Why is human vision so poor in early development? The impact of initial sensitivity to low spatial frequencies on visual category learning

Omisa Jinsi[†]

ROLES: Formal analysis, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing

* E-mail: ojinsi@alumni.cmu.edu

AFFILIATION: Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America

Margaret M. Henderson[†]

ROLES: Formal analysis, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing

* E-mail: mmhender@cmu.edu

AFFILIATION: Neuroscience Institute and Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America

Michael J. Tarr

ROLES: Conceptualization, Funding acquisition, Methodology, Writing – original draft, Writing – review & editing * E-mail: michaeltarr@cmu.edu

AFFILIATION: Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America

Abstract

Humans are born with very low contrast sensitivity, meaning that developing infants experience the world "in a blur". Is this solely a byproduct of maturational processes or is there some functional advantage for beginning life with poor vision? We explore whether reduced visual acuity as a consequence of low contrast sensitivity facilitates the acquisition of basic-level visual categories and, if so, whether this advantage also enhances subordinate-level category learning as visual acuity improves. Using convolutional neural networks (CNNs) and the ecoset dataset to simulate basic-level category learning, we manipulated model training curricula along three dimensions: presence of blurred inputs early in training, rate of blur removal over time, and grayscale versus color inputs. We found that a training regimen where blur starts high and is gradually reduced over time – as in human development – improves basic-level categorization performance relative to a regimen in which non-blurred inputs are used throughout. However, this pattern was observed only when grayscale images were used (analogous to the low sensitivity to color infants experience during early development). Importantly, the observed improvements in basic-level performance generalized to subordinate-level categorization as well: when models were fine-tuned on a dataset including subordinate-level categories (ImageNet), we found that models initially trained with blurred inputs showed a greater performance benefit than models trained solely on non-blurred inputs. Consistent with several other recent studies, we conclude that poor visual acuity in human newborns confers multiple advantages, including, as demonstrated here, more rapid and accurate acquisition of visual object categories at multiple hierarchical levels.

Author Summary

Why do humans start life with extremely poor vision? The common evolutionary story is that head size is small to accommodate the development of human-level intelligence. However, there is growing evidence that beginning life in a premature state confers short-term advantages. The "starting small" principle states that learning can be facilitated by restricted or impoverished inputs that reduce the learning complexity. We suggest that blurred vision during early development biases learning toward shape features, which organize objects naturally into "basiclevel" categories that are the foundation of human cognition (e.g., birds, cars, etc.). Such categories are defined by their visual similarity in global object shape. Since blurring restricts visual inputs to emphasize shape information, it should enhance the learning of basic-level categories. We trained artificial neural-network models on basic-level categorization using either blurred or non-blurred color or grayscale images and found that models trained with blurred images outperformed models trained with non-blurred images, but only for grayscale. These same models performed better in subsequent "subordinate-level" tasks that required discriminating between objects within a basic-level category. Our simulations provide evidence that initially poor vision in infants has an important functional role in organizing knowledge about complex environments.

Introduction

Why do human infants start life with such poor vision? Our altricial state at birth is often attributed to our extreme intelligence and the push "to be born even earlier to accommodate their [human infants] larger brains" (Piantadosi & Kidd, 2016). However, we posit that beyond providing an opportunity for avaricious corporations to sell "enrichment" toys to overachieving parents, low vision at the earliest stages of development facilitates the infant's acquisition of basic-level visual categories. As an early learning objective, basic-level categories are at the core of the acquisition of stable mental concepts and foundational for naturally organizing large numbers of similar objects into behaviorally-relevant semantic clusters (e.g., "apple", "table", "fish", etc.; Rosch et al., 1976). In their seminal paper, Rosch et al. (1976) propose that "Basic objects are the categories at the level of abstraction for which the cue validity of categories is maximized. Categories at higher levels of abstraction have lower cue validity than the basic because they have fewer attributes in common; categories subordinate to the basic have lower cue validity than the basic because they share most attributes with contrasting subordinate categories." The question then becomes, what are the optimal set of visual attributes to form stable and functional categories? Rosch et al. (1976) suggest that the "shapes of objects" should exhibit a correlational structure reflecting high within-category similarity. Operationally, Rosch et al. define shape as the outlines or silhouettes of objects once their orientations have been aligned and their size normalized (Fig. 1A).

Several subsequent studies lend support to the proposal that information about basic-level categories is carried by the coarse outlines/silhouettes of objects – which approximate the outputs of low spatial-frequency filtered versions of images. Cutzu and Tarr (1997) used a simple computational model of silhouette similarity and found that "views of objects from the same basic-level category are more similar to each other than to views of objects from different categories" (see also Gdalyahu & Weinshall, 1996). Inspired by this finding and related results, they suggest that human infants may perform binary basic-level categorization tasks (e.g., cats vs. dogs) based primarily on the information carried by object silhouettes. This prediction was borne out in Quinn, Eimas and Tarr (2001) who found that 3 and 4-month-old infants were able to form categorical representations for cats versus dogs based on object silhouettes. Although narrow in scope due to the use of only two categories and a simple pairwise discrimination task, this result does lend credence to the hypothesis that global outline shape may be critical for basic-level categorization. Reinforcing this point, French et al. (2002) observed that using input images filtered to remove high spatial frequencies - thereby emphasizing coarse outline shape over finer image details - improved an autoencoder's ability to discriminate between the same cat and dog images as used in Quinn et al.'s (2001) study.

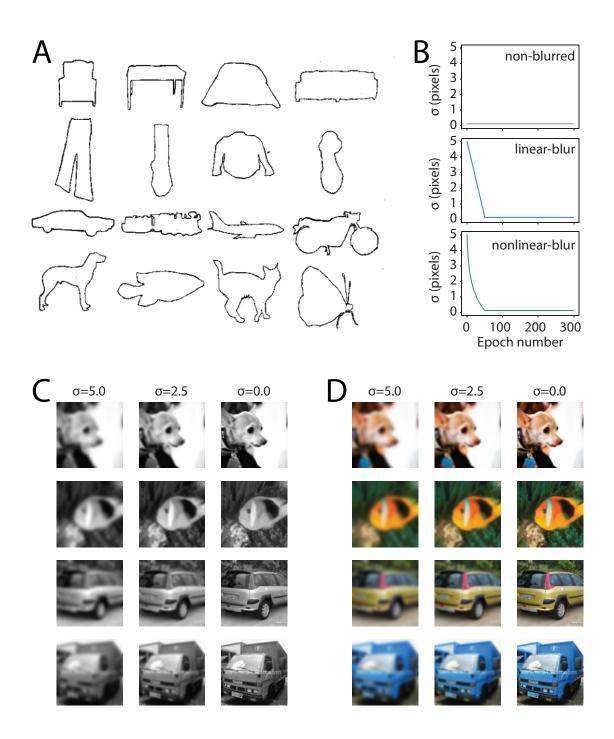


Fig 1. Diagrams depicting our experiment and rationale. (A) Rosch et al.'s stimulus images depicting exemplars from four basic-level categories within four superordinate categories (rows; adapted from Fig. 1, Rosch et al., 1976). **(B)** Schematics illustrating how the blurring parameter sigma (σ), in units of pixels, was varied over time in the three conditions of Experiment 1. In the non-blurred condition (top), sigma was fixed at a small value that results in no blurring throughout training, while in the two blur conditions, sigma started at 5 pixels and decreased over the first 50 epochs of training, corresponding to an increase in spatial acuity over time. See *Methods* for details. **(C-D)** Example ecoset images from the basic level categories "dog", "fish", "car", "truck", blurred at three example values for sigma (σ). Note that larger sigma values give rise to blurrier images, while $\sigma = 0$ results in an intact, unblurred image. **(C)** Examples of images in the grayscale condition. **(D)** The same images in the color condition.

One concern is that in both of these studies, only a pairwise discrimination was tested: consequently, it is possible that the visual features supporting the discrimination between these particular 18 cats and 18 dogs do not generalize to the more complex space of generic basic-level categories. A second concern is that both studies used images of single objects against white backgrounds. As such, the discrimination task did not require visual object segmentation or figure-ground processing. That is, the stimulus images were inherently biased towards outline shape beyond what would be expected from natural images (which depict objects in the context of rich and complex visual environments; e.g., Figs. 1C-D). In sum, while these two studies are consistent with our argument, there is, to date, no robust demonstration as to whether information carried in the global shapes of objects is privileged with respect to acquiring basiclevel category knowledge.

Stepping back, it is axiomatically true that the human visual system does not process images to extract the global shapes or silhouettes of objects. Our visual systems are built from a complex hierarchy of overlapping spatially-tuned neurons, the earliest of which respond to roughly circular regions of space and serve as *spatial frequency* filters (Hubel & Wiesel, 1959). Thus, as an approximation to global shape, a population of appropriately tuned neurons will produce a low-pass filtered image which will lack fine-grained details and which will highlight local regions of high contrast. Outline shapes or silhouettes similarly highlight global shape and contrast boundaries, but at the expense of *any* internal information. In this regard, using outline shapes or silhouettes as test stimuli further biases observers towards a singular aspect of object appearance in that object "interiors" lack even low-pass visual information.

In this context, we suggest that the basis of basic-level categorization within the human visual system is more plausibly anchored in images that are biased towards low-pass, high contrast information – a transform that emphasizes global shape and high contrast shape boundaries. Practically speaking, within our study we functionally approximate the visual experience of human infants by low-pass filtering input images - commonly referred to as "blurring". As mentioned previously, human infant vision is blurry at birth. That is, it is much less sensitive to high spatial frequencies, but grows progressively more sensitive to higher spatial frequencies (and more adult-like) over the course of development (Dobson & Teller, 1978; Brown & Lindsey, 2009). More generally, as reviewed by Brown and Lindsey (2009), sensitivity to light, color, and contrast are all much lower in infants than as measured in adults. Underlying these limitations, infant contrast sensitivity is incredibly poor, measuring 50 times lower than adults at three months of age. Relevant to the manipulations used in our study, there is also evidence that the infant contrast sensitivity function is not only lower, but is shifted to lower spatial frequencies. Thus, at birth human infants experience a relatively blurry and colorless world that only improves slowly over the course of development – adult levels are not attained until at least three years of age.

From a theoretical perspective, we propose that poor vision at birth is not epiphenomenal. Rather, it is a functional constraint that provides a "leg up" for learning foundational knowledge about the world in the form of basic-level visual categories. Our proposal is an instance of the "Starting Small" principle put forward by Elman (1993). That is, initial information restriction in inputs may facilitate learning in terms of both rate of acquisition and ultimate performance. Intuitively, our argument is as follows. Basic-level categories form the conceptual "scaffolding" for much of our semantic knowledge (Rosch et al., 1976). Consequently, we assume that a core objective of early human development is to acquire robust basic-level categories – primarily through visual experience. Yet contrary to this goal, the visual world presents a complex, highly-detailed environment. While some attributes of this environment help to specify the basic-level structure of the world – through shared features across within-category exemplars – other attributes *detract* from learning this structure. In particular, fine-grained details of objects such as subtle shape variations and, especially for non-living things, colors or surface textures, often vary across category instances. As such, fine-grained features frequently *increase* the dissimilarity between items within a basic-level category. Thus, object information carried by high spatial frequencies may be detrimental to learning robust categories.

How then, does the infant learner select visual attributes appropriate to the learning objective? One possibility is that selective attention/inattention serves to orient the infant to low spatial frequencies in visual inputs. While such biasing might be theoretically achievable, it would require a great deal of "neural machinery" – a complex system devoted to identifying, orienting, and selecting across challenging visual inputs. In contrast (sic), the same end goal may be achieved in a straightforward manner by limiting contrast sensitivity at birth, but allowing it to improve over the course of development. Under this view, the limitation does not lie in the infant's visual abilities *per se*, but rather in the way visual percepts are processed by the infant's maturing visual system. Supporting this conjecture, Brown and Lindsey (2009) present evidence for a "critical immaturity that limits infant contrast sensitivity". Moreover, they conclude that this limitation is a mid-level phenomenon and that "there is little effect of inattentiveness" in alert infants. As such, human infants are fully capable of visually exploring their surrounding environment (and, as a consequence, acquiring category knowledge), but their inputs are biased towards lower spatial frequencies, high contrast, and poor color perception due to intrinsic properties of their developing visual systems.

As antecedents to our present conjecture regarding basic-level category acquisition, the developmental trajectory of early vision has been shown to impact a variety of other visual domains. Notably, face recognition abilities have been found to interact with acuity in multiple ways. First, continually poor or unusually poor vision in infancy may also hinder the acquisition of adult-typical face recognition abilities (Maurer, Mondloch, & Lewis, 2007). For example, individuals who were treated for bilateral congenital cataracts early in life exhibit abnormal neural responses and deficits in face processing despite restored normal vision (Geldart et al., 2002; Putzar, Hötting, & Röder, 2010; de Heering & Maurer, 2014). Thus, a normal trajectory of improving contrast sensitivity (and associated other visual abilities) in early development is critical for normal visual recognition in adulthood, particularly for face individuation (Lewis & Maurer, 2009). Building on this finding, Vogelsang et al. (2018) tested the impact of blurred inputs during initial learning in a convolutional neural network performing face recognition. Similar to our hypothesis, they concluded that the "initial period of low retinal acuity characteristic of normal visual development induces extended spatial processing in the cortex that is important for configural face judgments". That is, visual inputs that are blurry because of low acuity at birth facilitate learning critical spatial aspects of face processing that are essential for face identification abilities in adults. Supporting this conclusion, Jang and Tong (2021) likewise trained a convolutional neural network with images of both faces and objects that were initially blurred, but that, over training, became progressively less blurry. They found that the

trained network's recognition of faces, but not objects, was invariant over blur. Consistent with Vogelsang et al., Jang and Tong concluded that the holistic processing of faces benefits from initially poor vision in human infants.

Early experience with blurry images may also improve the robustness of visual recognition across image degradation. This is supported by a recent study by Avberšek et al. (2021), who used a coarse-to-fine image training regimen with multiple CNN models. More specifically, they attempted to mirror the trajectory of improving contrast sensitivity over early human development by initially training their models only with lower spatial frequency filtered images and then gradually introducing higher spatial frequencies as training progressed. As with other forms of invariance in CNNs, progressive training for a given perceptual dimension where variation is explicit (i.e., by isolating low spatial frequencies at the beginning of training) confers stronger invariance over that dimension. That is, Avberšek et al. found that models trained using a coarse-to-fine regimen performed significantly better on blurred images during validation testing. However, in contrast to the results we will discuss below, these benefits only maintained if blurred images were included throughout training. As such, invariance to image resolution may be learned differently in CNNs and in human infants.

Finally, as observed by Rosch et al. (1976), conceptual knowledge is hierarchical and includes finer-grained, or "subordinate" level, visual categories. As such, the human infant must ultimately acquire more than basic-level recognition skills. In particular, throughout the course of development and into adulthood, we also learn to differentiate between instances within basic-level categories. For example, imagine images of a Border Collie and a Siberian Husky. The general shapes at lower spatial frequencies of the two breeds of dogs are similar and, consequently, focusing on global shape information will facilitate their categorization as members of the same basic-level category, "dog". On the other hand, differentiating between the two dog breeds necessitates drawing on details as carried by high spatial frequencies, for example fur texture, coloring, or more subtle shape differences such as snout size. Consistent with the conclusions above, improvement in contrast sensitivity and associated visual abilities, such as acuity, is essential for attaining adult-like category knowledge. Thus, the overall trajectory of visual development appears to be as functionally important as is the initial starting point.

Until recently it would have been impossible to address questions regarding different human developmental trajectories in any practical or ecological sense. While studies relying on recovered sight in older children or adults are somewhat informative, they are necessarily limited in their conclusions because of concurrent maturational changes that occur regardless of the structure of perceptual inputs (Maurer et al., 2007). However, the tools available for studying learning from experience have transformed over the last decade due to the rapid advance of artificial intelligence and computer vision in the form of deep convolutional neural networks (CNNs). Critically, CNNs have enabled the large-scale study of visual (and other domains of) learning at levels approaching human performance for many vision tasks (Bengio, LeCun, & Hinton, 2015). Thus, as a starting point, CNNs provide models that are high-performing approximations of human behavior for some tasks, for instance, object classification – whether they do so using the same computational principles as humans is an open question. One piece of evidence in favor of shared principles across artificial models and biological systems is that goal-

driven CNNs trained on an object categorization task common to human visual behavior appear to learn object representations quite similar to *neural* representations of the same objects (Yamins & DiCarlo, 2016). That is, a wide array of studies have found that CNNs are able to account for much of the neural response variance in object viewing tasks as measured by fMRI in humans or by neurophysiological recordings in monkeys (Yamins et al., 2014; Kubilus et al., 2016). Given these similarities, CNN models provide an experimental setting in which to explore, using high-performing models and complex, real-world images, how category learning is affected by the manipulation of visual attributes such as blur or color.

In sum, we posit that poor infant vision at birth is not altricial by accident or for purely physiological reasons. Rather, consistent with past work, poor vision early in development may be a functional adaptation that bootstraps faster and more effective learning across multiple ecologically critical dimensions. We propose to examine this conjecture using a convolutional neural network trained to perform basic-level object categorization, using the ecoset database (Mehrer et al., 2020). Importantly, while prior studies exploring potential benefits have focused on face recognition, here we focus on general object recognition. Furthermore, our use of the ecoset dataset, as opposed to the popular ImageNet dataset which includes both basic- and subordinate-level categories, addresses a critical, currently unanswered question of how basic-level acquisition is impacted by early experience with blurred inputs. These experiments provide an assessment of how blurred images at initial learning impact the acquisition of basic-level visual categories – an organizing principle of conceptual knowledge that is central to adult cognition.

Results

Experiment 1. Models were trained to perform basic-level object categorization across 6 conditions defined by manipulations of spatial blur and color applied to training images drawn from the ecoset dataset (Mehrer et al., 2021; Figs. 1B-D). The spatial blur manipulation was intended to assess how the temporal dynamics of acuity changes across learning impact performance, by using two different time courses of blur reduction across training: blur decreasing linearly over time (linear-blur condition), and blur decreasing logarithmically over training (nonlinear-blur condition), in addition to a non-blurred image condition. The color/grayscale manipulation was motivated by the fact that color provides additional information with respect to object identity (i.e., some categories have highly consistent colors; Naor-Raz et al., 2003) as well as the known tendency of CNNs to be biased towards color and texture rather than shape (Geirhos et al., 2019). Both of these factors predict that CNNs trained with color images will have higher overall accuracy than those trained with grayscale images. In contrast, human vision is more shape biased and, critical to our hypothesis, human infants have poor color sensitivity (Brown & Lindsey, 2009). As such, our expectation was that we would observe stronger benefits for initial blurring in the absence of color.

As shown in Figure 2, both of these predictions were borne out. Across all spatial blur conditions, models trained on color images showed higher overall accuracy as compared to models trained on grayscale images (Fig. 2). Furthermore, the effect of blur on model performance differed between color and grayscale images. As shown in the left panel of Figure 2A, when using grayscale images, both the linear-blur and nonlinear-blur models achieved

higher accuracy than models trained on non-blurred images, with linear-blur models performing slightly better than nonlinear-blur models. This difference between the linear-blur and nonblurred models manifested early in training, around epoch 25, and remained consistent throughout the remainder of training, while the difference between the nonlinear-blur and nonblurred models appeared later in training, closer to epoch 50, and was less consistent over subsequent training. No significant differences between the linear-blur and nonlinear-blur models were observed (linear mixed effects model with fixed effects of condition and epoch number, evaluated using a sliding window; significant effect of condition, FDR corrected a=0.05; for details see *Methods*). Conversely, as shown in the right panel of Figure 2A, when using color images, there was little benefit for blurring training images, with all models converging to roughly the same level of performance by epoch 50.

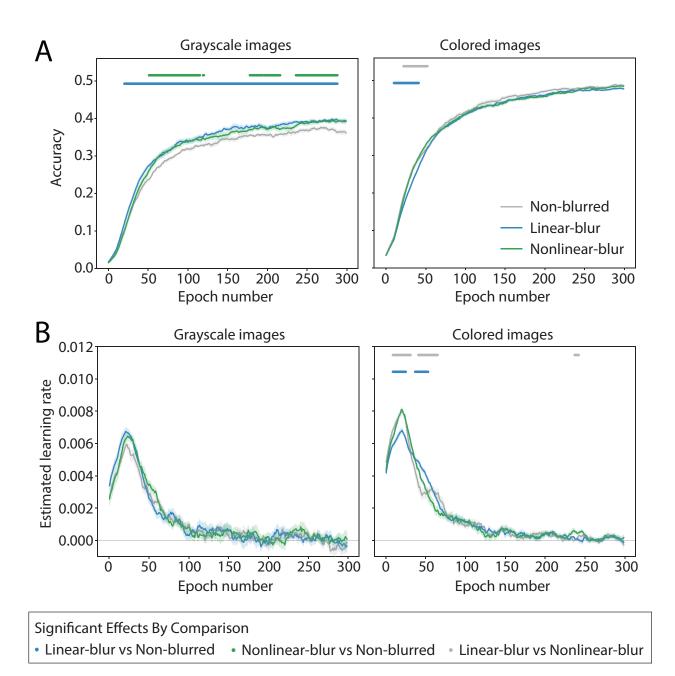


Fig 2. Experiment 1 model performance. Performance is shown over training for models in 6 conditions defined by the factors of blur and color. All models used the ResNet-50 architecture and were trained to perform basic-level object categorization using the ecoset image dataset. Each plotted point is an average across 10 runs of an otherwise identical model with different random seeds. Shaded error bars reflect mean \pm SEM across these 10 trials. Dots along the top of each plot indicate time points at which a linear mixed effects model over a sliding temporal window revealed a significant effect of the specified pairwise condition comparison, in either direction (FDR corrected, a=0.05). (A) Validation set accuracy averages. Gray corresponds to models trained with *non-blurred* images, blue to models trained with images whose blur decreases linearly over the first 50 epochs (*linear-blur* condition), and green to models trained with images whose blur decreases according to a logarithmic function over the first 50 epochs (*nonlinear-blur* condition). Left and right plots show averages for models trained using either grayscale images or color images, respectively. Accuracy was temporally smoothed to reduce noise. (B) Estimated learning rate computed as slope of accuracy over time. Colors correspond to models as in (A).

To provide a more detailed picture of how the different conditions diverged over time, we computed estimated learning rates of each model as the approximate slope of accuracy over time. Learning rates peaked around epoch 25, then decreased rapidly, reaching near zero by the end of training. For the grayscale models, the linear-blur and nonlinear-blur models each achieved a slightly higher peak learning rate than the non-blurred model (Fig. 2B, left). Following this peak, the learning rate of the linear model fell slightly below the learning rate of the other two models, whereas the learning rate of the nonlinear-blur model remained marginally higher than both models. This short-lived dynamic matches the time at which the nonlinear-blur model was able to "catch up" with the linear-blur model in terms of validation accuracy. Finally, the learning rate for the nonlinear-blur and non-blurred models both achieved a higher peak learning rate than the linear-blur models both achieved a higher peak learning rate than the linear-blur and non-blurred models of a curacy. Finally, the learning rate for the nonlinear-blur and non-blurred models both achieved a higher peak learning rate of the linear-blur model south achieved a higher peak learning rate of the linear-blur model south achieved a higher peak learning rate of the linear-blur models, but after this peak their learning rates of all color models roughly converged by epoch 75.

Experiment 2. The results of Experiment 1 indicate that, for grayscale images only, initial training with blurred visual inputs facilitates learning basic-level visual categories. In Experiment 2, we explored whether the improvements in learning categories at the basic level transfer to the acquisition of categories at the subordinate level. To address this question, we took the models trained in Experiment 1 and fine tuned them using a new image dataset, ImageNet, that included both basic-level and subordinate-level labeled categories.

As in Experiment 1, models pre-trained and fine-tuned with color images reached a higher overall accuracy level as compared to models pre-trained and fine-tuned with grayscale images (Fig. 3). In terms of the central manipulation in Experiment 2, for both color and grayscale images, there was a general benefit of pre-training on ecoset, with all pre-trained models, irrespective of the blur condition, showing higher validation accuracy at all time points as compared to models with no pre-training. This result is not surprising given that models trained from scratch would not have the benefit of previously learned features supporting basic-level categorization. More interesting are the observed differences in fine-tuning for grayscale models pre-trained with non-blurred images as compared to models pre-trained with blurred images (Fig. 3A, left). In contrast, few differences in fine-tuning were observed for color models in any pre-training condition (Fig. 3A, right).

Because differences in pre-training conditions were only observed for grayscale models, the following discussion focuses only on results from the grayscale pre-trained models. Across many of the time points during fine-tuning, both the linear-blur and the nonlinear-blur models reached a higher validation set accuracy as compared to the non-blurred models. This difference was more pronounced for the linear-blur models, whose performance was significantly higher than the non-blurred model in all time windows. In contrast, the nonlinear-blur models were more variable, initially having a similar average validation accuracy as compared to the non-blurred models after 30 epochs, and then briefly decreasing to the same accuracy as the non-blurred models. Overall, the accuracy of the nonlinear-blur models for roughly the first half of training, and again for several time windows near the end of the training

interval. Finally, there was a significant difference between the linear-blur and nonlinear-blur models across several time windows, with better validation accuracy for the linear-blur models.

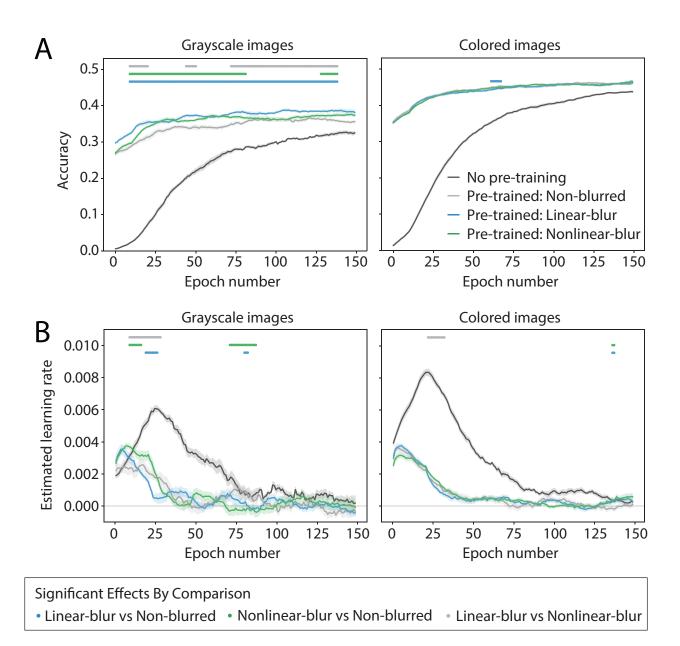


Fig 3. Experiment 2 model performance. Performance is shown for models from Experiment 1 that were finetuned with ImageNet images for 1000-way object categorization. ImageNet contains labels at different category levels, with some images labeled at the basic-level and others labeled at the subordinate-level. Fine-tuning was run only with non-blurred ImageNet images. Each plotted point is an average across 10 runs of an otherwise identical model with different random seeds. Shaded error bars reflect mean \pm SEM across these 10 trials. Dots along the top of each plot indicate time points at which a linear mixed effects model over a sliding temporal window revealed a significant effect of the specified pairwise condition comparison, in either direction (FDR corrected, α =0.05). (A) ImageNet validation set accuracy averages. Light gray corresponds to models trained with ecoset non-blurred images, blue to models trained with ecoset linear-blur images, green to models trained with ecoset nonlinear-blur images, and dark gray corresponds to new models with no pre-training, that is, starting from scratch. Left and right plots show averages for models trained using either grayscale images or color images, respectively. Accuracy was temporally smoothed to reduce noise. (B) Estimated learning rate computed as slope of accuracy over time. Colors correspond to models as in (A). Only pairwise comparisons between different pre-trained models are shown; all pretrained models performed significantly better than the no-pre-training models at all timepoints.

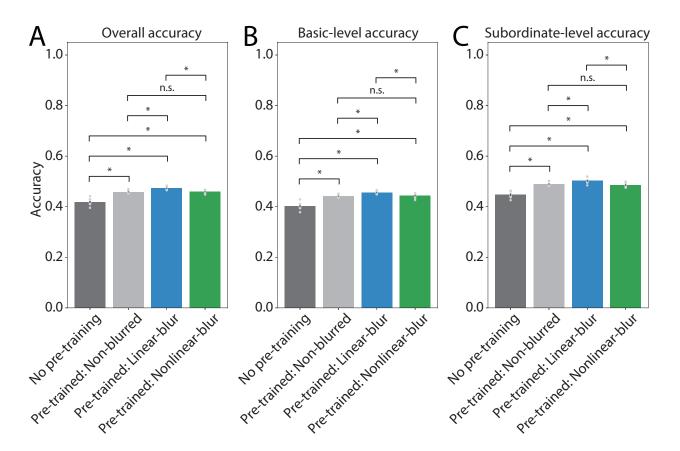


Fig 4. Experiment 2 model performance by category level. Performance is shown for ImageNet fine-tuned models pre-trained with grayscale images split by basic-level and subordinate-level category labeled images from ImageNet. Only results from models pre-trained with grayscale images are plotted because few differences were observed between models pre-trained with color images (Fig. 3). For grayscale pre-trained models, pre-training with blurred images confers similar benefits for basic-level and subordinate-level category labeled images. Validation accuracy was re-computed using all object categories and 1000-way categorization for (**A**) all categories, for (**B**) basic-level labeled object categories, and (**C**) subordinate-level labeled categories. Bar heights and error bars indicate mean \pm SEM across 10 trials of each model, light gray dots show accuracy for individual trials. Brackets above bars indicate the significance of pairwise comparisons between conditions, assessed using a two-tailed independent samples *t*-test for each pairwise condition comparison (FDR corrected, α =0.05) where * denotes a significant difference in either direction and n.s. denotes no significant difference.

Pre-training with blurred images in a basic-level categorization task using ecoset benefits transfer performance for ImageNet, a dataset composed of both basic- and subordinate-level labeled images. One possibility is that this benefit is driven solely by the basic-level labeled images within ImageNet. Alternatively, representations learned during the acquisition of basic-level categorization. To address these possibilities, we hand-labeled the 1000 categories in ImageNet as either basic or subordinate and then re-computed the validation set accuracy for each of our grayscale models split by basic and subordinate labeled images. Figure 4 shows these results for each hierarchical category level as well as across all categories. Interestingly, differences in accuracy across pre-training conditions were similar for basic- and subordinate-level categories (as well as their aggregate). Again, not surprisingly, the three pre-training conditions showed significantly higher accuracy than the trained from scratch models. Most relevant to our current question, for both

basic- and subordinate-level labeled images, linear-blur models showed significantly higher accuracy than either the non-blurred models or the nonlinear-blur models. This pattern is consistent with our earlier observation that linear-blur training with grayscale images produced the most robust advantages in basic-level categorization (Fig. 2A, left). Pertinent to the overall aims of Experiment 2, these benefits generalize from basic-level categorization to subordinate-level learning and categorization. Several factors may contribute to this transfer, including the initial learning of more robust basic-level categories or implicitly learned shape-biased subordinate-level categories acquired during the basic-level task.

Discussion

Human newborns are strikingly helpless at birth – particularly relative to other primate and mammalian species. Piantadosi and Kidd (2016) speculate that a positive feedback loop has selected for intelligence whereby human infants' premature state at birth enables the development of larger brains (and greater intelligence), but this same helplessness leads to a *need* for superior intelligence in adult caregivers. This account is compelling in terms of explaining long-term, evolutionary-scale benefits for altricial human newborns, but it fails to consider potential *near-term* developmental benefits that emerge as a consequence of human infant's relatively underdeveloped cognitive and perceptual mechanisms. That is, additional selective pressures may have contributed to the initial state of human newborns and to the richness of adult-level conceptual knowledge.

Among a wide variety of desirable traits, superior human intelligence is characterized by complex semantics across thousands of categories (Huth et al., 2012). This rich representation of conceptual knowledge is grounded in basic-level categories (Rosch et al., 1976) and their rapid and stable acquisition in early development is central to building a robust semantic foundation. Under this view, we hypothesize that the underdeveloped state of the newborn human visual is functional and, among other things, facilitates the infant's rapid acquisition of basic-level categories. The work we present here, along with several related studies (French et al., 2002; Vogelsang et al., 2018; Avberšek et al., 2021; Jang & Tong, 2021), supports this hypothesis, suggesting that poor infant vision – in the form of low contrast sensitivity – confers multiple adaptive benefits to the visual learner.

Within both our current computational experiments and many of these related studies, underdeveloped human newborn vision was simulated by restricting visual inputs to low spatial frequencies ("blurring"). This transform emphasizes global shape – particularly in an object's bounding contours – because fine-grained shape details and textures are selectively removed from the image. As such, the resultant inputs emphasize the kinds of visual information on which basic-level categories are based (Rosch et al., 1976) and we predicted that the learning of such categories would be enhanced when training with blurred images relative to training with full-resolution images.

Our prediction was confirmed across both of our experiments. In Experiment 1, training on blurred images improved the accuracy of learning for basic-level categories relative to training with non-blurred images. In Experiment 2, pre-training on blurred images in a basic-level categorization task transferred to and improved the learning of subordinate-level categories

relative to pre-training with non-blurred images. However, in both experiments, these benefits only manifested when using grayscale, and not color, images. In contrast to human perceivers, visual CNNs appear to be biased towards relying on color and texture more than shape (Geirhos et al., 2019; Hermann, Chen, & Kornblith, 2020). As such, shape transforms such as blurring may have had less effect on model performance in the presence of fine-grained shape and texture information. That is, when models have access to color and high spatial frequency information, they may learn on the basis of these kinds of features at the expense of other features such as global shape. However, one might reasonably ask why color and high spatial frequency information should be excluded from initial training given that such models show better overall performance?

There are several reasons for this. First, color is quite variable across many, if not most, object categories – only a handful show reliable, diagnostic colors (Naor-Raz et al., 2003) – so it may not be in a learner's best interest to attend to color when it provides negative information for the majority of categories. Second, as just noted, humans and CNNs learn high-level visual representations with different feature biases. Thus, removing color may bring CNNs into better alignment with human biases, particularly with infants who are generally more dependent on global outline shapes than surface features (Landau et al., 1992). Third, low contrast sensitivity in human infants not only affects spatial resolution but also color sensitivity (Brown & Lindsey, 2009). As such, the learning environment for infants deemphasizes color and CNNs may better approximate the experience of human infant learners when color is absent. Moreover, these same biases in early development may help to account for the shape bias observed in human adults. Returning to the first of these reasons, the variability of color for many basic-level categories also points to another potential benefit of low contrast-sensitivity in infants – color may actually harm the acquisition of stable and generalizable basic-level categories. Finally, although beyond the scope of our current work, we note that the color and texture biases for CNNs as well the overall higher performance we observed for color image trained models may reflect representational capacity advantages for CNNs over humans. That is, while both humans and CNNs appear to learn generalizable models for visual categories, CNNs appear to be better able to include, with basic-level representations, specific instances of information that is only useful for a subset of the category.

Note that the benefits of training with blurred images only manifested under certain specific model training conditions. In particular, using a learning rate scheduler (which sets step size for weight updates) in Experiment 1 rendered the effect of blur less apparent as compared to when the scheduler was removed. We speculate that using the scheduler may have optimized learning to the point that the rapid shift to extremely high performance may have resulted in an environment in which there was little room for blurring to further improve performance. In contrast, human infant categorization performance is quite poor and only slowly improves – over many years – to adult-like levels. One interesting possibility that should be pursued in a new study is whether models using a learning rate scheduler, despite high performance, learn less robust basic-level category representations.

Another model parameter that had some impact on performance was an advantage for the linearblur condition over the nonlinear-blur condition. In the former condition the degree of blur (i.e., standard deviation of Gaussian filter) decreased linearly over time, while in the latter condition the degree of blur decreased more quickly at the start of training. Given that the standard deviation of the filter in the spatial domain is nonlinearly related to its standard deviation in the frequency domain, the nonlinear-blur condition may more closely approximate a linear increase in acuity than does the linear-blur condition. Based on the finding that acuity increases approximately linearly across human visual development (Courage & Adams, 1990), we had initially hypothesized that our nonlinear-blur models would achieve higher performance than our linear-blur models. However, our results showed the opposite. There are multiple plausible explanations for such a result. First, CNNs may benefit more from a linear time course of blur reduction because neural networks follow somewhat different learning principles than humans. Second, it is also possible that our implementation of nonlinear blur was too fast relative to the time period in which we implemented blurring of images. In preliminary tests, we found that our slowest nonlinear function (with a base of 2) was the most effective out of the three tested nonlinear functions. Although it was the best out of the three, given the brief span in which the model was trained on blurred images, it is possible that the decrease in blur was still not sufficiently gradual for the network to benefit from the biasing provided by blurring. Future work should explore models with slower nonlinear blurring functions as well as training on blurred images for longer periods of time in order to evaluate how these parameters affect performance in nonlinear models.

Interestingly, the results of Experiment 2 suggest that the benefit of early experience with blurred images generalizes to subordinate-level categories. Specifically, models initially trained to perform basic-level categorization on ecoset showed a boost in ImageNet accuracy over randomly initialized models, and that this benefit was largest for models trained with blurred images. Critically, this benefit was observed for both basic-level labeled images and subordinatelevel labeled images from ImageNet. Given the assumption that subordinate-level categories are defined more by fine-grained shape and surface appearance (Rosch et al., 1976), why does a model trained on blurred images facilitate learning subordinate-level categories? We observe that there is some similarity in the representations needed for basic-level versus subordinate-level classification in that subordinate-level categories are typically refinements of basic-level categories. To the extent that this is true (e.g., most dog breeds are all visually recognizable as dogs), the basic-level representations learned by the linear-blur and nonlinear-blur models in Experiment 1 can be efficiently fine-tuned for a new subordinate-level task in Experiment 2. However, in the case of basic-level categories with subordinate-level members that deviate from the general category appearance (e.g., penguins and ostriches do not look like the majority of birds), our expectation is that fine-tuning for such subordinate-level categories will not benefit from pre-training with blurred images. As future work, fine-grained analyses of category learning that consider the specific visual and semantic structures for individual categories will help us to better understand how early experience impacts category learning at multiple hierarchical levels.

Related to our observation that basic-level pre-training benefits later learning of subordinatelevel categories, a recent study found that training a visual CNN model with superordinate-level labeled images (e.g., fruit, animal) followed by basic-level training resulted in a model that was highly robust to image perturbations, as well as exhibiting a stronger shape bias as compared to models trained without hierarchical labels (Ahn et al., 2021). In tandem with our results, these findings highlight the importance of considering the role of different hierarchical levels when creating training paradigms for neural networks. For example, ImageNet includes a mixture of basic-level and subordinate-level labels that are not meaningfully differentiated, thereby confounding two levels of category learning that are likely to be supported by different visual features. At the same time, some ImageNet categories labeled at the subordinate-level may effectively function as basic-level categories in that no other subordinate-level categories for their parent basic-level category are included in ImageNet. Within the work we presented here, we attempted to control for some of these issues in Experiment 1 by using the ecoset dataset (Mehrer et al. 2021). Critically, ecoset contains only basic-level labels and is motivated by the foundational role that the basic level plays in category learning and adult cognition (Rosch et al., 1976). Moreover, when using ImageNet in Experiment 2, we explicitly split our results by basic-and subordinate-level labeled images. Future work should also explore superordinate-level category labels to investigate how early experience with blurred inputs interacts with a hierarchical superordinate-to-basic training regimen similar to that used by Ahn and colleagues.

Finally, several recent studies have also investigated how training with blurred images impacts learning in neural network models. Avberšek et al. (2021) investigated the effects of training a neural network on various regimens of progressively blurry-to-clear images. They were particularly interested in how the training regimen impacts a neural network's processing of high and low spatial frequencies, including robustness to blur. Models whose training incorporated both blurry and non-blurred images were better able to categorize low-pass filtered versions of images than were models whose training included only non-blurred images. At the same time, contrary to our results, Avberšek et al. reported, for categorization of un-filtered images, that models trained solely on non-blurred images always performed better than models whose training incorporated blurred images. Similarly, Jang and Tong (2021) compared the effect of blurry-to-clear training on face and object recognition did not observe an overall benefit in categorization for blurry-trained models over non-blurred models. While the models used in these studies and our present study varied across many model parameters, one plausible explanation for the discrepancy between their studies and ours is that we utilized the ecoset image database, which includes only basic-level categories, while both the Avberšek et al. and Jang and Tong studies used the ImageNet image database. As discussed above, the basic-level holds a privileged position in human cognition and may be best captured by features different from those best suited to subordinate-level tasks (Rosch et al., 1976). In particular, we suggest that blurred inputs only confer a benefit for tasks requiring basic-level categorization in that this image transform biases inputs specifically towards the kinds of information theorized to be critical to the structure of most basic-level categories. We also note that a particular set of model parameters were necessary for the effect of blur to be detected. These factors, along with other aspects that differed across studies, for example, network architecture, may have led to different outcomes. However, when experimental conditions are specifically targeted at mirroring the learning environment of the human infant – not only reducing image resolution, but also removing color, and restricting the task to basic-level category learning – we find a clear benefit for models whose training includes blurred inputs at initial learning.

In conclusion, our computational simulations support the theory that low visual acuity in early development (as a consequence of low contrast sensitivity) is a key factor in infant visual growth and cognitive development, providing an early advantage in basic-level category learning. Importantly, although blurry inputs were only presented briefly at the start of training, early

performance advantages were sustained throughout the duration of basic-level training and persisted through the introduction of subordinate-level categorization tasks. Thus, poor vision early in life, rather than hindering learning, is a functional adaptation that supports the human infant's acquisition of robust conceptual structures.

Materials and Methods

Our study can be split into two distinct sections. First, Experiment 1, using standard CNNs, explores whether using blurred visual inputs during the initial learning of basic-level categories enhances either the rate of learning or the attained accuracy in categorization. Second, Experiment 2, using the same CNNs trained in Experiment 1, explores whether the basic-level representations learned with initially blurred visual inputs will also confer benefits to learning subordinate-level categories.

Models and Datasets. For all models in both experiments, we used the ResNet-50 architecture (He et. al., 2016) with a learning rate of 0.1 and a standard gradient descent (SGD) optimizer. Models were trained using PyTorch version 1.10.0 in Python version 3.7.1, on the Carnegie Mellon Neuroscience Institute High Performance Computing Cluster which consists of 21 CPU nodes and 12 GPU nodes, 280TB terabytes of shared disk space and 2.8 terabytes of RAM (https://ni.cmu.edu/computing/knowledge-base/computing-facilities-description-overview/). For our SGD optimizer, we set momentum to 0.9 and weight decay to 0.1. No learning rate scheduler was used, a decision motivated by our finding in initial tests that when a scheduler was used, all our models performed similarly regardless of the amount of blur applied to images; we discuss the implications of this in our Discussion. Individual models were each trained for 300 epochs (Exp. 1) or 150 epochs (Exp. 2). To train our models, we utilized the ecoset image dataset which contains over 1.5 million images drawn from 565 labeled basic-level categories (Mehrer et al., 2021) - this resulted in a final output layer of 565 units. In contrast, the more common ImageNet image dataset (Deng et al., 2009) contains a mixture of labeled basic- and subordinatelevel categories (e.g., bird species and dog breeds). Precisely because of this mixture of labeled categories, ImageNet was used for fine-tuning our models in Experiment 2. To address images in ecoset and ImageNet being of variable sizes, we used the PIL image processing library in Python to resize each image by center cropping based on the minimum dimension between width and height and then resized all images to 224x224 pixels (code available at https://github.com/ojinsi/startingblurry).

Experiment 1. To explore the impact of blurring during learning, we trained multiple models on image sets defined by different numbers of blurred and non-blurred training images. All models were trained on the same 50,000 randomly selected images per epoch, but with different amounts of blur applied to the training images during pre-processing. For validation, for each epoch, we computed validation set accuracy using the entire ecoset validation set of 28,245 images. Images in the validation set for a given epoch were blurred at the same level as were the training images for that epoch. The use of 50,000 images per epoch was selected based on a balance between having a sufficient number of images to adequately train the model and limiting the number of images to allow gradual blur to have some impact on learning. For all blurred models, images were blurred for only the first 50 epochs. Pilot testing using blurring for the first 50, 100, 150,

200, 250, or 300 epochs in different models revealed that limiting blur to the beginning of training -50 epochs - produced our most robust results.

Blurring was realized by using a Gaussian filter, implemented using the GaussianBlur function in the transformations module under Torchvision (a library of Pytorch). This filter applies a lowpass filter to each image by removing any spatial frequencies finer than the scale of the Gaussian (Figs. 1C-D). Implementing a Gaussian blur filter requires calculating sigma (σ , which denotes the standard deviation of the Gaussian filter, in pixels) and a kernel size value based on the epoch. In all blurred models, initially $\sigma = 5$ and was reduced until the 50th training epoch, at which point $\sigma = 0.25$. Our implementation and manipulation of Gaussian blur is similar to the manipulations used in past work on how image blur impacts different aspects of visual learning (Jang & Tong, 2021; Vogelsang et al., 2018). In different models we used either a linear or a logarithmic function to determine the how much the value of σ was reduced for each subsequent epoch. The linear function was defined by calculating the difference between our initial and final σ values and dividing by 50, the number of epochs in which images were blurred. The value of σ was then decreased by this calculated constant after each epoch. The logarithmic function was defined by reducing the value of σ according to a logarithmic function with a base of 2, which results in a reduction in σ which is larger at the beginning of training (Fig. 1B). Since the σ of our Gaussian kernel is related nonlinearly to the resulting low-pass frequency cutoff of the image (our approximation of visual acuity), a logarithmic change in σ means that the change in acuity over time will more closely approximate a linear function, as has been measured from human developmental data (Courage & Adams, 1990). For both functions, kernel size was calculated as 8 times the σ value plus 1 to ensure that: 1) the kernel size was an odd number; 2) the entire kernel was sufficiently large so as to accommodate ± 4 standard deviations from the center of the filter.

In addition to the amount of blurring applied to each image, we also manipulated the color content of images by using either full-color or grayscale images. Our rationale for manipulating color was two-fold. First, poor contrast sensitivity in infants also limits their ability to see color differences (Brown & Lindsey, 2009). Thus, images absent color in addition to image blur may better approximate a human infant's visual experience in the early months of their development. Second, while color can play a role in human categorization (Naor-Raz, Tarr, & Kersten, 2003; Kimura et al., 2010), color is not consistent or diagnostic for many basic-level categories. To the extent that CNNs tend to overfit, fine-grained details such as color or texture (e.g., Geirhos et. al., 2019) may support category learning at the expense of more general shape properties. We hypothesized that models trained with grayscale images might show a stronger shape bias and, consequently, lead to a larger impact of spatial frequency manipulations on learning.

In total, we ran six model conditions: three blur conditions, *non-blurred* (normal unfiltered inputs throughout training), *linear-blur* (a linear decrease in blur over the first 50 training epochs), and *nonlinear-blur* (a logarithmic decrease in blur over the first 50 training epochs), crossed with two color conditions, *color* and *grayscale* images. For each of these six conditions, we ran 10 replicates ("trials") of the otherwise identical model with different random seeds. To ensure comparability of our results across conditions, we used the same random images for epoch during training and the complete validation set after each training epoch (although the appearance of each image in terms of blur and color differed based on the condition).

For the purpose of visualization and statistical analyses, we temporally smoothed the validation accuracy results for each individual model, by computing the moving average over a sliding window of 20 epochs. All subsequent statistical analyses were then performed on this smoothed data. Learning rate was then estimated based on this temporally-smoothed data by finding the difference in validation accuracy between neighboring epochs (i.e., the approximate slope of the accuracy), and then applying a second moving average filter with a window size of 20 epochs. For both the accuracy and learning rate values, we then tested for significant differences between conditions at each timepoint by using a linear mixed effects model, implemented using the Python package statsmodels. Specifically, we used a sliding window where 20 epochs were considered at a time, and we constructed a model where condition and epoch number were modeled as fixed effects (categorical and continuous, respectively), while the trial number was modeled as a random effect. We used this analysis to obtain a coefficient and p-value for the effect of condition, for each possible pairwise condition comparison (non-blurred vs. linear-blur, non-blurred vs. nonlinear-blur, linear-blur vs. nonlinear-blur). Comparisons were always done between different blur conditions within the same color condition; no direct statistical comparisons were done between the grayscale and color models. Finally, the resulting *p*-values from all pairwise comparisons, as shown in Figure 2, were FDR corrected across all epochs using the Benjamini-Hochberg procedure implemented in statsmodels, with a=0.05 (Benjamini & Hochberg, 1995).

Experiment 2. To explore whether the benefits conferred by using blurred training images for basic-level categorization generalize to subordinate-level recognition, we used a transfer learning paradigm in which the trained models from Experiment 1 were fine-tuned using ImageNet (Deng et. al., 2009). ImageNet was used in for Experiment 2 because, in contrast to ecoset, ImageNet is composed of both basic- and subordinate-level category labels. The overall design of Experiment 2 was intended to maintain consistency with Experiment 1. As in Experiment 1, 50,000 images were randomly selected for training per epoch and all models were trained using these same images. ImageNet images, which are of variable sizes in their raw form, were resized using the same center crop method as used in Experiment 1. Color content was held constant when generalizing from ecoset to ImageNet: when using an ecoset pre-trained model that was initially trained with grayscale images, all ImageNet fine-tuning was performed with grayscale images, and vice versa for color models. To maintain a similar learning environment as in Experiment 1, models in Experiment 2 used the same architecture and hyperparameters, except for two differences. First, because Experiment 2 is based on fine tuning (and not training from scratch), models were trained for only 150 epochs (rather than 300 epochs). Second, because of the larger number of classes labeled in ImageNet, models used for fine-tuning in Experiment 2 had a final layer with 1,000 units (rather than 565 units).

To determine which models would serve as the base for Experiment 2, we identified the best training time point (based on validation accuracy) for each model from Experiment 1, and the weights from the model at this time point were stored (note that this could be a different time point for different trials in a given condition). In Experiment 2, these stored models were loaded into our adjusted architecture and then fine-tuned with ImageNet images. In addition to these stored models, we also trained, from scratch with random initial weights, two control models with either grayscale or color images. This resulted in eight total models (six pre-trained models

and two control models). As in Experiment 1, we ran 10 trials for each condition. For each trial in the pre-trained model conditions, the pre-trained model was from the corresponding trial in Experiment 1. For example, during trial 4 of Experiment 2, the starting point in each condition was trial 4 of the corresponding model from that condition in Experiment 1.

To calculate validation accuracy and learning rate, we used the same averaging techniques as in Experiment 1. Statistical tests comparing training conditions were also identical to the analysis procedure used in Experiment 1. After running all trials for grayscale models we also performed an analysis in which we computed the validation set accuracy separately for the ImageNet categories that were defined as "basic-level" versus those defined as "subordinate-level". We focused on the models trained with grayscale images only because these models showed the largest effect of blur condition. ImageNet categories were defined as basic or subordinate categories based on a manual estimate of how frequently the category name would be used in everyday language to refer to the object of interest (Rosch et al., 1976). For example, "bee" and "strawberry" were labeled as basic-level, while "Yorkshire terrier" and "Granny-smith apple" were labeled as subordinate-level. The full list of basic- and subordinate-level assignments for the 1000 ImageNet categories can be accessed in our supplementary materials (Supplementary Tables 1-2).

To compute accuracy separately for the basic and subordinate categories, we first identified the best training time point with respect to validation accuracy for each individually fine-tuned model in Experiment 2, and saved the weights for this best time point for each model. We then ran the entire ImageNet validation dataset through the models with these saved weights, and computed accuracy for one label at a time. Accuracy was defined as the number of correctly classified images of a chosen label divided by the number of images of the chosen label. The resulting category-specific accuracy values were then averaged over either all basic-level categories or all subordinate-level categories. For comparison, we also computed the overall validation accuracy of each model across all categories. To facilitate comparison of this value with the basic- and subordinate-level accuracy values, in computing overall validation accuracy we always used the same time point as was used to generate the basic- and subordinate-level accuracy values (i.e., the time point for each model with the single best validation accuracy value). Finally, we performed statistical comparisons between the four different pre-training conditions (no pre-training, pre-training with non-blurred images, pre-training with linear-blur images, pre-training with nonlinear-blur images) using two-tailed independent samples *t*-tests between each pair of conditions, implemented using the Python package *scipy*. The resulting *p*values from all pairwise comparisons, as shown in Figure 3, were FDR corrected as described above.

Code Availability. All code needed to reproduce our experiments and analyses is publicly available on GitHub, at <u>https://github.com/ojinsi/startingblurry</u>.

Acknowledgements

[†]The first two authors contributed equally to this work. MMH was funded by a Distinguished Postdoctoral Fellowship from the Carnegie Mellon Neuroscience Institute. The authors thank the following people for contributing ideas and commentary to this project: Jayanth Koushik.

References

- Ahn S, Zelinsky, GJ, & Lupyan, G. Use of superordinate labels yields more robust and humanlike visual representations in convolutional neural networks. Journal of Vision. 2021;21(13):13: 1-19.
- Avberšek LK, Zeman A, Op de Beeck H. Training for object recognition with increasing spatial frequency: A comparison of deep learning with human vision. Journal of Vision. 2021;21(10):14: 1-14.
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological). 1995;57(1): 289-300.
- Bengio Y, LeCun Y, Hinton G. Deep Learning. Nature. 2015;521 (7553): 436-444.
- Brown AM, Lindsey DT. Contrast insensitivity: the critical immaturity in infant visual performance. Optom Vis Sci. 2009;86(6): 572-576.
- Courage ML, Adams RJ. Visual acuity assessment from birth to three years using the acuity card procedure: cross-sectional and longitudinal samples. Optom Vis Sci. 1990;67(9): 713-718.
- Cutzu F, Tarr MJ. The representation of three-dimensional object similarity in human vision. In SPIE Proceedings From Electronic Imaging: Human Vision & Electronic Imaging II. 1997;3016: 460-471. San Jose, CA: SPIE.
- de Heering A, Maurer D. Face memory deficits in patients deprived of early visual input by bilateral congenital cataracts. Dev Psychobiol. 2014;56: 96-108.
- Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition, 2009;248-255.
- Dobson V, Teller DY. Visual acuity in human infants: A review and comparison of behavioral and electrophysiological studies. Vision Research. 1978;18 (11): 1469-1483.
- Elman JL. Learning and development in neural networks: The importance of starting small. Cognition. 1993;48: 71-99.
- French RM, Mermillod M, Chauvin A, Quinn PC, Mareschal D. The Importance of Starting Blurry: Simulating Improved Basic-Level Category Learning in Infants Due to Weak Visual Acuity. Proceedings of the Annual Meeting of the Cognitive Science Society. 2002; 24.

- Gdalyahu Y, Weinshall D. Measures for silhouettes resemblance and representative silhouettes of curved objects BT Computer Vision ECCV '96 (B. Buxton & R. Cipolla (eds.); 1996;361-375. Springer Berlin Heidelberg.
- Geldart S, Mondloch CJ, Maurer D, de Schonen S, Brent H. The effects of early visual deprivation on the development of face processing. Dev Sci. 2002;5: 490-501.
- Geirhos R, Rubisch P, Michaelis C, Bethge M, Wichmann FA, Brendel W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. 7th International Conference on Learning Representations, ICLR. 2019;New Orleans, LA, USA.
- He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016; 770-778.
- Hermann KL, Chen T, Kornblith S. The origins and prevalence of texture bias in convolutional neural networks. Adv Neural Inf Process Syst. 2019;2020-December.
- Hubel DH, Wiesel TN. Receptive fields of single neurons in the cat's striate cortex. J Physiol. 1959;148: 574-591.
- Huth AG, Nishimoto S, Vu AT, Gallant JL. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron. 2012;76: 1210-1224.
- Jang H, Tong F. Convolutional neural networks trained with a developmental sequence of blurry to clear images reveal core differences between face and object processing. Journal of Vision. 2021;21(12): 6.
- Karras T, Aila T, Laine S, Lecthinen J. Progressive growing of GANs for improved quality, stability, and variation. 6th International Conference on Learning Representations, ICLR. 2018; Vancouver, BC, Canada.
- Kimura A, Wada Y, Yang J, Otsuka Y, Dan I, Masuda T, Kanazawa S, Yamaguchi MK. Infants' recognition of objects using canonical color. Journal of Experimental Child Psychology, 2010;105(3), 256–263.
- Kubilius J, Bracci S, Op de Beeck HP. Deep Neural Networks as a Computational Model for Human Shape Sensitivity. PLOS Computational Biology. 2016;12(4): e1004896.
- Landau B, Smith LB, Jones S. Syntactic context and the shape bias in children's and adults' lexical learning, J Mem Lang. 1992;31(6): 807-825.
- Lewis TL, Maurer D. Effects of early pattern deprivation on visual development. Optom Vis Sci. 2009;86(6): 640-646.
- Maurer D, Mondloch CJ, Lewis TL. Effects of early visual deprivation on perceptual and cognitive development. Progress in brain research. 2007;164: 87-104.

- Mehrer J, Spoerer CJ, Jones EC, Kriegeskorte N, Kietzmann TC. An ecologically motivated image dataset for deep learning yields better models of human vision. P Natl Acad Sci USA. 2021;118.
- Mondloch, CJ, Segalowitz SJ, Lewis TL, Dywan J, Le Grand R, Maurer D. The effect of early visual deprivation on the development of face detection. Developmental Science. 2013;16(5): 728-742.
- Naor-Raz G, Tarr MJ, Kersten D. Is color an intrinsic property of object representation? Perception. 2003;32: 667-680.
- Piantadosi T, P, Kidd C. Extraordinary intelligence and the care of infants. Proc. Natl. Acad. Sci. 2016;113: 6874-6879.
- Putzar L, Hötting K, Röder B. Early visual deprivation affects the development of face recognition and of audio-visual speech perception. Restor Neurol Neurosci. 2010;28: 251-257.
- Quinn PC, Eimas PD, TarrMJ. Perceptual categorization of cat and dog silhouettes by 3-to 4-month-old infants. J Exp Child Psychol. 2001;79(1): 78-94.
- Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P. Basic objects in natural categories. Cognitive Psychol. 1976;8: 382-439.
- Vogelsang L, Gilad-Gutnick S, Ehrenberg E, Yonas A, Diamond S, Held R, Sinha P. Potential downside of high initial visual acuity. P Natl Acad Sci USA. 2018;115 (44): 11333-11338.
- Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. Performance-optimized hierarchical models predict neural responses in higher visual cortex. P Natl Acad Sci USA. 2014;111(23): 8619-8624.
- Yamins DLK, DiCarlo JJ. Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci. 2016;19: 356-365.

SUPPLEMENTARY MATERIALS

Supplementary Table 1. ImageNet categories were manually labeled as either basic- or subordinate-level (see *Methods*). To find the folder ID-to-category name correspondence, see the file "bOrS.csv" in our Github repository (<u>https://github.com/ojinsi/startingblurry</u>).

Basic-level ImageNet category labels

cougar	gazelle	porcupine	sea_lion	badger
killer_whale	mink	jaguar	hyena	meerkat
skunk	weasel	coyote	mongoose	tiger
zebra	ram	orangutan	leopard	chimpanzee
guinea_pig	gorilla	ox	hare	baboon
hog	snow_leopard	hamster	Tibetan_terrier	water_buffalo
bison	hippopotamus	giant_panda	armadillo	llama
lion	beaver	cheetah	otter	koala
echidna	wallaby	platypus	wombat	revolver
umbrella	schooner	soccer_ball	accordion	ant
starfish	chambered_nautilus	laptop	strawberry	airship
balloon	space_shuttle	gondola	canoe	catamaran
aircraft_carrier	submarine	tank	missile	bobsled
barrow	shopping_cart	motor_scooter	forklift	amphibian
ambulance	cab	jeep	limousine	minivan
Model_T	go-kart	golfcart	moped	snowplow
fire_engine	garbage_truck	pickup	tow_truck	trailer_truck
streetcar	snowmobile	tractor	mobile_home	tricycle
unicycle	bookcase	china_cabinet	medicine_chest	table_lamp
file	park_bench	barber_chair	throne	rocking_chair
studio_couch	toilet_seat	desk	pool_table	dining_table
entertainment_center	wardrobe	orange	lemon	fig
pineapple	banana	jackfruit	pomegranate	acorn
hip	ear	corn	buckeye	organ
drum	gong	maraca	marimba	banjo
cello	violin	harp	cornet	French_horn
trombone	harmonica	ocarina	panpipe	bassoon

oboe	sax	flute	cliff	valley
volcano	sandbar	coral_reef	seashore	geyser
hatchet	cleaver	letter_opener	plane	power_drill
lawn_mower	hammer	corkscrew	can_opener	plunger
screwdriver	shovel	plow	chain_saw	ostrich
king_penguin	barracouta	eel	common_iguana	Komodo_dragon
triceratops	African_crocodile	common_newt	whistle	wing
paintbrush	hand_blower	oxygen_mask	snorkel	loudspeaker
microphone	screen	mouse	electric_fan	oil_filter
strainer	space_heater	stove	guillotine	barometer
rule	odometer	scale	digital_clock	hourglass
sundial	parking_meter	stethoscope	syringe	magnetic_compass
binoculars	projector	sunglasses	loupe	radio_telescope
bow	cannon	assault_rifle	rifle	projectile
crane	lighter	abacus	cash_machine	slide_rule
desktop_computer	hand-held_computer	notebook	web_site	harvester
thresher	printer	slot	vending_machine	sewing_machine
joystick	switch	hook	car_wheel	paddlewheel
pinwheel	potter's_wheel	gas_pump	carousel	swing
reel	radiator	puck	hard_disc	sunglass
pick	car_mirror	solar_dish	remote_control	disk_brake
buckle	hair_slide	knot	combination_lock	padlock
nail	safety_pin	screw	muzzle	seat_belt
ski	candle	jack-o'-lantern	spotlight	torch
neck_brace	pier	tripod	maypole	mousetrap
spider_web	trilobite	harvestman	scorpion	tick
centipede	isopod	crayfish	hermit_crab	ladybug
weevil	fly	bee	grasshopper	cricket
walking_stick	cockroach	mantis	cicada	leafhopper
lacewing	dragonfly	damselfly	lycaenid	jellyfish
sea_anemone	brain_coral	flatworm	nematode	conch
snail	slug	sea_slug	chiton	sea_urchin

sea_cucumber	iron	espresso_maker	microwave	Dutch_oven	
rotisserie	toaster	waffle_iron	vacuum	dishwasher	
refrigerator	washer	Crock_Pot	frying_pan	wok	
caldron	coffeepot	teapot	spatula	altar	
triumphal_arch	patio	steel_arch_bridge	suspension_bridge	viaduct	
barn	greenhouse	palace	monastery	library	
apiary	boathouse	church	mosque	stupa	
planetarium	restaurant	home_theater	lumbermill		
coil	obelisk	castle	prison		
grocery_store	bakery	barbershop	bookshop	butcher_shop	
confectionery	shoe_shop	tobacco_shop	toyshop	fountain	
cliff_dwelling	yurt	dock	brass	megalith	
banister	breakwater	dam	stone_wall	grille	
sliding_door	turnstile	mountain_tent	scoreboard	honeycomb	
plate_rack	pedestal	beacon	mashed_potato	bell_pepper	
head_cabbage	broccoli	cauliflower	zucchini	cucumber	
artichoke	cardoon	mushroom	shower_curtain	jean	
carton	handkerchief	chief sandal ashcan		safe	
plate	necklace	croquet_ball	fur_coat	thimble	
pajama	running_shoe	cocktail_shaker	chest	manhole_cover	
modem	tub	tray	balance_beam	bagel	
prayer_rug	kimono	hot_pot	whiskey_jug	knee_pad	
book_jacket	spindle	ski_mask	beer_bottle	crash_helmet	
bottlecap	tile_roof	mask	maillot	Petri_dish	
football_helmet	bathing_cap	teddy	holster	pop_bottle	
photocopier	vestment	crossword_puzzle	golf_ball	trifle	
suit	water_tower	feather_boa	cloak	drumstick	
shield	Christmas_stocking	hoopskirt	menu	stage	
bonnet	meat_loaf	baseball	face_powder	scabbard	
sunscreen	beer_glass	hen-of-the-woods	guacamole	lampshade	
wool	hay	bow_tie	mailbag	water_jug	
bucket	dishrag	soup_bowl	eggnog	mortar	

trench_coat	paddle	chain	swab	mixing_bowl
potpie	wine_bottle	shoji	bulletproof_vest	drilling_platform
binder	cardigan	sweatshirt	pot	birdhouse
hamper	ping-pong_ball	pencil_box	pay-phone	consomme
apron	punching_bag	backpack	groom	bearskin
pencil_sharpener	broom	mosquito_net	abaya	mortarboard
poncho	crutch	Polaroid_camera	space_bar	cup
racket	traffic_light	quill	radio	dough
cuirass	military_uniform	lipstick	shower_cap	monitor
oscilloscope	mitten	brassiere	French_loaf	vase
milk_can	rugby_ball	paper_towel	earthstar	envelope
miniskirt	cowboy_hat	trolleybus	perfume	bathtub
hotdog	coral_fungus	bullet_train	pillow	toilet_tissue
cassette	carpenter's_kit	ladle	stinkhorn	lotion
hair_spray	academic_gown	dome	crate	wig
burrito	pill_bottle	chain_mail	theater_curtain	window_shade
barrel	washbasin	ballpoint	oint basketball	
cowboy_boot	gown	window_screen	agaric	cellular_telephone
nipple	barbell	mailbox	lab_coat	fire_screen
minibus	packet	maze	pole	horizontal_bar
sombrero	pickelhaube	rain_barrel	wallet	cassette_player
comic_book	piggy_bank	street_sign	bell_cote	fountain_pen
Windsor_tie	volleyball	overskirt	sarong	purse
bolo_tie	bib	parachute	sleeping_bag	television
swimming_trunks	measuring_cup	espresso	pizza	breastplate
shopping_basket	wooden_spoon	saltshaker	chocolate_sauce	ballplayer
goblet	gyromitra	stretcher	water_bottle	dial_telephone
soap_dispenser	jersey	school_bus	jigsaw_puzzle	plastic_bag
reflex_camera	diaper	Band_Aid	ice_lolly	velvet
tennis_ball	gasmask	doormat	Loafer	ice_cream
pretzel	quilt	maillot	tape_player	clog
iPod	bolete	scuba_diver	pitcher	matchstick

bikini	sock	CD_player	lens_cap	thatch
vault	beaker	bubble	cheeseburger	parallel_bars
flagpole	coffee_mug	rubber_eraser	stole	carbonara
dumbbell				

Subordinate-level ImageNet category labels

kit_fox	English_setter	Siberian_husky	Australian_terrier	English_springer
grey_whale	lesser_panda	Egyptian_cat	ibex	Persian_cat
malamute	Great_Dane	Walker_hound	Welsh_springer_spani	whippet
Scottish_deerhound	African_elephant	Weimaraner	soft-coated_wheaten_	Dandie_Dinmont
red_wolf	Old_English_sheepdog	otterhound	bloodhound	Airedale
giant_schnauzer	titi	three-toed_sloth	sorrel	black-footed_ferret
dalmatian	black-and-tan_coonho	papillon	Staffordshire_bullte	Mexican_hairless
Bouvier_des_Flandres	miniature_poodle	Cardigan	malinois	bighorn
fox_squirrel	colobus	tiger_cat	Lhasa	impala
Yorkshire_terrier	Newfoundland	brown_bear	red_fox	Norwegian_elkhound
Rottweiler	hartebeest	Saluki	grey_fox	schipperke
Pekinese	Brabancon_griffon	West_Highland_white_	Sealyham_terrier	guenon
indri	Irish_wolfhound	wild_boar	EntleBucher	French_bulldog
basenji	Bernese_mountain_dog	Maltese_dog	Norfolk_terrier	toy_terrier
vizsla	cairn	squirrel_monkey	groenendael	clumber
Siamese_cat	komondor	Afghan_hound	Japanese_spaniel	proboscis_monkey
white_wolf	ice_bear	borzoi	toy_poodle	Kerry_blue_terrier
Scotch_terrier	Tibetan_mastiff	spider_monkey	Doberman	Boston_bull
Greater_Swiss_Mounta	Appenzeller	Shih-Tzu	lrish_water_spaniel	Pomeranian
Bedlington_terrier	warthog	Arabian_camel	siamang	miniature_schnauzer
collie	golden_retriever	Irish_terrier	affenpinscher	Border_collie
boxer	silky_terrier	beagle	Leonberg	German_short-haired_
patas	dhole	macaque	Chesapeake_Bay_retri	bull_mastiff
kuvasz	capuchin	pug	curly-coated_retriev	Norwich_terrier
flat-coated_retrieve	keeshond	Eskimo_dog	Brittany_spaniel	standard_poodle

Lakeland_terrier	Gordon_setter	dingo	standard_schnauzer	Arctic_fox
wire-haired_fox_terr	basset	American_black_bear	Angora	howler_monkey
chow	American_Staffordshi	Shetland_sheepdog	Great_Pyrenees	Chihuahua
tabby	marmoset	Labrador_retriever	Saint_Bernard	Samoyed
bluetick	redbone	polecat	marmot	kelpie
gibbon	miniature_pinscher	wood_rabbit	Italian_greyhound	cocker_spaniel
Irish_setter	dugong	Indian_elephant	Sussex_spaniel	Pembroke
Blenheim_spaniel	Madagascar_cat	Rhodesian_ridgeback	lynx	African_hunting_dog
langur	lbizan_hound	timber_wolf	English_foxhound	briard
sloth_bear	Border_terrier	German_shepherd	tusker	grand_piano
airliner	warplane	fireboat	speedboat	lifeboat
yawl	trimaran	container_ship	liner	pirate
wreck	half_track	dogsled	bicycle-built-for-tw	mountain_bike
freight_car	passenger_car	electric_locomotive	steam_locomotive	beach_wagon
convertible	racer	sports_car	moving_van	police_van
recreational_vehicle	horse_cart	jinrikisha	oxcart	bassinet
cradle	crib	four-poster	chiffonier	folding_chair
Granny_Smith	custard_apple	rapeseed	upright	chime
steel_drum	acoustic_guitar	electric_guitar	daisy	yellow_lady's_slippe
alp	promontory	lakeside	cock	hen
brambling	goldfinch	house_finch	junco	indigo_bunting
robin	bulbul	jay	magpie	chickadee
water_ouzel	kite	bald_eagle	vulture	great_grey_owl
black_grouse	ptarmigan	ruffed_grouse	prairie_chicken	peacock
quail	partridge	African_grey	macaw	sulphur-crested_cock
lorikeet	coucal	bee_eater	hornbill	hummingbird
jacamar	toucan	drake	red-breasted_mergans	goose
black_swan	white_stork	black_stork	spoonbill	flamingo
American_egret	little_blue_heron	bittern	crane	limpkin
American_coot	bustard	ruddy_turnstone	red-backed_sandpiper	redshank
dowitcher	oystercatcher	European_gallinule	pelican	albatross
great_white_shark	tiger_shark	hammerhead	electric_ray	stingray

coho	tench	goldfish	rock_beauty	anemone_fish
lionfish	puffer	sturgeon	gar	loggerhead
leatherback_turtle	mud_turtle	terrapin	box_turtle	banded_gecko
American_chameleon	whiptail	agama	frilled_lizard	alligator_lizard
Gila_monster	green_lizard	African_chameleon	American_alligator	thunder_snake
ringneck_snake	hognose_snake	green_snake	king_snake	garter_snake
water_snake	vine_snake	night_snake	boa_constrictor	rock_python
Indian_cobra	green_mamba	sea_snake	horned_viper	diamondback
sidewinder	European_fire_salama	eft	spotted_salamander	axolotl
bullfrog	tree_frog	tailed_frog	analog_clock	wall_clock
stopwatch	digital_watch	computer_keyboard	typewriter_keyboard	black_and_gold_garde
barn_spider	garden_spider	black_widow	tarantula	wolf_spider
Dungeness_crab	rock_crab	fiddler_crab	king_crab	American_lobster
spiny_lobster	tiger_beetle	ground_beetle	long-horned_beetle	leaf_beetle
dung_beetle	rhinoceros_beetle	admiral	ringlet	monarch
cabbage_butterfly	sulphur_butterfly	chainlink_fence	picket_fence	worm_fence
spaghetti_squash	acorn_squash	butternut_squash	red_wine	

Supplementary Table 2. ImageNet categories were manually labeled as either basic- or subordinate-level (see *Methods*). To find the category-to-folder ID name correspondence, see the file "bOrS.csv" in our Github repository (<u>https://github.com/ojinsi/startingblurry</u>).

Basic-Level Category ImageNet Folder IDs

n02125311	n02423022	n02346627	n02077923	n02447366	n02071294	n02442845	n02128925	n02117135	n02138441
n02445715	n02441942	n02114855	n02137549	n02129604	n02391049	n02412080	n02480495	n02128385	n02481823
n02364673	n02480855	n02403003	n02326432	n02486410	n02395406	n02128757	n02342885	n02097474	n02408429
n02410509	n02398521	n02510455	n02454379	n02437616	n02129165	n02363005	n02130308	n02444819	n01882714
n01872401	n01877812	n01873310	n01883070	n04086273	n04507155	n04147183	n04254680	n02672831	n02219486
n02317335	n01968897	n03642806	n07745940	n02692877	n02782093	n04266014	n03447447	n02951358	n02981792
n02687172	n04347754	n04389033	n03773504	n02860847	n02797295	n04204347	n03791053	n03384352	n02704792
n02701002	n02930766	n03594945	n03670208	n03770679	n03777568	n03444034	n03445924	n03785016	n04252225
n03345487	n03417042	n03930630	n04461696	n04467665	n04335435	n04252077	n04465501	n03776460	n04482393
n04509417	n02870880	n03018349	n03742115	n04380533	n03337140	n03891251	n02791124	n04429376	n04099969
n04344873	n04447861	n03179701	n03982430	n03201208	n03290653	n04550184	n07747607	n07749582	n07753113
n07753275	n07753592	n07754684	n07768694	n12267677	n12620546	n13133613	n12144580	n12768682	n03854065
n03249569	n03447721	n03720891	n03721384	n02787622	n02992211	n04536866	n03495258	n03110669	n03394916
n04487394	n03494278	n03840681	n03884397	n02804610	n03838899	n04141076	n03372029	n09246464	n09468604
n09472597	n09421951	n09256479	n09428293	n09288635	n03498962	n03041632	n03658185	n03954731	n03995372
n03649909	n03481172	n03109150	n02951585	n03970156	n04154565	n04208210	n03967562	n03000684	n01518878
n02056570	n02514041	n02526121	n01677366	n01695060	n01704323	n01697457	n01630670	n04579432	n04592741
n03876231	n03483316	n03868863	n04251144	n03691459	n03759954	n04152593	n03793489	n03271574	n03843555
n04332243	n04265275	n04330267	n03467068	n02794156	n04118776	n03841143	n04141975	n03196217	n03544143
n04355338	n03891332	n04317175	n04376876	n03706229	n02841315	n04009552	n04356056	n03692522	n04044716
n02879718	n02950826	n02749479	n04090263	n04008634	n03126707	n03666591	n02666196	n02977058	n04238763
n03180011	n03485407	n03832673	n06359193	n03496892	n04428191	n04004767	n04243546	n04525305	n04179913
n03602883	n04372370	n03532672	n02974003	n03874293	n03944341	n03992509	n03425413	n02966193	n04371774
n04067472	n04040759	n04019541	n03492542	n04355933	n03929660	n02965783	n04258138	n04074963	n03208938
n02910353	n03476684	n03627232	n03075370	n03874599	n03804744	n04127249	n04153751	n03803284	n04162706
n04228054	n02948072	n03590841	n04286575	n04456115	n03814639	n03933933	n04485082	n03733131	n03794056

n04275548n01768244n01770081n01770393n01776313n01784675n01990800n01985128n01986214n02216456n02177972n02190166n02206856n02226429n02229544n02231487n02233338n02236044n02256656n02259212n02264363n02268443n02268853n02281787n01910747n01914609n01917289n01924916n01930112n01943899n01944390n01945685n01950731n01955084n02319095n02321529n03584829n03297495n03761084n03259280n04111531n04442312n04542943n04517823n03207941n04070727n04554684n03133878n03400231n04596742n02939185n03063689n04398044n04270147n02699494n0448054n03899768n04311004n04366367n04362670n02793495n03457902n03877845n03781244n03661043n02727426n02859443n03028079n03788195n04346328n03956157n04081281n03032252n03529860n0369707n03065424n03837869n04458633n02980441n04005630n03461385n02776631n02791270n02871525n02927161n03089624n04200800n0443257n04462240n03388043n03042490n04613696n03216828n02892201n03743016n02788148n02894605n03160309n04326547n03459775n04239074n04501370n03792972n04149813n03530642n03961711n03903868n0281480

Subordinate-Level ImageNet Folder IDs

n02119789	n02100735	n02110185	n02096294	n02102040	n02066245	n02509815	n02124075	n02417914	n02123394
n02110063	n02109047	n02089867	n02102177	n02091134	n02092002	n02504458	n02092339	n02098105	n02096437
n02114712	n02105641	n02091635	n02088466	n02096051	n02097130	n02493509	n02457408	n02389026	n02443484
n02110341	n02089078	n02086910	n02093256	n02113978	n02106382	n02113712	n02113186	n02105162	n02415577
n02356798	n02488702	n02123159	n02098413	n02422699	n02094433	n02111277	n02132136	n02119022	n02091467
n02106550	n02422106	n02091831	n02120505	n02104365	n02086079	n02112706	n02098286	n02095889	n02484975
n02500267	n02090721	n02396427	n02108000	n02108915	n02110806	n02107683	n02085936	n02094114	n02087046
n02100583	n02096177	n02494079	n02105056	n02101556	n02123597	n02105505	n02088094	n02085782	n02489166
n02114548	n02134084	n02090622	n02113624	n02093859	n02097298	n02108551	n02493793	n02107142	n02096585
n02107574	n02107908	n02086240	n02102973	n02112018	n02093647	n02397096	n02437312	n02483708	n02097047
n02106030	n02099601	n02093991	n02110627	n02106166	n02108089	n02097658	n02088364	n02111129	n02100236
n02486261	n02115913	n02487347	n02099849	n02108422	n02104029	n02492035	n02110958	n02099429	n02094258
n02099267	n02112350	n02109961	n02101388	n02113799	n02095570	n02101006	n02115641	n02097209	n02120079
n02095314	n02088238	n02133161	n02328150	n02492660	n02112137	n02093428	n02105855	n02111500	n02085620
n02123045	n02490219	n02099712	n02109525	n02111889	n02088632	n02090379	n02443114	n02361337	n02105412
n02483362	n02107312	n02325366	n02091032	n02102318	n02100877	n02074367	n02504013	n02102480	n02113023
n02086646	n02497673	n02087394	n02127052	n02116738	n02488291	n02091244	n02114367	n02089973	n02105251

n02134418 n02093754 n02106662 n01871265 n03452741 n02690373 n04552348 n03344393 n04273569 n03662601 n04612504 n04483307 n03095699 n03673027 n03947888 n04606251 n03478589 n03218198 n02835271 n03792782 n03393912 n03895866 n03272562 n04310018 n02814533 n03100240 n04037443 n04285008 n03796401 n03977966 n03016953 n04065272 n03538406 n03599486 n03868242 n02804414 n03125729 n03131574 n03388549 n03376595 n04515003 n03017168 n04311174 n07742313 n07760859 n11879895 n02676566 n03272010 n11939491 n12057211 n09399592 n09332890 n01514859 n01530575 n01531178 n01532829 n09193705 n01514668 n01534433 n01537544 n01558993 n01560419 n01580077 n01582220 n01592084 n01601694 n01608432 n01614925 n01616318 n01622779 n01795545 n01796340 n01797886 n01798484 n01806143 n01806567 n01807496 n01817953 n01818515 n01819313 n01820546 n01824575 n01828970 n01829413 n01833805 n01843065 n01843383 n01847000 n01855032 n01855672 n01860187 n02002556 n02002724 n02006656 n02007558 n02009912 n02009229 n02011460 n02012849 n02013706 n02018207 n02018795 n02025239 $n01491361 \quad n01494475 \quad n01496331 \quad n01498041 \quad n02536864 \quad n01440764 \quad n01443537 \quad n02606052 \quad n02607072 \quad n026$ n01484850 n01664065 n01665541 n01667114 n01667778 n01669191 n01675722 n02655020 n02640242 n02641379 n02643566 n01689811 n01692333 n01682714 n01685808 n01687978 n01688243 n01693334 n01694178 n01698640 n01728572 n01728920 n01729322 n01729977 n01734418 n01735189 n01737021 n01739381 n01740131 n01742172 n01744401 n01748264 n01749939 n01751748 n01753488 n01755581 n01756291 n01629819 n01631663 n01632458 n01632777 n02708093 n04548280 n04328186 n03197337 n03085013 n04505470 n01773157 n01641577 n01644373 n01644900 n01773549 n01773797 n01774384 n01774750 n01775062 n01978287 n01978455 n01980166 n01981276 n01983481 n02165105 n02167151 n02168699 n02169497 n02172182 n02174001 n02276258 n02277742 n02279972 n01984695 $n02280649 \quad n02281406 \quad n03000134 \quad n03930313 \quad n04604644 \quad n07716906 \quad n07717410 \quad n07717556 \quad n07892512 \quad n078$