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We also trained the models on a dataset where all features were Gaussian noise as a negative control.
As expected, the models all performed at baseline accuracy both before and after the signal removal
process (�g. 3). This experiment supported our decision to perform signal removal on the training and
validation sets separately, as removing the linear signal in the full dataset induced predictive signal
(supp. �g. 6).

Figure 3:  Performance of models in binary classi�cation of simulated data before and after signal removal. Dotted lines
indicate expected performance for a naive baseline classi�er that predicts the most frequent class.

We next removed linear signal from GTEx and Recount3. We found that the neural nets performed
better than the baseline while logistic regression did not (�g. 4 B, supp. �g. 7). Similarly, for multiclass
problems logistic regression performed poorly while the non-linear models had performance that
increased with an increase in data while remaining worse than before the linear signal was removed
(�g. 4 A,C). Likewise, the sex label prediction task showed a marked di�erence between the neural
networks and logistic regression: only the neural networks could learn from the data (�g. 4 D). In each
of the settings, the models performed less well when run on data with signal removed, indicating an
increase in the problem’s di�culty. Logistic regression, in particular, performed no better than
random.
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Figure 4:  Performance of models across four classi�cation tasks before and after signal removal

To verify that our results were not an artifact of our decision to assign studies to cross-validation folds
rather than samples, we compared the study-wise splitting that we used with an alternate method
called sample-wise splitting. Sample-wise splitting (see Methods) is common in machine learning, but
can leak information between the training and validation sets when samples are not independently
and identically distributed among studies - a common feature of data in biology [25]. We found that
sample-wise splitting induced substantial performance in�ation (supp. �g. 8). The relative
performance of each model stayed the same regardless of the data splitting technique, so the results
observed were not dependent on the choice of splitting technique.

Another growing strategy in machine learning, especially on biological data where samples are
limited, is training models on a general-purpose dataset and �ne-tuning them on a dataset of interest.
We examined the performance of models with and without pretraining (supp. �g 9). We split the
Recount3 data into three sets: pretraining, training, and validation (�g. 1 B), then trained two
identically initialized copies of each model. One was trained solely on the training data, while the
other was trained on the pretraining data and �ne-tuned on the training data. The pretrained models
showed high performance even when trained with small amounts of data from the training set.
However, the non-linear models did not have a greater performance gain from pretraining than
logistic regression, and the balanced accuracy was similar across models.

Methods

Datasets

GTEx

We downloaded the 17,382 TPM-normalized samples of bulk RNA-seq expression data available from
version 8 of GTEx. We zero-one standardized the data and retained the 5000 most variable genes. The
tissue labels we used for the GTEx dataset were derived from the ‘SMTS’ column of the sample
metadata �le.

Recount3
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We downloaded RNA-seq data from the Recount3 compendium [26] during the week of March 14,
2022. Before �ltering, the dataset contained 317,258 samples, each containing 63,856 genes. To �lter
out single-cell data, we removed all samples with greater than 75 percent sparsity. We also removed
all samples marked ‘scrna-seq’ by Recount3’s pattern matching method (stored in the metadata as
‘recount_pred.pattern.predict.type’). We then converted the data to transcripts per kilobase million
using gene lengths from BioMart [27] and performed standardization to scale each gene’s range from
zero to one. We kept the 5,000 most variable genes within the dataset.

We labeled samples with their corresponding tissues using the ‘recount_pred.curated.tissue’ �eld in
the Recount3 metadata. These labels were based on manual curation by the Recount3 authors. A total
of 20,324 samples in the dataset had corresponding tissue labels. Samples were also labeled with
their corresponding sex using labels from Flynn et al. [3]. These labels were derived using pattern
matching on metadata from the European Nucleotide Archive [28]. A total of 23,525 samples in our
dataset had sex labels.

Data simulation

We generated three simulated datasets. The �rst dataset contained 1,000 samples of 5,000 features
corresponding to two classes. Of those features, 2,500 contained linear signal. That is to say that the
feature values corresponding to one class were drawn from a standard normal distribution, while the
feature values corresponding to the other were drawn from a Gaussian with a mean of 6 and unit
variance.

We generated the non-linear features similarly. The values for the non-linear features were drawn
from a standard normal distribution for one class, while the second class had values drawn from
either a mean six or negative six Gaussian with equal probability. These features are referred to as
“non-linear” because two dividing lines are necessary to perfectly classify such data, while a linear
classi�er can only draw one such line per feature.

The second dataset was similar to the �rst dataset, but it consisted solely of 2,500 linear features. The
�nal dataset contained only values drawn from a standard normal distribution regardless of class
label.

Model architectures

We used three representative models to demonstrate the performance pro�les of di�erent model
classes. The �rst was a linear model, ridge logistic regression, selected as a simple linear baseline to
compare the non-linear models against. The next model was a three-layer fully-connected neural
network with ReLU non-linearities [29] and hidden layers of size 2500 and 1250. This network served
as a model of intermediate complexity: it was capable of learning non-linear decision boundaries, but
not the more complex representations a deeper model might learn. Finally, we built a �ve-layer neural
network to serve as a (somewhat) deep neural net. This model also used ReLU non-linearities, and
had hidden layers of sizes 2500, 2500, 2500, and 1250. The �ve-layer network, while not particularly
deep compared to, e.g., state of the art computer vision models, was still in the domain where more
complex representations could be learned, and vanishing gradients had to be accounted for.

Model training

We trained our models via a maximum of 50 epochs of mini-batch stochastic gradient descent in
PyTorch [30]. Our models minimized the cross-entropy loss using an Adam [31] optimizer. They also
used inverse frequency weighting to avoid giving more weight to more common classes. To regularize
the models, we used early stopping and gradient clipping during the training process. The only
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training di�erences between the models were that the two neural nets used dropout [32] with a
probability of 0.5, and the deeper network used batch normalization [33] to mitigate the vanishing
gradient problem.

We ensured the results were deterministic by setting the Python, NumPy, and PyTorch random seeds
for each run, as well as setting the PyTorch backends to deterministic and disabling the benchmark
mode. The learning rate and weight decay hyperparameters for each model were selected via nested
cross-validation over the training folds at runtime, and we tracked and recorded our model training
progress using Neptune [34]. We also used Limma[24] to remove linear signal associated with tissues
in the data. More precisely, we ran the ‘removeBatchE�ect’ function on the training and validation sets
separately, using the tissue labels as batch labels.

Model Evaluation

In our analyses we used �ve-fold cross-validation with study-wise data splitting. In a study-wise split,
the studies are randomly assigned to cross-validation folds such that all samples in a given study end
up in a single fold (�g. 1 B).

Hardware 
Our analyses were performed on an Ubuntu 18.04 machine and the Colorado Summit compute
cluster. The desktop CPU used was an AMD Ryzen 7 3800xt processor with 16 cores and access to 64
GB of RAM, and the desktop GPU used was an Nvidia RTX 3090. The Summit cluster used Intel Xeon
E5-2680 CPUs and NVidia Tesla K80 GPUs. From initiating data download to �nishing all analyses and
generating all �gures, the full Snakemake [35] pipeline took around one month to run.

Recount3 tissue prediction 
In the Recount3 setting, the multi-tissue classi�cation analyses were trained on the 21 tissues (see
Supp. Methods) that had at least ten studies in the dataset. Each model was trained to determine
which of the 21 tissues a given expression sample corresponded to.

To address class imbalance, our models’ performance was then measured based on the balanced
accuracy across all classes. Unlike raw accuracy, balanced accuracy (the mean across all classes of the
per-class recall) isn’t predominantly determined by performance on the largest class in an imbalanced
class setting. For example, in a binary classi�cation setting with 9 instances of class A and 1 instance of
class B, successfully predicting 8 of the 9 instances of class A and none of class B yields an accuracy of
0.8 and a balanced accuracy of 0.44.

The binary classi�cation setting was similar to the multi-class one. The �ve tissues with the most
studies (brain, blood, breast, stem cell, and cervix) were compared against each other pairwise. The
expression used in this setting was the set of samples labeled as one of the two tissues being
compared.

The data for both settings were split in a strati�ed manner based on their study.

GTEx classi�cation 
The multi-tissue classi�cation analysis for GTEx used all 31 tissues. The multiclass and binary settings
were formulated and evaluated in the same way as in the Recount3 data. However, rather than being
split study-wise, the cross-validation splits were strati�ed according to the samples’ donors.

Simulated data classi�cation/sex prediction 
The sex prediction and simulated data classi�cation tasks were solely binary. Both settings used
balanced accuracy, as in the Recount3 and GTEx problems.
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Pretraining 
When testing the e�ects of pretraining on the di�erent model types, we split the data into three sets.
Approximately forty percent of the data went into the pretraining set, forty percent went into the
training set, and twenty percent went into the validation set. The data was split such that each study’s
samples were in only one of the three sets to simulate the real-world scenario where a model is
trained on publicly available data and then �ne-tuned on a dataset of interest.

To ensure the results were comparable, we made two copies of each model with the same weight
initialization. The �rst copy was trained solely on the training data, while the second was trained on
the pretraining data, then the training data. Both models were then evaluated on the validation set.
This process was repeated four more times with di�erent studies assigned to the pretraining, training,
and validation sets.

Conclusion

We performed a series of analyses to determine the relative performance of linear and non-linear
models across multiple tasks. Consistent with previous papers [15,16], linear and non-linear models
performed roughly equivalently in a number of tasks. That is to say that there are some tasks where
linear models perform better, some tasks where non-linear models have better performance, and
some tasks where both model types are equivalent.

However, when we removed all linear signal in the data, we found that residual non-linear signal
remained. This was true in simulated data as well as GTEx and Recount3 data across several tasks.
These results also held in altered problem settings, such as using a pretraining dataset before the
training dataset and using sample-wise data splitting instead of study-wise splitting. This consistent
presence of non-linear signal demonstrated that the similarity in performance across model types
was not due to our problem domains having solely linear signals.

Given that non-linear signal is present in our problem domains, why doesn’t that signal allow non-
linear models to make better predictions? Perhaps the signal is simply drowned out. Recent work has
shown that only a fraction of a percent of gene-gene relationships have strong non-linear correlation
despite a weak linear one [23].

One limitation of our study is that the results likely do not hold in an in�nite data setting. Deep
learning models have been shown to solve complex problems in biology and tend to signi�cantly
outperform linear models when given enough data. However, we do not yet live in a world in which
millions of well-annotated examples are available in many areas of biology. Our results are generated
on some of the largest labeled expression datasets in existence (Recount3 and GTEx), but our tens of
thousands of samples are far from the millions or billions used in deep learning research.

We are also unable to make claims about all problem domains. There are many potential
transcriptomic prediction tasks and many datasets to perform them on. While we show that non-
linear signal is not always helpful in tissue or sex prediction, and others have shown the same for
various disease prediction tasks, there may be problems where non-linear signal is more important.

Ultimately, our results show that task-relevant non-linear signal in the data, which we con�rm is
present, does not necessarily lead non-linear models to outperform linear ones. Additionally, our
results suggest that scientists making predictions from expression data should always include simple
linear models as a baseline to determine whether more complex models are warranted.

Code and Data Availability
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The code, data, and model weights to reproduce this work can be found at
https://github.com/greenelab/linear_signal. Our work meets the bronze standard of reproducibility
[36] and ful�lls aspects of the silver and gold standards including deterministic operation and an
automated analysis pipeline.
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Figure 5:   
Comparison of models’ binary classi�cation performance on Recount3 data

Signal removal

While it’s possible to remove signal in the full dataset or the train and validation sets independently,
we decided to do the latter. We made this decision because we observed potential data leakage when
removing signal from the entire dataset in one go (supp. �g. 6).

Figure 6:   
Full dataset signal removal in a dataset without signal
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Figure 7:   
Comparison of models’ binary classi�cation performance before and after removing linear signal 

Samplewise splitting
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Figure 8:   
Performance of Recount3 multiclass prediction with samplewise train/val splitting

Recount3 Pretraining

Figure 9:   
Performance of Recount3 multiclass prediction with pretraining

Methods

Recount3 tissues used

The tissues used from Recount3 were blood, breast, stem cell, cervix, brain, kidney, umbilical cord,
lung, epithelium, prostate, liver, heart, skin, colon, bone marrow, muscle, tonsil, blood vessel, spinal
cord, testis, and placenta.
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