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Abstract 
 

Humans are born with very low contrast sensitivity, meaning that developing infants experience 
the world “in a blur”. Is this solely a byproduct of maturational processes or is there some 
functional advantage for beginning life with poor vision? We explore whether reduced visual 
acuity as a consequence of low contrast sensitivity facilitates the acquisition of basic-level visual 
categories and, if so, whether this advantage also enhances subordinate-level category learning as 
visual acuity improves. Using convolutional neural networks (CNNs) and the ecoset dataset to 
simulate basic-level category learning, we manipulated model training curricula along three 
dimensions: presence of blurred inputs early in training, rate of blur removal over time, and 
grayscale versus color inputs. We found that a training regimen where blur starts high and is 
gradually reduced over time – as in human development – improves basic-level categorization 
performance relative to a regimen in which non-blurred inputs are used throughout. However, 
this pattern was observed only when grayscale images were used (analogous to the low 
sensitivity to color infants experience during early development). Importantly, the observed 
improvements in basic-level performance generalized to subordinate-level categorization as well: 
when models were fine-tuned on a dataset including subordinate-level categories (ImageNet), we 
found that models initially trained with blurred inputs showed a greater performance benefit than 
models trained solely on non-blurred inputs. Consistent with several other recent studies, we 
conclude that poor visual acuity in human newborns confers multiple advantages, including, as 
demonstrated here, more rapid and accurate acquisition of visual object categories at multiple 
hierarchical levels. 
 

Author Summary 
 
Why do humans start life with extremely poor vision? The common evolutionary story is that 
head size is small to accommodate the development of human-level intelligence. However, there 
is growing evidence that beginning life in a premature state confers short-term advantages. The 
“starting small” principle states that learning can be facilitated by restricted or impoverished 
inputs that reduce the learning complexity. We suggest that blurred vision during early 
development biases learning toward shape features, which organize objects naturally into “basic-
level” categories that are the foundation of human cognition (e.g., birds, cars, etc.). Such 
categories are defined by their visual similarity in global object shape. Since blurring restricts 
visual inputs to emphasize shape information, it should enhance the learning of basic-level 
categories. We trained artificial neural-network models on basic-level categorization using either 
blurred or non-blurred color or grayscale images and found that models trained with blurred 
images outperformed models trained with non-blurred images, but only for grayscale. These 
same models performed better in subsequent “subordinate-level” tasks that required 
discriminating between objects within a basic-level category. Our simulations provide evidence 
that initially poor vision in infants has an important functional role in organizing knowledge 
about complex environments. 
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Introduction 
 
Why do human infants start life with such poor vision? Our altricial state at birth is often 
attributed to our extreme intelligence and the push “to be born even earlier to accommodate their 
[human infants] larger brains” (Piantadosi & Kidd, 2016). However, we posit that beyond 
providing an opportunity for avaricious corporations to sell “enrichment” toys to overachieving 
parents, low vision at the earliest stages of development facilitates the infant’s acquisition of 
basic-level visual categories. As an early learning objective, basic-level categories are at the core 
of the acquisition of stable mental concepts and foundational for naturally organizing large 
numbers of similar objects into behaviorally-relevant semantic clusters (e.g., “apple”, “table”, 
“fish”, etc.; Rosch et al., 1976). In their seminal paper, Rosch et al. (1976) propose that “Basic 
objects are the categories at the level of abstraction for which the cue validity of categories is 
maximized. Categories at higher levels of abstraction have lower cue validity than the basic 
because they have fewer attributes in common; categories subordinate to the basic have lower 
cue validity than the basic because they share most attributes with contrasting subordinate 
categories.” The question then becomes, what are the optimal set of visual attributes to form 
stable and functional categories? Rosch et al. (1976) suggest that the “shapes of objects” should 
exhibit a correlational structure reflecting high within-category similarity. Operationally, Rosch 
et al. define shape as the outlines or silhouettes of objects once their orientations have been 
aligned and their size normalized (Fig. 1A). 
 
Several subsequent studies lend support to the proposal that information about basic-level 
categories is carried by the coarse outlines/silhouettes of objects – which approximate the 
outputs of low spatial-frequency filtered versions of images. Cutzu and Tarr (1997) used a 
simple computational model of silhouette similarity and found that “views of objects from the 
same basic-level category are more similar to each other than to views of objects from different 
categories” (see also Gdalyahu & Weinshall, 1996). Inspired by this finding and related results, 
they suggest that human infants may perform binary basic-level categorization tasks (e.g., cats 
vs. dogs) based primarily on the information carried by object silhouettes. This prediction was 
borne out in Quinn, Eimas and Tarr (2001) who found that 3 and 4-month-old infants were able 
to form categorical representations for cats versus dogs based on object silhouettes. Although 
narrow in scope due to the use of only two categories and a simple pairwise discrimination task, 
this result does lend credence to the hypothesis that global outline shape may be critical for 
basic-level categorization. Reinforcing this point, French et al. (2002) observed that using input 
images filtered to remove high spatial frequencies – thereby emphasizing coarse outline shape 
over finer image details – improved an autoencoder’s ability to discriminate between the same 
cat and dog images as used in Quinn et al.’s (2001) study. 
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Fig 1. Diagrams depicting our experiment and rationale. (A) Rosch et al.’s stimulus images depicting exemplars 
from four basic-level categories within four superordinate categories (rows; adapted from Fig. 1, Rosch et al., 1976). 
(B) Schematics illustrating how the blurring parameter sigma (σ), in units of pixels, was varied over time in the three 
conditions of Experiment 1. In the non-blurred condition (top), sigma was fixed at a small value that results in no 
blurring throughout training, while in the two blur conditions, sigma started at 5 pixels and decreased over the first 
50 epochs of training, corresponding to an increase in spatial acuity over time. See Methods for details. (C-D) 
Example ecoset images from the basic level categories “dog”, “fish”, “car”, “truck”, blurred at three example values 
for sigma (σ). Note that larger sigma values give rise to blurrier images, while σ = 0 results in an intact, unblurred 
image. (C) Examples of images in the grayscale condition. (D) The same images in the color condition.  
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One concern is that in both of these studies, only a pairwise discrimination was tested: 
consequently, it is possible that the visual features supporting the discrimination between these 
particular 18 cats and 18 dogs do not generalize to the more complex space of generic basic-level 
categories. A second concern is that both studies used images of single objects against white 
backgrounds. As such, the discrimination task did not require visual object segmentation or 
figure-ground processing. That is, the stimulus images were inherently biased towards outline 
shape beyond what would be expected from natural images (which depict objects in the context 
of rich and complex visual environments; e.g., Figs. 1C-D). In sum, while these two studies are 
consistent with our argument, there is, to date, no robust demonstration as to whether 
information carried in the global shapes of objects is privileged with respect to acquiring basic-
level category knowledge. 
 
Stepping back, it is axiomatically true that the human visual system does not process images to 
extract the global shapes or silhouettes of objects. Our visual systems are built from a complex 
hierarchy of overlapping spatially-tuned neurons, the earliest of which respond to roughly 
circular regions of space and serve as spatial frequency filters (Hubel & Wiesel, 1959). Thus, as 
an approximation to global shape, a population of appropriately tuned neurons will produce a 
low-pass filtered image which will lack fine-grained details and which will highlight local 
regions of high contrast. Outline shapes or silhouettes similarly highlight global shape and 
contrast boundaries, but at the expense of any internal information. In this regard, using outline 
shapes or silhouettes as test stimuli further biases observers towards a singular aspect of object 
appearance in that object “interiors” lack even low-pass visual information. 
 
In this context, we suggest that the basis of basic-level categorization within the human visual 
system is more plausibly anchored in images that are biased towards low-pass, high contrast 
information – a transform that emphasizes global shape and high contrast shape boundaries. 
Practically speaking, within our study we functionally approximate the visual experience of 
human infants by low-pass filtering input images – commonly referred to as “blurring”. As 
mentioned previously, human infant vision is blurry at birth. That is, it is much less sensitive to 
high spatial frequencies, but grows progressively more sensitive to higher spatial frequencies 
(and more adult-like) over the course of development (Dobson & Teller, 1978; Brown & 
Lindsey, 2009). More generally, as reviewed by Brown and Lindsey (2009), sensitivity to light, 
color, and contrast are all much lower in infants than as measured in adults. Underlying these 
limitations, infant contrast sensitivity is incredibly poor, measuring 50 times lower than adults at 
three months of age. Relevant to the manipulations used in our study, there is also evidence that 
the infant contrast sensitivity function is not only lower, but is shifted to lower spatial 
frequencies. Thus, at birth human infants experience a relatively blurry and colorless world that 
only improves slowly over the course of development – adult levels are not attained until at least 
three years of age. 
 
From a theoretical perspective, we propose that poor vision at birth is not epiphenomenal. 
Rather, it is a functional constraint that provides a “leg up” for learning foundational knowledge 
about the world in the form of basic-level visual categories. Our proposal is an instance of the 
“Starting Small” principle put forward by Elman (1993). That is, initial information restriction in 
inputs may facilitate learning in terms of both rate of acquisition and ultimate performance. 
Intuitively, our argument is as follows. Basic-level categories form the conceptual “scaffolding” 
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for much of our semantic knowledge (Rosch et al., 1976). Consequently, we assume that a core 
objective of early human development is to acquire robust basic-level categories – primarily 
through visual experience. Yet contrary to this goal, the visual world presents a complex, highly-
detailed environment. While some attributes of this environment help to specify the basic-level 
structure of the world – through shared features across within-category exemplars – other 
attributes detract from learning this structure. In particular, fine-grained details of objects such as 
subtle shape variations and, especially for non-living things, colors or surface textures, often vary 
across category instances. As such, fine-grained features frequently increase the dissimilarity 
between items within a basic-level category. Thus, object information carried by high spatial 
frequencies may be detrimental to learning robust categories. 
 
How then, does the infant learner select visual attributes appropriate to the learning objective? 
One possibility is that selective attention/inattention serves to orient the infant to low spatial 
frequencies in visual inputs. While such biasing might be theoretically achievable, it would 
require a great deal of “neural machinery” – a complex system devoted to identifying, orienting, 
and selecting across challenging visual inputs. In contrast (sic), the same end goal may be 
achieved in a straightforward manner by limiting contrast sensitivity at birth, but allowing it to 
improve over the course of development. Under this view, the limitation does not lie in the 
infant’s visual abilities per se, but rather in the way visual percepts are processed by the infant’s 
maturing visual system. Supporting this conjecture, Brown and Lindsey (2009) present evidence 
for a “critical immaturity that limits infant contrast sensitivity”. Moreover, they conclude that 
this limitation is a mid-level phenomenon and that “there is little effect of inattentiveness” in 
alert infants. As such, human infants are fully capable of visually exploring their surrounding 
environment (and, as a consequence, acquiring category knowledge), but their inputs are biased 
towards lower spatial frequencies, high contrast, and poor color perception due to intrinsic 
properties of their developing visual systems. 
 
As antecedents to our present conjecture regarding basic-level category acquisition, the 
developmental trajectory of early vision has been shown to impact a variety of other visual 
domains. Notably, face recognition abilities have been found to interact with acuity in multiple 
ways. First, continually poor or unusually poor vision in infancy may also hinder the acquisition 
of adult-typical face recognition abilities (Maurer, Mondloch, & Lewis, 2007). For example, 
individuals who were treated for bilateral congenital cataracts early in life exhibit abnormal 
neural responses and deficits in face processing despite restored normal vision (Geldart et al., 
2002; Putzar, Hötting, & Röder, 2010; de Heering & Maurer, 2014). Thus, a normal trajectory of 
improving contrast sensitivity (and associated other visual abilities) in early development is 
critical for normal visual recognition in adulthood, particularly for face individuation (Lewis & 
Maurer, 2009). Building on this finding, Vogelsang et al. (2018) tested the impact of blurred 
inputs during initial learning in a convolutional neural network performing face recognition. 
Similar to our hypothesis, they concluded that the “initial period of low retinal acuity 
characteristic of normal visual development induces extended spatial processing in the cortex 
that is important for configural face judgments”. That is, visual inputs that are blurry because of 
low acuity at birth facilitate learning critical spatial aspects of face processing that are essential 
for face identification abilities in adults. Supporting this conclusion, Jang and Tong (2021) 
likewise trained a convolutional neural network with images of both faces and objects that were 
initially blurred, but that, over training, became progressively less blurry. They found that the 
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trained network’s recognition of faces, but not objects, was invariant over blur. Consistent with 
Vogelsang et al., Jang and Tong concluded that the holistic processing of faces benefits from 
initially poor vision in human infants. 
 
Early experience with blurry images may also improve the robustness of visual recognition 
across image degradation. This is supported by a recent study by Avberšek et al. (2021), who 
used a coarse-to-fine image training regimen with multiple CNN models. More specifically, they 
attempted to mirror the trajectory of improving contrast sensitivity over early human 
development by initially training their models only with lower spatial frequency filtered images 
and then gradually introducing higher spatial frequencies as training progressed. As with other 
forms of invariance in CNNs, progressive training for a given perceptual dimension where 
variation is explicit (i.e., by isolating low spatial frequencies at the beginning of training) confers 
stronger invariance over that dimension. That is, Avberšek et al. found that models trained using 
a coarse-to-fine regimen performed significantly better on blurred images during validation 
testing. However, in contrast to the results we will discuss below, these benefits only maintained 
if blurred images were included throughout training. As such, invariance to image resolution 
may be learned differently in CNNs and in human infants. 
 
Finally, as observed by Rosch et al. (1976), conceptual knowledge is hierarchical and includes 
finer-grained, or “subordinate” level, visual categories. As such, the human infant must 
ultimately acquire more than basic-level recognition skills. In particular, throughout the course of 
development and into adulthood, we also learn to differentiate between instances within basic-
level categories. For example, imagine images of a Border Collie and a Siberian Husky. The 
general shapes at lower spatial frequencies of the two breeds of dogs are similar and, 
consequently, focusing on global shape information will facilitate their categorization as 
members of the same basic-level category, “dog”. On the other hand, differentiating between the 
two dog breeds necessitates drawing on details as carried by high spatial frequencies, for 
example fur texture, coloring, or more subtle shape differences such as snout size. Consistent 
with the conclusions above, improvement in contrast sensitivity and associated visual abilities, 
such as acuity, is essential for attaining adult-like category knowledge. Thus, the overall 
trajectory of visual development appears to be as functionally important as is the initial starting 
point. 
 
Until recently it would have been impossible to address questions regarding different human 
developmental trajectories in any practical or ecological sense. While studies relying on 
recovered sight in older children or adults are somewhat informative, they are necessarily limited 
in their conclusions because of concurrent maturational changes that occur regardless of the 
structure of perceptual inputs (Maurer et al., 2007). However, the tools available for studying 
learning from experience have transformed over the last decade due to the rapid advance of 
artificial intelligence and computer vision in the form of deep convolutional neural networks 
(CNNs). Critically, CNNs have enabled the large-scale study of visual (and other domains of) 
learning at levels approaching human performance for many vision tasks (Bengio, LeCun, & 
Hinton, 2015). Thus, as a starting point, CNNs provide models that are high-performing 
approximations of human behavior for some tasks, for instance, object classification – whether 
they do so using the same computational principles as humans is an open question. One piece of 
evidence in favor of shared principles across artificial models and biological systems is that goal-
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driven CNNs trained on an object categorization task common to human visual behavior appear 
to learn object representations quite similar to neural representations of the same objects 
(Yamins & DiCarlo, 2016). That is, a wide array of studies have found that CNNs are able to 
account for much of the neural response variance in object viewing tasks as measured by fMRI 
in humans or by neurophysiological recordings in monkeys (Yamins et al., 2014; Kubilus et al., 
2016). Given these similarities, CNN models provide an experimental setting in which to 
explore, using high-performing models and complex, real-world images, how category learning 
is affected by the manipulation of visual attributes such as blur or color. 
 
In sum, we posit that poor infant vision at birth is not altricial by accident or for purely 
physiological reasons. Rather, consistent with past work, poor vision early in development may 
be a functional adaptation that bootstraps faster and more effective learning across multiple 
ecologically critical dimensions. We propose to examine this conjecture using a convolutional 
neural network trained to perform basic-level object categorization, using the ecoset database 
(Mehrer et al., 2020). Importantly, while prior studies exploring potential benefits have focused 
on face recognition, here we focus on general object recognition. Furthermore, our use of the 
ecoset dataset, as opposed to the popular ImageNet dataset which includes both basic- and 
subordinate-level categories, addresses a critical, currently unanswered question of how basic-
level acquisition is impacted by early experience with blurred inputs. These experiments provide 
an assessment of how blurred images at initial learning impact the acquisition of basic-level 
visual categories – an organizing principle of conceptual knowledge that is central to adult 
cognition. 
 
Results 
 
Experiment 1. Models were trained to perform basic-level object categorization across 6 
conditions defined by manipulations of spatial blur and color applied to training images drawn 
from the ecoset dataset (Mehrer et al., 2021; Figs. 1B-D). The spatial blur manipulation was 
intended to assess how the temporal dynamics of acuity changes across learning impact 
performance, by using two different time courses of blur reduction across training: blur 
decreasing linearly over time (linear-blur condition), and blur decreasing logarithmically over 
training (nonlinear-blur condition), in addition to a non-blurred image condition. The 
color/grayscale manipulation was motivated by the fact that color provides additional 
information with respect to object identity (i.e., some categories have highly consistent colors; 
Naor-Raz et al., 2003) as well as the known tendency of CNNs to be biased towards color and 
texture rather than shape (Geirhos et al., 2019). Both of these factors predict that CNNs trained 
with color images will have higher overall accuracy than those trained with grayscale images. In 
contrast, human vision is more shape biased and, critical to our hypothesis, human infants have 
poor color sensitivity (Brown & Lindsey, 2009). As such, our expectation was that we would 
observe stronger benefits for initial blurring in the absence of color.  
 
As shown in Figure 2, both of these predictions were borne out. Across all spatial blur 
conditions, models trained on color images showed higher overall accuracy as compared to 
models trained on grayscale images (Fig. 2).  Furthermore, the effect of blur on model 
performance differed between color and grayscale images. As shown in the left panel of Figure 
2A, when using grayscale images, both the linear-blur and nonlinear-blur models achieved 
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higher accuracy than models trained on non-blurred images, with linear-blur models performing 
slightly better than nonlinear-blur models. This difference between the linear-blur and non-
blurred models manifested early in training, around epoch 25, and remained consistent 
throughout the remainder of training, while the difference between the nonlinear-blur and non-
blurred models appeared later in training, closer to epoch 50, and was less consistent over 
subsequent training. No significant differences between the linear-blur and nonlinear-blur 
models were observed (linear mixed effects model with fixed effects of condition and epoch 
number, evaluated using a sliding window; significant effect of condition, FDR corrected 
ɑ=0.05; for details see Methods). Conversely, as shown in the right panel of Figure 2A, when 
using color images, there was little benefit for blurring training images, with all models 
converging to roughly the same level of performance by epoch 50.  
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To provide a more detailed picture of how the different conditions diverged over time, we 
computed estimated learning rates of each model as the approximate slope of accuracy over time. 
Learning rates peaked around epoch 25, then decreased rapidly, reaching near zero by the end of 
training. For the grayscale models, the linear-blur and nonlinear-blur models each achieved a 
slightly higher peak learning rate than the non-blurred model (Fig. 2B, left). Following this peak, 
the learning rate of the linear model fell slightly below the learning rate of the other two models, 
whereas the learning rate of the nonlinear-blur model remained marginally higher than both 
models. This short-lived dynamic matches the time at which the nonlinear-blur model was able 
to “catch up” with the linear-blur model in terms of validation accuracy. Finally, the learning 
rates of all grayscale models roughly converged by epoch 100. In the color models, the learning 
rate for the nonlinear-blur and non-blurred models both achieved a higher peak learning rate than 
the linear-blur models, but after this peak their learning rates decreased below the learning rate of 
the linear-blur model (Fig. 2B, right). The learning rates of all color models roughly converged 
by epoch 75. 
 
Experiment 2. The results of Experiment 1 indicate that, for grayscale images only, initial 
training with blurred visual inputs facilitates learning basic-level visual categories. In 
Experiment 2, we explored whether the improvements in learning categories at the basic level 
transfer to the acquisition of categories at the subordinate level. To address this question, we 
took the models trained in Experiment 1 and fine tuned them using a new image dataset, 
ImageNet, that included both basic-level and subordinate-level labeled categories. 
 
As in Experiment 1, models pre-trained and fine-tuned with color images reached a higher 
overall accuracy level as compared to models pre-trained and fine-tuned with grayscale images 
(Fig. 3). In terms of the central manipulation in Experiment 2, for both color and grayscale 
images, there was a general benefit of pre-training on ecoset, with all pre-trained models, 
irrespective of the blur condition, showing higher validation accuracy at all time points as 
compared to models with no pre-training. This result is not surprising given that models trained 
from scratch would not have the benefit of previously learned features supporting basic-level 
categorization. More interesting are the observed differences in fine-tuning for grayscale models 
pre-trained with non-blurred images as compared to models pre-trained with blurred images (Fig. 
3A, left). In contrast, few differences in fine-tuning were observed for color models in any pre-
training condition (Fig. 3A, right). 
 
Because differences in pre-training conditions were only observed for grayscale models, the 
following discussion focuses only on results from the grayscale pre-trained models. Across many 
of the time points during fine-tuning, both the linear-blur and the nonlinear-blur models reached 
a higher validation set accuracy as compared to the non-blurred models. This difference was 
more pronounced for the linear-blur models, whose performance was significantly higher than 
the non-blurred model in all time windows. In contrast, the nonlinear-blur models were more 
variable, initially having a similar average validation accuracy as compared to the non-blurred 
models, but then increasing and approaching the accuracy of the linear-blur models after 30 
epochs, and then briefly decreasing to the same accuracy as the non-blurred models. Overall, the 
accuracy of the nonlinear-blur models was significantly higher than the non-blurred models for 
roughly the first half of training, and again for several time windows near the end of the training 
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interval. Finally, there was a significant difference between the linear-blur and nonlinear-blur 
models across several time windows, with better validation accuracy for the linear-blur models. 
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Fig 3. Experiment 2 model performance. Performance is shown for models from Experiment 1 that were fine-
tuned with ImageNet images for 1000-way object categorization. ImageNet contains labels at different category 
levels, with some images labeled at the basic-level and others labeled at the subordinate-level. Fine-tuning was run 
only with non-blurred ImageNet images. Each plotted point is an average across 10 runs of an otherwise identical 
model with different random seeds. Shaded error bars reflect mean ± SEM across these 10 trials. Dots along the top 
of each plot indicate time points at which a linear mixed effects model over a sliding temporal window revealed a 
significant effect of the specified pairwise condition comparison, in either direction (FDR corrected, ɑ=0.05). (A) 
ImageNet validation set accuracy averages. Light gray corresponds to models trained with ecoset non-blurred 
images, blue to models trained with ecoset linear-blur images, green to models trained with ecoset nonlinear-blur 
images, and dark gray corresponds to new models with no pre-training, that is, starting from scratch. Left and right 
plots show averages for models trained using either grayscale images or color images, respectively. Accuracy was 
temporally smoothed to reduce noise. (B) Estimated learning rate computed as slope of accuracy over time. Colors 
correspond to models as in (A). Only pairwise comparisons between different pre-trained models are shown; all pre-
trained models performed significantly better than the no-pre-training models at all timepoints. 
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Fig 4. Experiment 2 model performance by category level. Performance is shown for ImageNet fine-tuned 
models pre-trained with grayscale images split by basic-level and subordinate-level category labeled images from 
ImageNet. Only results from models pre-trained with grayscale images are plotted because few differences were 
observed between models pre-trained with color images (Fig. 3). For grayscale pre-trained models, pre-training with 
blurred images confers similar benefits for basic-level and subordinate-level category labeled images. Validation 
accuracy was re-computed using all object categories and 1000-way categorization for (A) all categories, for (B) 
basic-level labeled object categories, and (C) subordinate-level labeled categories. Bar heights and error bars 
indicate mean ± SEM across 10 trials of each model, light gray dots show accuracy for individual trials. Brackets 
above bars indicate the significance of pairwise comparisons between conditions, assessed using a two-tailed 
independent samples t-test for each pairwise condition comparison (FDR corrected, ɑ=0.05) where * denotes 
a significant difference in either direction and n.s. denotes no significant difference. 
 
Pre-training with blurred images in a basic-level categorization task using ecoset benefits transfer 
performance for ImageNet, a dataset composed of both basic- and subordinate-level labeled 
images. One possibility is that this benefit is driven solely by the basic-level labeled images 
within ImageNet. Alternatively, representations learned during the acquisition of basic-level 
categories with blurred inputs may also confer some benefit for subordinate-level categorization. 
To address these possibilities, we hand-labeled the 1000 categories in ImageNet as either basic 
or subordinate and then re-computed the validation set accuracy for each of our grayscale models 
split by basic and subordinate labeled images. Figure 4 shows these results for each hierarchical 
category level as well as across all categories. Interestingly, differences in accuracy across pre-
training conditions were similar for basic- and subordinate-level categories (as well as their 
aggregate). Again, not surprisingly, the three pre-training conditions showed significantly higher 
accuracy than the trained from scratch models. Most relevant to our current question, for both 
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basic- and subordinate-level labeled images, linear-blur models showed significantly higher 
accuracy than either the non-blurred models or the nonlinear-blur models. This pattern is 
consistent with our earlier observation that linear-blur training with grayscale images produced 
the most robust advantages in basic-level categorization (Fig. 2A, left). Pertinent to the overall 
aims of Experiment 2, these benefits generalize from basic-level categorization to subordinate-
level learning and categorization. Several factors may contribute to this transfer, including the 
initial learning of more robust basic-level categories or implicitly learned shape-biased 
subordinate-level categories acquired during the basic-level task. 
 
Discussion 
 
Human newborns are strikingly helpless at birth – particularly relative to other primate and 
mammalian species. Piantadosi and Kidd (2016) speculate that a positive feedback loop has 
selected for intelligence whereby human infants’ premature state at birth enables the 
development of larger brains (and greater intelligence), but this same helplessness leads to a need 
for superior intelligence in adult caregivers. This account is compelling in terms of explaining 
long-term, evolutionary-scale benefits for altricial human newborns, but it fails to consider 
potential near-term developmental benefits that emerge as a consequence of human infant’s 
relatively underdeveloped cognitive and perceptual mechanisms. That is, additional selective 
pressures may have contributed to the initial state of human newborns and to the richness of 
adult-level conceptual knowledge. 
 
Among a wide variety of desirable traits, superior human intelligence is characterized by 
complex semantics across thousands of categories (Huth et al., 2012). This rich representation of 
conceptual knowledge is grounded in basic-level categories (Rosch et al., 1976) and their rapid 
and stable acquisition in early development is central to building a robust semantic foundation. 
Under this view, we hypothesize that the underdeveloped state of the newborn human visual is 
functional and, among other things, facilitates the infant’s rapid acquisition of basic-level 
categories. The work we present here, along with several related studies (French et al., 2002; 
Vogelsang et al., 2018; Avberšek et al., 2021; Jang & Tong, 2021), supports this hypothesis, 
suggesting that poor infant vision – in the form of low contrast sensitivity – confers multiple 
adaptive benefits to the visual learner. 
 
Within both our current computational experiments and many of these related studies, 
underdeveloped human newborn vision was simulated by restricting visual inputs to low spatial 
frequencies (“blurring”). This transform emphasizes global shape – particularly in an object’s 
bounding contours – because fine-grained shape details and textures are selectively removed 
from the image. As such, the resultant inputs emphasize the kinds of visual information on which 
basic-level categories are based (Rosch et al., 1976) and we predicted that the learning of such 
categories would be enhanced when training with blurred images relative to training with full-
resolution images. 
 
Our prediction was confirmed across both of our experiments. In Experiment 1, training on 
blurred images improved the accuracy of learning for basic-level categories relative to training 
with non-blurred images. In Experiment 2, pre-training on blurred images in a basic-level 
categorization task transferred to and improved the learning of subordinate-level categories 
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relative to pre-training with non-blurred images. However, in both experiments, these benefits 
only manifested when using grayscale, and not color, images. In contrast to human perceivers, 
visual CNNs appear to be biased towards relying on color and texture more than shape (Geirhos 
et al., 2019; Hermann, Chen, & Kornblith, 2020). As such, shape transforms such as blurring 
may have had less effect on model performance in the presence of fine-grained shape and texture 
information. That is, when models have access to color and high spatial frequency information, 
they may learn on the basis of these kinds of features at the expense of other features such as 
global shape. However, one might reasonably ask why color and high spatial frequency 
information should be excluded from initial training given that such models show better overall 
performance? 
 
There are several reasons for this. First, color is quite variable across many, if not most, object 
categories – only a handful show reliable, diagnostic colors (Naor-Raz et al., 2003) – so it may 
not be in a learner’s best interest to attend to color when it provides negative information for the 
majority of categories. Second, as just noted, humans and CNNs learn high-level visual 
representations with different feature biases. Thus, removing color may bring CNNs into better 
alignment with human biases, particularly with infants who are generally more dependent on 
global outline shapes than surface features (Landau et al., 1992). Third, low contrast sensitivity 
in human infants not only affects spatial resolution but also color sensitivity (Brown & Lindsey, 
2009). As such, the learning environment for infants deemphasizes color and CNNs may better 
approximate the experience of human infant learners when color is absent. Moreover, these same 
biases in early development may help to account for the shape bias observed in human adults. 
Returning to the first of these reasons, the variability of color for many basic-level categories 
also points to another potential benefit of low contrast-sensitivity in infants – color may actually 
harm the acquisition of stable and generalizable basic-level categories. Finally, although beyond 
the scope of our current work, we note that the color and texture biases for CNNs as well the 
overall higher performance we observed for color image trained models may reflect 
representational capacity advantages for CNNs over humans. That is, while both humans and 
CNNs appear to learn generalizable models for visual categories, CNNs appear to be better able 
to include, with basic-level representations, specific instances of information that is only useful 
for a subset of the category. 
 
Note that the benefits of training with blurred images only manifested under certain specific 
model training conditions. In particular, using a learning rate scheduler (which sets step size for 
weight updates) in Experiment 1 rendered the effect of blur less apparent as compared to when 
the scheduler was removed. We speculate that using the scheduler may have optimized learning 
to the point that the rapid shift to extremely high performance may have resulted in an 
environment in which there was little room for blurring to further improve performance. In 
contrast, human infant categorization performance is quite poor and only slowly improves – over 
many years – to adult-like levels. One interesting possibility that should be pursued in a new 
study is whether models using a learning rate scheduler, despite high performance, learn less 
robust basic-level category representations. 
 
Another model parameter that had some impact on performance was an advantage for the linear-
blur condition over the nonlinear-blur condition. In the former condition the degree of blur (i.e., 
standard deviation of Gaussian filter) decreased linearly over time, while in the latter condition 
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the degree of blur decreased more quickly at the start of training. Given that the standard 
deviation of the filter in the spatial domain is nonlinearly related to its standard deviation in the 
frequency domain, the nonlinear-blur condition may more closely approximate a linear increase 
in acuity than does the linear-blur condition. Based on the finding that acuity increases 
approximately linearly across  human visual development (Courage & Adams, 1990), we had 
initially hypothesized that our nonlinear-blur models would achieve higher performance than our 
linear-blur models. However, our results showed the opposite. There are multiple plausible 
explanations for such a result. First, CNNs may benefit more from a linear time course of blur 
reduction because neural networks follow somewhat different learning principles than humans. 
Second, it is also possible that our implementation of nonlinear blur was too fast relative to the 
time period in which we implemented blurring of images. In preliminary tests, we found that our 
slowest nonlinear function (with a base of 2) was the most effective out of the three tested 
nonlinear functions. Although it was the best out of the three, given the brief span in which the 
model was trained on blurred images, it is possible that the decrease in blur was still not 
sufficiently gradual for the network to benefit from the biasing provided by blurring. Future 
work should explore models with slower nonlinear blurring functions as well as training on 
blurred images for longer periods of time in order to evaluate how these parameters affect 
performance in nonlinear models. 
 
Interestingly, the results of Experiment 2 suggest that the benefit of early experience with blurred 
images generalizes to subordinate-level categories. Specifically, models initially trained to 
perform basic-level categorization on ecoset showed a boost in ImageNet accuracy over 
randomly initialized models, and that this benefit was largest for models trained with blurred 
images. Critically, this benefit was observed for both basic-level labeled images and subordinate-
level labeled images from ImageNet. Given the assumption that subordinate-level categories are 
defined more by fine-grained shape and surface appearance (Rosch et al., 1976), why does a 
model trained on blurred images facilitate learning subordinate-level categories? We observe that 
there is some similarity in the representations needed for basic-level versus subordinate-level 
classification in that subordinate-level categories are typically refinements of basic-level 
categories. To the extent that this is true (e.g., most dog breeds are all visually recognizable as 
dogs), the basic-level representations learned by the linear-blur and nonlinear-blur models in 
Experiment 1 can be efficiently fine-tuned for a new subordinate-level task in Experiment 2. 
However, in the case of basic-level categories with subordinate-level members that deviate from 
the general category appearance (e.g., penguins and ostriches do not look like the majority of 
birds), our expectation is that fine-tuning for such subordinate-level categories will not benefit 
from pre-training with blurred images. As future work, fine-grained analyses of category 
learning that consider the specific visual and semantic structures for individual categories will 
help us to better understand how early experience impacts category learning at multiple 
hierarchical levels. 
 
Related to our observation that basic-level pre-training benefits later learning of subordinate-
level categories, a recent study found that training a visual CNN model with superordinate-level 
labeled images (e.g., fruit, animal) followed by basic-level training resulted in a model that was 
highly robust to image perturbations, as well as exhibiting a stronger shape bias as compared to 
models trained without hierarchical labels (Ahn et al., 2021). In tandem with our results, these 
findings highlight the importance of considering the role of different hierarchical levels when 
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creating training paradigms for neural networks. For example, ImageNet includes a mixture of 
basic-level and subordinate-level labels that are not meaningfully differentiated, thereby 
confounding two levels of category learning that are likely to be supported by different visual 
features. At the same time, some ImageNet categories labeled at the subordinate-level may 
effectively function as basic-level categories in that no other subordinate-level categories for 
their parent basic-level category are included in ImageNet. Within the work we presented here, 
we attempted to control for some of these issues in Experiment 1 by using the ecoset dataset 
(Mehrer et al. 2021). Critically, ecoset contains only basic-level labels and is motivated by the 
foundational role that the basic level plays in category learning and adult cognition (Rosch et al., 
1976). Moreover, when using ImageNet in Experiment 2, we explicitly split our results by basic- 
and subordinate-level labeled images. Future work should also explore superordinate-level 
category labels to investigate how early experience with blurred inputs interacts with a 
hierarchical superordinate-to-basic training regimen similar to that used by Ahn and colleagues. 
 
Finally, several recent studies have also investigated how training with blurred images impacts 
learning in neural network models. Avberšek et al. (2021) investigated the effects of training a 
neural network on various regimens of progressively blurry-to-clear images. They were 
particularly interested in how the training regimen impacts a neural network’s processing of high 
and low spatial frequencies, including robustness to blur. Models whose training incorporated 
both blurry and non-blurred images were better able to categorize low-pass filtered versions of 
images than were models whose training included only non-blurred images. At the same time, 
contrary to our results, Avberšek et al. reported, for categorization of un-filtered images, that 
models trained solely on non-blurred images always performed better than models whose 
training incorporated blurred images. Similarly, Jang and Tong (2021) compared the effect of 
blurry-to-clear training on face and object recognition did not observe an overall benefit in 
categorization for blurry-trained models over non-blurred models. While the models used in 
these studies and our present study varied across many model parameters, one plausible 
explanation for the discrepancy between their studies and ours is that we utilized the ecoset 
image database, which includes only basic-level categories, while both the Avberšek et al. and 
Jang and Tong studies used the ImageNet image database. As discussed above, the basic-level 
holds a privileged position in human cognition and may be best captured by features different 
from those best suited to subordinate-level tasks (Rosch et al., 1976). In particular, we suggest 
that blurred inputs only confer a benefit for tasks requiring basic-level categorization in that this 
image transform biases inputs specifically towards the kinds of information theorized to be 
critical to the structure of most basic-level categories. We also note that a particular set of model 
parameters were necessary for the effect of blur to be detected. These factors, along with other 
aspects that differed across studies, for example, network architecture, may have led to different 
outcomes. However, when experimental conditions are specifically targeted at mirroring the 
learning environment of the human infant – not only reducing image resolution, but also 
removing color, and restricting the task to basic-level category learning – we find a clear benefit 
for models whose training includes blurred inputs at initial learning. 
 
In conclusion, our computational simulations support the theory that low visual acuity in early 
development (as a consequence of low contrast sensitivity) is a key factor in infant visual growth 
and cognitive development, providing an early advantage in basic-level category learning. 
Importantly, although blurry inputs were only presented briefly at the start of training, early 
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performance advantages were sustained throughout the duration of basic-level training and 
persisted through the introduction of subordinate-level categorization tasks. Thus, poor vision 
early in life, rather than hindering learning, is a functional adaptation that supports the human 
infant’s acquisition of robust conceptual structures. 
 
Materials and Methods 
 
Our study can be split into two distinct sections. First, Experiment 1, using standard CNNs, 
explores whether using blurred visual inputs during the initial learning of basic-level categories 
enhances either the rate of learning or the attained accuracy in categorization. Second, 
Experiment 2, using the same CNNs trained in Experiment 1, explores whether the basic-level 
representations learned with initially blurred visual inputs will also confer benefits to learning 
subordinate-level categories. 
 
Models and Datasets. For all models in both experiments, we used the ResNet-50 architecture 
(He et. al., 2016) with a learning rate of 0.1 and a standard gradient descent (SGD) optimizer. 
Models were trained using PyTorch version 1.10.0 in Python version 3.7.1, on the Carnegie 
Mellon Neuroscience Institute High Performance Computing Cluster which consists of 21 CPU 
nodes and 12 GPU nodes, 280TB terabytes of shared disk space and 2.8 terabytes of RAM 
(https://ni.cmu.edu/computing/knowledge-base/computing-facilities-description-overview/ ). For 
our SGD optimizer, we set momentum to 0.9 and weight decay to 0.1 . No learning rate 
scheduler was used, a decision motivated by our finding in initial tests that when a scheduler was 
used, all our models performed similarly regardless of the amount of blur applied to images; we 
discuss the implications of this in our Discussion. Individual models were each trained for 300 
epochs (Exp. 1) or 150 epochs (Exp. 2). To train our models, we utilized the ecoset image dataset 
which contains over 1.5 million images drawn from 565 labeled basic-level categories (Mehrer et 
al., 2021) - this resulted in a final output layer of 565 units. In contrast, the more common 
ImageNet image dataset (Deng et al., 2009) contains a mixture of labeled basic- and subordinate-
level categories (e.g., bird species and dog breeds). Precisely because of this mixture of labeled 
categories, ImageNet was used for fine-tuning our models in Experiment 2. To address images in 
ecoset and ImageNet being of variable sizes, we used the PIL image processing library in Python 
to resize each image by center cropping based on the minimum dimension between width and 
height and then resized all images to 224x224 pixels (code available at 
https://github.com/ojinsi/startingblurry). 
 
Experiment 1. To explore the impact of blurring during learning, we trained multiple models on 
image sets defined by different numbers of blurred and non-blurred training images. All models 
were trained on the same 50,000 randomly selected images per epoch, but with different amounts 
of blur applied to the training images during pre-processing. For validation, for each epoch, we 
computed validation set accuracy using the entire ecoset validation set of 28,245 images. Images 
in the validation set for a given epoch were blurred at the same level as were the training images 
for that epoch. The use of 50,000 images per epoch was selected based on a balance between 
having a sufficient number of images to adequately train the model and limiting the number of 
images to allow gradual blur to have some impact on learning. For all blurred models, images 
were blurred for only the first 50 epochs. Pilot testing using blurring for the first 50, 100, 150, 
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200, 250, or 300 epochs in different models revealed that limiting blur to the beginning of 
training – 50 epochs – produced our most robust results. 
 
Blurring was realized by using a Gaussian filter, implemented using the GaussianBlur function in 
the transformations module under Torchvision (a library of Pytorch). This filter applies a low-
pass filter to each image by removing any spatial frequencies finer than the scale of the Gaussian 
(Figs. 1C-D). Implementing a Gaussian blur filter requires calculating sigma (𝜎, which denotes 
the standard deviation of the Gaussian filter, in pixels) and a kernel size value based on the 
epoch. In all blurred models, initially 𝜎 = 5 and was reduced until the 50th training epoch, at 
which point 𝜎 = 0.25 . Our implementation and manipulation of Gaussian blur is similar to the 
manipulations used in past work on how image blur impacts different aspects of visual learning 
(Jang & Tong, 2021; Vogelsang et al., 2018). In different models we used either a linear or a 
logarithmic function to determine the how much the value of 𝜎 was reduced for each subsequent 
epoch. The linear function was defined by calculating the difference between our initial and final 
𝜎 values and dividing by 50, the number of epochs in which images were blurred. The value of 𝜎 
was then decreased by this calculated constant after each epoch. The logarithmic function was 
defined by reducing the value of 𝜎 according to a logarithmic function with a base of 2, which 
results in a reduction in 𝜎 which is larger at the beginning of training (Fig. 1B). Since the 𝜎 of 
our Gaussian kernel is related nonlinearly to the resulting low-pass frequency cutoff of the image 
(our approximation of visual acuity), a logarithmic change in 𝜎 means that the change in acuity 
over time will more closely approximate a linear function, as has been measured from human 
developmental data (Courage & Adams, 1990). For both functions, kernel size was calculated as 
8 times the 𝜎 value plus 1 to ensure that: 1) the kernel size was an odd number; 2) the entire 
kernel was sufficiently large so as to accommodate ±4 standard deviations from the center of the 
filter. 
 
In addition to the amount of blurring applied to each image, we also manipulated the color 
content of images by using either full-color or grayscale images. Our rationale for manipulating 
color was two-fold. First, poor contrast sensitivity in infants also limits their ability to see color 
differences (Brown & Lindsey, 2009). Thus, images absent color in addition to image blur may 
better approximate a human infant’s visual experience in the early months of their development. 
Second, while color can play a role in human categorization (Naor-Raz, Tarr, & Kersten, 2003; 
Kimura et al., 2010), color is not consistent or diagnostic for many basic-level categories. To the 
extent that CNNs tend to overfit, fine-grained details such as color or texture (e.g., Geirhos et. 
al., 2019) may support category learning at the expense of more general shape properties. We 
hypothesized that models trained with grayscale images might show a stronger shape bias and, 
consequently, lead to a larger impact of spatial frequency manipulations on learning.  
 
In total, we ran six model conditions: three blur conditions, non-blurred (normal unfiltered 
inputs throughout training), linear-blur (a linear decrease in blur over the first 50 training 
epochs), and nonlinear-blur (a logarithmic decrease in blur over the first 50 training epochs), 
crossed with two color conditions, color and grayscale images. For each of these six conditions, 
we ran 10 replicates (“trials”) of the otherwise identical model with different random seeds. To 
ensure comparability of our results across conditions, we used the same random images for 
epoch during training and the complete validation set after each training epoch (although the 
appearance of each image in terms of blur and color differed based on the condition). 
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For the purpose of visualization and statistical analyses, we temporally smoothed the validation 
accuracy results for each individual model, by computing the moving average over a sliding 
window of 20 epochs. All subsequent statistical analyses were then performed on this smoothed 
data. Learning rate was then estimated based on this temporally-smoothed data by finding the 
difference in validation accuracy between neighboring epochs (i.e., the approximate slope of the 
accuracy), and then applying a second moving average filter with a window size of 20 epochs. 
For both the accuracy and learning rate values, we then tested for significant differences between 
conditions at each timepoint by using a linear mixed effects model, implemented using the 
Python package statsmodels. Specifically, we used a sliding window where 20 epochs were 
considered at a time, and we constructed a model where condition and epoch number were 
modeled as fixed effects (categorical and continuous, respectively), while the trial number was 
modeled as a random effect. We used this analysis to obtain a coefficient and p-value for the 
effect of condition, for each possible pairwise condition comparison (non-blurred vs. linear-blur, 
non-blurred vs. nonlinear-blur, linear-blur vs. nonlinear-blur). Comparisons were always done 
between different blur conditions within the same color condition; no direct statistical 
comparisons were done between the grayscale and color models. Finally, the resulting p-values 
from all pairwise comparisons, as shown in Figure 2, were FDR corrected across all epochs 
using the Benjamini-Hochberg procedure implemented in statsmodels, with ɑ=0.05 (Benjamini 
& Hochberg, 1995). 
 
Experiment 2. To explore whether the benefits conferred by using blurred training images for 
basic-level categorization generalize to subordinate-level recognition, we used a transfer learning 
paradigm in which the trained models from Experiment 1 were fine-tuned using ImageNet (Deng 
et. al., 2009). ImageNet was used in for Experiment 2 because, in contrast to ecoset, ImageNet is 
composed of both basic- and subordinate-level category labels. The overall design of Experiment 
2 was intended to maintain consistency with Experiment 1. As in Experiment 1, 50,000 images 
were randomly selected for training per epoch and all models were trained using these same 
images. ImageNet images, which are of variable sizes in their raw form, were resized using the 
same center crop method as used in Experiment 1. Color content was held constant when 
generalizing from ecoset to ImageNet: when using an ecoset pre-trained model that was initially 
trained with grayscale images, all ImageNet fine-tuning was performed with grayscale images, 
and vice versa for color models. To maintain a similar learning environment as in Experiment 1, 
models in Experiment 2 used the same architecture and hyperparameters, except for two 
differences. First, because Experiment 2 is based on fine tuning (and not training from scratch), 
models were trained for only 150 epochs (rather than 300 epochs). Second, because of the larger 
number of classes labeled in ImageNet, models used for fine-tuning in Experiment 2 had a final 
layer with 1,000 units (rather than 565 units). 
 
To determine which models would serve as the base for Experiment 2, we identified the best 
training time point (based on validation accuracy) for each model from Experiment 1, and the 
weights from the model at this time point were stored (note that this could be a different time 
point for different trials in a given condition). In Experiment 2, these stored models were loaded 
into our adjusted architecture and then fine-tuned with ImageNet images. In addition to these 
stored models, we also trained, from scratch with random initial weights, two control models 
with either grayscale or color images. This resulted in eight total models (six pre-trained models 
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and two control models). As in Experiment 1, we ran 10 trials for each condition. For each trial 
in the pre-trained model conditions, the pre-trained model was from the corresponding trial in 
Experiment 1. For example, during trial 4 of Experiment 2, the starting point in each condition 
was trial 4 of the corresponding model from that condition in Experiment 1.  
 
To calculate validation accuracy and learning rate, we used the same averaging techniques as in 
Experiment 1. Statistical tests comparing training conditions were also identical to the analysis 
procedure used in Experiment 1. After running all trials for grayscale models we also performed 
an analysis in which we computed the validation set accuracy separately for the ImageNet 
categories that were defined as “basic-level” versus those defined as “subordinate-level”. We 
focused on the models trained with grayscale images only because these models showed the 
largest effect of blur condition. ImageNet categories were defined as basic or subordinate 
categories based on a manual estimate of how frequently the category name would be used in 
everyday language to refer to the object of interest (Rosch et al., 1976). For example, “bee” and 
“strawberry” were labeled as basic-level, while “Yorkshire terrier” and “Granny-smith apple” 
were labeled as subordinate-level. The full list of basic- and subordinate-level assignments for 
the 1000 ImageNet categories can be accessed in our supplementary materials (Supplementary 
Tables 1-2). 
 
To compute accuracy separately for the basic and subordinate categories, we first identified the 
best training time point with respect to validation accuracy for each individually fine-tuned 
model in Experiment 2, and saved the weights for this best time point for each model. We then 
ran the entire ImageNet validation dataset through the models with these saved weights, and 
computed accuracy for one label at a time. Accuracy was defined as the number of correctly 
classified images of a chosen label divided by the number of images of the chosen label. The 
resulting category-specific accuracy values were then averaged over either all basic-level 
categories or all subordinate-level categories. For comparison, we also computed the overall 
validation accuracy of each model across all categories. To facilitate comparison of this value 
with the basic- and subordinate-level accuracy values, in computing overall validation accuracy 
we always used the same time point as was used to generate the basic- and subordinate-level 
accuracy values (i.e., the time point for each model with the single best validation accuracy 
value). Finally, we performed statistical comparisons between the four different pre-training 
conditions (no pre-training, pre-training with non-blurred images, pre-training with linear-blur 
images, pre-training with nonlinear-blur images) using two-tailed independent samples t-tests 
between each pair of conditions, implemented using the Python package scipy. The resulting p-
values from all pairwise comparisons, as shown in Figure 3, were FDR corrected as described 
above. 
 
Code Availability. All code needed to reproduce our experiments and analyses is publicly 
available on GitHub, at https://github.com/ojinsi/startingblurry.  
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SUPPLEMENTARY MATERIALS 

Supplementary Table 1. ImageNet categories were manually labeled as either basic- or 
subordinate-level (see Methods). To find the folder ID-to-category name correspondence, see the 
file “bOrS.csv” in our Github repository (https://github.com/ojinsi/startingblurry).  

Basic-level ImageNet category labels 
 

cougar gazelle porcupine sea_lion badger 

killer_whale mink jaguar hyena meerkat 

skunk weasel coyote mongoose tiger 

zebra ram orangutan leopard chimpanzee 

guinea_pig gorilla ox hare baboon 

hog snow_leopard hamster Tibetan_terrier water_buffalo 

bison hippopotamus giant_panda armadillo llama 

lion beaver cheetah otter koala 

echidna wallaby platypus wombat revolver 

umbrella schooner soccer_ball accordion ant 

starfish chambered_nautilus laptop strawberry airship 

balloon space_shuttle gondola canoe catamaran 

aircraft_carrier submarine tank missile bobsled 

barrow shopping_cart motor_scooter forklift amphibian 

ambulance cab jeep limousine minivan 

Model_T go-kart golfcart moped snowplow 

fire_engine garbage_truck pickup tow_truck trailer_truck 

streetcar snowmobile tractor mobile_home tricycle 

unicycle bookcase china_cabinet medicine_chest table_lamp 

file park_bench barber_chair throne rocking_chair 

studio_couch toilet_seat desk pool_table dining_table 

entertainment_center wardrobe orange lemon fig 

pineapple banana jackfruit pomegranate acorn 

hip ear corn buckeye organ 

drum gong maraca marimba banjo 

cello violin harp cornet French_horn 

trombone harmonica ocarina panpipe bassoon 
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oboe sax flute cliff valley 

volcano sandbar coral_reef seashore geyser 

hatchet cleaver letter_opener plane power_drill 

lawn_mower hammer corkscrew can_opener plunger 

screwdriver shovel plow chain_saw ostrich 

king_penguin barracouta eel common_iguana Komodo_dragon 

triceratops African_crocodile common_newt whistle wing 

paintbrush hand_blower oxygen_mask snorkel loudspeaker 

microphone screen mouse electric_fan oil_filter 

strainer space_heater stove guillotine barometer 

rule odometer scale digital_clock hourglass 

sundial parking_meter stethoscope syringe magnetic_compass 

binoculars projector sunglasses loupe radio_telescope 

bow cannon assault_rifle rifle projectile 

crane lighter abacus cash_machine slide_rule 

desktop_computer hand-held_computer notebook web_site harvester 

thresher printer slot vending_machine sewing_machine 

joystick switch hook car_wheel paddlewheel 

pinwheel potter's_wheel gas_pump carousel swing 

reel radiator puck hard_disc sunglass 

pick car_mirror solar_dish remote_control disk_brake 

buckle hair_slide knot combination_lock padlock 

nail safety_pin screw muzzle seat_belt 

ski candle jack-o'-lantern spotlight torch 

neck_brace pier tripod maypole mousetrap 

spider_web trilobite harvestman scorpion tick 

centipede isopod crayfish hermit_crab ladybug 

weevil fly bee grasshopper cricket 

walking_stick cockroach mantis cicada leafhopper 

lacewing dragonfly damselfly lycaenid jellyfish 

sea_anemone brain_coral flatworm nematode conch 

snail slug sea_slug chiton sea_urchin 
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sea_cucumber iron espresso_maker microwave Dutch_oven 

rotisserie toaster waffle_iron vacuum dishwasher 

refrigerator washer Crock_Pot frying_pan wok 

caldron coffeepot teapot spatula altar 

triumphal_arch patio steel_arch_bridge suspension_bridge viaduct 

barn greenhouse palace monastery library 

apiary boathouse church mosque stupa 

planetarium restaurant cinema home_theater lumbermill 

coil obelisk totem_pole castle prison 

grocery_store bakery barbershop bookshop butcher_shop 

confectionery shoe_shop tobacco_shop toyshop fountain 

cliff_dwelling yurt dock brass megalith 

banister breakwater dam stone_wall grille 

sliding_door turnstile mountain_tent scoreboard honeycomb 

plate_rack pedestal beacon mashed_potato bell_pepper 

head_cabbage broccoli cauliflower zucchini cucumber 

artichoke cardoon mushroom shower_curtain jean 

carton handkerchief sandal ashcan safe 

plate necklace croquet_ball fur_coat thimble 

pajama running_shoe cocktail_shaker chest manhole_cover 

modem tub tray balance_beam bagel 

prayer_rug kimono hot_pot whiskey_jug knee_pad 

book_jacket spindle ski_mask beer_bottle crash_helmet 

bottlecap tile_roof mask maillot Petri_dish 

football_helmet bathing_cap teddy holster pop_bottle 

photocopier vestment crossword_puzzle golf_ball trifle 

suit water_tower feather_boa cloak drumstick 

shield Christmas_stocking hoopskirt menu stage 

bonnet meat_loaf baseball face_powder scabbard 

sunscreen beer_glass hen-of-the-woods guacamole lampshade 

wool hay bow_tie mailbag water_jug 

bucket dishrag soup_bowl eggnog mortar 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2022.06.22.497205doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497205


29 

trench_coat paddle chain swab mixing_bowl 

potpie wine_bottle shoji bulletproof_vest drilling_platform 

binder cardigan sweatshirt pot birdhouse 

hamper ping-pong_ball pencil_box pay-phone consomme 

apron punching_bag backpack groom bearskin 

pencil_sharpener broom mosquito_net abaya mortarboard 

poncho crutch Polaroid_camera space_bar cup 

racket traffic_light quill radio dough 

cuirass military_uniform lipstick shower_cap monitor 

oscilloscope mitten brassiere French_loaf vase 

milk_can rugby_ball paper_towel earthstar envelope 

miniskirt cowboy_hat trolleybus perfume bathtub 

hotdog coral_fungus bullet_train pillow toilet_tissue 

cassette carpenter's_kit ladle stinkhorn lotion 

hair_spray academic_gown dome crate wig 

burrito pill_bottle chain_mail theater_curtain window_shade 

barrel washbasin ballpoint basketball bath_towel 

cowboy_boot gown window_screen agaric cellular_telephone 

nipple barbell mailbox lab_coat fire_screen 

minibus packet maze pole horizontal_bar 

sombrero pickelhaube rain_barrel wallet cassette_player 

comic_book piggy_bank street_sign bell_cote fountain_pen 

Windsor_tie volleyball overskirt sarong purse 

bolo_tie bib parachute sleeping_bag television 

swimming_trunks measuring_cup espresso pizza breastplate 

shopping_basket wooden_spoon saltshaker chocolate_sauce ballplayer 

goblet gyromitra stretcher water_bottle dial_telephone 

soap_dispenser jersey school_bus jigsaw_puzzle plastic_bag 

reflex_camera diaper Band_Aid ice_lolly velvet 

tennis_ball gasmask doormat Loafer ice_cream 

pretzel quilt maillot tape_player clog 

iPod bolete scuba_diver pitcher matchstick 
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bikini sock CD_player lens_cap thatch 

vault beaker bubble cheeseburger parallel_bars 

flagpole coffee_mug rubber_eraser stole carbonara 

dumbbell     

 
 
Subordinate-level ImageNet category labels 
 
kit_fox English_setter Siberian_husky Australian_terrier English_springer 

grey_whale lesser_panda Egyptian_cat ibex Persian_cat 

malamute Great_Dane Walker_hound Welsh_springer_spani whippet 

Scottish_deerhound African_elephant Weimaraner soft-coated_wheaten_ Dandie_Dinmont 

red_wolf Old_English_sheepdog otterhound bloodhound Airedale 

giant_schnauzer titi three-toed_sloth sorrel black-footed_ferret 

dalmatian black-and-tan_coonho papillon Staffordshire_bullte Mexican_hairless 

Bouvier_des_Flandres miniature_poodle Cardigan malinois bighorn 

fox_squirrel colobus tiger_cat Lhasa impala 

Yorkshire_terrier Newfoundland brown_bear red_fox Norwegian_elkhound 

Rottweiler hartebeest Saluki grey_fox schipperke 

Pekinese Brabancon_griffon West_Highland_white_ Sealyham_terrier guenon 

indri Irish_wolfhound wild_boar EntleBucher French_bulldog 

basenji Bernese_mountain_dog Maltese_dog Norfolk_terrier toy_terrier 

vizsla cairn squirrel_monkey groenendael clumber 

Siamese_cat komondor Afghan_hound Japanese_spaniel proboscis_monkey 

white_wolf ice_bear borzoi toy_poodle Kerry_blue_terrier 

Scotch_terrier Tibetan_mastiff spider_monkey Doberman Boston_bull 

Greater_Swiss_Mounta Appenzeller Shih-Tzu Irish_water_spaniel Pomeranian 

Bedlington_terrier warthog Arabian_camel siamang miniature_schnauzer 

collie golden_retriever Irish_terrier affenpinscher Border_collie 

boxer silky_terrier beagle Leonberg German_short-haired_ 

patas dhole macaque Chesapeake_Bay_retri bull_mastiff 

kuvasz capuchin pug curly-coated_retriev Norwich_terrier 

flat-coated_retrieve keeshond Eskimo_dog Brittany_spaniel standard_poodle 
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Lakeland_terrier Gordon_setter dingo standard_schnauzer Arctic_fox 

wire-haired_fox_terr basset American_black_bear Angora howler_monkey 

chow American_Staffordshi Shetland_sheepdog Great_Pyrenees Chihuahua 

tabby marmoset Labrador_retriever Saint_Bernard Samoyed 

bluetick redbone polecat marmot kelpie 

gibbon miniature_pinscher wood_rabbit Italian_greyhound cocker_spaniel 

Irish_setter dugong Indian_elephant Sussex_spaniel Pembroke 

Blenheim_spaniel Madagascar_cat Rhodesian_ridgeback lynx African_hunting_dog 

langur Ibizan_hound timber_wolf English_foxhound briard 

sloth_bear Border_terrier German_shepherd tusker grand_piano 

airliner warplane fireboat speedboat lifeboat 

yawl trimaran container_ship liner pirate 

wreck half_track dogsled bicycle-built-for-tw mountain_bike 

freight_car passenger_car electric_locomotive steam_locomotive beach_wagon 

convertible racer sports_car moving_van police_van 

recreational_vehicle horse_cart jinrikisha oxcart bassinet 

cradle crib four-poster chiffonier folding_chair 

Granny_Smith custard_apple rapeseed upright chime 

steel_drum acoustic_guitar electric_guitar daisy yellow_lady's_slippe 

alp promontory lakeside cock hen 

brambling goldfinch house_finch junco indigo_bunting 

robin bulbul jay magpie chickadee 

water_ouzel kite bald_eagle vulture great_grey_owl 

black_grouse ptarmigan ruffed_grouse prairie_chicken peacock 

quail partridge African_grey macaw sulphur-crested_cock 

lorikeet coucal bee_eater hornbill hummingbird 

jacamar toucan drake red-breasted_mergans goose 

black_swan white_stork black_stork spoonbill flamingo 

American_egret little_blue_heron bittern crane limpkin 

American_coot bustard ruddy_turnstone red-backed_sandpiper redshank 

dowitcher oystercatcher European_gallinule pelican albatross 

great_white_shark tiger_shark hammerhead electric_ray stingray 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 23, 2022. ; https://doi.org/10.1101/2022.06.22.497205doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.22.497205


32 

coho tench goldfish rock_beauty anemone_fish 

lionfish puffer sturgeon gar loggerhead 

leatherback_turtle mud_turtle terrapin box_turtle banded_gecko 

American_chameleon whiptail agama frilled_lizard alligator_lizard 

Gila_monster green_lizard African_chameleon American_alligator thunder_snake 

ringneck_snake hognose_snake green_snake king_snake garter_snake 

water_snake vine_snake night_snake boa_constrictor rock_python 

Indian_cobra green_mamba sea_snake horned_viper diamondback 

sidewinder European_fire_salama eft spotted_salamander axolotl 

bullfrog tree_frog tailed_frog analog_clock wall_clock 

stopwatch digital_watch computer_keyboard typewriter_keyboard black_and_gold_garde 

barn_spider garden_spider black_widow tarantula wolf_spider 

Dungeness_crab rock_crab fiddler_crab king_crab American_lobster 

spiny_lobster tiger_beetle ground_beetle long-horned_beetle leaf_beetle 

dung_beetle rhinoceros_beetle admiral ringlet monarch 

cabbage_butterfly sulphur_butterfly chainlink_fence picket_fence worm_fence 

spaghetti_squash acorn_squash butternut_squash red_wine  
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Supplementary Table 2. ImageNet categories were manually labeled as either basic- or 
subordinate-level (see Methods). To find the category-to-folder ID name correspondence, see the 
file “bOrS.csv” in our Github repository (https://github.com/ojinsi/startingblurry). 

 

Basic-Level Category ImageNet Folder IDs 

n02125311 n02423022 n02346627 n02077923 n02447366 n02071294 n02442845 n02128925 n02117135 n02138441 

n02445715 n02441942 n02114855 n02137549 n02129604 n02391049 n02412080 n02480495 n02128385 n02481823 

n02364673 n02480855 n02403003 n02326432 n02486410 n02395406 n02128757 n02342885 n02097474 n02408429 

n02410509 n02398521 n02510455 n02454379 n02437616 n02129165 n02363005 n02130308 n02444819 n01882714 

n01872401 n01877812 n01873310 n01883070 n04086273 n04507155 n04147183 n04254680 n02672831 n02219486 

n02317335 n01968897 n03642806 n07745940 n02692877 n02782093 n04266014 n03447447 n02951358 n02981792 

n02687172 n04347754 n04389033 n03773504 n02860847 n02797295 n04204347 n03791053 n03384352 n02704792 

n02701002 n02930766 n03594945 n03670208 n03770679 n03777568 n03444034 n03445924 n03785016 n04252225 

n03345487 n03417042 n03930630 n04461696 n04467665 n04335435 n04252077 n04465501 n03776460 n04482393 

n04509417 n02870880 n03018349 n03742115 n04380533 n03337140 n03891251 n02791124 n04429376 n04099969 

n04344873 n04447861 n03179701 n03982430 n03201208 n03290653 n04550184 n07747607 n07749582 n07753113 

n07753275 n07753592 n07754684 n07768694 n12267677 n12620546 n13133613 n12144580 n12768682 n03854065 

n03249569 n03447721 n03720891 n03721384 n02787622 n02992211 n04536866 n03495258 n03110669 n03394916 

n04487394 n03494278 n03840681 n03884397 n02804610 n03838899 n04141076 n03372029 n09246464 n09468604 

n09472597 n09421951 n09256479 n09428293 n09288635 n03498962 n03041632 n03658185 n03954731 n03995372 

n03649909 n03481172 n03109150 n02951585 n03970156 n04154565 n04208210 n03967562 n03000684 n01518878 

n02056570 n02514041 n02526121 n01677366 n01695060 n01704323 n01697457 n01630670 n04579432 n04592741 

n03876231 n03483316 n03868863 n04251144 n03691459 n03759954 n04152593 n03793489 n03271574 n03843555 

n04332243 n04265275 n04330267 n03467068 n02794156 n04118776 n03841143 n04141975 n03196217 n03544143 

n04355338 n03891332 n04317175 n04376876 n03706229 n02841315 n04009552 n04356056 n03692522 n04044716 

n02879718 n02950826 n02749479 n04090263 n04008634 n03126707 n03666591 n02666196 n02977058 n04238763 

n03180011 n03485407 n03832673 n06359193 n03496892 n04428191 n04004767 n04243546 n04525305 n04179913 

n03602883 n04372370 n03532672 n02974003 n03874293 n03944341 n03992509 n03425413 n02966193 n04371774 

n04067472 n04040759 n04019541 n03492542 n04355933 n03929660 n02965783 n04258138 n04074963 n03208938 

n02910353 n03476684 n03627232 n03075370 n03874599 n03804744 n04127249 n04153751 n03803284 n04162706 

n04228054 n02948072 n03590841 n04286575 n04456115 n03814639 n03933933 n04485082 n03733131 n03794056 
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n04275548 n01768244 n01770081 n01770393 n01776313 n01784675 n01990800 n01985128 n01986214 n02165456 

n02177972 n02190166 n02206856 n02226429 n02229544 n02231487 n02233338 n02236044 n02256656 n02259212 

n02264363 n02268443 n02268853 n02281787 n01910747 n01914609 n01917289 n01924916 n01930112 n01943899 

n01944390 n01945685 n01950731 n01955084 n02319095 n02321529 n03584829 n03297495 n03761084 n03259280 

n04111531 n04442312 n04542943 n04517823 n03207941 n04070727 n04554684 n03133878 n03400231 n04596742 

n02939185 n03063689 n04398044 n04270147 n02699494 n04486054 n03899768 n04311004 n04366367 n04532670 

n02793495 n03457902 n03877845 n03781244 n03661043 n02727426 n02859443 n03028079 n03788195 n04346328 

n03956157 n04081281 n03032252 n03529860 n03697007 n03065424 n03837869 n04458633 n02980441 n04005630 

n03461385 n02776631 n02791270 n02871525 n02927161 n03089624 n04200800 n04443257 n04462240 n03388043 

n03042490 n04613696 n03216828 n02892201 n03743016 n02788148 n02894605 n03160309 n04326547 n03459775 

n04239074 n04501370 n03792972 n04149813 n03530642 n03961711 n03903868 n02814860 n07711569 n07720875 

 

Subordinate-Level ImageNet Folder IDs 

n02119789 n02100735 n02110185 n02096294 n02102040 n02066245 n02509815 n02124075 n02417914 n02123394 

n02110063 n02109047 n02089867 n02102177 n02091134 n02092002 n02504458 n02092339 n02098105 n02096437 

n02114712 n02105641 n02091635 n02088466 n02096051 n02097130 n02493509 n02457408 n02389026 n02443484 

n02110341 n02089078 n02086910 n02093256 n02113978 n02106382 n02113712 n02113186 n02105162 n02415577 

n02356798 n02488702 n02123159 n02098413 n02422699 n02094433 n02111277 n02132136 n02119022 n02091467 

n02106550 n02422106 n02091831 n02120505 n02104365 n02086079 n02112706 n02098286 n02095889 n02484975 

n02500267 n02090721 n02396427 n02108000 n02108915 n02110806 n02107683 n02085936 n02094114 n02087046 

n02100583 n02096177 n02494079 n02105056 n02101556 n02123597 n02105505 n02088094 n02085782 n02489166 

n02114548 n02134084 n02090622 n02113624 n02093859 n02097298 n02108551 n02493793 n02107142 n02096585 

n02107574 n02107908 n02086240 n02102973 n02112018 n02093647 n02397096 n02437312 n02483708 n02097047 

n02106030 n02099601 n02093991 n02110627 n02106166 n02108089 n02097658 n02088364 n02111129 n02100236 

n02486261 n02115913 n02487347 n02099849 n02108422 n02104029 n02492035 n02110958 n02099429 n02094258 

n02099267 n02112350 n02109961 n02101388 n02113799 n02095570 n02101006 n02115641 n02097209 n02120079 

n02095314 n02088238 n02133161 n02328150 n02492660 n02112137 n02093428 n02105855 n02111500 n02085620 

n02123045 n02490219 n02099712 n02109525 n02111889 n02088632 n02090379 n02443114 n02361337 n02105412 

n02483362 n02107312 n02325366 n02091032 n02102318 n02100877 n02074367 n02504013 n02102480 n02113023 

n02086646 n02497673 n02087394 n02127052 n02116738 n02488291 n02091244 n02114367 n02089973 n02105251 
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n02134418 n02093754 n02106662 n01871265 n03452741 n02690373 n04552348 n03344393 n04273569 n03662601 

n04612504 n04483307 n03095699 n03673027 n03947888 n04606251 n03478589 n03218198 n02835271 n03792782 

n03393912 n03895866 n03272562 n04310018 n02814533 n03100240 n04037443 n04285008 n03796401 n03977966 

n04065272 n03538406 n03599486 n03868242 n02804414 n03125729 n03131574 n03388549 n03016953 n03376595 

n07742313 n07760859 n11879895 n04515003 n03017168 n04311174 n02676566 n03272010 n11939491 n12057211 

n09193705 n09399592 n09332890 n01514668 n01514859 n01530575 n01531178 n01532829 n01534433 n01537544 

n01558993 n01560419 n01580077 n01582220 n01592084 n01601694 n01608432 n01614925 n01616318 n01622779 

n01795545 n01796340 n01797886 n01798484 n01806143 n01806567 n01807496 n01817953 n01818515 n01819313 

n01820546 n01824575 n01828970 n01829413 n01833805 n01843065 n01843383 n01847000 n01855032 n01855672 

n01860187 n02002556 n02002724 n02006656 n02007558 n02009912 n02009229 n02011460 n02012849 n02013706 

n02018207 n02018795 n02025239 n02027492 n02028035 n02033041 n02037110 n02017213 n02051845 n02058221 

n01484850 n01491361 n01494475 n01496331 n01498041 n02536864 n01440764 n01443537 n02606052 n02607072 

n02643566 n02655020 n02640242 n02641379 n01664065 n01665541 n01667114 n01667778 n01669191 n01675722 

n01682714 n01685808 n01687978 n01688243 n01689811 n01692333 n01693334 n01694178 n01698640 n01728572 

n01728920 n01729322 n01729977 n01734418 n01735189 n01737021 n01739381 n01740131 n01742172 n01744401 

n01748264 n01749939 n01751748 n01753488 n01755581 n01756291 n01629819 n01631663 n01632458 n01632777 

n01641577 n01644373 n01644900 n02708093 n04548280 n04328186 n03197337 n03085013 n04505470 n01773157 

n01773549 n01773797 n01774384 n01774750 n01775062 n01978287 n01978455 n01980166 n01981276 n01983481 

n01984695 n02165105 n02167151 n02168699 n02169497 n02172182 n02174001 n02276258 n02277742 n02279972 

n02280649 n02281406 n03000134 n03930313 n04604644 n07716906 n07717410 n07717556 n07892512  
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