillating output, it is frequently used as an example of how modelling can
be integrated into the gene circuit design process. The NAND gate is a circuit with two inputs
that performs a simple logical operation. The NAND operation is of particular interest due to
being functionally complete (i.e. any logic function can be implemented used only NAND gates);
additionally it allows us to demonstrate our techniques ability to reach a minimal solution to a
design problem. To demonstrate scalability we also design a half adder circuit which outputs the
sum of its two inputs.

Repressilator

The repressilator proposed by Elowitz et al.[1] demonstrates how an oscillating output can be
obtained using a minimal circuit of 3 genes. To test the ability of our approach to reconstruct the
repressilator we implemented the ODE model as described by Elowitz et al [1] and used the output
signal as the target for the optimization process as described in methods.

The repressilator circuit was used to fine-tune the hyperparameters of our optimization. Inertia
w was tested between 0.1 and 1 sampling every 0.1. The best inertia setting found was 0.3. Cognitive
and social parameters c1 and c2 were tested as a pair based on the heuristic that they should always
sum to 4. We varied each of c1 and c2 between 1 and 3 sampling every 0.1. The best cognitive factor
setting was found to be 1.3 and social factor setting 2.7. The penalty factor for edges e was sampled
every 250 varying between 2000 and 3000. The best penalty value was 2750. To prevent repetition
of the laborious process of fine-tuning hyperparameters these settings producing the lowest error
on the repressilator were used for all subsequent circuit designs.

The criteria for a successful repressilator circuit design was to produce oscillations with approx-
imately the same magnitude and frequency as the target. We were unable to achieve this behaviour
with any less than 75 particles and 500 iterations.
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Figure 4: Repressilator. a. Network Graph representation of the Repressilator design. Green
nodes represent genes each with a Hill coefficient. Edges represent potential regulatory interactions.
Grey edges are unused in the circuit design. Black edges are parametized by a Michaelis Mentens
constant - negative for repression and positive for activation. b. Parts scale circuit representation of
Repressilator. The circuit consists of 3 genes with expression controlled by activators and repressors
as outlined in a. c. Behaviour of the Repressilator design vs the target from Elowitz et al. [1].
Time series in blue is the output of the ODE model for the generated circuit design. Time series
in orange is the output of the ODE model from Elowitz et al. [1]

NAND Gate

Unlike the repressilator (analog signal) this biological equivalent of a fundamental electronic com-
ponent is digital in nature: this fundamental difference with Elowitz’ circuit made us choose the
automatic design of a NAND gate as a complementary demonstration of the capabilities and flexi-
bility of our approach.

The successful NAND gate design uses fine-tuned hyperparameters from the repressilator. In-
ertia 0.3, Cognitive factor 1.3, Social factor 2.7 and Edge Penalty 2750.

There are a number of criteria for a successful NAND gate design. Upon receiving a new input
signal the circuit must quickly assume the appropriate output (ideally within 100 minutes - half
the size of each input window). When the circuit is in the off state there must be close to 0
protein expression - bearing in mind a true 0 value is not possible due to leakiness of repression
and activation. The output for each of the input signals corresponding to a on circuit state should
ideally be the same. However as long as there is a significant difference between the on and off
circuit states we do not particularly mind if the target output magnitude of 2400 in the on state
is reached. We were unable to achieve a design with the target behaviour using any less than 75
particles and 500 iterations.
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Figure 5: NAND Gate. a. Truth Table for NAND operation. Outlines the expected logical
output for each possible pair of logical inputs.a. Network Graph representation of the NAND
Gate design. Green nodes represent genes each with a Hill coefficient. Edges represent potential
regulatory interactions. Grey edges are unused in the circuit design. Black edges are parametized
by a Michaelis Mentens constant - negative for repression and positive for activation.c. Parts scale
circuit representation of NAND Gate. The circuit consists of 2 genes with expression controlled by
activators and repressors as outlined in a.d. Behaviour of the NAND design vs the target. Time
series in blue is the output of the ODE model for the generated circuit design. Time series in orange
is the target output for each pair of inputs in sequence as denoted by labels.

Half Adder

As we are motivated to provide the synthetic biology community with a gene circuit design algorithm
able to in silico synthesise complex gene circuits we sought to test its performance on a more complex
problem: the design of a half-adder which outputs the sum of 2 bits.

The Half Adder design uses fine-tuned hyperparameters from the repressilator. Inertia 0.3,
Cognitive factor 1.3, Social factor 2.7 and Edge Penalty 2750.
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There are a number of criteria for a successful Half Adder design. Upon receiving a new input
signal the circuit must quickly assume the appropriate output (ideally within 100 minutes - half
the size of each input window). When the circuit is in the off state there must be close to 0
protein expression - bearing in mind a true 0 value is not possible due to leakiness of repression and
activation. For the S output some settling time in the 0,0 input state is required for this criteria to
be met. The output for each of the input signals corresponding to a on circuit state should ideally
be the same. We were not able to recover this behaviour for the S output however given the clear
differences between the on and off circuit states we still believe this constitutes a successful design.
We were unable to achieve a design with acceptable behaviour using any less than 100 particles
and 750 iterations. It is possible that a more optimal design could be found by further increasing
the number of particles and iterations however the massive increase in complexity (due to the extra
ODE system evaluations) required to do this made it infeasible given our computational resources.

Conclusion

We present a system for the optimization of gene circuit designs. We show that this system can
be used via a graphical user interface to design a variety of gene circuits requiring a time series for
the input signals and expression of target species. By providing the user with parameters charac-
terizing the dynamics of parts required for a specific circuit this Gene Circuit Design Automation
strategy provides the first step in a bespoke predictive design workflow for Synthetic Biology. Using
predictive design to generate gene circuit and parts specifications in silico facilitates a reduction in
the number of wet lab iterations required to produce functional gene circuits. Such a streamlined
predictive workflow for Synthetic Biology will allow the construction of larger circuits at lower cost
in a reduced time. We provide our system in a user-friendly web app requiring no computer pro-
gramming expertise in order to encourage adoption throughout the Synthetic Biology community.
Although we demonstrate the performance of our system on gene circuits approaching the size
limit of what is possible to construct with current wet lab techniques, future work could focus on
improving the performance of our optimization techniques. In particular an examination of more
complex swarm intelligence-based optimization algorithms is likely to yield promising results given
the performance of the vanilla PSO algorithm. Nobile et al. [23] and Korenaga et al. [24] propose
varients on the PSO algorithm designed to self tune hyperparameters and improve performance
on high-dimensional problems respectively. The Bat Algorithm proposed by Xin-She Yang et al.
[26] is another swarm based optimization technique which has been shown to outperform PSO on
some benchmarks and is likely to perform well on the Gene Circuit Design Automation problem.
By utilising our PSO based Gene Circuit Design Automation web app wet lab synthetic biologists
generate and iterate on circuit designs with user defined dynamic behaviour. By integrating compu-
tational tools such as this into the gene circuit production workflow users can more rapidly produce
functional gene circuits at a scale which would be infeasible for a non-computational approach.
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Figure 6: Half Adder. a. Truth Table for Half Adder. Outlines the expected logical output for each
possible pair of logical inputs.a. Network Graph representation of the Half Adder design. Green
nodes represent genes each with a Hill coefficient. Edges represent potential regulatory interactions.
Edges are parametized by a Michaelis Mentens constant - negative for repression and positive for
activation. c. Behaviour of the Half Adder design vs the target. Time series in blue is the output
for genes C and S of the ODE model for the generated circuit design. Time series in orange is the
target output for genes C and S for each pair of inputs in sequence as denoted by labels.
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