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Severe stress exposure is a global problem with long-lasting neg-
ative behavioral and physiological consequences, increasing the
risk of stress-related disorders such as major depressive dis-
order (MDD). An essential characteristic of MDD is the im-
pairment of social functioning and lack of social motivation.
Chronic social defeat stress is an established animal model for
MDD research, which induces a cascade of physiological and
social behavioral changes. The current developments of mark-
erless pose estimation tools allow for more complex and socially
relevant behavioral tests, but the application of these tools to so-
cial behavior remains to be explored. Here, we introduce the
open-source tool “DeepOF” to investigate the individual and so-
cial behavioral profile in mice by providing supervised and un-
supervised pipelines using DeepLabCut annotated pose estima-
tion data. The supervised pipeline relies on pre-trained clas-
sifiers to detect defined traits for both single and dyadic ani-
mal behavior. Subsequently, the unsupervised pipeline explores
the behavioral repertoire of the animals without label priming,
which has the potential of pointing towards previously unrecog-
nized motion motifs that are systematically different across con-
ditions. We here provide evidence that the DeepOF supervised
and unsupervised pipelines detect a distinct stress-induced so-
cial behavioral pattern, which was particularly observed at the
beginning of a novel social encounter. The stress-induced social
behavior shows a state of arousal that fades with time due to ha-
bituation. In addition, while the classical social avoidance task
does identify the stress-induced social behavioral differences,
both DeepOF behavioral pipelines provide a clearer and more
detailed profile. DeepOF aims to facilitate reproducibility and
unification of behavioral classification of social behavior by pro-
viding an open-source tool, which can significantly advance the
study of rodent individual and social behavior, thereby enabling
novel biological insights as well as drug development for psychi-
atric disorders.

chronic social defeat stress | machine learning | DeepOF

Correspondence: mschmidt@psych.mpg.de, bmm@psych.mpg.de

Introduction
Stress is an essential aspect of our daily lives, which con-
tributes to our mood and motivation. However, exposure to
severe stress can have negative consequences, which has be-
come an increasing burden on society. In particular, stress-

related disorders, such as major depressive disorder (MDD),
have been steadily on the rise for the last decade (1). Our
understanding of the behavioral and neurobiological mecha-
nisms related to MDD is limited, which is a part of the rea-
son for the moderate success of current drug treatments (2).
MDD is a complex and heterogeneous disorder and the clas-
sification is dependent on a widespread set of symptoms. An
important characteristic of MDD is the impairment of social
functioning and lack of social motivation, which can lead to
social withdrawal from society in extreme cases (3). In addi-
tion, disturbances in social behavior are an important risk fac-
tor for developing MDD, as poor social networks are linked
to lowered mental and physical health (4, 5). The impact
of social interactions was highlighted during the COVID-19
pandemic, where a substantial part of society experienced
less to no social interactions for a sustained period of time.
An increasing number of studies are now reporting the enor-
mous impact of the pandemic, emphasizing a dramatic in-
crease in the prevalence of stress-related disorders and in par-
ticular for MDD (6, 7). Unfortunately, there is still a lack of
awareness of the importance of social interactions and their
role in stress-related disorders. Therefore, it is crucial to in-
crease the understanding of the biological and psychological
mechanisms behind MDD and in particular the influence of
social behavior on the development of MDD. Animal mod-
els have an important role in MDD research; although it
is not possible to recreate the exact disorder as in humans,
they do provide a controlled environment where symptoms of
MDD can be investigated (8). The well-established chronic
social defeat stress (CSDS) paradigm is continuously used
for studying symptoms of MDD in animals (9, 10). In the
CSDS model, mice are subjected daily to severe physical
and non-physical stressors from aggressive mice for several
weeks, which results in the chronic activation of the physi-
ological stress response system, leading to bodyweight dif-
ferences, enlarged adrenals, and elevated levels of corticos-
terone (11). In addition, animals subjected to CSDS show
stress-related behaviors such as social avoidance, anhedonia,
reduced goal-directed motivation, and anxiety-like behavior
(9, 12–14). In particular, the CSDS-induced social avoid-
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ance behavior, which is the avoidance of a novel conspecific,
is a recognized phenomenon that is used to investigate the
social neurobiological mechanisms related to chronic stress
exposure and stress-related disorders (10, 15, 16). Currently,
several social behavior tasks can assess different constructs
of social behavior, but especially the social avoidance task
is well-established (16). It is important that these behavioral
tasks are conducted with control over the environment to in-
vestigate the effects of external stimuli, such as stress expo-
sure. For decades there has been a trend to standardize and
simplify these tests in order to allow for greater comparabil-
ity and higher throughput. Unfortunately, this has led to an
oversimplification of the social behavioral repertoire and in-
creased the risk for cross-over effects by other types of behav-
ior, such as anxiety-related behavior. Moreover, due to lim-
itations in tracking software, the analysis of the interaction
between multiple freely moving animals remained difficult,
which further limited the complexity of the behavioral as-
sessment. Social behavior is a complex behavioral construct,
relying on many different types of behavioral interactions,
which often are too complicated, time-intensive, and repet-
itive to manually assess (17–19). Ultimately, this can lead
to poor reproducibility of the social behavioral construct, as
observed for social approach behavior (20). The current ad-
vancement in automatically annotated behavioral assessment,
however, allows for high-throughput analysis using pose esti-
mation, involving both supervised classification (intending to
extract pre-defined and characterized traits) and unsupervised
clustering (which aims to explore the data and extract pat-
terns without external information) (21–26). Importantly, the
open-source tool “DeepLabCut” has provided a robust and
easily accessible system for deep learning motion tracking
and markerless pose estimation (27, 28). The use of super-
vised classification, by defining the types of behavior a pri-
ori, is a powerful tool that simplifies the analysis by using
predefined relevant behavioral constructs without losing the
complexity of social behavior. Furthermore, recent studies
have shown the value of unsupervised clustering in addition
to the supervised analysis pipeline, as it can deal with the dis-
covery of novel traits in a more exploratory fashion, which
could reveal novel and more complex structures of behaviors
(17, 22, 29–31). In addition, both the supervised and unsu-
pervised pipelines can provide more transparency for the be-
havioral definition and can easily be shared via online repos-
itories, which contributes to a more streamlined definition of
behavior across different labs (19, 32). In the current study,
we provide an application of our open-source tool “DeepOF”,
which enables users to delve into the individual and social be-
havioral profiles of mice using DeepLabCut annotated pose
estimation data. We do so by fitting both supervised clas-
sifiers capable of recognizing a set of predefined traits and
by embedding our motion data in an unsupervised behavioral
space, capable of explaining differences between both condi-
tions without any label priming. Furthermore, DeepOF can
retrieve unsupervised clusters of behavior that can be com-
pared across conditions and therefore can hint at previously
unrecognized behavioral patterns that trigger new hypothe-

ses. As a proof of principle, we describe a distinct social
behavioral profile following CSDS in mice that can be reca-
pitulated with both supervised and unsupervised workflows.
Moreover, we observe a clear state of arousal in social in-
teraction tasks that fades over time and provide tools for the
quantification of optimal behavioral differences across time
and experimental conditions.

Methods
Time series extraction from raw videos
Time series were extracted from videos using DeepLabCut
version 2.2b7 (single animal mode). 14 body parts per
animal were tagged, including the nose, left and right ears,
three points along the spine (including the center of the ani-
mal), all four extremities, the tail base, and three equidistant
points along the tail (Figure 1A). The DeepLabCut model
was trained to track up to two animals at once (one CD1
mouse and one C57Bl/6N mouse) and can be found in the
supplemental material. Furthermore, with the multi-animal
DeepLabCut (28), extending the tracking to animals from
the same species is also possible.

Time series data preprocessing
All videos and extracted time series underwent an auto-
matic preprocessing pipeline that is included within the
DeepOF module. This procedure starts by recognizing
the arena from raw video by fitting an ellipse (currently,
only round/elliptical arenas are supported for automatic
tagging, but any polygonal arena can be defined by manual
annotation using a graphical user interface (GUI); see the
link in the code statement for DeepOF’s documentation
details). To identify and correct any artifacts in the time
series, low-quality tagging (as reported by DeepLabCut’s
output likelihood) and outliers (to a fitted autoregressive
model) were then marked and corrected using polynomial
interpolation. In addition, smoothing was applied to the
time series by cross-correlating a polynomial kernel using a
Savitsky-Golay filter. Finally, coordinates were ego-centered
(the cartesian origin was set to the center of each animal) and
vertically aligned to remove rotational variation. A feature
set was constructed as the final result of preprocessing, in-
cluding the aforementioned egocentric coordinates, distances
and angles between body parts, and overall locomotion speed
for each mouse (Figure 1B).

Supervised behavioral tagging with DeepOF
This feature set was used to run a supervised annotation
pipeline with the objective of reporting a pre-defined set of
behavioral traits on the provided videos. This set supports
both dyadic interactions and individual traits, which are re-
ported for each mouse individually (Figure 1C). Furthermore,
annotated traits fall into one of two categories:

1. Traits annotated based on rules. Several motifs of in-
terest are annotated using a few simple-to-define rules.
For example, contact between animals can be reported
when the distance between the involved body parts is
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less than a certain threshold. A comprehensive expla-
nation of the employed rules can be found in DeepOF’s
documentation (link in code statement section below).
The validation of these rules using manual annotation
can be found in Figure S1.

2. Traits annotated following a supervised machine learn-
ing pipeline. While rule-based annotation is enough for
some traits, others are too complex or might be man-
ifested in different subtle ways, making it difficult to
detect them using this approach. For those instances,
as with huddling and digging, a supervised machine
learning pipeline was performed in order to offer pre-
trained models within DeepOF (Figure 1D). More de-
tailed explanations can be found in DeepOF’s docu-
mentation. The generalizability for each supervised
classifier can be found in Figure S1.

Finally, a Kleinberg burst-detection algorithm (33, 34) was
applied to all predictions. This step smoothens the results
by merging detections that are close in time and removing
isolated predictions, which an autoregressive model deems
as noise.

Unsupervised behavioral analysis with DeepOF
Unsupervised analysis of behavior was carried out using an
integrated workflow within DeepOF. Starting from the afore-
mentioned aligned and centered coordinates, the pipeline
begins by breaking the time series of each experiment into
sub-sequences in a data-driven manner. To accomplish
this, DeepOF relies on the Pelt algorithm with a radial
basis function kernel (35), capable of detecting significant
shifts in the data in linear time (Fig 1E). Next, extracted
sub-sequences for all videos were used to train a deep vector-
quantization variational autoencoder model (VQ-VAE),
which minimizes the mean squared error reconstruction loss
between input and output, and enforces a clustering structure
in the latent space using vector quantization (36). Details
regarding model architecture and training can be found
in DeepOF’s documentation. After training, the model is
capable of clustering the input sequences by measuring the
Manhattan distance of each latent embedding and the entries
in a parallelly maintained codebook, selecting the latent
cluster that’s most likely, given the sub-sequence at hand
(Fig 1F). In practice, this unsupervised pipeline is capable
of classifying the time series based on animal motion and
without external information in a flexible and non-linear way.
DeepOF is not the first attempt to construct an unsupervised
picture of the behavioral space using autoencoders (31).
Therefore, DeepOF builds on previous iterations of the idea
by integrating encoding and clustering in the same model
(37) using vector quantization and automating change-point
detection, thus eliminating the need for the selection of a
fixed behavioral time span.

Unsupervised cluster explainability with Shapley additive
explanations
In order to quantify which features might be relevant for

the unsupervised models to determine the assignment of a
given time segment to a given cluster, all obtained sequence-
cluster mappings were analyzed using Shapley additive
explanations (38, 39). First, a set of 32 distinct features
describing each time chunk provided by the change-point
detection algorithm in DeepOF was built. This included av-
erage speed accelerations per body part, overall locomotion
speed, average triggering of all aforementioned supervised
classifiers, and distance, speed, and acceleration of the spine
stretch (measured as the distance between the spine 1 and
tail base labels (see Figure 1A for reference). For both single
animal and social interaction settings, only statistics involv-
ing the C57Bl/6N mice were utilized. Gradient boosting
machines were then trained to predict cluster labels from
this set of statistics after normalization across the dataset
and oversampling of the minority class with the SMOTE
algorithm (40). Performance was assessed by means of the
area under the ROC curve across a 10-fold cross-validation
loop, and feature importance was reported in terms of the
average absolute SHAP values, obtained using a permutation
explainer.

Animals
8-weeks-old, in-house bred male C57Bl/6N mice were
used as experimental animals. The CD1 male mice were
purchased from Janvier Labs (Germany) and were used
in the social avoidance and social interaction task as a
social conspecific (CD1 animals were 4–6 weeks old)
and as aggressors in the CSDS paradigm (CD1 animals
were at least 16 weeks old). All animals were housed in
individually-ventilated cages (IVC; 30cm×16cm×16cm con-
nected by a central airflow system: Tecniplast, IVC Green
Line—GM500) at least two weeks before the start of the
experiment to allow acclimatization to the behavioral testing
facility. All animals were kept under standard housing
conditions; 12h/12h light-dark cycle (lights on at 7 a.m.),
temperature 23±1°C, humidity 55%. Food (Altromin 1324,
Altromin GmbH, Germany) and water were available ad
libitum. All experimental procedures were approved by the
committee for the Care and Use of Laboratory Animals of
the government of Upper Bavaria, Germany. All experiments
were in accordance with the European Communities Council
Directive 2010/63/EU.

Chronic social defeat stress
At 2 months of age, mice were randomly divided into
the CSDS condition (n=27) or the non-stressed condition
(n=26). The CSDS paradigm consisted of exposing the
experimental C57Bl/6N mouse to an aggressive CD1 mouse
for 21 consecutive days, as previously described (41). In
short, the CD1 aggressor mice were trained and specifically
selected on their aggression prior to the start of the exper-
iment. The experimental mice were introduced daily to a
novel CD1 resident’s territory, who attacked and forced the
experimental mouse into subordination. Next, the mice were
separated in the resident’s home cage using a see-through,
perforated mesh and housed together overnight, allowing
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Fig. 1. DeepOF workflow. A) 14 labels were tagged on each annotated mouse using DeepLabCut. B) The DeepOF preprocessing pipeline. Two mice (a C57Bl/6N
experimental subject and a CD1 social companion) were tagged using the provided DeepLabCut models. Cartesian coordinates of all body parts were extracted using
DeepLabCut. Next, DeepOF was used to smooth the retrieved trajectories, interpolate outliers, and extract a set of features, including centered and aligned coordinates,
distances, and angles between body parts, as well as speed and acceleration. C) Set of motifs that the applied DeepOF supervised pipeline is able to retrieve. These
include dyadic motifs (such as nose-to-nose and nose-to-body contacts) and individual motifs (climbing, digging, etc.), which are reported for all tracked mice individually.
D) Schematic representation of the supervised pipeline in DeepOF. A set of extracted motion features (such as the coordinates, distances, and angles shown above; only 3
hypothetical dimensions are shown for visualization purposes) are fed to a set of pre-trained classifiers, which were obtained by following a thorough model selection pipeline
on standardized data (see DeepOF documentation for details). Each of these classifiers reports the presence or absence of each behavioral trait at each time by learning how
the corresponding trait is distributed in the feature space (red dots). The set of classifiers finally yields a table indicating the presence or absence of each motif across time,
which can be used for further processing. Note that motifs are not necessarily mutually exclusive, as several predictors can be triggered at the same time. E) Illustration of
the change-point detection pipeline applied for the unsupervised pipeline. Using the Pelt algorithm with a radial basis function kernel, all trajectories are ruptured into smaller,
data-driven subsets (represented by the colored backgrounds), which are then clustered using a deep learning model. F) Schematic representation of the deep auto encoder
used to cluster behavior in an unsupervised way. The dataset containing all instances obtained after change-point detection (X) is passed through a time-aware encoder
consisting of a series of convolutional and recurrent layers. The output is then mapped to a bottleneck layer (z), in which a clustering structure is enforced by minimizing
the Euclidean distance between encoder outputs and entries in a codebook, acting in practice as cluster representatives. By passing the latent embedding through the
decoder, a reconstruction (y) is obtained for each training instance. The model is then trained to maximize the conditional log likelihood of the data, log(p(X|y)). By
selecting the closest entry in the codebook for each time series segment, a sequential posterior q(z|X) is obtained, indicating cluster membership. As the code-lookup is
non-differentiable, gradients (∇zL) are passed through from decoder to encoder during training (red arrow in the scheme). Different colors represent different clusters. More
details are available in DeepOF’s documentation.
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sensory exposure to the CD1 aggressor mouse without
physical contact. Each day, for 21 consecutive days, the
experimental mice were introduced to a novel CD1 aggressor
mouse during a randomized moment in time between 11 a.m.
and 6 p.m. to maintain unpredictability in the stress exposure
and therefore avoid potential habituation. Non-stressed mice
were single housed in the same room as the stressed mice.
All animals were handled daily and were weighed every
3–4 days. Behavioral testing was performed after 14 days
of the defeat paradigm, where behavior was observed in
the morning and the defeat continued in the afternoon. The
animals were sacrificed a day after the CSDS ended, which
was at 3 months of age. Then, the adrenals were obtained
and the relative adrenal weight was calculated by dividing
the adrenal weight by the body weight before sacrifice.

Behavioral testing
Behavioral tests were performed between 8 a.m. and 11
a.m. in the same room as the housing facility. On day 15 of
the CSDS paradigm, the animals were tested on the social
avoidance task, while on day 16, animals were tested on
the combined open field and social interaction task. The
social avoidance task was analyzed using the automated
video-tracking software AnyMaze 6.33 (Stoelting, Dublin,
Ireland), whereas the open field and social interaction tasks
were analyzed using DeepLabCut 2.2b7 for pose estimation
(27, 28), after which DeepOF module version 0.1.6 was used
for preprocessing, supervised, and unsupervised analyses of
behavior.

Social avoidance
The social avoidance task was performed in the classical
squared open field arena (50x50cm) to observe the social
behavioral profile after CSDS, as well-established in pre-
vious studies (41, 42). The social avoidance task consisted
of two phases; the non-social stimulus phase and the social
stimulus phase. During the non-social stimulus phase, which
was the first 2.5 minutes (min), the experimental mouse
was allowed to freely explore the open field arena with a
small empty wired mesh cage against the wall of the open
field. Then, the empty wired mesh cage was replaced with a
wired mesh cage including a trapped unfamiliar young CD1
mouse (4–6 weeks old). During the following 2.5 min, the
social-stimulus phase, the experimental mouse could freely
explore the arena again. The social-avoidance ratio was
calculated by calculating the amount of time spent with the
social stimulus, which was then divided by the time spent
with the non-social stimulus.

Open field and social interaction task
The open field and social interaction tasks were performed in
a round open field arena (diameter of 38cm). The bottom of
the arena was covered in sawdust material to minimize cross-
over effects of stress and anxiety by the novel environment.
First, the open field task was performed, during which the
experimental animal was allowed to freely explore the arena
for 10 min. Subsequently, for the social interaction task,

an unfamiliar young CD1 (4–6 weeks old) was introduced
inside the arena and both animals were allowed to freely
explore the arena for 10 min. The DeepOF module can
identify six behavioral traits during the single animal open
field task, which include wall-climbing, digging, huddling,
looking-around, sniffing, and speed (locomotion), whereas
in the social interaction task, all behavioral traits can be
identified (Figure 1C). During the analysis, the 10 min open
field and social interaction tasks were analyzed on the total
duration of the behavioral classifiers and in time bins of 2.5
min to match the time frame in the social avoidance task.

Z-score for stress physiology and social interaction
The Z-scores combine the outcome of multiple tests via
mean-normalization and provide an overall score for the re-
lated behavior of interest. Z-scores were calculated as de-
scribed previously (43). The Z-score indicates for every ob-
servation (X), the number of standard deviations (σ) above or
below the mean of the control group (µ). This means that for
every individual observation the following formula is calcu-
lated:

Z = (X−µ)
σ

(1)

Then, the obtained values need to be corrected for the direc-
tionality, such that an increased score will reflect the increase
of the related behavior of interest. This means that per test,
the scores were either already correct or were adjusted in the
correct directionality by multiplying with “–1”. Finally, in
order to calculate the final z-score, the different z-scores per
test were combined and divided by the total number of tests:

Ztotal =
∑N
n=1 testn
N

(2)

The Z-score analysis of stress physiology is based on the
relative adrenal weight and the body weight at day 21 of
the CSDS, which are both strongly influenced by CSDS
exposure (11). The directionality of both tests did not require
additional adjustment. Then, the Z-score of social interaction
was calculated based on five DeepOF behavioral classifiers
from the C57Bl/6N mouse, which were B-look-around,
B-speed, B-huddling, B-nose-to-tail, and B-nose-to-body.
The directionality was adjusted for B-speed, B-nose-to-tail,
and B-nose-to-body.

Statistics
Statistical analyses and graphs were done in RStudio (with R
4.1.1 (44)). All data were used for further statistical analysis,
as no reason was observed in both the methodological as well
as the statistical perspective for excluding data. Statistical as-
sumptions were then checked, in which the data were tested
for normality using the Shapiro-Wilk test and QQ-plots and
for heteroscedasticity using Levene’s test. Data that violated
these assumptions were analyzed using non-parametric tests.
The time-course data was analyzed using the repeated mea-
sures ANOVA with time (days) as a within-subject factor and
condition (non-stressed vs. stressed) as a between-subject
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factor. Post-hoc analysis was performed using the ANOVA
test (parametric) or the Kruskal-Wallis test (non-parametric).
P-values were adjusted for multiple testing using the Bon-
ferroni method. Two-group comparisons were analyzed
using independent samples t-tests (parametric), Welch’s
tests (data is normalized but heteroscedastic), or Wilcoxon
tests (non-parametric). Correlation analyses were performed
using the Pearson correlation coefficient. The timeline and
bar graphs are presented as mean ± standard error of the
mean (SEM). Data was considered significant at p<0.05 (*),
with p<0.01 (**), p<0.001 (***), p<0.0001 (****).

Results
The physiological and behavioral hallmarks of stress are
reproduced by CSDS
The CSDS paradigm was performed to maintain a sustained
stress exposure for several weeks, in which dysregulation
of the hypothalamic-pituitary-adrenal axis (HPA-axis) and a
stress-related behavioral profile were observed (Figure 2A).
Animals that were subjected to CSDS showed clear hall-
marks of stress exposure, as observed by a significant
increase in body weight towards the end of the stress
paradigm, an increase in relative adrenal weight, reduced
locomotion and time spent in the inner zone of the open
field, and a significantly reduced social interaction ratio
in the social avoidance task (Figure 2B–F). Notably, no
bodyweight difference was observed at the beginning of
the CSDS paradigm (Figure 2B). In accordance with the
classical analysis of the open field data (distance and inner
zone time), the DeepOF module identified a reduced speed in
CSDS animals (Figure S2A), and in addition, found a stress
effect for look-around and sniffing (Figure S2B–C). The
DeepOF behavioral classifiers wall-climbing, digging, and
huddling did not show significant stress-related alterations in
the open field task (Figure S2D–F).

DeepOF social behavioral classifiers show a stronger
PCA separation for stress exposure than social avoidance
The social behavioral pattern during the social interaction
task was investigated in four non-overlapping time bins of
2.5 min each. Principal component analysis (PCA) was per-
formed to show the difference between time bins in the social
behavioral profile regardless of the animal’s stress condition
(Figure 3A). Interestingly, the PCA showed a significant
effect between the time bins, in which the first 2.5 min time
bin was significantly different from the subsequent time bins
(5, 7.5, and 10 min), whereas the subsequent time bins did
not show variation between one another. (Figure 3B). This
indicates that the different time bins in the social interaction
task are an important variable, for which the first 2.5 min
time bin needs to be especially investigated. Next, the social
avoidance task and the social interaction task were compared
on the strength of distinguishing between the non-stressed
and stressed animals. PCAs were performed for the social
avoidance task (Figure 3C) and the 2.5 min time bin social
interaction data (Figure 3D–E), in which both PCAs showed

a significant difference between the conditions in the princi-
pal component (PC) 1 eigenvalues (Figure 3C–E). However,
the social interaction task showed a clearer separation of
the conditions than the social avoidance task, indicating
that the social interaction task is a more powerful tool
for the identification of stressed animals compared to the
social avoidance task. In addition, the PC1 top contributing
behaviors for the 2.5 min time bin social interaction data
were calculated using the corresponding rotated loading
scores (Figure 3F). The top five contributing behaviors were
reported as essential behaviors for identifying the stressed
phenotype, which consisted of B-look-around, B-speed,
B-huddling, B-nose-to-tail, and B-nose-to-body from the
C57Bl/6N animal, whereas the other behaviors within the
top 10 were either contributing to the CD1 animal (“W-”
behaviors) or had a low rotated loading score (Figure 3F).

DeepOF social behavioral classifiers are strongly altered
by CSDS
Next, the influence of the CSDS on the top five contributing
behaviors in the social interaction task was investigated. At
first, the total duration of the social interaction task was ana-
lyzed, regardless of the time bins. Although, the behavioral
effects for B-look-around and B-speed from the C57Bl/6N
animal on CSDS exposure were already apparent, in the
majority of the top contributing behaviors, no significant
CSDS effect could be observed when analyzing the full 10
min (Figure S3, barplots). However, when looking at the
total duration per time bin for the top contributing behaviors,
the 2.5 min time bin data show a clear CSDS effect (Fig-
ure S3, timelines), whereas the 5-, 7.5-, and 10-min time
bins do not show a CSDS effect, in accordance with the
PCA time bin analysis. More specifically, the 2.5 min time
bin analysis showed that the CSDS exposure significantly
elevated the duration for B-look-around (Figure 4A) and
B-huddling (Figure 4B), while the B-speed (Figure 4C),
B-nose-to-tail (Figure 4D), and B-nose-to-body (Figure 4E)
were significantly lowered. In addition, Figure S4 shows the
total duration for all other DeepOF behavioral classifiers,
in which a significant stress effect is observed for B-wall-
climbing (Figure S4E).

Z-score for DeepOF social interaction correlates with
Z-score for stress physiology
The Z-score of stress physiology was calculated using
the relative adrenal weight and body weight on day 21
of the CSDS. The stress physiology Z-score provides a
strong CSDS profiling tool and was used for correlation
analysis between the social avoidance and social interaction
tasks. No significant correlation was observed between the
Z-score of stress physiology and the social avoidance ratio
(Figure 5A). Subsequently, the Z-score of social interaction
was calculated by using the 2.5 min time bin of the top
five contributing behaviors in the social interaction task
(Figure 4A–E). Stress physiology and social interaction Z-
score showed a significant positive correlation (Figure 5B),
which indicates that the social interaction Z-score provides
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Fig. 2. Classical hallmarks for chronic social defeat stress. A) Experimental timeline for CSDS paradigm and behavioral testing. B) Significant increase of body
weight after CSDS exposure (Two-way repeated measures ANOVA: within-subject effect of time: F(6,406)=13.58, p<0.0001, as well as time×condition interaction effect:
F(6,406)=6.13, p<0.0001, but no between-subject effect on condition: F(1,406)=0.20, p=0.653) & post-hoc: day 1–18 (p>0.091), day 21 (F(1,58)=11.57, p=0.007)) C)
Increase of relative adrenal weight after CSDS exposure (Independent samples t-test: T(50)=–5.00, p<0.0001). D) The total locomotion in the open field (OF) was reduced
after CSDS exposure (Independent samples t-test: T(51)=6.15, p<0.0001). E) The inner zone time in the open field (OF) was reduced after CSDS exposure (Independent
samples t-test: T(51)=3.37, p=0.00145). F) The social interaction ratio was reduced in the social avoidance task after CSDS exposure (Wilcoxon test: W=460, p=0.0262).

a stronger tool for CSDS profiling compared to the social
avoidance ratio. Next, correlation analyses were performed
between the Z-score of social interaction and all other
behavioral and physiological measurements which indicated,
a strong correlation with several open field parameters,
such as distance and inner zone entries, but interestingly no
correlation with the social avoidance ratio (Figure 5C).

DeepOF recognizes overall differences in behavior in an
unsupervised way
When applying the VQVAE-based unsupervised pipeline
within DeepOF, the number of clusters is a hyperparameter
the user must tune. However, an optimal solution can
be found by selecting the number of clusters that explain
the largest difference between experimental conditions (in
terms of the area under the ROC curve of a linear classifier
to distinguish between them). This procedure yielded an
optimal of 12 clusters for the social interaction task and 9
for the single animal setting (Figure 6A and Figure S5A).
Once the number of clusters was fixed, the stress-induced

phenotype was investigated across time. Therefore, a
growing time window spanning an increasing number of
sequential seconds was analyzed. For each analysis, the
discriminability between conditions was tested by evaluating
the performance of a linear classifier to distinguish between
them in an aggregated embedding space, for which each
experiment is represented by a vector containing the time
spent per cluster (Figure 6B and Figure S5B, grey curves).
The bin size for which discriminability was maximized
was then selected as optimal and continuously used for
further analysis. In this case, we observed an optimum of
2.06 minutes for the social interaction task, indicating that
differences between conditions are maximized early in the
10-minute-long experiments. Furthermore, performance
across consecutive, non-overlapping bins retaining the
optimal size was also reported (Figure 6B and Figure S5B,
dark green curves). Here, decaying performance across bins
in the social interaction setting is compatible with a state
of arousal, where conditions become less distinguishable
over time after the behavior of the C57Bl/6N mice becomes
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Fig. 3. Social interaction binning yields more separable PCA projections than the social avoidance task. A) PCA revealed that the first 2.5 min time bin is significantly
different from the other time bins. (One-way repeated measures ANOVA: F(3,208)=7.36, p=0.0001. B) The PC1 eigenvalues of the time bin PCA. Post-hoc: 2.5 min vs. 5
min (T(52)=–4.09, p=0.0009, 7.5 min (T(52)=–4.09, p=0.0009, 10 min (T(52)= –4.62, p=0.0002). C) The social avoidance task PCA showed a significant difference by the
PC1 eigenvalues of the conditions. The PCA data consisted of the social avoidance ratio, total time spent with the non-social stimulus, and total time spent with the social
stimulus. Independent samples t-test: T(57)=–2.84, p=0.006. D) The 2.5 min time bin social interaction task PCA showed a significant difference of the PC1 eigenvalues
between conditions. The PCA data consisted of all the DeepOF behavioral classifiers, as listed in Figure 1C. Independent samples t-test: T(51)=6.34, p<0.0001. E) The PC1
eigenvalues of the 2.5 min time bin social interaction task. F) The top contributing behaviors of the social interaction 2.5 min time bin PC1, in which the top five behaviors
were reported as the essential behaviors for identifying the stressed animals (B-look-around (–0.43), B-speed (0.42), B-huddling (–0.36), B-nose-to-tail (0.35), B-nose-to-body
(0.27). “B-” indicates C57Bl/6N behaviors and “W-” indicates CD1 behaviors.

less influenced by novelty. The largest difference between
stressed and non-stressed animals can thus be observed
during this period. In line with this finding, the optimal
distance in the single animal data was reached at 8.68 min-
utes, suggesting that no binning is necessary since behavior
between conditions remains consistently distinguishable
across the videos (Figure S5B).
Moreover, the aforementioned aggregated embedding per
experimental C57Bl/6N animal was capable of representing
the difference between non-stressed and stressed animals in
both social interaction and single animal settings (Figure 6C
and Figure S5C). However, the stress-induced difference was
substantially greater during the social interaction task than
during the open field task (areas under the ROC curve for a
linear classifier to distinguish between conditions of 0.921

and 0.837, respectively).

Individual unsupervised clusters reveal differences in
both behavior enrichment and dynamics across condi-
tions
Going beyond global differences in behavior, the aggregated
embeddings were the result of summarizing the expression
of a set of detected behavioral clusters (Figure 6D and
Figure S5D). Once obtained, DeepOF allows comparing
both their enrichment (or differential expression) and dy-
namics between conditions. In terms of enrichment, the
time on each cluster across all videos for each condition
is recorded in the optimal bin. Importantly, DeepOF has
no knowledge of which video the processed sequence
belongs to, and therefore does not know its condition at
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the time of training and assigning clusters. Expression
was then compared using 2-way Kruskal-Wallis tests for
each cluster independently, and p-values were corrected for
multiple testing using Bonferroni’s method. We observed
significant differences in 7 out of 12 and 6 out of 9 clusters
for social interaction and single animal data, respectively
(Figure 6E and Figure S5E). In terms of dynamics, an
empirical transition matrix was obtained for each condition
by counting how many times an animal goes from one given
cluster to another (including itself). Since all transitions
were observed to have non-zero probability, the Markov
chains obtained from simulations can be proven to reach
a steady-state over time (where probabilities to go from
one behavior to another stabilize). The entropy of these
steady-state distributions was reported for both conditions,
with higher values corresponding to a less predictable explo-
ration of the behavioral space. Interestingly, stressed animals
showed a significantly higher steady-state entropy in the
social interaction task than their non-stressed counterparts
(Kruskal-Wallis p-value = 6.64×10-7), suggesting more
erratic behavior, which could be explained by an increased
susceptibility which is influenced by the CD1 counterparts
(Figure 6E). In line with this hypothesis, the single ani-
mal experiments show no significant difference (Figure S5E).

Shapley additive explanations reveal a consistent profile
across differentially expressed clusters
An important aspect of machine learning that is relevant
for highly complex models is its explainability. In this
study, we aimed to explain cluster assignments by fitting
supervised classifiers (gradient boosting machines) that
map statistics of the initial time series segments (including
locomotion and individual body part speeds, distances, and
angles) to the subsequent cluster assignments. Performance
and generalizability of the constructed classifiers across the
dataset were assessed in terms of the area under the ROC
curve on a 10-fold stratified cross-validation loop, which
was designed so that segments coming from the same video
were never assigned to both train and test folds. Data were
standardized, and the minority class was oversampled using
the SMOTE algorithm to correct for class imbalance. The
result of this analysis is a set of feature explainers for each
retrieved cluster, which can be used to interpret, alongside
visual inspection of the video fragments in a cluster, what
the obtained behavioral motifs represent. In this context, we
found consistent descriptions of clusters enriched in stressed
animals for the social interaction task (Figure 7A-E). For
example, social interaction clusters 0, 4, and 5 are negatively
associated with locomotion speed and spine stretch, corre-
sponding to more passive behaviors. Upon visual inspection,
we identified cluster 0 as passive huddling not necessarily
accompanied by social interaction and cluster 5 as enriched
in segments where the C57Bl/6N animals are being actively
approached by their counterparts. In contrast, clusters 1
and 7 (enriched in non-stressed animals) represent more
active, locomotion-engaged roles. These patterns can be
observed as well in the single-animal data (Figure S6A–D).

The performance of all gradient boosting machines when
predicting cluster membership in a 10-fold cross-validation
fashion can be found in Figure 7F (for the social interaction
experiments) and Figure S6E (for the single-animal exper-
iments). In addition, representative clips of all clusters for
both social interaction and single animal data can be found
in the supplemental material (see data availability statement
below).

Discussion
For decades there has been a trend to standardize and
simplify social behavioral tests, which has led to an oversim-
plification of the social behavioral repertoire. The current
developments of open-source markerless pose estimation
tools for tracking multiple animals have provided the pos-
sibility for more complex and socially relevant behavioral
tests. The current study provides an open-source tool,
“DeepOF”, which can investigate both the individual and so-
cial behavioral profile in mice using DeepLabCut-annotated
pose estimation data. The current study identified a distinct
social behavioral profile following CSDS using a selection of
five DeepOF social behavioral classifiers from the C57Bl/6N
animal, consisting of B-look-around, B-speed, B-huddling,
B-nose-to-tail, and B-nose-to-body. In addition, a similar
social behavioral profile was identified with the unsuper-
vised workflow, which was capable of detecting behavior
enrichment and dynamic differences across conditions —
especially during the social interaction task, but also in single
animal open field data. Next, we identified the first minutes
during the interaction with a novel conspecific as crucial for
the social profiling of CSDS exposure in both supervised and
unsupervised workflows. Overall, this study demonstrates
the high utility and versatility of DeepOF for the analysis of
complex individual and social behavior in rodents.

DeepOF as part of a markerless pose estimation toolset
The initial release of DeepLabCut in 2018 (27) provided
a reliable and accessible tool for researchers around the
globe to process markerless pose estimation data, which
has undoubtedly changed the field of behavioral neuro-
science. This has set in motion a rapid growth of tools
for analyzing pose estimation data that are increasing the
range of possibilities in the field, which were unimaginable
using classical tracking approaches or manual scoring. An
important distinction between these pose estimation analysis
tools is whether they intend to extract pre-defined and
characterized traits (supervised) or to explore the data and
extract patterns without external information (unsupervised).
The DeepOF module is designed to provide both analysis
pipelines; the supervised behavioral classifiers offer a quick
and easy-to-use analysis to detect individual and social
behavioral traits. In addition, when differences between the
conditions are not reflected in these traits, or the researcher
aims to obtain behavioral embeddings, the DeepOF module
can encode the data in a time-aware way that can report
differentially expressed patterns in an unsupervised manner.

10 | bioRχiv Bordes & Miranda et al. | DeepOF

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.23.497350doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497350
http://creativecommons.org/licenses/by-nc-nd/4.0/


DRAFT

A

B

C
E

F

−8 −6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6 cluster
0
1
2
3
4
5
6
7
8
9
10
11

LDC-1

LD
C
-2

5 6 7 8 9 10 11 12 13 14 15

0.8

0.85

0.9

0.95

1

Number of clusters

A
U
C

100 200 300 400 500 600

0.7

0.8

0.9

Time

A
U
C

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
experimental condition

Non-stressed
Stressed

PC-1

P
C
-2

D

2.15 2.2 2.25 2.3 2.35

Entropy

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4
Non-stressed
Stressed

Ti
m
e
on

cl
us
te
r

Cluster

Stressed

Non-stressed

Fig. 6. VQVAE unsupervised analyses identify different behavioral patterns between stressed and non-stressed mice during the social interaction task. A)
Cluster selection pipeline results. Models ranging from 5 to 25 clusters were trained in a 10-fold cross-validation loop (only 5 to 15 are shown for visualization purposes).
Discriminability between conditions on the aggregated embeddings (analogous to panel B) is reported. The cluster number which maximized this curve (explaining the
largest difference between the conditions of interest) was selected. B) Optimal binning of the videos was obtained by measuring the performance of a linear classifier on
discriminating between both conditions across a growing window, taking a range from the first 60 to 600 seconds for each video (grey curve). Higher values correspond to
more distinguishable distributions (that is larger differences in behavioral profiles across conditions). A maximum was observed at 2.06 minutes, close to the stipulated 2.5
minutes selected based on the social avoidance task. The dark green curve depicts discriminability across all subsequent bins of optimal length (first 2.06 minutes, second
2.06 minutes, etc.). The decay observed across time corresponds to the hypothesized arousal period in the CSDS cohort. C) Representation of the aggregated unsupervised
embedding for the optimally discriminant bin per experimental video colored by condition. Each 10 min video was fed to a trained VQVAE model using DeepOF’s unsupervised
pipeline. Aggregated embeddings were constructed as the time spent on each defined cluster (yielding a 12-dimensional vector). Dimensionality was further reduced using
PCA for visualization purposes. D) Unsupervised embedding of all automatically ruptured video fragments. Different colors correspond to different clusters as recognized
by DeepOF. Dimensionality was further reduced using LDA for visualization purposes. E) Cluster population per experimental condition in the first optimal bin (2.06 min).
Reported statistics correspond to a 2-way Welch t-test corrected for multiple testing using Bonferroni’s method across both clusters and bins. F) Stationary distribution’s
entropy of the transition matrices provided by the unsupervised pipeline within DeepOF. Higher values suggest that stressed animals explore the behavioral space in a more
erratic way (t-test p-value=6.6 ×10-7).

The supervised framework: spotting recognizable pat-
terns
The supervised pipeline within the DeepOF package can
be used on single open field and dyadic social interaction
behavioral data. DeepOF is capable of reporting a pre-
defined set of behavioral traits without any extra labeling or
training required. In order to accomplish this, it relies on
simple rule-based annotations and machine learning binary
classifiers whose generalizability has been tested, trading off
flexibility for ease of use. This makes it user-friendly for
researchers without computational expertise to apply this
supervised pipeline, without having to make any modifica-
tions. To further detect, unsupported patterns, using a more
involved and flexible tool (such as SimBA (34) or MARS

(26)) could be a reasonable next step to take. These tools
include a supervised approach that requires the user to label
and train classifiers, providing the freedom to train powerful
classifiers and recognize behavioral traits, which is espe-
cially beneficial for labs without computational expertise.
However, in contrast to DeepOF, this approach also delegates
to the user the responsibility of testing the generalizability
of the results (how well the trained models can be applied
to newly generated data, even in similar settings), which
requires careful practices from the experimenters.

The DeepOF module provides a more complete social
behavioral profile than the social avoidance task
The social behavioral profile in CSDS-subjected animals
has been measured extensively using the social avoidance
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(including locomotion and individual bodypart speeds, distances, and angles) to the previously obtained cluster assignments. The depicted plots display the first 5 most
important features for each classifier, in terms of the mean absolute value of the Shapley additive values (SHAP). F) Performance of the constructed gradient boosting
classifiers in terms of the test area under the ROC curve. Data were standardized and the minority class was oversampled using the SMOTE algorithm to correct for class
imbalance.

task, which is based on the separation of social behavioral
traits between stressed and non-stressed animals (10, 15, 45).
Previous research has shown that rodents have a social
interaction preference towards a novel conspecific compared
to a familiar conspecific (46). However, the duration of this
social behavioral arousal state has not been well documented.
In this context, and by replicating the time the social avoid-
ance task typically lasts for (9), the current study shows that
the CSDS-related social behavioral profile, obtained with the
DeepOF supervised classifiers, was increasingly observed
during the first 2.5 min of the 10 min social interaction
task. Furthermore, the presented unsupervised workflow was
used to determine an optimal binning of our experiments by
measuring how different both conditions were across time
for a linear classifier. This yielded an optimal separation
at approximately two minutes, which then decayed over
subsequent time bins in a manner consistent with the arousal
hypothesis. The fact that this result was not seen in the
absence of a conspecific strengthens this argument. Taking
this into account, we argue that the introduction of a novel
conspecific induces a state of arousal, which coincides with a
distinct social behavioral profile that disappears over time af-

ter 2-to-3 minutes due to habituation. Along these lines, this
study shows that the DeepOF social behavioral classifiers
provide a stronger separation of the social behavioral profile
between stressed and non-stressed animals compared to the
classical social avoidance task. In addition, the Z-score of
DeepOF social behavioral classifiers showed a significant
correlation with the Z-score of stress physiology, while the
social avoidance data did not correlate with the Z-score of
stress physiology. Taken together, it can be concluded that
using the DeepOF social behavioral classifiers provides a
more robust and clearer social behavioral profile in animals
subjected to CSDS compared to the social avoidance task.
An important reason for the superiority of DeepOF in social
behavioral profiling depends on the experimental set-up:
the social avoidance task relies on the confinement of an
animal (for example using a wired mesh cage), which means
that no natural interaction between freely-moving animals
is possible, whereas the social interaction task is based on
a naturally occurring interaction between freely moving
animals (16). Moreover, in the social avoidance task, the
confined animal can show symptoms of anxiety-related
behavior, which influences the physiological state and the
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social interaction and approach behavior of the conspecific
(47–49). An important advantage of the DeepOF module
is the many different behavioral classifiers that can be
investigated at the same time without increasing the labor
intensity. The combined analysis of multiple behavioral
classifiers into a Z-score of social behavior provides a more
complete social behavioral profile than solely investigating
social avoidance behavior, which may also be beneficial for
improved classification of identifying stress susceptible and
resilient individuals.

DeepOF can detect and explain differences across condi-
tions even when no labels are available
The supervised pipeline within DeepOF follows a highly
opinionated philosophy, which focuses on ease of use and
relies on predefined models. As an alternative, DeepOF
offers an unsupervised workflow capable of representing
animal behavior across experiments without any label
information. In its most basic expression, this involves ob-
taining a representation for each experiment in a time-aware
manner: unlike other dimensionality reduction algorithms
like PCA, UMAP, and T-SNE (22), DeepOF, when applied
to the raw dataset, relies on a combination of convolutional
and recurrent neural networks capable of modeling the
sequential nature of motion. Each input to the models
consists of a subsequence across a non-overlapping sliding
window of each experiment. Although this idea has been
explored before (31), DeepOF has the advantage of detecting
automatically where each experimental sequence needs to be
split, which is based on a change point detection algorithm
that detects when the animals change their behavior. In
addition, these global embeddings can be decomposed into
a set of clusters representing behavioral motifs that the user
can then inspect both visually and with machine learning
explainability methods. Moreover, by comparing cluster
enrichment and dynamics across conditions, it is possible
to answer questions that are relevant towards understanding
what the observed difference might be based on, without
any previous knowledge: which behaviors are most or
least expressed in each condition? Is the set of behaviors
explored differently in non-stressed and stressed mice? This
constitutes a complementary approach that can be beneficial
to further direct hypotheses when little knowledge is avail-
able. In addition, by not only showing overall differences
between cohorts but also reporting which motion primitives
might be driving them, it is possible to test hypotheses by
training novel supervised classifiers based on those motion
primitives. This will allow researchers to distinguish new,
meaningful patterns that have not been reported before and
that may be significantly associated with a given condition.
Taken together, the current study shows that the DeepOF
unsupervised pipeline does not only recapitulate results
previously obtained with the supervised analysis, but also
shows how this tool can be used to detect habituation and
overall differences in behavioral exploration. We also show
that detected differences are significantly stronger when a
conspecific is present, although also detectable during single

animal open field exploration.

Towards an open-source behavioral analysis ecosystem
One of the main advantages of DeepOF, SimBA (19), VAME
(31), MARS (26), and many other packages cited in this
manuscript, is that they are open source. This means that
how these tools are functioning is transparent and it is possi-
ble for the community to contribute to their development. We
strongly believe that the adoption of open-source frameworks
can not only increase transparency in the field but also incen-
tivize a feeling of community, in which researchers and de-
velopers can share ideas, code, and solve bugs and problems
together. Moreover, open-source facilitates beneficial feed-
back loops, where the data generated using these tools can be
published, thus increasing the opportunity to produce better
software. A good example of this being zero-shot pose es-
timation (50), which enables motion tracking without label-
ing, by cleverly leveraging information from several publicly
available datasets. In addition, new technologies are start-
ing to enable joint learning from multiple modalities, such as
neural activation and behavior (51), which opens the door to
model how one affects the other. Finally, in contrast to sev-
eral other options that offer extended functionality but rely
on proprietary algorithms and/or specialized hardware (23),
these tools have the potential to make otherwise expensive
software available to a larger audience.

Conclusion
Taken together, the current study provides a novel approach
for individual and social behavioral profiling in rodents by
both extracting pre-defined behavioral classifiers and using
unsupervised, time-aware embeddings using DeepOF. We
show evidence for the validation of the behavioral classi-
fiers and provide an open-source package in order to increase
transparency and contribute to the further standardization of
the behavioral constructs. We also show that, while differ-
ences across conditions are detectable during single animal
open field exploration, they are enhanced in the social in-
teraction task involving a companion mouse. Furthermore,
while the classical social avoidance task does identify the so-
cial behavioral profile induced by CSDS, the DeepOF behav-
ioral classifiers provide a more robust and clearer profile. In
addition, the first minutes of the interaction with a novel con-
specific coincide with a state of social arousal, which disap-
pears with time due to habituation. This study shows that the
DeepOF module can contribute to further unraveling the role
of social and non-social behaviors in stress-related disorders,
such as MDD. In addition, the DeepOF module contributes
to a more specific classification of the affected individual-
and social behaviors in stress-related disorders, which could
contribute to the study of drug development for psychiatric
disorders.
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Fig. S1. Validation of annotated behaviors . 10 out of 53 videos were manually annotated for all traits using the Colabeler software v2.0.4. The Matthews correlation
coefficient between manual labels and predicted binary outcomes (presence or absence of a given trait at a given time) is reported, where 0 and 1 correspond to random
and perfect predictions, respectively. Error bars represent the standard error of the mean across experiments. Dark blue bars represent traits that were annotated using
simple rules, whereas orange bars represent traits that were annotated using supervised machine learning models (trained using a 5-fold nested cross-validation approach –
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bin (T(51)=21.89, p<0.0001), but not for the 5 (T(51)=4.29, p=0.172), 7.5 (T(51)=1.88, p=0.708) and 10 (T(51)=1.19, p=1) min time bins. (Two-way repeated measures ANOVA:
condition effect: F(1,208)=20.92, p<0.0001, time effect: F(1,208)=6.87, p=0.009 and an interaction effect condition×time: F(1,208)=6.21, p=0.013). E) The total duration B-
huddling does not show a significant difference between stressed and non-stressed animals. Wilcoxon test: W=302, p=0.388. F) The time B-huddling is significantly higher in
stressed animals for the 2.5 min time bin (H(1)=13.37, p=0.0010), but not for the 5 (H(1)=1.49, p=0.892), 7.5 (H(1)=0.86, p=1) and 10 (H(1)=0.02, p=1) min time bins. (Two-
way repeated measures ANOVA: condition effect: F(1,208)=8.46, p=0.004, no time effect: F(1,208)=0.011, p=0.916, but an interaction effect condition×time: F(1,208)=12.22,
p=0.0006). G) The total duration B-nose-to-tail does not show a significant difference between stressed and non-stressed animals. Welch’s test: T(39.38)=1.56, p=0.128. H)
The time B-nose-to-tail is significantly lowered in stressed animals for the 2.5 min time bin (H(1)=31.59, p<0.0001), but not for the 5 (H(1)=3.14, p=0.31), 7.5 (H(1)=0.032,
p=1), and 10 (H(1)=0.59, p=1) min time bins. (Two-way repeated measures ANOVA: condition effect: F(1,208)=3.27, p=0.072, time effect: F(1,208)=4.31, p=0.039 and an
interaction effect condition×time: F(1,208)=33.52, p<0.0001). I) The total duration B-nose-to-body does not show a significant difference between stressed and non-stressed
animals. Welch’s test: T(37.26)=1.66, p=0.105. J) The time B-nose-to-tail is significantly lowered in stressed animals for the 2.5 min time bin (H(1)=25.54, p<0.0001), but not
for the 5 (H(1)=0.86, p=1), 7.5 (H(1)=0.026, p=1) and 10 (H(1)=0.45, p=1) min time bins. (Two-way repeated measures ANOVA: condition effect: F(1,208)=5.01 p=0.024, no
time effect: F(1,208)=0.075, p=0.785, but an interaction effect condition×time: F(1,208)=11.92, p=0.0007).
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Fig. S4. DeepOF other behavioral classifiers in the social interaction task for 10 min total duration. A) B-digging is not significantly different between stressed and
non-stressed animals. Wilcoxon test: W=331.5, p=0.735. B) B-sniffing is not significantly different between stressed and non-stressed animals. Welch’s test: T(44.68)=1.30,
p=0.201. C) B-wall-climbing is significantly lower in stressed animals. Wilcoxon test: W=496.5, p=0.00988. D) Nose-to-nose is not significantly different between stressed
and non-stressed animals. Wilcoxon test: W=334, p=0.769. E) Side-by-side is significantly lower in stressed animals, which only occurred for approximately 1 second in
both conditions. Wilcoxon test: W=541.4, p=0.00068. F) Side-reverse-side is not significantly different between stressed and non-stressed animals. Wilcoxon test: W=389.5,
p=0.499.
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Fig. S5. VQVAE unsupervised analyses identify different behavioral patterns between stressed and non-stressed mice during individual open field. A) Cluster
selection pipeline results. Models ranging from 5 to 25 clusters were trained in a 10-fold cross-validation loop (only 5 to 15 are shown, for visualization purposes). Dis-
criminability between conditions on the aggregated embeddings (analogous to panel “B)” is reported. The cluster number which maximized this curve (this explaining the
most difference between the conditions of interest) was selected. B) Optimal binning of the videos was obtained by measuring the performance of a linear classifier on
discriminating between both conditions across a growing window taking a range from the first 60 to 600 seconds for each video (grey curve). Higher values correspond to
more distinguishable distributions (i. e., more different behavioral profiles across conditions). We observe a maximum at 8.68 minutes (dark green marker), suggesting that
the difference across conditions is sustained across the entire experiment, making binning unnecessary. C) Representation of the aggregated unsupervised embedding for
the optimally discriminant bin per experimental video, colored by condition. Each 10-minute-long video was fed to a trained VQVAE model using DeepOF’s unsupervised
pipeline. Aggregated embeddings were constructed as the time spent on each defined cluster (yielding a 9-dimensional vector). Dimensionality was further reduced using
PCA for visualization purposes. D) Unsupervised embedding of all automatically ruptured video fragments. Different colors correspond to different clusters as recognized by
DeepOF. Dimensionality was further reduced using LDA for visualization purposes. E) Cluster population per experimental condition in the first optimal bin (8.68 minutes).
Reported statistics correspond to a 2-way Welch t-test corrected for multiple testing using Bonferroni’s method across both clusters and bins. F) Stationary distribution’s
entropy of the transition matrices provided by the unsupervised pipeline within DeepOF. No differences were detected between the conditions (t-test p-value=0.08).
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Fig. S6. SHAP analysis of unsupervised cluster assignments in the single open field data A–D) Beeswarm plots for clusters 0, 5, 6, and 8 obtained by the previously
discussed social interaction experiments. Gradient boosting machines were trained to map from a predefined set of time series statistics (including locomotion and individual
bodypart speeds, distances, and angles) to the previously obtained cluster assignments. The plots depict the first 5 most important features for each classifier, in terms of
the mean absolute value of the Shapley additive values (SHAP). F) Performance of the involved gradient boosting classifiers in terms of the area under the ROC curve. Data
were standardized, and the minority class was oversampled using the SMOTE algorithm, to correct for class imbalance.
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