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Abstract
Kinetic metabolic models of central metabolism have been
proposed to understand how Saccharomyces cerevisiae nav-
igates through nutrient perturbations. Yet, these models
lacked important variables that constrainmetabolism under
relevant physiological conditions and thus have limited op-
erational use such as in optimization of industrial fermen-
tations. In this work, we developed a physiologically in-
formed kinetic model of yeast glycolysis connected to cen-
tral carbon metabolism by including the effect of anabolic
reactions precursors, mitochondria and the trehalose cycle.
A parameter estimation pipeline was developed, consisting
of a divide and conquer approach, supplemented with reg-
ularization and global optimization. We show how this first
mechanistic description of a growing yeast cell captures ex-
perimental dynamics at different growth rates and under a
strong glucose perturbation, is robust to parametric uncer-

Abbreviations: [E]], enzyme concentration; ADP, adenosine diphosphate; ALD, aldolase; AMP, adenosine monophosphate; ATP,
adenoside triphosphate; CCM, central carbonmetabolism; CFD, computational fluid dynamics;CO2 , carbon dioxide; E.coli, Escherichia
coli; ENO, enolase; F6P, fructose 6-phosphate; FF, feast famine; G6P, glucose 6-phosphate; GP, glucose pulse; GSM, genome-scale
model; Kcat , catalytic constant; Km , mAT P , ATP maintenance rate; michaelis constant; NAD, nicotinamide-adenine-dinucleotide;
O2 , oxygen; ODE, ordinary differential equation; P.chrysogenum, Penicillium chrysogenum; P/O ratio, phosphate/oxygen ratio; PDC,
pyruvate decarboxylase; PEP, phosphoenolpyruvate; PFK, phosphofructokinase; PGI, phosphoglucoisomerase; PPP, pentose phos-
phate pathway; PTM, post-translational modifications; qAT P , ATP production rate; qCO2 , carbon dioxide transport rate; qO2 , oxygen
transport rate; RQ, respiratory quotient; S.cerevisiae, Saccharomyces cerevisiae; SS, steady state; sumAXP , sum of ATP, ADP and AMP;
TCA cycle, Tricarboxylic acid cycle; TPS1, trehalose phosphate synthase 1;Vmax , maximum reaction rate; VVUQ, verification, valida-
tion and uncertainty quantification.
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tainty and explains the contribution of the different path-
ways in the network. Our work suggests that by combining
multiple types of data and computational methods, com-
plex but physiologically representative and robust models
can be achieved.

Keywords— Glycolysis / Growing Cell / Kinetic Model-
ing / Parameter Estimation / Sacchamoyces cerevisiae

Introduction

Saccharomyces cerevisiae, commonly known as baker’s yeast, is a prominent cell factory for the biotechnology industry
(Nielsen et al, 2013). In large-scale fermentations, dynamic gradients expose yeast cells to rapid nutrient changes in
their extracellular environment, which in turnwill impact intracellular metabolic regulation (Enfors et al, 2001; Haringa
et al, 2016). To understand this dynamic stress response process, mechanistic models representing intracellular carbon
metabolism kinetics have been developed (van Eunen et al, 2012; Smallbone et al, 2013; van Heerden et al, 2014).
However, upscaling these models from lab to industry has proven challenging and restricted to simplified mechanistic
growth models with little information on intracellular dynamics (Wang et al, 2020; Sarkizi Shams Hajian et al, 2020).

This could be partly explained because models lacked important physiological information. In the fields of phar-
macology and medicine, validation of physiological realism is a necessary step in development of credible mechanistic
model (Pruett et al, 2020). To develop physiologically representative yeast models, several aspects are to be consid-
ered. Current state of the art models study glycolysis in isolation (van Eunen et al, 2012; Smallbone et al, 2013; van
Heerden et al, 2014), but should consider the complex cellular context it interacts with, for example by representing
the trehalose and tricarboxylic acid (TCA) cycles.

The situation regarding biomass synthesis is an important example. Whereasmaximization of biomass synthesis is
the physiological function towhich genome scalemodels (GSM) are optimized (Yasemi and Jolicoeur, 2021), it has been
neglected in yeast kinetic networks, resulting in models that cannot represent a growing cell and thus poorly represent
an important physiological state that comes with importable demands (van Heerden et al, 2015). Considering sink
reactions for glycolytic intermediates is of upmost importance, as they were shown to be central in achieving the
steady state (Teusink et al, 2000).

Moreover, variables alien to carbon flux regulate glycolysis as well. For instance, oxygen concentration deter-
mines if respiration or fermentation is performed (Otterstedt et al, 2004) and is routinely quantified in both lab and
industrial scale bioreactors (Canelas et al, 2011; Haringa et al, 2016), but has not been used to constrain dynamic
models. Furthermore, cofactors NAD and ATP are required to carry out multiple glycolytic reactions, but their avail-
ability cannot be taken for granted. ATP homeostasis is challenged under strong dynamic perturbations, where the
inosine salvage pathway is used as transient store (Walther et al, 2010). In addition, ATP required for maintenance
changes under different growth conditions (Chen and Nielsen, 2019). Still, a yeast model considering the effect of
these variables does not exist.

Recently published data and tools make implementation of yeast models in a physiological context more feasible.
The first perturbations studies in yeast were restricted to a single glucose pulse perturbation of 1 g L-1 (Theobald et al,
1997), but experimental quantification has been extended to larger perturbations that result in profound intracellu-
lar dynamics, including possible nonlinear effects of stress response (Walther et al, 2010; van Heerden et al, 2014).
Furthermore, data on different growth steady states (SS) (van Eunen et al, 2012; Canelas et al, 2011) and industrially
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relevant feast/famine (FF) regimes (Suarez-Mendez et al, 2014) has also been generated. New experimental variables
have been quantified, such as most metabolic species in central carbon metabolism (CCM) (Canelas et al, 2011), dy-
namic flux profiles (Suarez-Mendez et al, 2017), and proteome composition (Chen and Nielsen, 2019; Elsemman et al,
2022).

These data can now be used to quantify model parameters within a physiological range. Previous work showed
that kinetic constants measured in vitro in isolated enzymes assays might not be representative of in vivo behav-
ior (Teusink et al, 2000; Davidi and Milo, 2017). To overcome this issue, model parameters can be directly estimated
to fit in vivo metabolomic and fluxomic data (Davidi and Milo, 2017). Few works estimated part of the yeast kinetic
model parameter set in this way (Smallbone et al, 2013; Pritchard and Kell, 2002; Van Riel et al, 1998), but the data
available has notably increased since then.

To address the abovementioned challenges, here we conceived a kinetic model of yeast glycolysis and trehalose
cycle that considers the physiological effect of growth rate, gas exchange, ATP synthesis and maintenance, by devel-
oping a state-of-the-art approach for parameter identification. We show how this first mechanistic description of a
growing yeast cell captures experimental dynamics at different growth rates and under a strong glucose perturbation,
is robust to parametric uncertainty and explains the contribution of the different pathways in the network. Our work
suggests that combining multiple types of data and computational methods, complex but physiologically representa-
tive and robust models can be achieved, and simultaneously points at specific locations in glycolytic models where
regulation mechanisms are missing.

Results

| An integrated, physiologically informed kinetic model of yeast glycolysis

Existing yeast glycolysis models studied this pathway in isolation (Smallbone et al, 2013; van Heerden et al, 2014).
To transit from pathways in isolation, to pathways embedded in a growing cell, inclusion of physiological variables
informative of the bioreactor environment is crucial (Lao-Martil et al, 2022). The required data to implement these
variables is now available for S. cerevisiae. Carbon flux distribution in central metabolism and secretion ofO2 and CO2

were determined at different dilution rates in chemostat (Canelas et al, 2011). Additionally, growth and non-growth
-associated maintenance (GAM and NGAM, respectively) were determined and extensively implemented in GSMs and
can be used to estimate the ATPase activity (Beeftink et al, 1990; Lu et al, 2019).

These variables have been included in the model developed in this work. Carbon metabolism includes glycolysis,
trehalose cycle, glycerol branch and sink reactions to biomass and other by products (Fig 1). Production of CO2
(qCO2) consisted of the sum of what is released in the pyruvate decarboxylase (PDC) reaction and all the carbon
moles that are processed in the mitochondria. The uptake of oxygen (qO2) was estimated using the qCO2 and the
experimental respiratory quotient (RQ) value. Finally, the synthesis of ATP (qAT P ) consisted of glycolytic production
and mitochondrial contribution, estimated considering qO2 and P/O ratio (Verduyn et al, 1991). The maintenance
consumption of ATP (mAT P ) was estimated using the GAM and NGAM determined in GSMs (Lu et al, 2019).

The model consists of a series of nonlinear ordinary differential equations (ODE), where each mass balance de-
scribes a metabolite concentration, that changes over time according to reaction rates. Reactions that cannot be
described by a single enzyme, such as the rates in which glycolytic intermediates are taken up to form biomass, are
described by phenomenological expressions that closely resemble experimental data. The change in enzyme concen-
trations at different dilution rates found in (van Hoek et al, 2000) is adjusted for each enzyme. Model parameters were
estimated to fit experimental data (see later sections). For further details on model implementation, parameters and
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kinetic expressions, see the materials and methods and supporting information.

| The model reproduced physiological properties of a growing cell in a bioreactor

The resulting model predicted experimental dynamics, differentiating respiratory and respirofermentative metabolism.
At growth rates below 0.2 h-1, carbon uptake was directed to the sink reactions, which account for biomass synthesis
and TCA cycle (Fig 2B). Above this threshold, metabolism gradually shifted to ethanol production which eventually
became the main carbon product. In line with this, qCO2 closely resembled qO2 at low growth rates but became
predominant above 0.2 h-1, discerning respiratory from respirofermentative metabolism (Fig 2C). Likewise, ATP was
produced by respiratory metabolism at low growth rates and partially fermentative at high growth rates (Fig 2D).
Maintenance reaction rate was close to a GAM of 40 mmol of ATP per g of biomass during the respiratory state but
increased above this level as fermentation became predominant. A mismatch occurred at 0.2 h-1, when carbon flux
was notable underestimated. We will discuss this later.
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F IGURE 2 The model reproduces physiological properties of a growing cell in a bioreactor. (A) Simplified model
scheme highlighting the role of sinks for anabolic reaction precursors, PPP and mitochondria (g6p, f6p, gap, pep, pyr,
ace). (B) Carbon flux entering the sink reactions (red) compared to the total carbon uptake (blue). (C) Simulated
exchange rate of CO2 (continuous line) and O2 (semi-continuous line). Experimental data shown as bullet points. (D)
ATP produced by respiration (blue area) and fermentation (red area). Semi continuous lines point at the theoretical
values calculated using the NGAM and GAM (40 and 60 mmol gDW-1) found in genome scale representations (Lu
et al, 2019).
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In conclusion, the agreement betweenmodel simulations and experimental data suggests that themodel canwork
within the physiologically relevant region studied here. The implementation of the growth rate dependency seems
essential. For instance, if only the ATP produced by glycolysis is considered, the overall maintenance needs cannot
be matched at the different growth rates. This opens the possibility for kinetic models to be used in new setups,
such as different growth rates or respiration/fermentation regimes, by using variables such as gas exchange rate as
constraints, rather than as validation.

| Parameter estimation: A problem decomposition approach supplemented by regulariza-
tion, parameter space sampling and cost function balancing

Quantification of the parameter set was performed by optimizing the model fit to multiple experimental setups and
data types (van Heerden et al, 2014; Canelas et al, 2011; van Hoek et al, 2000). Nonetheless, the high number of
unknown kinetic parameters made this task challenging due to multiple local optimum and ill-conditioning. To deal
with non-identifiability problems in large kinetic models, multiple optimization methods have been proposed and eval-
uated (Villaverde et al, 2019). For instance, the so-called divide and conquer method aimed to analyze undetermined
biochemical networks despite parameter uncertainty (Kotte and Heinemann, 2009). This problem decomposition ap-
proach splits the model in smaller parts where parameters are estimated and later assembled in a complete network.

To develop the S. cerevisiae model in this study, this problem decomposition method was adapted and supple-
mented with global optimization and regularization to improve convergence, akin to the approach described in (Gábor
and Banga, 2015). Global optimization algorithms meet the danger presented by local minima by starting parameter
estimation from a set of initial parameter guesses (Moles et al, 2003). Regularization methods reduce ill-conditioning
by introducing prior knowledge on the parameters (Engl et al, 2009). Additionally, to control that overfitting did not
occur, weighting factors were used to leverage the components of the cost function.

The parameter estimation pipeline is illustrated for the well-studied enzyme enolase (ENO) in (Fig 3). In the first
stage, the divide and conquer problem decomposition approach was applied to glycolytic enzymes. As suggested
in (Kotte and Heinemann, 2009), steady state data was used (Canelas et al, 2011; van Hoek et al, 2000). A regulariza-
tion factor was added in the cost function, so that parameters resembled prior knowledge, provided that the model
error was not increased (Fig 3A). The benefits of global optimization and regularization can be appreciated for param-
etersVmax ,ENO and KM ,F 6P ,P F K in Fig 3B and 3C, respectively. A parameter for phosphofructokinase (PFK) is shown
since this is the most complex enzyme in the pipeline, and results differed according to enzyme kinetics complexity.
While for ENOmost initial parameter samples ended in the same parameter value as the literature one, the regulariza-
tion factor brought estimated paraemters closer to literature values (Fig 3B). For PFK, global sampling revealed the
existence of parameter dependencies (Fig 3C), and convergence towards literature values was achieved upon regu-
larization. Since enzymatic kinetic constants vary within a large range, the parameters estimated were transformed
from linear to logarithmic scale, as this has shown to be more reliable, also with global optimization methods (Kreutz,
2016; Villaverde et al, 2019).

In the second stage, the developed models were assembled in a complete glycolysis model with trehalose cycle
and cofactor metabolism. The weighting factors in the cost function were balanced ad hoc, until model fit for multiple
data could not be further improved. This resulted in pareto fronts, such as the one for ENO (Fig 3D), where the fit for
phosphoenolpyruvate (PEP) concentration in steady state and the 110 Mm glucose pulse was balanced (Fig 3E and
3F, respectively). See the supplementary information for an overview of the divide and conquer parameter estimation
results, enzyme by enzyme.
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weighting data types. (A) Regularization approach: the regularization factor (x-axis), literature parameter deviation
(blue, left y-axis) and model error (red, right y-axis) (B and C) Parameter estimation case for an identifiable (Enolase,
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of one order of magnitude of deviation from the literature parameter value. (D) Pareto front commonly obtained
when fitting two types of data simultaneously: case of PEP concentration. Model error for steady state and glucose
perturbation concentrations of PEP (x-axis and y-axis, respectively). (E and F) Model error, PEP steady state and
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| Combining different data types was central for physiological system identification

Determining a model parameter set, or system identification, is a data-intensive process (Almquist et al, 2014). To
identify the model properties, excitation experiments such as impulse or step response and time variant and invariant
data are used. Considering different experimental data types when building a kinetic metabolic model contributes
to an accurate physiological description of the system (Peskov et al, 2012). In the case of yeast fermentations, early
studies focused on the transient metabolic response to a glucose pulse (Theobald et al, 1997), but implementations
have broadened to study the role of the trehalose cycle during higher residual glucose concentrations (van Heerden
et al, 2014) and steady state dynamics were analyzed at different growth rates (Canelas et al, 2011). In the process,
data types have also increased from describing metabolomics to fluxomics and even enzymatic constraints (van Hoek
et al, 2000; Elsemman et al, 2022).

Therefore, the benefits of combining data types were examined for the developed model, in the areas highlighted
in (Fig 4A). Simulations were compared when changing enzyme concentrations were considered as shown in (van
Hoek et al, 2000) (data displayed in the supporting information), to when they were fixed at the dilution rate value of
0.1 h-1 (Fig 4B). This analysis showed that inclusion of proteome changes improved the predicted fluxes substantially,
especially at higher dilution rates, as the glycolytic flux is increased. This is supported by the relevance attributed to
the proteome at different growth rates using GSMs (Sánchez et al, 2017; Elsemman et al, 2022).

Furthermore, parameters were estimated to fit a single or combination of experimental variables, to show the
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benefits of usingmultiple data types when fitting themodel. For instance, reduced confidence intervals were obtained
for TPS1 kinetic constants if trehalose concentrations were used in combination with glucose 6-phosphate (G6P) (Fig
4C), and similar results were obtained combining metabolomic and fluxomic, or steady state and glucose perturbation
data (Fig 4D and 4E, respectively). This tendency highlights how the identified system becomes more accurate, on
top of more representative of cell dynamics. This is relevant, given that kinetic yeast CCM models have often been
only developed with a single type of data, most usually a glucose perturbation for which only some metabolites were
measured.
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| Ensemble modelling suggested that the model was robust to parameter heterogeneity

Kinetic metabolic models are generally designed as deterministic descriptions of an average cell in the bioreactor,
represented by a unique parameter set (Almquist et al, 2014). Nonetheless, heterogeneity between cells of the same
population or between strains implies a certain degree of metabolic diversity (van Heerden et al, 2014; Nidelet et al,
2016; Rodrigues et al, 2021). These Bayesian dynamics can be represented by means of ensemble modelling, in which
parameters are sampled from a variability distribution and are often used to account for uncertainty (Tan et al, 2011;
Jia et al, 2012; Tiemann et al, 2013). In this work, a Monte Carlo approach was taken to assess how robust were the
modelled glucose perturbation response and steady state dynamics. The models were generated by adding a 10%
random noise to the parameter set .

Model simulations were found to be notably robust within the conditions tested. Predictions showed certain
quantitative but little qualitative deviation (Fig 5). Steady state concentrations and fluxes were especially robust, as
it has been found for other kinetic networks (Tran et al, 2008; Tan et al, 2011; Christodoulou et al, 2018). Variability
was more pronounced during the glucose perturbation, which could be explained by the notably higher extracellular
glucose concentrations (110 mM) experienced during the strong perturbation, when compared to the steady state
range (0.13-3.30 mM).
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F IGURE 5 The model was robust to parameter heterogeneity. Simulations with the ensemble of models and the
experimental data. Random noise was added to generate up to 1000 models in the ensemble. This noise was
sampled from a random distribution within 10% of the value of each parameter. The model ensemble is shown as
heat maps, where darker regions indicate higher simulation agreement. Experimental data is shown is bullet points.
The semi-continuous lines indicate the region where 90% of simulations were found. (A) Steady state concentrations
(mM) and dilution rate (h-1) in the Y. and X-axes, respectively. (B) Steady state reaction rates (mM s-1) and dilution
rate (h-1) in the Y. and X-axes, respectively. (C) Glucose perturbation concentrations (mM) over time (s) in the Y. and
X-axes, respectively. (D) Glucose perturbation reaction rates (mM s-1) over time (s) in the Y. and X-axes, respectively.
To see the simulations of each metabolite and reaction rate in the model, see supplementary materials.

| Problem decomposition revealed a mismatch between literature and in vivo parameters

A concern in the literature is the accuracy of the estimated enzymatic kinetic constants. Previous work showed that
kinetic constants measured in vitro in isolated enzymes assays might not be representative of in vivo behavior (Teusink
et al, 2000; Davidi and Milo, 2017). This was improved by standardizing in vivo-like assay conditions, but only some
glycolytic parameters were updated (Van Eunen et al, 2010; Smallbone et al, 2013). In this work, the abovementioned
problem decomposition approach was used to assess this experimental bias and to adjust the parameters to fit the
data.

Simulating the experimental steady state reaction rates with the models generated in the problem decomposition
step revealed a notable bias if the parameter values found in the literature were used, even if in vivo-like experimental
parameters were considered (Fig 6). These fits were improved using the parameter estimation pipeline described in
(Fig 3). In line with (Davidi and Milo, 2017), this highlights the need of cross validating experimental data generated
in individual enzyme assays with in vivo data and suggest that even with improved media conditions, an impactful
bias exists. See the supplementary information for a complete comparison between the estimated and the literature

reserved. No reuse allowed without permission. 
copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights 

Thethis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.22.497165doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497165


12

parameter set.

0 1.5 3

Simulated Rate (mmol L-1 s-1)

0

1.5

3 ENO

0 1 2
0

1

2 PGI

0 1 2
0

1

2 PFK

0 1 2
0

1

2 TPI

0 1.5 3
0

1.5

3 PYK

0 1.5 3
0

1.5

3 PGM

0 1 2
0

1

2 ALD

0 1 2
0

1

2 HXK

0 1.5 3
0

1.5

3

Ex
pe

rim
en

ta
l R

at
e 

(m
m

ol
 L

-1
 s

-1
)

GAPDH

F IGURE 6 Problem decomposition reveals a mismatch between literature and in vivo parameters. Experimental
reaction rates plotted against simulated reaction rates. Gray dots show the model fit using literature parameters.
Black dots show the fit with the developed models. The red dashed line shows the location of a perfect fit. Each plot
shows a different enzyme in glycolysis. Upper and lower glycolysis in top and bottom row, respectively.

| Large deviations from literature parameters suggested missing knowledge around PFK ki-
netics

When the estimated parameters were compared to the literature, most deviated by less than 0.5-fold from the litera-
ture value. Nonetheless, the kinetic constants which deviated the most belonged to PFK kinetics or the two enzymes
found before and after this reaction in glycolysis, phosphoglucose isomerase (PGI) or aldolase (ALD) (Table 1). Fur-
thermore, the model fit agreed for most experimental variables, except for the SS concentrations of metabolites G6P
and fructose 6-phosphate (F6P), for which simulations disagreed both qualitatively and quantitatively. This could be
solved if PFK kinetics parameters were changed in a growth rate dependent manner, for instance, by adding a ’fudge
factor’ to the maximum reaction rate (see supplementary information), which could suggest that there is a missing
regulation on PFK kinetics . Even though well studied, the kinetics of this enzyme are known to be notable com-

reserved. No reuse allowed without permission. 
copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights 

Thethis version posted June 24, 2022. ; https://doi.org/10.1101/2022.06.22.497165doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497165


13

plex (Teusink et al, 2000; Gustavsson et al, 2014). For instance, the concentrations of F26bP, a modulator of PFK was
not present in the data and a constant value was assumed in our simulations.

TABLE 1 Largest deviations between estimated and literature values are found in PGI, PFK and ALD enzymes.
Only deviations above 0.75-fold change from the literature value are displayed. Fold change defined as: Fold change
= estimated parameter value / literature parameter value.

Parameter Enzyme Fold Change Reference

Km,DHAP ALD -1.90 (Teusink et al, 2000)

Km,F 6P PGI 1.37 (Smallbone et al, 2013)

KAMP PFK -0.98 (Teusink et al, 2000)

Km,G6P PGI 0.89 (Smallbone et al, 2013)

Km,AT P PFK 0.88 (Teusink et al, 2000)

Ki ,F BP PFK 0.77 (Teusink et al, 2000)

Kcat PGI -0.76 (van Eunen et al, 2012)

| Dilution rate dependent glucose transport kinetics

Transmembrane glucose transport kinetics are known to change with dilution rate. For instance, changing affinities
had to be considered to model different dilution rates (Postma et al, 1989). Thereafter, multiple transporters (HXT1-7)
were found to be notably expressed at different growth rates (Diderich et al, 1999). The kinetics of these transporters
were found to be divergent and isoenzyme dependent, both in terms of affinity constants (Km ) and maximum reaction
rates (Vmax ) (Bosdriesz et al, 2018; Maier et al, 2002; Reifenberger et al, 1997). Therefore, we investigated whether a
unique parameter set could explain the entire data, or dilution rate dependency had to be considered on the kinetic
constants.

The simulations with the unique parameter set fit the data to a notable degree, but with certain deviation (Fig
7A). Uptake was overestimated at dilution rates below 0.2 h-1, resulting in fermentative excess where residual glucose
concentrations remained under 0.20 mM (Fig 7B) (Postma et al, 1989). Then, this fit could be improved by allowing
HXT Vmax to change in a dilution rate dependent manner (Fig 7A). As expected, Vmax was found to decrease and
increase at low and high dilution rates, respectively (Fig 7C). Nonetheless, the change at low growth rates could
also be explained by a decreased enzyme affinity (see supplementary information) or a combination of bothVmax and
Kcat changes, in line with (Diderich et al, 1999). Interestingly, a data point that could not be fit was the dilution rate
0.2 h-1, given the low residual glucose concentration. As suggested in (Postma et al, 1989), this could be caused by
intracellular changes on the driving force.

| Glycolysis was regulated by other pathways in central carbon metabolism

Glycolysis is a pathway that does not act in isolation but that is influenced by othermetabolic routes in CCM. Therefore,
here we investigated how the different pathways in themodel regulate glycolysis. Flux towards the different glycolytic
intermediate sinks was dilution rate dependent. At low growth rates, most carbon entered the sink reactions, while
fermentationwas predominant at higher growth rates (Fig 8A). Nonetheless, themodel did overestimate fermentative
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F IGURE 7 Adjustments in the HXTVmax can describe most growth rate-dependent transporter kinetics. (A)
Reaction rates plotted against dilution rates. Gray markers show the model fit if a single set of kinetic constants for
the hexose transporter is used. Black markers highlight how this fit is improved if the maximum reaction rate is fit for
every growth rate. Experimental data point are shown in red markers, united by the semi-continuous red line. (B)
Residual glucose concentration (mM) plotted against dilution rate, and (C) Fold change required forVmax at each
dilution rate.

flux at lower growth rate, due to small deviations of the already low glucose transport flux.
Furthermore, the effect of knock outs resulted in expected dynamics. Simulating the lack of oxygen by knocking

out mitochondrial reactions resulted in an increase in fermentation and less NADHmitochondrial respiration lowered
glycolytic intake, since the network compensated by over-activation of the glycerol branch (Fig 8B and 8C). Then,
knocking out the trehalose cycle during glucose perturbation resulted in an imbalance between upper and lower
glycolysis reaction rates, in line with (van Heerden et al, 2014) (Fig 8D) and a knock out of the inosine salvage pathway
meant that no ATP paradox would be observed (Fig 8E).

| Missing regulation could explain glycolytic response under a 20 g L-1 glucose pulse

At this point, we investigated how our model could simultaneously explain the response to a strong glucose perturba-
tion of a 20 g L-1 glucose pulse experiment (van Heerden et al, 2014), the moderate perturbations of 0.4 g L-1 from
FF experiments (Suarez-Mendez et al, 2017), and the steady state data from (Canelas et al, 2011).

We identified two type of dynamics depending on if PFK and ALD reaction rates balanced each other (Fig 9A). By
analyzing the experimental reaction rate data, we could see that during themoderate glucose perturbations in (Suarez-
Mendez et al, 2017), the glycolytic response of PFK and ALD occurred hand in hand, resulting in a transient increase
of ATP (Fig 9B). Meanwhile, during the stronger perturbation in (van Heerden et al, 2014) the response of ALD was
slower (Fig 9C), leading to more ATP being consumed in upper glycolysis than recycled in lower glycolysis, and a
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F IGURE 8 Contribution of different modules to glycolytic regulation. (A) Carbon flux distribution at different
growth rates: flux towards sink reactions (blue), and towards ethanol and glycerol synthesis (red). The black dots
show the simulated glucose uptake rate. (B) Effect of knocking out mitochondrial flux: Simulated PDC reaction rate
plotted against experimental PDC reaction rate. Reference model (black) and effect of knockout carbon flux to
respiration (white). (C) Effect of no oxygen: Simulated HXK reaction rate plotted against experimental HXK reaction
rate. Reference model (black) and effect of knocking out NADH mitochondrial respiration (white). (D) Imbalance
between upper and lower glycolysis (calculated as vGLK – 2*vGAPDH) occurring if the trehalose cycle is knocked
out. The black and gray dashed lines show theWT and Trehalose cycle-knocked out strain, respectively. (E)
Sensitivity of the ATP paradox to inosine salvage pathway. When the inosine salvage pathway is active (black), a
decay in ATP concentrations can be observed, while knocking the cycle (gray) leads to a conservation of ATP steady
state concentration.

consequent temporary decrease in ATP.

To understand what differed between the two conditions, we modelled both and found that they could not be
simultaneously understood with a single parameter set. A pareto analysis was performed to find out which parame-
ters needed to change to fit one and the other dataset. This resulted in the pareto front described in (Fig 9D). If the
steady state fructose 1,6-bisPhosphate (FBP) concentrations were reproduced, ALD flux rapidly increased in response
to the glucose perturbation. Another solution along the Pareto front was obtained for which the increase in ALD flux
was slower , resembling experimental data, but then, the fit for FBP was not achieved (Fig 9E and 9F, respectively).
Interestingly, this slower response resulted from apparent substrate affinity constants in upper glycolysis strongly de-
viating from the literature value and de facto caused enzymes to require a higher buildup of substrate before carrying
out their reaction.

Altogether , this could imply that a mechanism is missing that regulates glycolytic response under strong pertur-
bations by, for instance, transiently decreasing ALD reaction rates. Since parameter values are closer to the literature
when the SS data is fit, which also results in a fast ALD response during FF, this seems to suggest that our model is
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F IGURE 9 A transient imbalance between ALB and FBP can be explained by missing regulation. (A) A large
glucose perturbation triggers FBP accumulation, (B-C) HXK and ALD reaction rate and ATP concentration upon
glucose perturbation under feast famine regime, 0.4 mM (Suárez-Mendez et al., 2014), and single, 110 mM glucose
perturbation (van Heerden et al., 2014), (D) Pareto front observed when fitting ALD reaction rate during GP and FBP
SS concentrations. Red and blue colors show the zone with lower model error for ALD and FBP, respectively. (E-F)
Model fits for ALD reaction rate during GP and FBP SS concentrations, respectively. Colors correspond with (D).

best suited to fit physiology from SS and FF regime.

Discussion

How cells respond and adapt to environmental changes while balancing internal needs prevails as a fundamental
question in biology. Mechanistic models based on enzyme kinetics are important to cope with the complexity of the
underlying molecular circuitry. For these models to be useful, however, they require a proper intracellular embedding
of central carbon metabolism in the context of the larger metabolic system and should not be studies in isolation.

Hence, a physiologically informed kinetic model of this pathway was developed. It contained detailed descrip-
tions of the enzymatic mechanisms that compose glycolysis, trehalose cycle and glycerol branch and extended this
knowledgewith coarse-grained and growth rate-dependent phenomenological descriptions of glycolytic intermediate
demand, gas exchange, mitochondrial activity and ATPase activity (Fig 1). This more was then used to characterize
metabolic dynamics under both a 110 mM glucose pulse and at different growth rates at steady state (Fig 2). Smaller
models exist for Escherichia coli and Penicillium chrysogenum metabolic models (Chassagnole et al, 2002; Tang et al,
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2017), but to our knowledge this is the first time a kinetic CCMmodel can realistically describe a growing S. cerevisiae
cell. Therefore, new circumstances are now open for exploration with a unique model. For instance, by constraining
the model to anaerobic conditions or by studying the shift between respiratory and respirofermentative metabolism
and glucose perturbations at different growth rates (Wiebe et al, 2008; Ishtar Snoek and Yde Steensma, 2007; van
Eunen et al, 2012).

One of the core developments of this work is a parameter estimation pipeline suited to identify complex systems
and using large data sets (Fig 3). This approach made use of different resources: (i) divide and conquer model de-
composition resulted in smaller scale systems easier to identify that the full system, (ii) global sampling determined
whether multiple local minima existed, (iii) regularization improved convergence when parameters were still underde-
termined and (iv) leveraging the weights of the components of the cost function to avoid overfitting. As a result, this
method increases parameter identifiability, and we believe that it is well-suited for implementation in other cell fac-
tory models. Compared to other state of the art parameter estimation methods (Gábor and Banga, 2015; Villaverde
et al, 2019; Smallbone et al, 2013; Raue et al, 2015; Steiert et al, 2016), this pipeline makes use of the divide and
conquer approach, combined with regularization for parameters where physiological values are known. Nonetheless,
limitations of this approach are the lack of reliable parameter estimates confidence intervals, given that the regular-
ization bias added is affected by experimental noise, and the need for leveraging the weights of these data in the cost
function.

In order to develop this complex and physiologically representative model, multiple data types needed to be
combined. A collection of datasets containing metabolomic, fluxomic and proteomic data at steady state and during
glucose perturbations was considered to make the complete model identifiable (van Hoek et al, 2000; Canelas et al,
2011; van Heerden et al, 2014). Considering this data was required and increased the accuracy of the parameter
estimates (Fig 4). We therefore suggest making use of growingly available proteomics data to constrain the parameter
solution space, as it is the case for GSM (Chan et al, 2017; Sánchez et al, 2017; Elsemman et al, 2022).

Ensemble modelling suggested that the network dynamics are robust to parameter heterogeneity. A modelling
approach based onMonte Carlo sampling of parameter values was used to represent the heterogeneity in a cell popu-
lation. This showed how dynamics and steady states were resilient to parameter value deviations (Fig 5). Assays such
as this start with the premise that phenotypes arise from model structure and are performed to represent population
heterogeneity (Gunawardena, 2010; Oguz et al, 2017; Nijhout et al, 2019). Therefore, given the heterogeneity in the
industrial fermenter (Haringa et al, 2016), we propose that this ensemble modelling perspective is a more physiologi-
cally realistic representation than a single parameter set. Nonetheless, one limitation of this approach is the range to
which parameters are disturbed, given that cell-specific measurements in a population are very limited (Newman et al,
2006).

Furthermore, we advocate to estimate parameters and supplement with literature knowledge for determination
of in vivo enzymatic kinetic constants. Enzymatic kinetic constants were traditionally estimated in vitro for isolated
enzymes (Teusink et al, 2000; van Eunen et al, 2012; Smallbone et al, 2013). However, using these to simulate exper-
imental data showed how a notable bias still exists (Fig 6). Hence, we propose to re-estimate parameters to fit the
in vivometabolomic and fluxomic data, in line with (Davidi and Milo, 2017), and use the in vitro determined constants
as reference to which the cost function is regularized. The resulting improved data fit with generally little deviation
from the literature parameters implies that, even though in vitro studies are good estimators, they need adjustment
to be implemented in a full-scale model.

When estimated parameterswidely deviated from the literature values orwhen steady state datawas not properly
fit, we identified uncertainty in our model that reflected possible unknown biology. The estimated parameters that
deviated the most from the literature value were from PFK or surrounding enzymes PGI and ALD (Table 1). Together
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with the fact that steady state concentrations of G6P and F6P are only fit in the model decomposition simulations (Fig
6) and not in the complete model simulations (Fig 5), this hints at uncertainty surrounding PFK reaction kinetics, not
covered in the complex regulation already considered for this reaction (Teusink et al, 2000; Gustavsson et al, 2014).
Furthermore, another area where steady state data is not perfectly fit is the HXT reaction. HXT kinetics could be
explained by changes in enzyme concentration and isoenzyme-specific affinity constants, in line with (Reifenberger
et al, 1997; Diderich et al, 1999). Nonetheless, the consistent lack of fit at 0.2 h-1 points at a missing mechanism
acting intracellularly (Postma et al, 1989).

Finally, missing regulation could explain the transient imbalance occurring between PFK and ALD upon strong
glucose perturbation (Fig 9). When explaining this imbalance with the same model structure, we found that a subset
of parameters had to be adjusted, leading to a lower ALD reaction rate. Nonetheless, in the industrial bioreactor,
prolonged exposure to glucose concentrations higher than 100 mM as in (van Heerden et al, 2014) is rare (Haringa
et al, 2017). A more realistic representation is the FF setup, in which this imbalance did not take place under moder-
ate perturbations in FF experiments. This could hint at influence by glucose level (Suarez-Mendez et al, 2014) and
suggest that there is a missing phenomenon in the model, which becomes active upon large glucose perturbations.
We believe that this could be due to either a regulation cascade, such as post translation modifications or cAMP/PKA
pathway (Tripodi et al, 2015; Tamaki, 2007), given that cAMP buildup was detected during perturbation with high
residual concentration but not for low (Botman et al, 2019; Suarez-Mendez et al, 2014). Consequently, the synthesis
of fructose-2,6-bisphosphate by the activated PKA pathway could be regulating could be regulating PFK activity. In
addition, the pH decay observed during the glucose perturbation (van Heerden et al, 2014) could also be relevant,
given the sensitivity of glycolytic enzyme constants to this variable (Van Leemputte et al, 2020; Luzia et al, 2022).
Nonetheless, to further proof these hypothesis, more experimental testing would be needed.

Here, we presented a model that describes yeast glycolysis as part of the more comprehensive central carbon
metabolism, and not in isolation. This model was built using data from the metabolome, fluxome and proteome; to
which extent gene regulation influenced the metabolic dynamics here studied remains an open question. At this
point, gradients in the industrial bioreactor can be considered thanks to the transport rates and yields included in
the model (Haringa et al, 2016; Nadal-Rey et al, 2021), bringing it closer to industrial applications. We believe that
complex intracellular models like the hereby presented could soon be linked to bioreactor dynamics simulations, an
area that has been so far restricted to simplified cell models (Tang et al, 2017; Sarkizi Shams Hajian et al, 2020).

Materials and methods

| Experimental data sets used to develop the model

Three experimental datasets were used in model development: (i) steady state metabolic concentrations and fluxes
at different chemostat dilution rates (0.025 - 0.375 h-1) (Canelas et al, 2011), (ii) concentrations and fluxes during a
single glucose perturbation of 20 g L-1 (van Heerden et al., 2014) and (iii) glycolytic enzymes activity also at several
chemostat dilution rates (van Hoek et al, 2000). Data in (Canelas et al, 2011; van Heerden et al, 2014) was obtained
with the haploid yeast Saccharomyces cerevisiae CEN PK 113-7D strain, while (van Hoek et al, 2000) used the strain
DS28911.
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| Model description

The kinetic metabolic model in this work included individual enzyme reaction descriptions for glycolysis, glycerol
branch and trehalose cycle, whose kinetics were taken from (van Heerden et al, 2014), (Smallbone et al, 2011) and
(Cronwright et al, 2002), respectively. The reaction of UDP-glucose phosphorylase in the trehalose cycle was lumped
due to lack of experimental data. Cofactor metabolism reactions and sinks for anabolic precursors were lumped, and
the sink reactions and inosine salvage pathwaywere adapted from (Chassagnole et al, 2002) and (Walther et al, 2010),
respectively.

| System of ordinary differential equations and reaction rate equations

The model consisted of a series of ordinary differential equations representing the mass balances for each metabolite
modelled in the cytosol, except glucose and inorganic phosphate, also modelled in the extracellular space and vacuole.
Moiety conservations were used for the total sum of adenosine and nicotinamide adenine nucleotides (ATP + ADP +
AMP and NAD + NADH, respectively) as in (Smallbone et al, 2013). The ATP + ADP + AMP moiety conservation was
not considered during the single glucose perturbation response, where the inosine salvage pathway was included as
a pool. When available, the dilution rate-dependent protein activity change (van Hoek et al, 2000) was considered by
adjusting theVmax .

Enzymatic reaction rate kinetics were obtained from previous works, where reversible Michaelis Menten kinetics
dominated (van Heerden et al, 2014; Smallbone et al, 2011; Cronwright et al, 2002). Exceptions to this were hill type
kinetics for pyruvate kinase and decarboxylase (van Eunen et al, 2012), phosphofructokinase and facilitated diffusion
formembrane transport (Teusink et al, 2000). Allosteric regulation acted both by activation and (competitive) inhibition.
Hydrolysis reactions were modelled as irreversible. Sink reactions were modelled by phenomenological expressions
that closely resembled experimental data in (Canelas et al, 2011). Reaction rates were expressed in (mM s-1). For a
detailed description, see supplementary information.

| Simulation setup

Simulations were performed in agreement with the experimental setup. To confirm simulation stability, the model
was first simulated for 3000 seconds using the experimental concentrations at 0.1 h-1 dilution rate. Then, the steady
states at different dilution rates were modelled in parallel simulations where the residual glucose concentration was
changed to the value in (Canelas et al, 2011), for 3000 seconds. The trehalose cycle was not modelled in steady
state. Anabolic sink reaction rates, ATP maintenance and the mitochondrial activity were adjusted in a dilution rate-
dependent manner as well. For the single glucose perturbation, residual glucose was increased to 110 mM (van
Heerden et al, 2014) and the inosine salvage pathway was made active in a step manner. This simulation lasted
340 seconds. Matlab version 9.3.0.713579 (R2017b) was used. A summary of the differences between simulating
steady states at different growth rates of the 110 mM single glucose perturbation can be seen in Table 2. Detailed
expplanation on these can be found in the supplementary information.

| Literature parameter values

Initial estimates of kinetic constants were obtained from the literature. For glycolytic enzymes, (van Eunen et al, 2012)
and (Smallbone et al, 2013) were the most recent estimates ofVmax and Km . If a parameter was not available, it was
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TABLE 2 Summary of main differences in the simulation setup of the steady state and the single glucose
perturbation.

Variable Steady state Single Glucose
Perturbation

Trehalose
cycle

Inactive. Its steady state flux in included in the G6P-sink reaction Active.

Inosine
salvage
pathway

Inactive. Active.

sumAXP
(= ATP +
ADP +
AMP)

Changes in the total sum of ATP + ADP + AMP are considered by
setting the initial concentrations of the adenosine nucleotides to the
experimental concentration at the beginning of each stead state
simulation.

The inosine salvage
pathway acts as a sink
of adenosine
nucleotides.

Enzyme
concentra-
tion

A ratio between the experimental activity at a given dilution rate and
the value at 0.1h-1 is calculated and then multiplied to theVmax .

This ratio equals 1.

Sink
reactions

A phenomenological expression is derived to make these reaction rates
resemble experimental data.

The kinetics at 0.1 h-1

is used.

ATPase
activity

ATPase is adjusted in a growth rate dependent manner, using GAM and
NGAM.

The reaction constant
is estimated to fit the
data.

mitoATP The growth rate-dependent mitochondrial activity is considered using
the PYR sink reaction. This is implemented by changes in the reaction
constant.

The reaction constant
is estimated to fit the
data.

mitoN-
ADH

The growth rate-dependent mitochondrial activity is considered using
the PYR sink reaction. This is implemented by changes in the reaction
constant.

The reaction costant is
estimated to fit the
data.

taken from (Teusink et al, 2000). Glycerol branch and trehalose cycle parameters were retrieved from (Cronwright et al,
2002) and (Smallbone et al, 2011), respectively. For the specific parameter values used, see supplementary materials.

| In vivo parameter estimation and cost function development

Parameters in the model were estimated to fit the in vivo experimental data. The lsqnonlin solver in the Matlab
optimization toolbox (version 9.3.0.713579, R2017b), which uses an interior reflective Newton method (Coleman and
Li, 1996), was used to minimize the error between experimental and simulated data. To overcome the effects of ill
conditioning and parameter dependencies in this large parameter set (Gábor andBanga, 2015), amodel decomposition
approach, also known as divide-and-conquer, was used (Kotte and Heinemann, 2009). This was first implemented to
individual reactions in glycolysis. Once parameters were estimated for them, parameters were estimated for other
pathways. The global solution space was explored by means of multi-start deterministic local searches (Villaverde
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et al, 2019). This model fit was supplemented with L1-type regularization (Steiert et al, 2016; Dolejsch et al, 2019),
where kinetic constants were biased to resemble the experimental measurement, as long as data fit was adequate.
Steady state data (Canelas et al, 2011) was fit first and, afterwards, single glucose perturbation (van Heerden et al,
2014).
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