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Abstract

Flexible loops are paramount to protein functions, with action modes ranging from localized dynamics
contributing to the free energy of the system, to large amplitude conformational changes accounting for
the repositioning whole SSE or protein domains. However, generating diverse and low energy loops
remains a difficult problem.

This work introduces a novel paradigm to sample loop conformations, in the spirit of the Hit-and-
Run (HAR) Markov chain Monte Carlo technique. The algorithm uses a decomposition of the loop into
tripeptides, and a novel characterization of necessary conditions for Tripeptide Loop Closure to admit
solutions. Denoting m the number of tripeptides, the algorithm works in an angular space of dimension
12m. In this space, the hyper-surfaces associated with the aforementioned necessary conditions are used
to run a HAR-like sampling technique.

On classical loop cases up to 15 amino acids, our parameter free method compares favorably to
previous work, generating more diverse conformational ensembles. We also report experiments on a 30
amino acids long loop, a size not processed in any previous work.
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1 Introduction
Protein loops. Protein loops are structural components playing various roles in protein function, as
illustrated by the following illustrative examples. Enzymes typically involve conformational changes of loops
for the substrate (resp. product) to enter (resp. leave) the active site [1]. Membrane transporters implement
complex efflux mechanisms resorting to loops changing the relative position of (essentially) rigid domains
[2]. In the humoral immune response, the binding affinity of antibodies for antigens is modulated by the
dynamics of loops called complementarity determining regions (CDRs) [3]. In G-Protein-Coupled Receptors,
extracellular loops binding to ligands trigger signal transduction inside the cell [4].

From the experimental standpoint, these complex phenomena are studied using structure determination
methods. However, the structural diversity of loops often results in a low signal to noise ratio, yielding
difficulties to report complete polypeptide chains. As a matter of fact, a recent study on structures from the
PDB showed that about 83% of structures solved at a resolution of 2.0Å or worse feature missing regions,
which for 90% of them are located on loops or unstructured regions [5].

Loop modeling strategies. From the theoretical standpoint, loop mechanisms are best described in the
realm of energy landscapes [6], which distinguishes between structure, thermodynamics, and dynamics. In
terms of structure, one wishes to characterize active conformations and important intermediates in functional
pathways. In assigning occupation probabilities to these states, one treats thermodynamics, while transitions
between the states correspond to dynamics. While all atom simulations can naturally be used to explore the
conformational variability of loops, their prohibitive cost prompted the development of simplified strategies,
which we may ascribed to four tiers.

First, continuous geometric transformations can be used to deform loops, e.g. based on rotations of
rigid backbone segments sandwiched between two Cα carbons. Such methods, which include Crankshaft [7]
and Backrub [8, 9], proved effective to reproduce motions observed in crystal structures. However, they are
essentially limited to hinge like motions.

Second, a loop may be deformed using loop closure techniques solving an inverse problem which consists
in finding the geometric parameters of the loop so that its endpoints obey geometric constraints. Remarkably,
various such methods have been developed at the interface of structural biology and robotics [10, 11, 12,
13, 14]. Using loop closure techniques, the seminal concept of concerned rotations was introduced long ago
to sample loop conformations [15]: first, the prerotation stage changes selected internal degrees of freedom
(dof) and brakes loop connectivity; second, the postrotation step restores loop closure using a second set of
dof. While early such strategies used solely dihedral angles only [15], more recent ones use a combination
of valence and dihedral angles [16, 17]. The latter angles indeed provide a finer control on the amplitude
of angular changes in the postrotation stage, and therefore of atomic displacements. A specific type of loop
closure playing an essential role is Tripeptide Loop Closure (TLC), where the gap consists of three amino,
and loop closure is obtained using the six (φ, ψ) angles of the three Cα carbons [18, 19, 13, 20].

Third, considering a loop as a sequence of protein fragments stitched together, high resolution structures
from the protein data bank (PDB) can be used to sample its conformations [21, 22]. These methods are
greedy/incremental in nature, and the exponential growth of solutions results in a poorer sampling of residues
in the middle of the loop. Also, they suffer from the bias inherent to the PDB structures, which favors meta-
stable conformations. As a matter of fact, it has been shown recently using Ramachandran statistics that
conformations found in the PDB are less diverse than those yielded by reconstructions in the rigid geometry
model [23].

Finally, several classes of methods may be combined. For example, exploiting structural data to bias
the choices of angles used to perform loop closure yields a marked improvement in prediction accuracy [24].
More recently, a method growing the two sides of a loop by greedily concatenating (perturbed) tripeptides,
before closing the loop using TLC has been proposed [25].

Despite intensive research efforts, predicting large amplitude conformational changes, and/or predicting
thermodynamic quantities for long loops, say beyond 12 amino acids, remains a challenge [26, 27]. These
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difficulties owe to the high dimensionality of loop conformational space, and also to the subtle biophysical
constraints that must be obeyed.

Contribution. This work develops a new paradigm to explore the conformational space of flexible protein
loops, able to deal with loop length that were out of reach. While our method relies on the tripeptide loop
closure, it is, to the best of our knowledge, the first one exploiting a global continuous parameterization
of the conformational space on the loop studied. This parameterization is based on the rigidity of peptide
bodies (the four atoms Cα −C −N −Cα), which is used to define initial conditions for the individual TLC
problems and couple them.

Our presentation is organized as follows: Sec. 2 provides a high-level description of the method; Sec.
3 introduces (mandatory) background material; Sec. 4 details the algorithms; Sec. 5 present experiments.
Finally, Sec. 6 discusses future work.

Nb: Section S8.1 contains a compendium of the main notations used throughout the paper.

2 Algorithm overview

2.1 Geometric model and ingredients
We consider a loop L consisting of M = 3 ×m amino acids, including one or two a.a. on the boundary of
the loop if necessary to obtain a multiple of three. We work in the rigid geometry model [28], in which bond
lengths, valence angles, and peptide bond dihedral angle are fixed. In this model, the internal geometry of
each tripeptide is defined by 12 angles [18], whence an overall angular configuration space A of dimension
12m for the m tripeptides. (As we shall see later, this model can be relaxed, see Rmk. 8.)

Our algorithm uses a strategy similar to Hit-and-Run (HAR) [29] to sample a region V ⊂ A (Fig. 1). The
region V defines necessary conditions for the m TLC problems to admit solutions. This region is explored
by shooting random rays, and intersections between the rays and the hyper-surfaces bounding V are used to
generate configurations of the whole loop. Individual solutions to the m TLC problems are then obtained in
a subset S ⊂ V. The Cartesian product of solutions for the m tripeptides defines the new conformations of
the loop L. We now introduce these ingredients in turn.

Geometric model. The four atoms making up the peptide bond (Cα;1, C1, N2, Cα;2) form a rigid body
termed the peptide body (Fig. S1). For the sake of exposure, we call the two segments Cα;1 − C1 and
N2−Cα;2 the legs of the tripeptide, and the tripeptide minus its legs the tripeptide core. We model the loop
as a sequence of peptide bodies Pk connecting tripeptides cores T

′

k (Fig. 2):

L = P0 T
′

1 P1 . . . Pk−1 T
′

k Pk . . . Pm−1T
′

mPm. (1)

(Nb: strictly speaking, P0 and Pm contain each two atoms of the loop L.) The main idea to generate
conformations of L is to sample the positions of peptide bodies independently using rigid motions, and then,
to solve individual TLC problems. To describe this strategy more precisely, the following ingredients are
needed.

Tripeptide loop closure. Tripeptide Loop Closure is a method computing all possible valid geometries
of a tripeptide, under two types of constraints. First, the first and last two atoms of the tripeptide, i.e. its
legs, are fixed. Second, all internal coordinates are fixed, except the six (φ, ψ) dihedral angles of the three
Cα carbons.

TLC admits at most 16 solutions corresponding to the real roots of a degree 16 polynomial. These
solutions have been shown to be geometrically diverse (atoms are moving up to 5Å), and low potential
energy [23]. Solving TLC can be done using three rigid bodies associated with the three edges of the triangle
involving the three Cα carbons. The rotations of these rigid bodies are described by three angles τ1, τ2, τ3,
two of which can be eliminated to yield the degree 16 polynomial. The coefficients of this polynomial depends
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on 3 × 4 = 12 angles describing the internal geometry of the tripeptide [18]. This 12 dimensional space is
denoted Ak for the tripeptide Tk. Taking the Cartesian product of the individual angular spaces of the m
tripeptides yields a 12m dimensional space denoted A.

Necessary conditions for TLC to admit solutions. In the angular spaceAk, we have recently exhibited
a region Vk defining necessary conditions for TLC to admit solutions [30]. For a given tripeptide, this region
is defined from 24 implicit equations involving the 12 variables parameterizing TLC. The corresponding space
for all tripeptides is denoted V. This space contains the solution space S ⊂ V, such that each tripeptide
admits solutions.

Identifying active constraints with Hit-and-Run. To sample S, we use the Hit-and-Run (HAR)
technique invented long ago to identify redundant hyperplanes in linear programs [29]. In a nutshell, given
a starting point inside the polytope, HAR iteratively proceeds as follows: shoot a random ray inside the
polytope and identify the nearest hyperplane intersected; generate a random point onto the segment defined
by the starting and the intersection point; iterate. Since then, this algorithm has been modified to generate
points following a Gaussian distribution, a key step in the computation of the volume of polytopes [31].
Other random walks serving similar purposes are billiard walk and Hamiltonian Monte Carlo [32, 33], as
well as walks based on piecewise deterministic processes [34]. In the sequel, we use HAR to sample a high
dimensional curved region.

2.2 Algorithm: wrapping up
Unmixed loop sampler. Similarly to HAR, our algorithm consists of consecutive steps, called embedding
steps. Each step generates a conformation L′ of the loop L by moving the peptide bodies. Given the internal
coordinates of L′, we solve TLC for each individual tripeptide, and take the Cartesian product of these
solutions.

To see how the conformation L′ is generated, let SE(3) be the special Euclidean group representing rigid
motions (translation+rotation) in 3D. The m − 1 peptide bodies being rigid bodies, we move them in 3D
space using rigid motions parameterized over the motion spaceM = (SE(3))m−1. We consider a (random)
ray inM, whose parameter t is called the time. Every point on this ray defines a rigid motion applied to each
peptide body. Since the tripeptide legs are moving due to this motion, the 12 angular coordinates of each
tripeptide become time dependent. We use the image of the ray in the angle space A to find intersections
with the hyper-surfaces defining the aforementioned necessary conditions (Fig. 1). In a manner similar to
HAR, these intersections are used to generate a random point in the validity space V. Each such point
encodes an internal geometry for each tripeptide, so that TLC can be solved for each individual tripeptide.
The solutions to the individual TLC problems are then combined, retaining one at random or all of them.
The ability to generate efficiently points in S depends on the stringency of necessary conditions defining V,
that is to say on the volume of the region S\V.

Combining these steps yields algorithm ULSNV ;NOR
One|All;NES [p0], whose parameters are as follows: One|All

a flag indicating how many solutions are retained at each embedding step, NES the number of embedding
steps, NV the number of random trajectories followed in motion space, NOR the output rate (the number
of steps in-between the ones where conformations get harvested), and p0 the starting configuration.

Mixed loop sampler. To alleviate the constraint of fixed peptide bodies throughout the simulation, we
also provide a two-step variant of the algorithm MLSNV ;NOR

One|All;NES [p0]. In short, every other HAR step, the
loop is shorted by three residues (two a.a. on a random end, one on the other), and a HAR step is performed
for this reduced model. One solution is then picked at random, and the updated positions of the peptide
bodies used for the next HAR step.
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3 Background and notations for peptides and TLC

3.1 Peptides and tripeptides
Peptides, peptide bonds, tripeptides, and protein loops. Atoms within a tripeptide are denoted as
Cα;3k−2, Cα;3k−1, Cα;3k, and likewise for the C and N atoms (Fig. 2). Note that with these notations, one
has A4k−3 = N3k−2, A4k−2 = Cα;3k−2, A4k−1 = Cα;3k and A4k = C3k.

As noticed above, the two segments N3k−2Cα;3k−2 and Cα;3kC3k form legs of the tripeptide, while the
tripeptide minus its legs form the tripeptide core T

′

k. Note that for two consecutive tripeptides, the second
leg of Tk and the first one of Tk+1 form the peptide bond. Note also that in the decomposition of Eq. 1,
P0 = A1A2 and Pm = A4m−1A4m play a special role: these two fixed segments are called anchors.

3.2 Tripeptide loop closure (TLC) with fixed legs
TLC uses constraints on the tripeptide legs and internal coordinates (See Sec. 2). We may also recall that
TLC induces a partition of the nine atoms in the tripeptide Tk into two classes. On the one hand, the first
two and the last two atoms, i.e. the legs, are fixed. On the other hand, the remaining five middle atoms are
moving. When considering all solutions of TLC on an exhaustive database of tripeptides extracted from the
PDB, these atoms move up to 5Å[23].

Solutions of TLC [18] rely on the following observations (Fig. 3(A,B) 1 ):

• TLC involves three rigid bodies: the first two involve the five atoms in-between the first and third Cα
carbons; the third one consists of the four atoms defining the legs of the tripeptide.

• The solution space of TLC can be modeled using rotation angles denoted {σk,i, τk,i} associated to the
three rigid bodies. (Nb: the two angles associated with the Cα;k,i carbon are σk,i−1 and τk,i.) Positions
of the rigid bodies must respect the valence angles θi at the three Cα carbons. The rotation of a rigid
body about its Cα − Cα axis only impacts the valence angle constraints at its endpoints.

• Searching for solutions to the loop closure is akin to searching for rotation combinations of the angles
{σk,i, τk,i} respectful of θ angles. σk,i−1 is the rotation angle of Ni atoms around their corresponding
axis. τk,i is the rotation angle for Ci around its axis (Fig. 3(A,B)).

The geometry of the backbone can be used to define local frames at each Cα carbon ([18] and Fig. 3(B)),
based on three vectors: Ẑk,i – unit vector along two consecutive Cα carbons, r̂τk,i – to define the rotation
of angle τk,i, r̂σk,i – to define the rotation of angle σk,i. Using these local frames, one defines the angles
αk,i, ξk,i, ηk,i, with indices i = 1, 2, 3 – counted modulo three, for the tripeptide Tk (Fig. S2):

αk,i = ∠Ẑk,iẐk,i+2; αk,i ∈ [0, π)

ξk,i = ∠− Ẑk,ir̂
σ
k,i; ξk,i ∈ [0, π)

ηk,i = ∠Ẑk,ir̂
τ
k,i; ηk,i ∈ [0, π)

δk,i = ∠Ck,iCα;k,i, Cα;k,iCα;k,i+1, Cα;k,i+1Nk,i+1 δk,i ∈ [0, 2π)

(2)

Definition. 1 Let Ak,i = {αk,i, ηk,i, ξk,i−1, δk,i−1} be the set of angles associated with Cα;i of the k-th
tripeptide Tk. The angular representation of the tripeptide Tk is the 12-tuple Ak = {Ak,1,Ak,2,Ak,3}.

The corresponding 12-dimensional space is denoted Ak.

1When talking of individual tripeptides i is used as an index with i ∈ {1, 2, 3}. These indices are counted mod 3, that is
i− 1 = i+ 2.
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3.3 Tripeptide and necessary constraints for TLC
From now on, we assume that the peptide of interest is the k-th tripeptide in our loop, see Eq. (1).

In recent work [30], we have introduced necessary conditions for TLC to admit solutions. For each of the
three angles τk,i, these so-called depth 1 inter-angular constraints are based on intervals to which τk,i must
belong. These intervals, which are parameterized by the angular representation of the peptide, are denoted
as follows: {

Iτk,i = {Iτk,i} with Iτk,i = [Imin
τ (Ak,i), I

max
τ (Ak,i)]

Iτk,i|δ = {Iτk,i|δ} with Iτk,i|δ = [Imin
τ |δ (Ak,i+1), Imax

τ |δ (Ak,i+1)]
(3)

There are two intervals of each type, and their pairwise intersection results in four so-called depth one validity
intervals or DOVI. As established in [30], the bounds of these angles depend on the values

arccos
+ cos (θi ± ξi−1) + cos ηi cosαi

sin ηi sinαi
. (4)

For a given tripeptide, we may consider the mapping from its angular representation in the angle space Ak
to the validity intervals:

DOVIτk,i(·) : Ak 7→ (Iτk,i ∩ Iτk,i|δ)
4. (5)

That is, upon fixing the angular representation of the tripeptide (Def. 1), we obtain up to four validity
intervals, or the empty set if the four intersections are empty. As reported in the companion paper [30], our
necessary conditions are rather tight.

Remark 1 The function DOVIτk,i is obtained using the interval Iτk,i whose definition requires the angles
αk,i, ηk,i, ξk,i−1 for Iτk,i , and the interval Iτk,i|δ whose definition requires the angles αk,i+1, ηk,i+1, ξk,i, δk,i.
The number of parameters is thus seven. For the sake of conciseness, we use the supersets Ak,i and Ak,i+1.
See [30] for details.

4 Algorithm: details

4.1 Tripeptides with moving legs
Moving peptides bodies. When considering the decomposition of Eq. (1), them−1 peptide bodies move
independently. The motion of one peptide body is parameterized by the special Euclidean group SE(3),
which combines one translation and one rotation. To be more specific, let S2 be the sphere of directions in
R3, and A a positive real number. The motion space R for one peptide body is defined via the motion space

R : (S2 × [0, A))× (S2 × [0, 1/A)) ⊂ SE(3). (6)

The term S2 × [0, A) codes the translation defined by a unit vector and a real number in [0, A), while the
term S2 × [0, 1/A) codes the rotation defined by an angle about a direction given by a unit vector on S2

and a real number in [0, 1/A). Therefore, specifying a random rigid motion for each peptide body requires
2(m − 1) unit vectors. We pool these vectors into a 6(m − 1)-dimensional vector denoted V in the sequel.
Each rigid body is simultaneously translated along the first unit vector and rotated around the second using
a corresponding kinematic function. The value of A defines the speed of translation in such a function
relative to the rotation speed, i.e. if A = 0.5 then 1/A = 2 and the corresponding rigid body will rotate
four times as fast as it translates. We use the default value A = 1, as we hardly noticed any incidence for
this parameter (data not shown). Summarizing, the overall motion space for peptide bodies is the 6(m− 1)
dimensional space:

M = Rm−1. (7)

Remark 2 By the Mozzi–Chasles’ theorem, our rigid motion can be modeled as a screw motion. The
corresponding analytical form is used to find intersections with the surfaces defining the TLC necessary
constraints.
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Using a 1-parameter family in the motion space. We restrict motions in M to a a 1-parameter
family, performing the following linear interpolation defined by vector V :

Ray(V ) = {γ(t) = Id+ tV, with γ(0) = Id}. (8)

The restriction of this one parameter family to each peptide body defines a rigid transformation

γk : [0, 1] 7→ SE(3), γk(0) = Id, (9)

such that the position of the k-th peptide body Pk(t) at time t satisfies

Pk(t) = γk(t)Pk(0). (10)

The full equations for this motion are provided in the supplementary section 8.4.

4.2 Validity domain and overall configuration space A
We now wish to use the depth one validity constraints for the m peptides, whose legs are moving as just
explained. To this end, we concatenate the angular representations of the m tripeptides (Def. 1), and define:

Definition. 2 (Angular conformational space A) The angular conformational space of the loop L is the 12m
dimensional space defined by the product of the m angular space of the individual tripeptides:

A Def
=

m∏
k=1

Ak. (11)

Fixing the positions of the peptide bodies in Eq. (1) yields the angular representations of the m tripeptides.
We therefore define a mapping from the motion space into the global angular space:

fM→A :M 7→ A (12)

Having discussed the depth one validity interval for one tripeptide– see Eq. (5), we can finally aggregate
such conditions:

Definition. 3 (Angular validity domain V.) The angular validity domain Vk of the angle τk,i of the k-th
tripeptide is the subset of Ak such that DOVIτk,i(·) 6= ∅.

The angular validity domain of the loop L is the subset V ⊂ A such that

∀k = 1, . . . ,m, ∀i = 1, . . . , 3,∀a ∈ V : DOVIτk,i(a) 6= ∅.

Note that there are 3m individual angular validity domains since each tripeptide has 3 angles τ .
Points in V satisfy necessary conditions. However, for a point p ∈ V, one or several tripeptide may not

admit any valid geometry. We therefore define:

Definition. 4 (Solution space S) The solution space S ⊂ V of the loop L is the subspace of A such that TLC
admits at least one solution for each tripeptide. A point in S (resp. V\S) is termed fertile (resp. sterile).

Let sk the number of solutions yielded by TLC for a point p ∈ S. The Cartesian product of these sets yields
a total number of embeddings, i.e. conformations, equal to Πk=1,...,msk.

Remark 3 Note that the degrees of freedom are defined for rigid bodies in-between tripeptides while the
constraints are defined within the tripeptides (Fig. 2).
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4.3 Kinetic validity intervals
We now wish to use our 1-parameter family of motions to explore the solutions space S via an exploration
of the valid space V.

The tripeptide legs move according to the motion imposed to the peptide bodies (Eq. 10). It is therefore
possible to define a time dependent (aka kinetic) version of the angles Ak,i:

Ak,i(t) = (f
(α)
(k,i)(t), f

(ξ)
(k,i)(t), f

(η)
(k,i)(t), f

(δ)
(k,i)(t)), (13)

with 
f

(α)
(k,i)(t) : function computing the angle αk,i at time t
f

(ξ)
(k,i)(t) : function computing the angle ξk,i at time t
f

(η)
(k,i)(t) : function computing the angle ηk,i at time t
f

(δ)
(k,i)(t) : function computing the angle δk,i at time t

(14)

Once plugged into the intervals of Eq. (3), these functions make it possible to define a kinetic version of the
four static validity intervals:

Definition. 5 (Kinetic validity intervals) The kinetic validity intervals for a given angle τk,i of a tripeptide
Tk are the validity intervals obtained for the time varying angles Ak,i(t):{

Iτk,i(t) = [Imin
τ (Ak,i(t)), I

max
τ (Ak,i(t))]

Iτk,i|δ(t) = [Imin
τ |δ (Ak,i+1(t)), Imax

τ |δ (Ak,i+1(t))]
(15)

Remark 4 The time dependent angles are computed as follows (Fig. S2):

• The fixed internal coordinates within each tripeptide are sufficient to determine the value of ηk,1, ξk,1, ηk,2
and ξk,2. (Note that these are defined in the rigid bodies associated with Cα;3k−2Cα;3k−1 or Cα;3k−1Cα;3k.)

• The position of the legs are sufficient to define ηk,3 and ξk,3.

• The leg positions together with the fixed internal coordinates are sufficient to compute all three αk,i, i ∈
{1, 2, 3} angles as these angles are defined by the Cα triangle.

Remark 5 The motions of consecutive rigid bodies is constrained by the triangle inequality between the three
consecutive Cα atoms (Fig. 3). Indeed, these atoms must satisfy the following triangle inequality:

‖Cα;3k−2Cα;3k‖ ≤ ‖Cα;3k−2Cα;3k−1‖+ ‖Cα;3k−1Cα;3k‖ . (16)

Note that following the rigidity of peptide bodies, the two right hand side distances are fixed.

4.4 Sampling: one step
Sampling V with Hit-and-Run. We sample the validity domain V using the Hit-and-Run algorithm
(Fig. 1 and [29]). For a ray Ray(V ) in the motion space (Eq. 8), consider the restriction of this ray to the
valid space V, that is

RayV(V ) = {γ(t) ∈ Ray(V ) | fM→A(γ(t)) ∈ V}. (17)

The Hit-and-Run algorithm consists of iteratively sampling a new point on RayV(V ), so that the restriction
of the ray to the valid space V must be computed.

To see how, consider two kinetic intervals Iτk,i(t) ∈ Iτk,i and Iτk,i|δ(t) ∈ Iτk,i|δ as specified in Eq. (15).
For these intervals, consider the limit conditions (Fig. 4):{

Imax
τ (Ak,i(t)) = Imin

τ |δ (Ak,i+1(t)),

or Imin
τ (Ak,i(t)) = Imax

τ |δ (Ak,i+1(t))
(18)
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For a given τk,i angle, there are 8 such conditions, namely two (Eqs. (18)) for each of the depth one validity
interval. And since there are three τk,i angles per tripeptide, we obtain 24 conditions.

With these ingredients, our algorithm operates as follows:

• Generate a random ray Ray(V ) in the motion spaceM.

• (get_tau_tmax, Algorithm 1 and Sec. S8.4.5) For a given τk,i angle, find out the largest interval
[0, tmax] such that the DOVIτk,i is different from the ∅ on this interval (Nb: an upper bound on tmax
is obtained from the triangle inequality applied to the Cα carbons, see remark 5.)

• (LS_one_step, Algorithm 2) Take the intersection of all such intervals for the 3m angles, generate a t
value on the resulting interval, and apply the corresponding motions to the tripeptide legs. This yields
a candidate conformation Lcand. ∈ V of the loop L.

• (Loop_sampler, Algorithm 3). Perform LS_one_step until Lcand. ∈ S. Once obtained, start again
from Lcand. and iterate.

Remark 6 In algorithm LS_one_step, it should be noted that taking the intersection ensures that all con-
ditions hold. But one may have DOVIτk,i 6= ∅ on other segments defined by intersection between the ray and
the 24 hyper-surfaces. In practice, preliminary tests did not show a significant improvement in tracking such
segments.

Remark 7 In the real random access memory model (real RAM), which assumes exact calculations with real
numbers, Algorithm LS_one_step is exact. In practice, our implementation uses multiprecision numbers and
root finding routines provided by Maple [35]. Due to the cost of such operations, algorithm 2 can be further
optimized, see algorithm S5.

Leaving the realm of multiprecision, an approximate version has also been developed to strike a compromise
between exactness and performances, see LS_one_step_approx (Algorithm 4). This variant performs a
regular sampling of the ray, from which tmax is estimated. LS_one_step_approx is the version used in the
experiments thereafter.

4.5 Sampling: combining several steps
We use the building block Loop_sampler to define two algorithms. In our Experiments, the loops assessed
are those generated by these two algorithms, without any relaxation/energy minimization or post-processing.

Unmixed loop sampler. Combining steps of Loop_sampler yields algorithms ULSNV ;NOR
One|All;NES [p0], whose

parameters are as follows:

1. p0: the starting point/conformation in space S.

2. One|All: a point in the solution space S generates a total of Nm = Πk=1,...,msk loop conformations,
with sk the number of TLC solutions for the tripeptide Tk. The flag One|All states whether we choose
one embedding at random, or keep them all.

3. NES : for a given HAR trajectory, the number of embedding steps performed.

4. NV : number of HAR trajectories started at p0, each defined by a random vector defining a ray in the
motion spaceM.

5. NOR: the output rate in the form 1/n, with n the number of HAR steps performed along a HAR
trajectory, before an embedding step is performed–as dictated by the flag One|All. An output rate of
one means that all embeddings steps are exploited.
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For example, ULS
5;1/4
One;1000 uses five HAR trajectories with an output rate of 1/4, and 1000 embedding

steps, each retaining a single embedding. Thus, the number of loop conformations returned is exactly 1250.
On the other hand, ULS1;1

All;1000 uses a single HAR trajectory of 1000 steps with an output rate of one,
retaining all solutions at each step. The number of loop conformations generated is at least 2000, and at
most 1000× 16m.

Mixed loop sampler. In the previous version of the algorithm, peptide bodies remain rigid during the
whole simulation. The two-step variant of the algorithm MLSNV ;NOR

One|All;NES [p0] removes this limitation. Every
other HAR step, three residues are removed from the loop endpoints (two a.a. on one end, one on the other,
at random), and a HAR step is performed for this reduced model. One solution is then picked at random,
and the updated positions of the peptide bodies used for the next HAR step.

Steric clashes and collision checking. A general post-processing strategy in loop generation consists
of checking the absence of steric clash. Denoting Ri and Rj the van der Waals radii of two atoms i and j,
the usual criterion consists of checking that dij/(Ri + Rj) ≥ rmin, usually taken in the range 0.5− 0.7, see
[20, 25]. Upon generating a conformation, we perform this check for all pairs of N,Cα, C atoms in the loop.

Remark 8 We have recalled above the two types of constraints used by TLC: the legs’ positions and internal
coordinates. Practically, we use standard values for internal coordinates [18, 23]. These internal coordinates
can be changed and sampled in the course of the algorithm, an option not used in our experiments.

In using these standard coordinates, we assume that all tripeptides of the loop have angular parameters
Ak ∈ S.

5 Experiments

5.1 Material and methods
Implementation. Our implementation is sketched in Sec. S8.3. Consider a loop together with a valid
starting point p0 – see below. First, the 12(m−1) Cartesian coordinates of the peptide bodies are extracted,
together with the 12 Cartesian coordinates of the two loop anchors (4 points in total). Then, the steps are
iteratively performed as described above for the unmixed and mixed versions of the loop sampler.

We compare our samplers against the state-of-the-art method MoMA-LS [25] discussed in Introduction.
We note however that the comparison cannot be done on par for three reasons. On the one hand, MoMA-LS
samples three ω angles in the loop before using tripeptide loop closure. Using a distribution learned from the
data may restrict the conformational space explored. On the other hand, MoMA-LS also samples the ω angle
preceding the first tripeptide of the loop is also sampled (Fig. S7); this degree of freedom induces a rotation
of all atoms in the loop, including Cα;1 which is fixed in our algorithm. Finally, we filter out conformations
using backbone atoms only – the precise position of the Cβ atoms depends on its chemical environment, while
MoMA-LS uses a coarse grain model for the Cβ . This filtering step is subtle, since removing conformations
may reduce the conformational diversity, but may also push the system further away, fostering exploration.

Loops tested. Several loop datasets have been assembled, see e.g. [36, 37, 26, 25]. Note that a loop refers
to a set of structures with the same sequence and anchor positions which can be superimposed via a rigid
motion. Most of these loops comprise between 12 and 15 amino acids. In the sequel, we focus on three such
loops.

• PTPN9-MEG2. The first one is a 12 a.a. long loop found in the in human protein tyrosine phos-
phatase PTPN9-MEG2 [38, 39], between residue 466 and 477. For this case, four conformations (aka land-
marks) have been crystallized: L0 : 4GE2.pdb/chain A, L1:2PA5.pdb/chain A, L2: 4GE6.pdb/chain B,
L3:4ICZ.pdb/chain A. Interestingly, three of these loops form a cluster (lRMSD < 0.1, Table S1), while L3
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is significantly different (lRMSD > 1.5). We choose L0 as a starting point, since it is furthest away from L3.

• CCP-W191G. The second loop is a 15 a.a. long loop found in cytochrome C peroxidase (CCP), a water-
soluble heme-containing enzyme reducing hydrogen peroxide (H2O2) to water. CCP contains three cavities
which are hydrophobic (cavity: L99A), slightly polar (cavity: L99A/M102Q), and anionic (cavity: W191G),
the latter binding almost exclusively small monocations. Out of the several crystal structures reported [40],
one of them features N-methyl-1-phenylmethanamine – N-Methylbenzylamine for short in the W191G cavity.
This binding is of interest, as the aforementioned 15 a.a. long loop flips out by nearly 12Å, opening the
cavity to the bulk solvent for the entry/exit of the ligand [40].

• CDR-H3-HIV. To illustrate the ability of our method to handle long loops as a whole, we process a 30
a.a. long complementarity-determining region (CDR H3) loop, one of the longest CDR observed in human
antibodies [41]. Broadly neutralizing antibodies against the human immunodeficiency virus type of 1 (HIV-
1) exhibit two typical features, namely an extensive affinity maturation (accomplished over long periods of
time), and an exceptionally long heavy chain CDR.

5.2 Conformational diversity
To assess the conformational diversity of a set of conformations generated, we plot the root mean square
fluctuations (RMSF) of the 3m heavy atoms {N,Cα, C} of the loop backbone, in the form of boxplots.
(Recall that the RMSF of a given atom is the stdev of distances between its positions and their center of
mass.)

Loop PTPN9-MEG2. We first analyze the RMSF values observed for the loop PTPN9-MEG2 (Fig.
6). A general observation is the bell shape traced by the RMSF median marks, which is expected since the
middle of the loop incurs less steric constraints than its endpoints. To compare the methods, the RMSF plots
for MoMA-LS converge rapidly. A median of ∼ 2 − 3Å in the middle of the loop is obtained, with numerous
extreme/outlier configurations. Our algorithm needs more steps to stabilize, reaching a stable distribution
for 500 conformations. Overall, our methods generate RMSF fluctuations larger than those from MoMA-LS,
with ULS1;1

One;· and MLS1;1
One;· yielding median RMSF values ∼ 5−6Å and ∼ 8Å respectively near the center

of the loop.
Our plots also shed light on the various ingredients of our method. A marked difference is observed

between ULSNV ;NOR
One|All;NES and MLSNV ;NOR

One|All;NES . The RMSF plots of the former contain plateaus of length 4
corresponding to the atoms found in rigid peptide bodies. Those of the latter do not, a consequence of the
shift shift along the backbone inherent to the removal of three amino acids.

Otherwise, an important point is the stability of our method with respect to the parameter One|All and
to the number of vectors NV . Beyond 500 conformations, little variation is actually observed (Fig. 6 versus
Fig. S3 and Fig. S4).

CCP-W191G. The patterns for this slightly longer loop are similar to those observed for the previous
one, so that we focus solely on the most striking point. Interestingly, despite the lack of sampling of the ω
angle, our algorithms reach a max RMSF circa 7.5Å, while MoMA-LS culminates at about 3.7Å(Fig. 7 and
Fig. S5).

The ability to generate such diverse ensembles is clearly an advantage over more classical methods such as
Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) which fail from sampling conformations
as diverse as 12Å[40].

CDR-H3-HIV. Loops beyond 15 a.a. are usually considered to be beyond reach [26, 27]. To illustrate the
capabilities of our method, we process a 30 a.a. long loop CDR-H3-HIV (Fig. 8), one of the longest CDR
observed in human antibodies [41]. The CDR3 resembles an axe, with a handle and a head (Fig. 8(A)).
This CDR represents alone 42% of the surface area exposed by the CDRs [41].
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Remarkably, compared to the two loops just discussed, MoMA-LS exhibits a much larger diversity (Fig.
S6). Naturally, the longer the loop, the larger the benefits of also sampling the ω angle preceding the loop.
The RMSF plots for our algorithm show a flattened bell shape curve MLS10;1/2

One;500, MLS10;1/2
One;5000,MLS10;1

One;500

and MLS10;1
One;5000, with a maximum RMSF near 12Å.

It has been speculated that the head of this CDR3 can substantially deform, possibly to maneuver into
a recessed epitope [41]. Our simulations mitigates this intuition (Fig. 8(B,C,D)). On the one hand, while
the middle of the head does deform substantially, in particular in the vertical direction, the front and the
back appear quite rigid. On the other hand, the stem of the axe exhibits a substantial lateral flexibility.
Naturally, these preliminary observations call for further structural analysis in the presence of the antigens.

5.3 Exploration of the conformational landscape
To assess the ability of the algorithm to explore a complex conformational landscape, we focus on loops
for which several conformations have been obtained experimentally. Consider a set {Lj}, j = 1, . . . , J of J
loop conformations, called landmarks. To assess the amount of conformational space explored, we generate
conformations, and check the min and max lRMSD distances of these conformations to all landmarks.

Loop PTPN9-MEG2. These distances are of special interest in the context of the 2-cluster structure of
the four conformations of PTPN9-MEG2 (Table S1).

Starting from L0, we first study the ability to move away from the cluster L0/L1/L2 (maxlRMSD values
for columns L1 and L2, Table 1). For a fixed number of conformations (50/500/5000), the lRMSD observed
for our algorithms are significantly larger than those obtained with the loops from MoMA-LS. Consistent with
the analysis of RMSF, the variant ULSNV ;NOR

One|All;NES outperforms all contenders.
Also starting from L0, we next investigate the speed at which we approach the significantly different

conformation L3 (minlRMSD values for column L3, Table 1). The values reported by our methods are
slightly worse than those from MoMA-LS (Table 1): best MoMA-LS: 0.99Å; best ULSNV ;NOR

One|All;NES : 1.46Å; best

MLSNV ;NOR
One|All;NES 1.40Å. However, as noticed above, MoMA-LS also samples the ω angle preceding the loop.

Inspecting ω values, one obtains: ω(L0) : −177◦; ω(L3) : −165◦; ω(best from MoMA-LS): −167◦. It is
therefore the sampling of this dihedral angle which favors MoMA-LS.

5.4 Failure rate, running time and steric clashes
Algorithm 2 fails as soon as one TLC does not admit any solution. This failure probability depends on the
number of tripeptides, and naturally depends on the discrepancy between the two spaces Sk and Vk, that
is on the volume of the region Vk\Sk. In turn, this failure naturally impacts the running time of algorithm
Loop_sampler.

Calculations were run on a desktop DELL Precision 7920 Tower (Intel Xeon Silver 4214 CPU at 2.20GHz,
64 Go of RAM), under Linux Fedora core 32. Each HAR is processed on a single CPU core. For PTPN9-
MEG2, there there is on average 0.69 failure per success when tested on ULS1;1

One;1000[L0] and 2.92 with
MLS1;1

One;1000[L0].
The average time taken for one step by ULS1;1

One;1000[L0] is 0.04 seconds, and 0.17 for MLS1;1
One;1000[L0].

The latter algorithm involves more operations than the former, and as just noticed, also incurs a higher
failure rate. Whence the increased running time.

For the long loop CDR-H3-HIV, the average failure per success becomes 1.18 forULS1;1
One;1000 and 6.09 for

MLS1;1
One;1000. The average time per step inULS1;1

One;1000 becomes 0.21 seconds, and 0.98 forMLS1;1
One;1000[L0].

To assess steric clashes (Sec. 4.5), we compute for a given algorithm and a set of solutions, the fraction
of conformations featuring a clash. For PTPN9-MEG2, algorithms MLS10;1

All;1000 and ULS10;1
All;1000 generate

15.3% and 92.5% of clashes, respectively. For CCP-W191G, algorithm MLS10;1
All;1000 generates 0.9% of clashes.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2022. ; https://doi.org/10.1101/2022.06.21.497022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.21.497022
http://creativecommons.org/licenses/by-nc-nd/4.0/


For CDR-H3-HIV and algorithm MLS10;1
All;1000, the percentage is 81,7%. As expected, steric clashes increase

with the loop length, and are also more frequent when the loop resembles a hairpin.

Remark 9 Parameter One|All has no impact on failure rate since all solutions are computed in any case.

6 Outlook
Method. Loops sampling methods raise difficult mathematical problems due to the high dimensionality
of the parameter space, and the non linear interaction between the degrees of freedom (dof). Current state-
of-the art methods belong to two main classes. The first one consists of methods relying on kinematic loop
closure; such methods first perturb selected dof (the prerotation step), and proceed with loop closure (the
postrotation step). However, a first difficulty is to balance the amplitude of changes incurred by pre and
post dof, to avoid steric clashes during the loop closure step. Another difficulty lies in the non linear nature
of the solution space. For systems involving n dof, such methods typically results in a solution space which
is a n − 6 dimensional manifold. Sampling this manifold is usually done via back-projection upon walking
the tangent space, which is numerically challenging and imposes rather local changes. A second class of
methods of utmost importance exploit structures from the Protein Data Bank, and possibly resort to loop
closure too. However, such methods face a combinatorial explosion when the loop length increases. As a
matter of fact, modeling as a whole loops beyond 15 amino acids is still considered out of reach.

Our work introduces a new paradigm for this problem, based on a global geometric parameterization of
the loop relying on a decomposition into tripeptides. The method lies in the lineage of the Hit-and-Run
algorithm, invented long ago to identify redundant constraints in a linear program. Since then, HAR and
related techniques have proven essential to sample high dimensional distributions in bounded and unbounded
domains, yielding effective polynomial time algorithms of low complexity to compute the volume of polytopes
in hundreds of dimensions [32, 31, 33, 34]. The connexion between these algorithms and loop sampling is
non trivial, as using HAR to generate loop conformations involves two new ingredients. The first one is a
description of the loop sampling problem in a fully dimensional conformational space, as it is the absence
of codimension which removes the constraint to follow a curved manifold. We achieve such a description
using the intrinsic description of tripeptides. The second one is the design of necessary conditions for the
individual tripeptide problems to admit solutions. These conditions can then be used in a manner akin to
the hyperplanes of the polytope, to explore the region of interest and generate novel conformations.

Our results improve on those produced by a recent state-of-the-art method. On classical loop examples
(12 to 15 a.a.), we show that our solutions enjoy wider RMSF fluctuations. We also show that our method
copes easily with a 30 a.a. long loop as a whole, a loop length usually considered beyond reach. Last but
not least, it should be stressed that our method is parameter free, as the generation process does not depend
on any statistical or biophysical model.

Future work. Computational Structural Biology recently underwent a very significant progress with the
advent of deep learning methods for structure prediction [42, 43]. However, such methods generally face
difficulties for unstructured and/or highly flexible regions [44]. Also, they do not yield insights on the intrinsic
complexity of the problem. In this context, our work opens new perspectives in structural modeling. In
terms of structure, we anticipate several straightforward applications. The ability of our sampler to generate
very diverse ensembles of conformations should prove key to investigate systems with highly flexible regions,
including enzymes, membrane transporters, CDRs, and also intrinsically disordered proteins. The realm of
thermodynamics appears more challenging. As discussed in Introduction, methods in the lineage of Conrot
come with correction factors which, once incorporated into Metropolis-Hastings and Monte Carlo sampling,
ensure that the correct distribution (typically canonical) is sampled. Our work primarily focuses on the
geometric rather than thermodynamic setting. In fact, current sampling methods of choice are multiphase
/ adaptive sampling methods, including meta-dynamics, Wang-Landau, etc [45, 46]. A question of critical
importance in future work will be to ensure that our exploration methods are suitable to sample NVE
and/or NVT ensembles, via the calculation of densities of states (DoS). Along the way, the question of
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incorporating changes on internal coordinates other than dihedral angles naturally arises–but we note that
changing such coordinates solely affects the conditioning of the individual TLC problems. The connexion
with polytope volume calculations is a strong hint that this may indeed be the case, and that sampling
micro-canonical ensembles may be possible. If so, our paradigm may eventually yield a definitive step
towards effective structural and thermodynamic predictions. Meanwhile, our method can still be used in
the context of global optimization and energy landscapes, which decouples structure, thermodynamics, and
dynamics Upon discovering (deep) local minima, one can sample their basins [6] using classical MC methods.
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Algorithm 1 get_tau_tmax. For a given angle τk,i, find the largest value of tmax of t such that
DOVIτk,i(p(t)) 6= ∅ on the segment [0, t∆max].
1: for Iτk,i(t) ∈ Iτk,i(t) do
2: for Iτk,i|δ(t) ∈ Iτk,i|δ(t) do
3: S = S∪ numerical solutions for Eqs. 18 t ∈ [0, t∆max]
4: Sort S by ascending order
5: Let tl be the l-th element of S
6: l = 1
7: ul :=

tl+tl+1

2

8: // Stop when no validity interval can be defined for τk,i
9: while DOVIτk,i(fM→Aγ(ul)) 6= ∅ do

10: tmax = ul
11: l = l + 1
12: return {tmax}

Algorithm 2 LS_one_step. Given a starting point p0 ∈ S and a random direction V in the motion spaceM,
the algorithm finds the nearest intersection pnear of the image of the ray Ray(V ) (by the map fM→A) with a
surface constraint, and generates a random value on the segment [0, tmax]. Then, applies the corresponding
motion to peptide bodies of the loop L.
1: Input: p0 ∈ S: starting point in the fertile space
2: Input: V : direction in motion space
3: Output: a point pout ∈ V
4: Var t∆max: initialized using the smallest value of t > 0 breaking triangular inequality in a given tripeptide
5: V : Random direction (Eq. 8)
6: S = {t∆max}
7: for k ∈ {1, ...,m} do
8: for i ∈ {1, 2, 3} do
9: S = S ∪ get_tau_tmax(τk,i)

10: // Get the smallest value – most stringent condition
11: tmax = minS
12: // Output the next sample
13: ts ← Uniform(0, tmax)
14: Apply the rigid transforms defined by ts to the m− 1 peptide bodies
15: return Loop L with moved peptide bodies
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Algorithm 3 Loop_sampler. Given a starting point p0 ∈ S, algorithm Loop_sampler iterates LS_one_step
until Lcand. yields solution(s) for all tripeptides in the loop. This process is then repeated iteratively from
Lcand..
1: Input: p0 ∈ V
2: ptmp = p0

3: Sample = ∅
4: while not done do
5: no_clash = false
6: while not no_clash do
7: is_in_S = false
8: while not is_in_S do
9: Generate random direction V

10: Lcand. ← LS_one_step(ptmp, V )
11: Solve individual TLC for the m peptide bodies
12: if all m tripeptide have at least one solution then
13: is_in_S = true
14: if ∃ at least one conformation with no steric clash then
15: no_clash = True
16: ptmp = Lcand.

17: if Stop condition met then
18: done=true
19: Combine the individual solutions obtained for the individual tripeptides
20:
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Algorithm 4 LS_one_step_approx. Given a starting point p0 ∈ S, a random direction V in the motion
spaceM, and a number of iteration X, the algorithm uniformly samples between 0 and tmax, and finds the
largest value ul such that DOVIτk,i(fM→A(γ(ul))) 6= ∅. It then iterates between the step were it stopped
and the one before it until DOVIτk,i(fM→Aγ(ul)) 6= ∅. If X → ∞ the tmax obtained using this algorithm
corresponds to the one obtained using LS_one_step.
1: Input: p0 ∈ S: starting point in the fertile space
2: Input: V : direction in motion space
3: Input: X: max number of iteration to obtain approximate solution
4: Output: a point pout ∈ V
5: Var t∆max: initialized using the smallest value of t > 0 breaking triangular inequality in a given tripeptide
6: V : Random direction (Eq. 8)
7: ul := 0
8: x = 1
9: // Identify the first iteration failing the condition

10: in_validity_space=true
11: while in_validity_space do
12: ul = (x/X)tmax

13: for k ∈ {1..m} do
14: for i ∈ {1, 2, 3} do
15: if DOVIτk,i(fM→Aγ(ul)) = ∅ then
16: in_validity_space=false
17: x = x+ 1
18: // Slice the failing interval into X bits and iterate
19: tmin = (x− 1)/Xtmax

20: x = 1
21: in_validity_space=true
22: while in_validity_space do
23: ul = tmin + tmax(x)

X2

24: for k ∈ {1..m} do
25: for i ∈ {1, 2, 3} do
26: if DOVIτk,i(fM→Aγ(ul)) = ∅ then
27: in_validity_space=false
28: x = x+ 1
29: tmax = tmin + tmax(x−1)

X2

30: // Output the next sample
31: ts ← Uniform(0, tmax)
32: Apply the rigid transforms defined by ts to the m− 1 peptide bodies
33: return Loop L with moved peptide bodies
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7 Artwork

A: 12m dimensional angular
space for the m tripeptides

V: necessary conditions based
on validity intervals

S: solutions i.e. loop can be
embedded

M: 6(m − 1) dimensional
space for the motions of the
m− 1 peptide bodies

Fertile/valid

Sterile/Invalid

A

S
V

Figure 1: Sampling a loop involving m tripeptides: algorithm overview. Spaces used: A: a 12m
dimensional angular space coding the internal geometry of all tripeptides; V ⊂ A: a region characterized by
necessary conditions for the m individual TLC problems to admit solutions; S ⊂ V corresponds to individual
geometries of the tripeptides such that TLC admits solutions for each tripeptide. The Hit-and-Run algorithm
is started at the point indicated by an arrow. It is used to find intersection (empty bullets) between 1D
trajectories (blue curves) in the angular space of the tripeptides, and hyper-surfaces bounding the regions
defining necessary conditions for the m individual TLC problems to admit solutions. One point is then
generated on the curve segment joining the staring point and the intersection point. This point is fertile
if all TLC problems admit solutions, and sterile otherwise. The number of conformations obtained is the
product of the individual numbers for the m tripeptides.
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Figure 6: Loop PTPN9-MEG2: Backbone RMSF for the 12 amino acid long loop PTPN9-
MEG2. Simulations started from the conformation/landmark Lo – see text. Each tick on the x-axis
corresponds to a heavy atom of the loop – 36 in this case. For MoMA-LS, note that only one atom is fixed on
the left hand side of the loop, since the ω angle preceding the loop is also sampled.
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L1 L2 L3

min/maxlRMSD min/maxlRMSD min/maxlRMSD
MoMA-LS, 50 1.00/3.81 1.03/3.80 1.38/4.11
MoMA-LS, 500 0.78/4.29 0.77/4.30 1.11/4.70
MoMA-LS, 5000 0.74/4.92 0.73/4.94 0.99/4.97
ULS1;1

One;50[L0] 0.41/2.21 0.42/2.23 1.43/2.60
ULS10;1

One;50[L0] 0.39/3.09 0.38/3.09 1.39/3.50
ULS

1;1/4
One;50[L0] 0.59/3.04 0.59/3.05 1.34/3.45

ULS
10;1/4
One;50[L0] 0.46/3.53 0.47/3.56 1.34/3.73

MLS1;1
One;50[L0] 0.46/3.99 0.47/4.01 1.59/4.56

MLS10;1
One;50[L0] 0.43/4.02 0.43/4.03 1.53/4.75

MLS1;1/4
One;50[L0] 1.80/5.05 1.81/5.07 2.20/5.38

MLS10;1/4
One;50[L0] 1.35/5.45 1.36/5.47 1.81/5.61

ULS1;1
One;500[L0] 0.46/3.77 0.46/3.79 1.36/4.19

ULS10;1
One;500[L0] 0.38/4.88 0.37/4.89 1.36/4.97

ULS
1;1/4
One;500[L0] 0.63/5.25 0.64/5.28 1.45/5.54

ULS
10;1/4
One;500[L0] 0.59/5.17 0.59/5.21 1.45/5.55

MLS1;1
One;500[L0] 0.61/5.47 0.61/5.48 1.60/6.12

MLS10;1
One;500[L0] 0.52/5.86 0.53/5.87 1.52/6.46

MLS1;1/4
One;500[L0] 1.69/5.66 1.71/5.69 1.93/6.05

MLS10;1/4
One;500[L0] 1.45/5.75 1.43/5.77 1.68/6.30

ULS1;1
One;5000[L0] 0.48/5.26 0.49/5.29 1.42/5.51

ULS10;1
One;5000[L0] 0.43/5.36 0.43/5.40 1.40/5.74

ULS
1;1/4
One;5000[L0] 0.56/5.19 0.56/5.22 1.45/5.58

ULS
10;1/4
One;5000[L0] 0.46/5.42 0.47/5.46 1.46/5.80

MLS1;1
One;5000[L0] 0.71/5.83 0.72/5.86 1.56/6.22

MLS10;1
One;5000[L0] 0.57/5.96 0.57/5.99 1.52/6.48

MLS1;1/4
One;5000[L0] 1.82/5.88 1.83/5.89 1.66/6.32

MLS10;1/4
One;5000[L0] 1.45/6.06 1.44/6.10 1.46/6.59

Table 1: Loop PTPN9-MEG2: exploration to reach landmark conformations. Four conformations
of loop PTPN9-MEG2 form two clusters: L0, L1, L2 and L3. For MoMA-LS, we compute min and max lRMSD
distances to these landmarks. For ULSNV ;NOR

One|All;NES and MLSNV ;NOR
One|All;NES , starting from L0, we investigate the

ability to get away from the cluster (maxlRMSD values) and to approach conformation L3 (minlRMSD
values).
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(A) (B)

(C) (D)

Figure 7: Loop CCP-W191G, 15 amino acids. Loop found in cytochrome C peroxidase (CCP). Loop
specification: pdbid: 2rbt, chain X, residues 186-200. Conformations generated by algorithm MLS1;1

One;250.
(A) Overview of the protein: cartoon mode: protein; CPK mode: loop; VDW representation: ligand N-
Methylbenzylamine. (B,C,D) Top, side, front view of the loop conformations. Protein omitted for the sake
of clarity.
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(A) (B)

(C) (D)

Figure 8: CDR-H3-HIV, 30 amino acids. The loop is a complementarity-determining region (CDR-H3)
from PG16, an antibody with neutralization effect on HIV-1 [41]. Loop specification: pdbid: 3mme; chain
A; residues: 93-100, 100A-100T, 101, 102. Conformations generated by algorithm MLS1;1

One;250. (A) Variable
domain (red) and the 30 a.a. long CDR3. (B,C,D) Side/front/top view of 250 conformations .
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