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Aging and its associated diseases result from complex changes in cell state which can be examined
with single-cell transcriptomic approaches. We analyzed gene expression noise, a measure of cellular
heterogeneity, across age and many cell types and tissues using the single cell atlas Tabula Muris
Senis, and characterized the noise properties of most coding genes. We developed a quantitative,
well-calibrated statistical model of single-cell RNAseq measurement from which we sensitively de-
tected changes in gene expression noise. We found thousands of genes with significantly changing
gene expression noise with age. Not all genes had increasing noise with age—many showed a robust
decreases of noise. There were clear biological correlation between subsets of genes, with a systemic
decrease of noise in oxidative phosphorylation pathways while immune pathways involved in anti-
gen presentation saw an increase. These effects were seen robustly across cell types and tissues,
impacting many organs of healthy, aging mice.

INTRODUCTION

There has been longstanding interest in whether gene
expression noise changes with age, and whether there is
a causal relationship between the two. Does aging cause
gene expression to become dysregulated and hence nois-
ier? Does noisy gene expression have biological conse-
quences which in turn cause diseases of aging? These
are tantalizing questions, and unfortunately the litera-
ture contains conflicting results even on the most funda-
mental question of whether gene expression noise changes
with age, regardless of cause and effect. Prior work in
cells of the heart have indicated increases in noise for
some genes [1], while other work in immune cells of the
blood have shown no change in age [2]. It is of course
possible and perhaps even likely that both results are
correct and that changes in gene expression noise are cell
type dependent.

The recent development of whole-organism cell atlases
provide an unprecedented view of change in the transcrip-
tome with age and disease [3, 4]. These atlases demon-
strate that cell types and states are fluid, changing with
age, disease, and lineage in complex ways[5–9]. Aging
cell atlases contain critical evidence of changes in cell
type specialization, clonal expansion, and heterogeneous
cellular response to stress and damage [10]. Deciphering
changes in the variation or continuum of gene expression
is challenging because substantial quantities of techni-
cal noise and systematic errors that occur during various
steps of the single-cell mRNA sequencing pipeline [11–
20].

We sought to systematically and comprehensively ad-
dress such questions for all expressed genes by analyzing
gene expression noise as a function of age across large

numbers of cell types and tissues using the single cell at-
las Tabula Muris Senis. A major challenge in this work
was to develop new statistical techniques which faithfully
model, quantify, identify, and deconvolve measurement
noise from true biological gene expression noise. We de-
veloped a quantitative, well-calibrated statistical model
of single-cell RNAseq measurement from which we cali-
brated molecule numbers, inferred the total mRNA con-
tent of cells, and sensitively detected changes in gene
expression noise in low and moderately expressed genes.

When these methods are applied to Tabula Muris Se-
nis, we found thousands of genes with significantly chang-
ing gene expression noise with age. Interestingly, not all
genes had increasing noise with age—some had robust
decreases of noise with age. There are clear biological
relationships between subsets of these genes, with en-
ergy pathways involved in oxidative phosphorylation see-
ing a decrease in noise while immune pathways involved
in antigen presentation saw an increase in noise. These
effects were seen robustly across cell types and tissues,
impacting many organs of normally aging mice. In con-
trast to the statistically significant correlations, the bio-
logical significance of the changes in the control of gene
regulation are yet to be understood.

RESULTS

A model of mRNA capture and amplification
quantifies technical noise in single-cell RNAseq

Quantifying biological variation in gene expression
from single-cell transcriptomic (scRNAseq) data requires
calibrating the technical noise contribution of the over-
all measured noise [13]. Technical noise depends on gene
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FIG. 1: First principles statistical model single-cell mRNA sequencing. (a) A schematic of our first
principles model of mRNA capture and reverse transcription and amplification. (b) Our model allows us to
deconvolve expression into estimates of the mean number of cDNA molecules (λ) and their noise factor Φ, from
which we can (c) perform differential analysis of changing gene expression noise with age. (d) Our model provides a
quantitative prediction of the distribution of mRNA and cDNA molecules after each step for purely technical noise
(blue) and both technical and biological noise (red). Shown here is a negative binomial distribution of mRNA,
though estimates of Φ are generic and do not depend on the specific biological noise model. A mathematical
formulation is included in the supplemental material. (e) Technical noise enters in four steps, as (i) variation in the
capture efficiency, or total mRNA content, per cell, (ii) finite probability of capturing and reverse transcribing any
given mRNA molecule, (iii) finite probability that a molecule is amplified during each step of PCR, and (iv)
well-to-well variations of in PCR efficiency. (e) Quantitative contributions of variance from each technical noise term
for pancreatic β cells (var c = 0.2 and ∆g = 0.5, see text for explanation). Capture and PCR resampling noise
dominate for low expressed genes, less than five cDNA per well, while PCR efficiency noise dominates for higher
expressed genes.

expression and the total number of captured molecules,
both of which change with age and cell state. To address
these challenges, we developed a computational approach
based on a simple model of mRNA capture and ampli-
fication to distinguish true biological sources of gene ex-
pression noise from technical noise sources (Fig. 1).

Our model has two key steps, (1) capture and reverse
transcription to cDNA, and (2) amplification of cDNA by
PCR. mRNA is captured from cells that have been iso-
lated, sorted, and lysed from dissociated tissues of mice
of several ages, from 3 m to 24 m [4]. The total accessi-
ble mRNA content per cell varies substantially between
cells within the same tissue and varies systematically be-
tween cells isolated from mice of different ages. We define
technical noise as the measured distribution of reads aris-

ing from a fixed and noiseless (true) number of mRNA
molecules per cell, while biological noise arises from a
cell-to-cell variation in mRNA content. mRNA is cap-
tured (Fig. 1e, i) and reverse transcribed (Fig. 1e, ii)
stochastically. The observed number of cDNA molecules
n for a given gene is then given by the Poisson distribu-
tion,

n ∼ Poisson(cλ), (1)

where c is the relative capture/conversion efficiency of
RNA to cDNA, and λ is the mean number of cDNA
molecules per cell of that gene. We estimate from exoge-
nous spike-in RNA that at most 18% of starting mRNA
transcripts are reverse transcribed and then detected
(Fig. S3).
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PCR amplification is critical to detect small numbers
of cDNA molecules but adds additional technical noise
and distortion. cDNA molecules are resampled and am-
plified through many cycles of PCR, which adds PCR
resampling noise (Fig. 1e, iii). In addition, PCR effi-
ciency may vary slightly from well to well due to slight
differences in reagents, temperature, evaporation rates,
etc., which lead to a long-tailed distribution in the num-
ber of amplified molecules (Fig. 1e, iv). These processes
are quantitatively modeled with a single parameter rep-
resenting variation in PCR efficiency: ∆g = 0.5, which
was empirically estimated for the entire dataset (Meth-
ods and Supplemental Material). Finally, we assume the
library preparation, sequencing, alignment, and normal-
ization to counts per million (cpm) adds minimal addi-
tional noise compared to the previous steps (Supplemen-
tal Material Sec. I A).

A full quantitative model is described in the Methods.
In brief, the counts per million x for a given gene depends
on the relative capture efficiency c, the PCR gain g, the
stochastic PCR noise y, and a noise factor Φ (Methods
and Supplemental Material for details).

x(λ,Φ) =
g(Φ)

c
(n(λ) + y) (2)

The distribution P (x|λ,Φ) can be solved by integrating
over all distributions. We then fit the measured mean and
variance of log10(1 + cpm) to the theoretical mean and
variance of log10(1 + x(λ,Φ)), from which we determine
estimates of λ and Φ for each gene.

Despite the distortion of PCR, the dominant source of
technical noise for most genes is the random sampling
of molecules (Fig. 1f). Typically 80-97% of genes are
expressed with mean expression of less than one cDNA
molecules per well (Fig. S5). A protocol that adds unique
molecular identifiers (UMIs) at the expense of capture ef-
ficiency, typically a threefold change in efficiency in most
protocols [21], will negatively impact the estimation of
the noise factor Φ for low expressed genes (Supplemental
Material). Only at high expression levels, greater than
five cDNA molecules per well, does PCR efficiency noise
begin to dominate. A protocol that uses UMIs to remove
PCR efficiency noise would improve estimates of Φ for
these highly expressed genes, as has been used in previous
work [13, 14]; however only a small fraction of the genes
are sufficiently highly expressed to benefit (Fig. S5).

For any given cell type and gene the model has excel-
lent quantitative agreement with the data with only four
fit parameters: expression and noise level for the gene in
the cell type, a variance of cell sizes (total mRNA con-
tent) for each cell type and mouse, and a single global
parameter describing the long-tailed distribution of the
molecule number after PCR amplification (Fig. 1g).

Low expression, high dropout genes and exogenous
spike-in controls validate and calibrate the model

We validated the technical noise model through three
computational approaches that dissect different stages of
the single-cell pipeline (Fig. 2a). First, we performed vir-
tual digital PCR (vdPCR) on the measured data, a com-
putational approach analogous to digital PCR [22]. In
vdPCR, the count table is binarized, with entries equal to
one when reads for a gene are present, and zero otherwise
(Fig. 2b and Supplemental Material Sec. I A). Second, we
estimate the mean expression of a single cDNA molecule
and the total number of cDNA molecules and mRNA in
each sample. Finally, we estimate the long-tailed distri-
bution of reads after PCR amplification from each cDNA
molecule, a key source of measurement noise. All three
approaches are applied to high dropout, low expression
genes as well as exogenous spike-in RNA (ERCCs after
the External RNA Controls Consortium, from which they
were developed).

The vdPCR count table includes noise from the cell-to-
cell size variation (capture efficiency noise) and stochastic
capture (Fig 1e i and ii) but not PCR resampling or am-
plification. Dropouts, in which a gene is not detected in
a given cell, is due to the Poisson statistics of capture. It
has previously been shown that dropouts are unlikely to
distort the true distribution of gene expression. In other
words, the number of zeros found in single cell sampling
is not inflated beyond what is expected by Poisson sam-
pling [23].

We find that a model with a single parameter describ-
ing capture efficiency explains the variance of vdPCR
data for the vast majority of genes in a given cell type
(Fig. 2c) (Supplemental Material Sec. I A). This parame-
ter can also be interpreted as representing that different
cells have different quantities of total mRNA. The vari-
ance of vdPCR data increases and then decreases with es-
timated gene expression, as highly expressed genes have
nearly no dropouts and therefore vanishing variance in
vdPCR (Fig. 2c, blue points). Compared to the simple
model without noise in capture efficiency, the data shows
a shift in the curve at high expressions due to such noise
(Fig. 2c, red line and dashed black line), and the actual
data is well fit with a single parameter describing capture
efficiency noise.

This parameter varies with cell type and mouse, from
0.07 for urothelial cells, 0.18 for pancreatic β cells, and
1.2 for hepatocytes (Fig. 2c, measured for the 3 m mouse
with the most cells). We have also derived similar values
for this parameter from other data sets by a reanalysis
of previous literature. That analysis led to values of 0.12
for U2OS cells in merFISH expansion microscopy [24]
and 0.13 for mouse embryonic stem cells in CEL-seq [13]
(Supplemental Material Sec. I C). Whether the changing
heterogeneity shown here is a purely technical effect or
demonstrates true biological noise is unclear. Regardless,
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FIG. 2: Validation and calibration of statistical model. (a) The statistical model is calibrated by the large
number of low-expressed, high dropout genes present in RNAseq data. Reads per cell for a given gene are
represented as proportional to quantities of amplified DNA reads in different wells for one cell type. (b) Reads are
binarized so any aligned transcripts (nonzero reads) are represented as a one, and dropouts as a zero. These data
are sensitive to noise accrued during mRNA capture and reverse transcription, but not PCR distortion. (c) Capture
efficiency noise leads to an increase in the variance of binarized data (blue points for each gene), shown here in the
increasingly heterogeneous populations of urothelial cells, pancreatic β cells, and hepatocytes. The data is well
described by a single parameter (solid red curve), var c, and disagrees with a model that assumes all cells have the
same capture efficiency (dashed black line) (d) The number of unique genes (NOG) per cell is entirely explained by
relative capture efficiency, equivalent to the relative RNA content, with a decrease in NOG with age predicted by
their relative decrease in captured mRNA content per cell (solid red line). Histograms of relative capture efficiency
(cell size) and NOG are show on the top and right, respectively. Each point is one pancreatic β cells. Cells isolated
from 3 m, 18 m, and 24 m mice are blue, green, and orange, respectively, with squares representing the population
mean. (e) Low expressed genes with high dropout are a well-calibrated source of single molecules. The few wells
that contain transcripts most likely contain only one molecule. Averaging nonzero reads of these genes estimates the
counts per million (cpm) associated with one cDNA molecule, here shown for pancreatic β cells. The mean cpm of
nonzero reads is largely independent of expression for Λ < 0.3. Cells from 24 m mice show a higher cpm per molecule
than cells from 3 m mice because we reverse transcribe less cDNA, and each cDNA is correspondingly a larger
fraction of the limited number of molecules. (f) We estimate 2.6× 104 and 9.4× 103 reverse transcribed molecules of
cDNA, corresponding to 1.4× 105 and 5.2× 104 molecules of accessible mRNA, isolated from the from pancreatic β
cells of 3 m and 24 m mice, respectively. (g) The distribution of expression for genes with low expression (λ ≈ 0.17)
and similar noise factor (Φ ≈ 63) is long-tailed, and is fit well with a model including PCR efficiency noise (Fig. 1e,
iv). The distribution is validated by exogenous RNA spike-ins (ERCCs), which show a consistent long-tailed
distribution (red ticks). (h) Estimates of expression in 24 mice are systematically smaller than for 3 m mice across
all measured gene expressions. This effect is included and removed during differential noise analysis.
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FIG. 3: Number of DNGs across all tissues. (a) 29 cell types in 17 tissues pass our quality control of at least
two mice per age and at least 150 cells per age. Typically 10-300 DNGs and 50-2000 DEGs per cell type between
cells isolated from 3 m and 24 m mice. Cells isolated from 24 m mice show a systematic decrease in relative mRNA
content. (b) A large number of DNGs are found between in the 3 m-18 m and 3 m-24 m comparison, with many
fewer between 18 m-24 m. (c) Most cell types have more DNGs corresponding to increasing variation or noise than
decreasing. (d) Fold change of gene expression (λ) and noise factor (Φ) between cells isolated from 3 m and 24 m
mice, including all cell types and tissues. The colored dots denote the density of (statistically significant genes), as
compared to all genes (gray and colored dots).

we treat it as technical noise in this analysis.

The relative capture efficiency (total mRNA content)
and number of unique genes (NOG) from cells isolated
from 3 m and 18 m agree well (Fig. 2d, blue and green),
while cells from 24 m mice show a substantial decrease in
both metrics (orange). Our model shows excellent quan-
titative agreement of the observed relationship between
relative mRNA content and NOG (solid red line). The

decreased NOG seen in cells isolated from 24 m mice has
been observed before [4], but our analysis demonstrates
that it is due entirely to the decreased number of cap-
tured mRNA molecules in those cells. While the origins
of this systematic decrease in cDNA are unknown, the
shift is consistent across three orders of magnitude of
gene expression (Fig. S4), suggesting that mRNA from
older tissues is likely more degraded during tissue han-
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FIG. 4: Pathway and gene ontology enrichment of increasing and decreasing DNGs. (a) Pathways
pertaining to oxidative phosphorylation and antigen processing and presentation are the most frequently enriched in
decreasing and increasing DNGs, respectively. Other pathways (virial myocarditis, non-alcoholic fatty liver diseases)
appear because they overlap with oxidative phosphorylation or antigen processing and presentation, as can be seen
by the most frequently seen genes in the pathway are indicated on the right (increasing DNG in red, decreasing in
blue). The top enriched pathways are significantly enriched in either increasing or decreasing DNGs, but never both.
Enrichment scores are calculated based on the frequency of DNGs found across tissues and cell types as compared to
the frequency of analyzed genes for which Φ can be accurately determined (0.05 < λ < 3), with 1 corresponding to
no enrichment. (b) Occurrence of DNGs in each cell type. Genes are grouped as universal (genes found in more than
25% of cell types), oxidative phosphorylation (oxphos), antigen processing and presentation (antigen p&p), and
DNGs specific to each cluster. Increasing DNGs are red, decreasing DNGs are blue. (c) Ratio of DNGs to analyzed
genes with calculated Φ for each major component of the electron transport chain. The majority of analyzed genes
are found as DNGs, indicating a widespread change in the regulation of oxidative phosphorylation. While most
DNGs are decreasing, complex II contains several increasing DNGs, notably Sdhc.

dling and dissociation. However, this interpretation is
not definitive and could have a biological origin as well,
for instance due to smaller or less transcriptionally active
cells in older mice. Regardless of origin, in this work we
consider the decrease in mRNA and cDNA to be a sys-
tematic error that must be accounted for to explore true

variations in noise with age.

The distribution of reads from the large number of high
dropout genes gives a detailed picture of the PCR ampli-
fication process and its technical noise. Measured reads
from a low expressed gene with high dropout most likely
originate from a single cDNA molecule. We test this as-
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sumption by averaging the mean expression of only cells
with nonzero reads (Fig. 2e, each point is one gene). The
result is independent of expression for 10−3 < Λ < 10−1,
here shown for pancreatic β cells, demonstrating that
in this range of data only one cDNA molecule is cap-
tured and amplified (Λ is the expression estimated from
dropout, see Supplemental Material). This further con-
firms that dropouts are reflective of the Poisson statistics
of molecule capture and are not zero inflated [23]. The
average cpm per molecule is significantly larger for 24 m
mice because fewer total cDNA molecules are captured
(Fig. 2f). The geometric mean from one molecule is 50
cpm in 3 m mice and 110 cpm in 24 m mice, suggesting
that there the number of accessible mRNA molecules per
pancreatic beta cell decreases from 110,000 and 50,000 as
the age increases from 3 m to 24 m, assuming a capture
efficiency is 18%.

The distribution of reads is long-tailed because of cell-
to-cell variations in the PCR efficiency (Fig. 2g). A
model of stochastic capture and sampling during PCR
alone (Fig. 1b iii) does not predict the long tails seen
in moderately expressed genes (blue curve, 731 genes
of similar expression and noise factor) and in spike-in,
exogenous RNA (ERCC-00044, red vertical ticks). We
model the PCR gain per cell (cpm per cDNA molecule)
as a log-normal distribution with a single parameter
∆g = 0.5 − 0.8, corresponding to a 6-10% variation of
PCR efficiency per cycle, and observe excellent quantita-
tive agreement (orange line).

Our model explains the distributions and noise of the
majority of low expression genes using a small number of
fit parameters (Fig. 2). We calculate a capture efficiency
noise term var c for each cell type and mouse from vd-
PCR data, and empirically use ∆g = 0.5 to model PCR
efficiency noise for the entire dataset. The remaining two
parameters are the expression λ (the mean number of
cDNA molecules) and the noise factor Φ of each gene, in
each mouse, for each cell type, fit by matching the sum-
mary statistics (mean and variance of log10(1 + cpm)) of
the observed data to expected values from the quantita-
tive model (Supplemental Material Sec. I D). Fitting data
to λ and Φ, which are uncorrelated, deconvolves changes
in expression with changes in technical noise (Fig. 1a and
Fig. S2). This approach is similar in spirit to variance
stabilizing transforms that decorrelate noise with expres-
sion [25–27], but our method works equally well for low
(λ < 1) or high (λ > 1) expression.

The noise factor Φ, an estimate for the measured
noise in cDNA expression for each gene, is equal to the
product of the unknown mean PCR gain GPCR (cpm
per cDNA molecule) and a biological noise term ηbiol

that depends on the distribution of true biological noise,
Φ = GPCRηbiol. Two limiting cases of bursting gene ex-
pression [28–30] are the zero inflated Poisson distribution
of mRNA, for which ηbiol is the Fano factor (variance
over mean), and the negative binomial distribution, for

which ηbiol is approximately the square root of the Fano
factor (Supplemental Material). Since the PCR gain is
unknown but is expected not to vary with age, we cal-
culate the fold change of Φ between cells isolated from
mice of different ages to remove its effect (Fig. 1c).

fcΦ =
Φold

Φyoung
=

ηold
biol

ηyoung
biol

(3)

Uncertainty in fcΦ is estimated from the technical
noise model and from the biological replicates of mice of
the same age (Fig. S1). The quantitative contribution of
different noise sources to technical gene expression noise
are shown in Fig. 1f. For high expression genes, PCR
efficiency dominates and estimating technical noise be-
comes increasingly imprecise. Similarly, low expression
genes with very high dropout have insufficient statisti-
cal power to determine Φ. For this reason, our analysis
excludes genes with λ > 3 and λ < 10−2.

Differential noise genes (DNGs) are enriched in
pathways relating to oxidative phosphorylation and

antigen processing and presentation

Our model-based analysis is applied to each gene, for
each cell type, and for each mouse across in the TMS
data set[4]. TMS-defined cell types are sub-clustered for
a more homogeneous population and filtered for those
with at least two 3 m mice and two 24 m mice and at
least 150 cells mouse (Fig. S1). Batch effects are min-
imized by performing estimation of Φ within individual
mice, normalizing expression and noise by the relative ex-
pression per mouse to account for changes in total cDNA,
and aggregating by age (Fig. S1). A summary of results
is show in Fig. 3.

We observe substantially more differential noise genes
(DNGs), genes that shown significant fold change in the
noise factor, between 3 m and 24 m, and the fewest num-
ber of DNGs between 18 m and 24 m (Fig. 3b). These
data suggest a marked and systemic change in biological
gene expression noise or biological variation between 3
m and 18 m, with more organ- or cell-specific changes
towards 24 m. Liver hepatocytes stand out with partic-
ularly large number of DNGs between 18 m and 24 m.
This analysis find typically 50% more DNGs correspond-
ing to increasing than decreasing noise (Fig. 4c). DNGs
are corrected for decreasing relative mRNA in older mice
(Fig. 4b).

Cell types may share up to 50% of the same DNGs
(Fig. 4e). We cluster based on DNG similarity (using the
Jaccard index) and observe clusters with loosely similar
function or origin, including crypt cells in cluster 1, and
immune cells in clusters 4 and 5, mesenchymal stem cells
in cluster 6, and epithelial cells in cluster 7. The number
of DNGs is weakly correlated with the number of DEGs.
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Cell types with more DEGs and DNGs do not show an
increase in the number of overlapping genes that are both
DEGs and DNGs, with a Jaccard similarity of typically
3-13% (Fig. S7).

A set of “universally varying” DNGs appear frequently
across the 29 cell types and 17 tissues that pass our
quality control, with 129 genes appearing in more than
8 (28%) of the cell types (the family-wise error rate
(FWER) of making a false discovery is � 0.01).) An
enrichment analysis of DNGs against the KEGG and GO
gene databases shows a significant increase in enrichment
in genes relating to oxidative phosphorylation and anti-
gen processing and presentation (Fig. 4a, p � 10−3, see
Supplemental Material). Examples of “universal” DNGs,
DNGs enriched in oxidative phosphorylation and antigen
processing and presentation, and genes specific to clus-
ters of cell types are shown in Fig 4b. Nearly all of these
genes show a consistent increase or decrease in their noise
factor across the cell types. DNGs related to antigen pro-
cessing and presentation tend to have increasing noise
factor with age, while nearly all DNGs involved in oxida-
tive phosphorylation show a counter-intuitive decrease of
noise with age.

Not only is oxidative phosphorylation enriched in
DNGs, but the majority of analyzed genes in all major
components of the electron transport chain are DNGs
(Fig 4c). Ndufa1 in Complex I (NADH ubiquinone oxi-
doreductase), Cox17 in Complex IV (cytochrome c oxi-
dase), and Atp5k in ATP synthase are decreasing DNGs
found in half of the cell types studied here. These genes
typically show a significant decrease in Φ between 3 m
and 18 m, with either a continued decrease in Φ towards
24 m (in cluster 2) or a flattening between 18 m and 24 m
(cluster 4), depending on cell type (Ext. Fig. S8). This
is a striking result since mitochondrial dysregulation is a
well known hallmark of aging.

“Inflammaging”, chronic inflammation that correlates
with aging and many age-related diseases, is seen in
nearly all single-cell mRNA seq studies of aging [cite].
We identify many related pathways, most notably anti-
gen processing and presentation, as having genes with in-
creased noise (Fig. 4a). The most frequently found DNGs
in these pathways are related to MHC class II presen-
tation, including Cd74, Lgmn, and the antigen binding
genes H2-Aa (orthologous to HLA-DQA1 in humans),
H2-Ab1 (HLA-DQB2 ), and H2-Eb1 (HLA-DRB1 ). We
observe increasing DNGs (increasing biological variation)
across a wide range of cell types, including epithelial cells
of the large intestine and bladder, endothelial cells in the
heart, hepatocytes, thmyocytes, and mesenchymal stem
cells across many tissues. Several of these non-canonical
presenters of MHC class II have been observed during
inflammation, aging, or stress, including in hepatocytes
[31, 32], thymocytes [33], epithelial cells [34], and en-
dothelial cells [35]. Canonical presenters of MHC class II
molecules, professional antigen producing cells such as B

cells, macropaghes, and dendritic cells, are excluded from
differential variance analysis for these genes because their
expression of MHC class II molecules is far too high to
accurately determine Φ (λ� 3).

Decrease variation of oxidative phosphorylation is
correlated with well-known transcription factors and

regulators

We hypothesise that the broad decrease of variation
in oxidative phosphorylation across cell types and tissues
may be driven by a few regulator genes and transcrip-
tion factors. We therefore developed a noise score for
genes in the oxidative phosphorylation pathway based
on a weighted sum of relevant genes, where a larger
score corresponds to decreasing noise (Fig. 5a). We then
search for genes who changing expression across all cell
types correlates the most strongly with oxidative phos-
phorylation noise scores (Fig. 5b). Of the twenty most
correlated genes, over half are transcription and trans-
lation factors, growth factors, and regulators. A subset
is show in Fig. 5c, including Tfam (transcription fac-
tor), Eif2s2 (translation initiation factor), Fibp (growth
factor), Gps2, Dpy30, and Hcfc1r1 (regulator). Surpris-
ingly, all strongly correlated genes show a decrease in ex-
pression for decreasing oxidative phosphorylation noise.
A similar analysis for the antigen presentation and pro-
cessing pathway is shown in Fig. S9).

While it is difficult to establish causality from these
correlations, these genes can now be recognized as im-
portant potential targets to decipher the mechanism of
decreasing variation observed here.

DISCUSSION

We have demonstrated a new, model-based approach
to decipher biological variation from technical noise in
single-cell mRNA sequencing data. Applying our method
to the PlateSeq Tabula Muris Senis cell atlas, we observe
organism-wide changes in the variation of gene expression
across over key differential variance genes, genes with sig-
nificant changes in gene expression variance with age in a
single cell type. Hundreds of DNGs occur is over half of
cell types that passed our quality control, with sufficient
technical replicates (cells per mouse) and biological repli-
cates (mice) for significance analysis. Several pathways
are enriched in either increasing DNGs, corresponding
to a broad-scale increase in biological variation, or de-
creasing DNGs that represent a homogenization of gene
expression. Key pathways are those involves in oxidative
phosphorylation and the electron transport chain, with
a majority of decreasing DNGs, and antigen processing
and presentation, with a majority of increasing DNGs.
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FIG. 5: Decrease in oxidative phosphorylation variation is correlated with transcription factors and
regulators. (a) Cell types in each tissue are scored (oxphos noise score) by the decrease in Φ of the most significant
oxidative phosphorylation DNGs. Higher score means more decrease variation. (b) To search for drivers of oxidative
phosphorylation variation, we search for genes with expression fold changes with age that correlate with the oxphos
noise score. (c) More than half of the 20 most significant genes are transcriptional factors (Tfam), translation
initiation factors (Eif2s2 ), growth factors (Eif2s2 ), or regulators (Gps2, Dpy30, and Hcfc1r1 ).

Several types of mechanisms may drive biological vari-
ation in single-cell mRNA measurements. One possibil-
ity is that all cells of a specific cell type express the
same distribution of mRNA molecules, and our mea-
surements serve as a snapshot in time of that distribu-
tion. In this case, a DNG would indicate a change in
the width of the cellular mRNA distribution. An exam-
ple of this phenomenon is transcriptional noise, in which
changes in gene regulation (or dysregulation) or external
factors could cause a change in expression noise [cite].
Another likely possibility is that DNGs sensitively cap-
ture changes in cell state heterogeneity with age, either
increasing heterogeneity (increasing DNGs) or decreas-
ing heterogeneity (decreasing DNGs). In this view, each
cell type is composed of a continuum of cell states that
change with age. Many aging phenomena, including ac-
cumulated somatic DNA damage, clonal expansion, and
external factors could drive cell types through multiple
trajectories that is measured as a change of gene expres-
sion with age. While it is difficult to distinguish between
these scenarios from single-cell RNA atlases, future work
may enable observation of changes in variation due to, for
instance, clonal expansion, mutant stem cells, or locally
regulated factors.

Mitochondrial dysfunction is one of the hallmarks of
aging [10, 36, 37]. Our observation of decreasing varia-

tion in nuclear-encoded oxidative phosphorylation genes
suggests that many cells and tissues become metaboli-
cally more similar with age. Whether the loss of tran-
scriptional heterogeneity is a cellular response to allevi-
ate mitochondrial dysfunction, such as reduced energy
output or deleterious mutations of mitochondrial DNA,
or whether it is a driver that compromises the nuanced
response of cells to increased stress and inflammation,
remains unclear and warrants further work.

As DNGs may highlight changes in cell state hetero-
geneity, we postulate that inflammaging causes MHC
class II antigen presentation in non-canonical MHC class
II presenters, for instance hepatocytes, various epithelial
cells, and thymocytes. (Fig. S9). This work suggests that
such presentation is systemic and highly heterogeneous,
arising to different degrees in subpopulations and thus
appears as an increase biological noise. The degree to
which other signs of inflammaging are present should be
investigated in future work.

We acknowledge helpful discussions with E. Jerison, I.
Cvijović, C. S. Peng, M. Käller, A. Isakova, A. Pisco,
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METHODS

A minimal statistical model of scRNAseq

We evaluate a statistical model of technical gene ex-
pression noise for each cell type and mouse. To model
technical noise, we assume that each cell (or well) starts
with a fixed number (or narrow distribution) of nmRNA
molecules of a given gene. After mRNA capture and re-
verse transcription, there remain n molecules of cDNA.
Each well has measurable variation in the efficiency of
mRNA capture or reverse transcription, n = p nmRNA,
which effects the total number of cDNA molecules across
all genes. We define a relative capture efficiency (or cell
size) c ∝ p to each cell, where 〈c〉 = 1. For convenience,
we assume c is distribution as a log-normal distribution,
though other choices of distributions yield similar results.

n ∼ Poisson(cλ) (1)

log c ∼ N
(
−1

2
σ2

log c, σ
2
log c

)
(2)

Here, σ2
log c = log(1 + var c), which ensures that such

that c has a mean of 1 and variance var c. These terms
describe technical noise that may arise from mRNA cap-
ture and reverse transcription. Because n depends on the
product cλ, its Fano factor (averaged over the distribu-
tion c of all cells for one λ) is F = 1 + λ var c. This term
can be approximated as one for small λ.

PCR is essential to generating enough molecules for
sequencing but may distort the data. After PCR, each
gene has a PCR gainG equal to the counts per million per
cDNA molecule. Each cycle of PCR has finite efficiency
so it is a stochastic process (each molecule may or may
not be duplicated) and the final number of molecules is
broadened compared to the input. This can be modeled
as an effective input noise y (see Supplemental Material
Sec. I B). In addition, each well may have a different effi-
ciency g. Even small differences in PCR efficiency leads
to substantial differences in the final molecule number
after many cycles. We model g as having a geometric
mean G and width ∆g. Experimental evidence shows
this distribution is log-normal, as validated both by low
expression genes and PCR.

y ∼ N (0, n/3) (3)

log g ∼ N (logG,∆g2) (4)

Finally, we measure a normalized counts per million x.
By convention, x summed over all genes in a given cell is
106.

x =
g

c
(n+ y) (5)

When extending the model to biological as well as tech-
nical noise, we replace G with Φ (see below). While the

model may at first appear complicated, it has a minimum
of fit parameters to prevent overfitting. We set ∆g = 0.5
for the entire dataset. Each mouse and cell type is de-
scribed by a single parameter var c for all genes, describ-
ing the heterogeneity in cell sizes or capture efficiencies.
Each gene, in each mouse and cell type, has only two
parameters: a mean number of cDNA molecules per cell
λ and a noise factor Φ. These few parameters capture
most qualitative and quantitative aspects of gene expres-
sion noise across the entirety of Tabula Muris Senis.

Virtual digital PCR

We calculate a binarized count table zij for gene i and
cell j whose entries are one if there is at least one read
for a given gene, and zero otherwise. The probability
that zij = 0 is P (zij = 0|Λi, cj) = e−cjΛi , where Λ is the
number of cDNA molecules (here Λ will be the vdPCR
estimate of expression to be distinguished from λ in the
full model). We use maximum likelihood estimates to cal-
culate Λ̂i and ĉj that maximize logL =

∑
ij P (zij |Λi, cj),

where the number of observations ngenes × ncells greatly
exceeds the number of parameters ngenes +ngenes−1 (see
Supplemental Material for more details). From the es-
timates ĉj we can calculate the fraction of nonzero en-
tires p(Λ) = 〈z〉 =

∑
j(1 − e−cjΛ)/ncells for an arbitrary

gene with expression Λ, as well as the binarized variance
p(1− p) (Fig. 2c). We find that number of unique genes
per cell NOG =

∑
i zij =

∑
i(1−e−cΛi) is well predicted

by the relative capture efficiency cj (Fig. 2d, red line).

Numerically evaluating the model and estimating
parameters

The full distribution P (x|λ,Φ, var c,∆g) of Eq. 5 may
be numerically computed by integrating over c, g, y,
and n (see Supplemental Material). From this distribu-
tion we calculate the theoretical mean m(λ,Φ, var c,∆g)
and variance v(λ,Φ, var c,∆g)of log10(1 + x). We then

solve for λ̂ and Φ̂ of each gene (in each mouse and cell
type) such that the theoretical mean and variance match
the experiment data (Extended Fig. S1b,c), as well as
the technical uncertainties σtech

λ and σtech
Φ (Extended

Fig. S1d). We computationally checked that estimating λ
and Φ through the summary statistics of log10(1+x) pro-
vides much better estimates than the summary statistics
of x because x has a long-tailed (log-normal) distribution.
Details are given in the Supplemental Material.

Biological gene expression noise

A gene with biological as well as technical gene ex-
pression noise will have a more complex and possibly
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unknown distribution of n that cannot be easily deter-
mined from x. Instead, we define a noise factor Φ =
G = GPCRηbiol, where GPCR is the true but unknown
PCR gain, and ηbiol describes biological noise (see Sup-
plemental Material for more information). We find that
for several models of biological gene expression noise, our
estimates of λ and Φ efficiently deconvolve changes in
noise from changes in gene expression (see Suppelemen-
tal Material). Differential noise estimates between ages
remove GPCR and allow for comparisons of ηbiol with age
(Eq. 3).

Aggregating estimates from different mice

For each gene and cell type, we make an estimate of Φ̂
in each mouse. We aggregate estimates from all mice of
the same age by taking the mean of log Φ̂ weighted by the
technical estimates σlog Φ = σΦ/Φ = CV (Φ), where CV
refers to the coefficient of variation. Across many orders
of magnitude of gene expression, and all cell types, we ob-
serve that the measured variance σtech+batch

log Φ of log Φ̂ be-
tween mice of the same age is typically 2-3 times greater
than σtech

log Φ, the variation expected from technical noise
alone (Extended Fig. S1d). Extensive simulations show
that this effect does not arise from the model or data pro-
cessing (Extended Fig. S1d, second row). We use the ex-
perimentally measured distribution σtech+batch

log Φ (λ) from
genes of similar expression as an estimate of the confi-
dence of Φ.

Differential noise calculation

Aggregating log Φ̂ from different mice of the same age
gives a noise factor and an uncertainty σtech+batch

log Φ (λ). We
correct for systematic changes in cDNA molecule number
by normalizing the geometric mean, e.g.,

log Φ̂′24 m = log Φ̂24 m + 〈log Φ̂3 m − log Φ̂24 m〉, (6)

where the mean 〈·〉 is taken over all genes. Only genes

with 10−2 < λ̂ < 3 are included in the analysis. Out-
side of this range, the uncertainty σtech+batch

log Φ (λ) becomes
large and itself uncertain.

We perform a z-test on the log fold change for each
gene,

log fcΦ = log Φ̂′24 m − log Φ̂3 m (7)

σlog fc =
√
σtech+batch

log Φ, 3m (λ̂)2 + σtech+batch
log Φ, 24m (λ̂)2, (8)

and similar for different pairs of ages. Since σtech+batch
log Φ

are estimated from a large number of genes of similar
expression, a z-test is more appropriate than a t-test. Fi-
nally, all tests are corrected by Benjamini-Hochberg (Ex-
tended Fig. S1e). Genes that are statistically significant

are termed differential noise genes (DNGs). Extensive
simulations are performed on the entire pipeline to en-
sure results are unbiased and p-values are well calibrated
(Fig. S1b-e, second row).

Enrichment analysis

Many DNGs occur across multiple cell types or tis-
sues, which we wish to weight more heavily in our en-
richment factor. We calculate an enrichment score for
each pathway by summing the number of DNGs in that
pathway over all tissues and cell types, allowing for du-
plicates when a DNG is present in multiple cell types or
tissues. The enrichment score is normalized by resam-
pling all genes from which a log fc can be confidently
calculated. More information is available in the supple-
mental material.
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FIG. S1: Pipeline to evaluate, aggregate, and perform differential analysis on expression and noise
changes in aging mice. (a) The normalized gene expression matrix of one cell type, representing measured counts
per million of each gene in each cell, is split by each mouse. The statistical model fits the expression λ and noise
factor Φ to each gene, as well as their estimated uncertainties σtech

λ and σtech
Φ . The model also determines a cell size

variability of var c for each mouse. Results for different mice are aggregated by age. As each mouse has a different
estimation of λ and Φ for each gene, mouse-to-mouse variation leads to an increased uncertainty σtech+batch

λ and

σtech+batch
Φ , referring to potential batch effects. The total uncertainties are used in determining the adjusted p values

of the fold change between ages. Genes with statistically significant changers in Φ are termed DNGs (differential
noise genes). (b) Mean and variance of log10(1 + x) for each gene follow a characteristic shape that can be
deconvolved into estimates of (c) expression (λ) and noise factor (Φ). (d) The measured coefficient of variation of Φ
across cells isolated from different mice of the same age (3 m) is typically 2-3 times greater than the technical model
estimates. We use the measured total uncertainty σtech+batch

Φ to test whether (e) fold changes between ages are
statistically significant, corrected by Benjamini-Hochberg with α = 0.1. (Second row) All steps are validated by
simulating gene expression with the statistical model and verifying that p-values are well calibrated and unbiased.
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FIG. S2: Changes in expression confound estimates of gene expression noise. (a) We simulate gene
expression for one gene under three conditions: a change in expression from low (A, black) to high (B, purple)
without biological noise, and moderate expression with biological noise (C, red). (b) With only technical
(measurement) noise, changes in expression are accompanied by a substantial change in the measured variance due
to technical noise alone (blue line). Biological gene expression noise increases the variance. (c) We fit an expression
and noise factor to each condition to deconvolve changes in noise factor from changes in expression. (d) The noise
model quantitatively predicts that the variance first increases and then decreases with expression (λ, black ticks).
The counting statistics of cDNA capture dominated for λ < 10, while PCR efficiency noise dominates for λ > 20. (e)
Mean versus variance of pancreatic β cell expression can be deconvolved into (f) λ and Φ that show little correlation
over several orders of magnitude in expression. The majority of low expressed genes follow the same distribution as
exogenous spike-in RNA (ERCCs, red points), which are expected to only have technical noise. The noise factor for
most genes depends on their relative PCR efficiency.
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FIG. S3: Validate model with spike-in RNA. Spike-in RNA (ERCCs) are used to validate the statistical model
in pancreatic β cells. The ERCC molecule number is the expected number of molecules per well based on the known
concentration and dilution. (a) Measured expression λ, the estimated number of cDNA molecules, is well correlated
to the ERCC molecule number with a capture efficiency of 18.5(1.2)% (95% confidence), estimated from the ratio of
expression to expected molecule number (curves in a-e and f are derived from this estimate). Vertical grey lines
denoting 95% credible intervals are offset horizontally for clarity. (b) Mean counts per million, the conventional
metric for expression in single-cell RNAseq, show a systematic decrease at high expression. (c) The estimated
capture efficiencies for each control, λ/mol, is roughly constant for > 3× 10−2 molecules. (d) Fraction of cells with
nonzero expression of each control. The fit assumes a Poisson distribution with the measured capture efficiency. (e)
Noise factor is independent of expression. The horizontal red line is the geometric mean of 32 cpm/cDNA molecule.
In this context, the noise factor is equal to the PCR gain. Vertical grey lines denoting 95% credible intervals are
offset horizontally for clarity and often significantly deviate from the mean, indicating that the fits can distinguish Φ
for each control. (f) Full model fit of expression λ is strongly correlated with the vdPCR fit based only on dropout
rates. White circles are ERCCs, red line is equality.
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FIG. S4: Number of cDNA molecules systematically decreases with age. Gene expression in pancreatic β
cells isolated from 24 m mice shows a systematic decrease in the number of cDNA molecules per cell compared to
cells isolated from 3 m and 18 m mice. This can be seen in the fraction of cells with nonzero count p1 (first row), the
estimated expression from dropouts in vdPCR (second row), an estimated of expression from the full model (third
row), and the noise factor (fourth row). The noise factor shows a systematic increase in 24 m mice because it is
normalized by the total molecule number. Each point is one cell. Solid red curves are fits to the data, dashed curves
show unity.
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FIG. S5: Distribution of expressions. Cumulative probability distribution of λ, the estimated number of cDNA
molecules per cell, for genes with at least one read. Typically 80-97% of genes have low expression with less than
one cDNA molecule (λ < 1). Exceptions include bladder urothelial cells (79%), intestinal crypt stem cells (77%),
and pancreatic acinar cell (98%). Each line is the CDF of one mouse, colors represent age.
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FIG. S6: Distribution of unique number of genes per cell. Cumulative number of unique genes per cell
(NOG) with expression less than λ, the estimated number of cDNA molecules per cell. While 80-97% of genes
correspond to an expression of, λ < 1, these genes only make up of roughly half the number unique of genes seen per
cell. Each line is the CDF of one mouse, colors represent age.
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(a) (b)

(c)

FIG. S7: Cell types cluster based on similar DNGs (a) Cell type are clustered by Jaccard similarity on the
overlapping identity of DNGs. Some cell types have over 50% similarity. (b) The number of DNGs and differential
expression genes (DEGs) is only weakly correlated. DNGs and DEGs typically have less than 10% Jaccard similarity
within one cell type. (c) The number of DNGs discovered saturates slowly with the number of cells. A cutoff of 150
cells in each age removes cell types with insufficient statistics to find DNGs (vertical gray line).
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FIG. S8: Change of noise factor with age for several differential noise genes. Select DNGs involved in
oxidative phosphorylation (Ndufa1, Cox17, Atp5k) and antigen processing and presentation (Cd74, H2-Ab1,
H2-Eb1 ) are grouped by cluster (Fig. S7).
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(a) (b)

FIG. S9: Increase in antigen processing and presentation is correlated with transcription factors and
regulators. A noise score for antigen processing and presentation is correlated with increased noise in cells isolated
from older mice. Similar to Fig. 5, top hits are predominately transcription factor (Taf1, Ctcf, Stat2 ), splicing
factors (U2af2 ), cell cycle regulators (Cdk2ap1 ), and DNA damage repair regulators (Usp1 ).

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 26, 2022. ; https://doi.org/10.1101/2022.06.23.497402doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.23.497402


1

Supplemental Material

I. STATISTICAL MODEL

Our statistical of amplification and noise during single-cell mRNA sequencing has components that vary across cell
(or more accurately well or droplet) i and genes j. For a pure population of cells, with noise limited only by technical
noise involved in the capture and PCR, we expect the number of cDNA molecules in each well to arise from a Poisson
distribution with mean λj . Even if a cell expressed a fixed number of mRNA molecules in every cell, the relatively
low probability of capture and reverse transcription would produce an approximately Poisson distribution.

Different cells have more or fewer total molecules of cDNA due to differences in capture efficiency, cell size, degra-
dation, lysis efficiency, etc. by a relative amount ci, where the mean is defined to be 1 and the variance is measured
to be var ci = 0.1 − 0.3. Some cell types, such as hepatocytes, show extreme examples of up to 2.0. To account for
this effect, we model the number of cDNA molecules of gene j on well i as nij ∼ Poisson(ciλj), with a Fano factor
F = 1 +λjvar ci greater than 1, but only slightly so for low expressed genes (λj � 1). The parameter ci is equivalent
to β in Ref. S13, however, we find that virtual digital PCR is a superior method to estimate ci from low-expressed
genes, and use spike-in controls to validate the estimate.

Ideally, we would measure the distributions nij with single molecule counting, but this is difficult to perform for
many genes and cells simultaneously. Instead, we use data processed through the SmartSeq2 pipeline generated by
the Tabula Muris Senis collaboration. On each well, cDNA is amplified through typically 12 stages of PCR, with
downstream steps of library preparation, sequencing, alignment, and other computational analysis to generate a
counts table. The stochastic nature of PCR, by which a molecule has a finite probability of being replicated in each
cycle, adds a noise term yij dominated by the first few cycles of replication and derived below in Sec. I B. In brief,
we approximate yij as a truncated Gaussian with variance nij/3, the worst-case scenario corresponding to a PCR
efficiency of pj ≈ 50%.

After many cycles, a single molecule of cDNA will be converted into Gj = (1 + pj)
NPCR counts per million for gene

j. The number Gj typically varies from 10 to 100 cpm in cells isolated from 3 m mice. Slight well-to-well variations
causes differences in PCR efficiency from well to well, leading to gij that is expected to be log-normally distributed
around Gj . While the source of variation here is unknown, it’s expected that small, normally distributed variations
in pj would lead to a log-normal distribution in gij . In addition, variations in total cDNA leads to ratio of gij/ci of
normalized reads per molecule cDNA, so the measured normalized reads is xij = (gij/ci)(nij + yij). The terms are
summarized below, where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.

nij ∼ Poisson(ciλj) cDNA molecules per cell (S1)

yij ∼ N (0, nij/3) Stochastic PCR noise (S2)

log ci ∼ N
(
−1

2
log(1 + var c), log(1 + var c)

)
Capture efficiency noise (S3)

log gij ∼ N (logGj ,∆g
2) PCR efficiency noise (S4)

xij =
gij
ci

(nij + yij) Normalized (cpm) reads per cell (S5)

The amplification process increases the Fano factor. If capture efficiency noise is neglected, then the variance and
mean of nij are both λi. Capture efficiency noise increases the variance of nij to λ(1 + λ var c), which is negligible
for small λ. Stochastic PCR increases the variance by 1

3λ. After amplification by a factor G, the mean and variance
increase by G and G2, respectively, causing the final Fano factor (variance over mean) to increase by G. For purely
technical noise, we expect a Fano factor of (4/3)G(1 + λ var c). For purely technical noise, with a nearly noiseless
distribution of mRNA, we define a noise factor Φ = G.

Biological variation is expected to increase the Fano factor of cDNA. If the true Fano factor of cDNA molecules
is F , due to biological variation, then the final Fano factor is approximately (4/3)FGPCR(1 + λ var c), where GPCR

is the counts per million per cDNA molecule after PCR, library preparation, sequencing, alignment, etc. The actual
impact on the measured mean and variance depends on the biological distribution of RNA. In brief, we fit data to
the above model to get estimates of λ̂ and Ĝ = Φ̂, where Φ is the noise factor and includes both the PCR gain and a
biological noise term.

Φ = G = GPCRηbiol (S6)
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We assume that GPCR is constant across different ages and conditions, so that changes in Φ arise only from changes
in the true biological noise ηbiol. This parameterization has the advantage that it is model independent, as the
precise form of ηbiol depends in detail upon the specific distribution of the biological variation (see Sec. I G for further
discussion).

A. Capture efficiency noise and virtual digital PCR

Differences in cell sizes, availability of mRNA, capture efficiency, or reverse transcription processes, will increase
the observed cell to cell variability in cDNA. Unaccounted-for changes may be confused with biological gene expres-
sion noise, which similarly changes the observed cell-to-cell counts in a given gene. For this reason it is crucial to
understand and calibrate cell size variability to distinguish it from more interesting biological effects. Fortunately,
we can distinguish and calibrate cell size variability from the binarized count table. If the sequencing read depth is
sufficiently large, as is the case of the Tabula Muris Senis experiment, then we expect we are very likely to see at
least one read when there is at least one molecule of cDNA for a given transcript.

While the distribution of reads may be distorted by PCR, we can calculate a binarized count table that encapsulates
capture noise and cell size variability. We define a binarized count table zij for gene i and cell j as,

zij =

{
0 nij = 0
1 nij ≥ 1

. (S7)

The likelihood of measuring a particular value of zij is,

P (zij |λi, cj) =

{
e−cjλi zij = 0
1− e−cjλi zij = 1

(S8)

= zij + (−1)zije−cjλi . (S9)

We fit the sets {λi} and {cj} by minimizing the log likelihood function logL =
∑
i,j logP (zij |λi, cj). The likelihood

L is invariant under the rescaling λi → αλi and cj → cj/α, so we can additionally require 〈cj〉 = 1. The problem is
considerably overdetermined with ncells + ngenes − 1 fit parameters, far less than the ncells × ngenes observations.

In practice, we first find the solutions {λ̂i} that minimize the logL for fixed cj = 1, then fix λi = λ̂i to solve
for {cj}. We iterate between minimizing logL for fixed {cj} or {λi}, each time fixing the variables to the solution

from the previous iteration (λi = λ̂prev
i or cj = ĉprev

j ). We continue until the maximum error is less than 10−6

(max |λ̂i−λ̂prev
i |,max |ĉj−ĉprev

j | < 10−6). We observe that the error decreases by approximately an order of magnitude
each iteration and reaches this threshold after six to eight iterations. After each iteration we normalize the fits to
ensure 〈cj〉 = 1 (rescaling λi → λi〈cj〉 and cj → cj/〈cj〉). We did not observe better performance by analytically
supplying the first and second derivatives of the log likelihood function or solving for the root of the first derivative.
In future work, the minimization should be performed with priors reflecting the distribution of λi and cj , for instance
with an empirical Bayes method.

Since zij can only be 0 or 1, its variance (averaged across all cells j for a particular gene i) is varj zij = pi(1− pi),
where pi is the fraction of nonzero zij for a given gene i, pi = 1

ncells

∑
j(1 − zij) (Fig. 2c, blue points). We use the

fits ĉj to estimate p̂(λ) = 1
ncells

∑
j 1− e−λĉj (red solid line is var z = p̂(1− p̂)). If we neglect capture efficiency noise,

then p̂ = 1− e−λ and var z = e−λ(1− e−λ) (black dashed line).
capture efficiency noise increases the variance of the true cDNA molecule number nij . Since nij ∼ Poisson(λicj) it

can be shown that that the Fano factor is increased beyond the Poisson prediction of one.

F =
var n

〈n〉
= 1 + λ var c (S10)

where var c is taken over all cj and 〈c〉 = 1.

B. Stochastic PCR noise

After each PCR cycle, there is a probability p of each molecule getting replicated. If there are m molecules before
a cycle of PCR, the probability of ending up with m′ molecules is K(m′,m) =

(
m

m′−m
)
pm
′−m(1 − p)2m−m′ . We can
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then calculate that a probability distribution function pdfn(m) after n cycles of PCR is transformed into pdfn+1(m′)
after the n+ 1 cycles of PCR as,

pdfn+1(m′) =
∑
m

pdfn(m)K(m′,m) (S11)

After many cycles, the numbers of molecules m because substantial and allows us to make a continuum approxima-
tion. If we start with m molecules, we expect that the resulting molecule number distribution has a mean of (1 + p)m
and a variance of mp(1− p), and so we make a gaussian approximation with the corresponding mean and variance.

K(m′,m) =
e−(m′−(1+p)m)2/(2mp(1−p))√

2πmp(1− p)
(S12)

After N PCR cycles, the distribution’s mean increases by (1 + p)N . Since our goal is to infer the input number of
molecules, it is most helpful to work with an input-referred distribution in terms of the variable x = m/(1 + p)N . In
other words, we normalize the distribution after each cycle. Now the mean of the distribution about x does not change
after each PCR cycle, and we will see the variance saturates. Substituting m = x(1 + p)N and m′ = x(1 + p)N+1,

pdfn+1(x′) =

∫ ∞
0

dx pdfn(x)K(x′, x) Kn(x′, x) =
e−(x′−x)2/(2xp(1−p)(1+p)−N−2)√

2πx p(1− p)(1 + p)−N−2
(S13)

After each cycle, this convolution increases the variance by µnp(1− p)(1 + p)−N . If the initial variance of pdf0(x)
is σ2

0 , then after N cycles the variance is,

σ2
N = σ2

N−1 + µN−1
p(1− p)

(1 + p)N−1
(S14)

= σ2
0 + µ0p(1− p)

[
1

(1 + p)2
+

1

(1 + p)3
+ · · ·+ 1

(1 + p)N+2

]
(S15)

≈ σ2
0 + µ0

1− p
1 + p

, (S16)

where we used the fact that µn = µ0 is constant and assumed n is large. The first term (σ2
0) is the input noise, and

the second term is the additional technical noise added by the PCR amplification process. If the initial input is a
Poisson distribution with σ2

0 = µ0, then the variance of the Poisson distribution exceeds the stochastic noise of the
amplifier, since (1− p)/(1 + p) < 1. When p = 1/2, the input-referred noise is µ0/3, and the final (input plus added
noise) variance is 4µ0/3. The exact shape of the distribution can be calculated with the series,

pdfN (x|m) =

∫ ∞
0

dxN−1KN−1(x, xN−1) · · ·
∫ ∞

0

dx2 K2(x3, x2)

∫ ∞
0

dx1 K1(x2, x1)K0(x1,m) (S17)

Integrating this series is nontrivial. When m� 1, we can make a gaussian approximation as before,

pdf∞(x|m) =
e−(x−m)2/[2m(1−p)/(1+p)]√

2πm(1− p)/(1 + p)
(S18)

pdf∞(x|m) =
e−(x−m)2/(2m/3)√

2πm/3
for p =

1

2
(S19)

C. Comparison to previous work

Previous work has elucidated the role of capture efficiency noise by counting cDNA molecules. The most common
approaches are cDNA barcodes, typically termed unique molecular identifiers (UMIs), and single-molecule fluorescence
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(a) (b)

FIG. S10: Fano factor versus mean expression in previous work. Mean expression is the estimated number
of molecules, where molecule counting is estimated from (a) merFISH and (b) unique molecular identifiers added
before amplification and sequencing. In both cases, the majority of genes follow the expected theory of a Poisson
distribution plus a capture efficiency or cell size variability, Eq. S10.

in situ hybridization (smFISH). UMIs remove PCR distortion and bias by identifying which reads were amplified from
the same, original molecule. For UMIs to provide faithful counting there must be sufficient reads per UMI to minimize
dropout, including for transcripts which suffer from low PCR gain (low PCR bias). The primary tradeoff of UMIs is
that the additional tagging step lowers the likelihood of reverse transcription and thereby decreases the efficiency of
molecule counting. smFISH techniques count molecules directly with fluorescent probes, foregoing PCR amplification.

Several previous papers have quantitatively studied the relationship of variance and mean of cDNAs [S13, S24, S38].
Ref. S24 used expansion microscopy and merFISH to count highly expressed transcripts in a relatively uniform cell
population (U2OS). We observe excellent agreement with Eq. S10 in this orthogonal technique (Fig. S10a).

Ref. [S38] has several unusual features worth considering. This paper focuses on single-cell expression of heterozy-
gous alleles in crossbred mouse embryonic stem cells. The resulting distributions are fit to a standard two-state model
of bursting gene expression [S28, S30]. Surprisingly, the paper neglects technical noise, despite previous work demon-
strating that the majority of the noise is technical [S14]. Bursting gene expression is typically characterized by four
rate constants, kon and koff rates switching between transcriptionally active and inactive state, a rate of transcription
ksyn in the active state, and a transcript degradation rate δ. Single single-cell RNAseq captures snapshots of gene
expression in time, so only dimensionless parameters are measurable: α = kon/δ, β = koff/δ, and s = ksyn/δ. The
distribution of a gene is given by p ∼ Beta(α, β) and n ∼ Poisson(sα) [S30], with a mean µ and Fano factor F of this
model are as follows.

µ =
sα

α+ β
(S20)

F = 1 +
sβ

(α+ β)(1 + α+ β)
(S21)

The distributions is similar to technical noise (Eq. S1 and S4) and produces distributions that are qualitatively
indistinguishable from it when α, β � 1. Only careful calibration of the parameters, particularly var c, can quanti-
tatively distinguish the two. The challenge of discerning biological bursting gene expression from technical noise in
single-cell gene expression has long been recognized [S14, S29, S30].

Estimating the Fano factor from α, β, and s (Eq. S21) allows us to test the data against of model of capture
and capture efficiency noise (Eqs. S1, S3, and S10). We observe excellent agreement with F = 2(1 + λvar c), where
var c = 0.25, strongly suggesting that the majority of the dataset is well explained by technical noise alone [S30]. The
capture efficiency noise parameter var c = 0.25 is consistent with that observed in Tabula Muris Senis and slightly
larger than for merFISH. Surprisingly, the Fano factor is approximately two for even low expressed genes. This can
be most parsimoniously explained by each transcript being counted, on average, twice.
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D. Fitting the model

The parameters of the model are λj and Gj for each gene and var c and ∆g for all genes. We fit this model to each
gene, in each mouse, for each cell type. While many methods exist to estimate λj and Gj , such as maximum likelihood
estimation and Bayesian estimation, we simply fit summary statistics, which allows for a substantial increase in
computational speed at an acceptable sacrifice in precision. We measure the mean mj and variance vj of log10(1+xij),
averaged over the i cells within one mouse and cell type, and solve for the theoretical m(λj , Gj , var c,∆g) and

v(λj , Gj , var c,∆g) such that mj = m(λ̂j , Ĝj) and vj = v(λ̂j , Ĝj) for each gene j, matching the measured mean and
variance against their theoretical estimates. This is done for fixed var c and ∆g for all genes. The functions m and v
are calculated from a numerical integration of Eqs. S1-S4. We will drop the indices i and j for convenience.

m =

∫
dx log10(1 + x)P (x|λ,G, var c,∆g) (S22)

v =

∫
dx [log10(1 + x)]

2
P (x|λ,G, var c,∆g)−m2 (S23)

The probability distribution function P (x|λ,G, var c,∆g), as derived from Eqs. S1-S4, involves integrating over all
g, y, c, and summing over n. The special case of x = 0 is handled separately.

P (x|λ,G, var c,∆g) =
∑
n

∫
dc dy dg P (c|var c)P (n|λ, c)P (y|n)P (g|G,∆g)P (x|g, c, n, y) (S24)

The computational challenge is to invert the quadruple integral/sum in Eq. S24 and Eqs. S22-S23 to determine λ̂,
Ĝ for each of approximately 10,000 genes in the approximately 100 cell types across about a dozen mice.

E. Numerical approximations of the PDF

Calculating Eq. S24 across many genes is made tractable through caching intermediate results and careful numerical
sampling. First, we rewrite the calculation in terms of u = log(x/G), which removes G from the calculation. We add
in only at last step m(λ,G) =

∑
n

∫
dy dg dc log10(1 +Geu)P (u|c, var c,∆g), and similarly for v(λ,G). For a fixed ∆g

and var c for each dataset, we cache results for P (u|n), given an initial number of molecules n, following Eqs. S5,S2,
and S4.

P (u|n) =

∫
dgdyP (g)P (y)δ

(
x′ − n− y

g

)
=

1

2π∆g
√
n/3

∫
dy exp

(
u− log y

2∆g2

)
exp

(
(y − n)2

2n/3

)
(S25)

This equation can be solved efficiently by Gaussian-Hermite quadrature, by which an integral may be approximated
as
∫
e−x

2

f(x) ≈
∑
k wkf(xk), where xk is the kth root of the Hermite polynomial and wk is the weight. Here, we use

yk = xk
√

2n/3.

P (u|n) ≈ 1√
2π∆g

∑
k

wk exp

(
u− log yk

2∆g2

)
(S26)

We find an excellent tradeoff between computational efficiency and accuracy with only 20 roots, and sampling u
from −4 ln 10 to 8 ln 10 in 1,000 steps, which samples x′ from 10−4 to 108. Finding the appropriate grid to cache n is
more subtle. If ∆g = 0, the integral becomes trivial and n is sampled densely with linearly increasing spacing that
ensures that a Poisson distribution is samples with a constant number of points for all λ.

Once P (u|n) is cached, its values can be looked up to find P (u|λ, var c = 0) from Eq. S1. In principle, one would
want to calculate

P (u|λ, var c = 0) =

∞∑
n=0

P (u|n)P (n|λ) (S27)
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However, n is sampled along a grid for efficiency, and so many integer numbers are skipped. Instead, we calculate,

P (u|λ, var c = 0) =
N∑
k=1

wkP (u|nk)P (nk|λ), (S28)

where n1 = max(0, λ− 10
√
λ), nN = max(100, λ+ 10

√
λ), and wk = 1/

∑
k P (u|nk).

Finally, capture efficiency noise in Eq. S3 is computed. Since we assume that c is log-normally distributed, we
calculate Gaussian-Hermite quadratue of the normally distributed v = log c. Since the mean of c is defined to be one,
then the variance of v is σ2 = log(1 + var c) and mean is µ = − 1

2σ
2. Finally, each x′ is normalized by that cell’s total

reads, x′ = (n+ y)/c, so we need to calculate sum across P (u′ − log c|cλ).

P (u|λ, var c) =

∫
dc du′ P (c)P (u′|cλ)δ(u− u′ − log c)

=
∑
k

wkP (u− vk|evkλ) (S29)

P (u−vk|evkλ) is directly calculated from Eq. S28, and vk, wk are derived from the roots of the Hermite polynomial
and weights of Gauss-Hermite quadrature, respectively. We find 10 roots are sufficient for good precision. Eq. S24
is found by substituting x = Geu. The expected mean m(λ,G, var c,∆g) and variance v(λ,G, var c,∆g) can be
computed directly. For typical parameters, calculating Eq. S29 requires 250 ms each iteration, summing over n
(Eq. S28) and v (Eq. S29) from precomputed values of Eq. S26. Further discussion of uncertainties in estimating λ
and G from a given distribution are discussed in Sec. I H.

We note that, without normalization, Eq. S29 predicts a very substantial increase in variance from capture efficiency
noise. Normalizing by counts per million, xij = (gij/ci)(nij + yij), substantially suppresses this effect, validating our
use of counts per million normalization. Other normalization schemes may not directly benefit from this effect.

F. Changes in expression confound technical noise estimates

One of the primary challenges of estimating changes of biological gene expression variation between two samples
is that the technical noise depends on the mean gene expression level, which often varies substantially with age
and experimental conditions. A simulation of the noise model in Fig. S2 highlights the effect. Since PCR produces
long-tailed distributions, expression is typically transformed as “log plus one” to compress long-tailed outliers while
retaining dropouts, cells with zero expression. We consider three possible distributions of the same gene (Fig. S2a).
As the gene expression λ increases from low (A, black points) to high (B, purple points), the measured variance
decreases (Fig. S2b, an effect caused by technical noise and by the log plus one transformation). When biological
variation broadens the distribution of cDNA in a cell, we expect to measure a distribution with increased variance
such as C (red point), which has the same variance as A but a greater variance than expected for technical noise at

this expression (B and blue line). Our model allows us to transform the data to the estimates λ̂, the mean number of
cDNA molecules per cell, and Φ̂, the relative noise factor (Fig. S2c). The transformed gene expression allows us to
compare changes in noise and expression independently.

G. Impact of biological noise

The above analysis is used to fit genes limited by only technical noise to the probability distribution described in
Eq. S24. We then heuristically define an estimated noise factor Φ̂ = Ĝ that captures both the PCR amplification and
potential biological variation in the data. This heuristic is chosen because biological variation increases the variance of
reads indistinguishable from an increase in PCR amplification, as they both increase the final, measured, Fano factor.
Simulations based on several biological noise models are shown in Fig. S11, demonstrating that a negative binomial
distribution and Poisson mixture distribution both prod. uce data that can be fit by an effectively greater NF .
We distinguish biological variation by searching for (1) differential variance genes, where NF changes significantly
between two groups, such as different ages, or (2) high variance genes, where NF greatly exceeds the expected range
of G calibrated by low expression, low noise genes.
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FIG. S11: Simulation of noise factor extraction for several forms of biological noise. We simulate the
negative binomial distribution (purple) and zero-inflated Poisson (ZIP, orange), which are two limits of bursting
gene expression [S28–S30]. (a) The variance vs mean relation is similar to a Poisson distribution with increased G
(blue and red). (b) Estimating the noise factor Φ and the expression λ generally deconvolves changes in expression
with that of noise, though the accuracy depends on the specific biological model. Φ correctly measures that the
biologically noise distributions have increased noise as compared to a Poisson distribution with the same PCR gain
G. (c) Theoretical distributions of the RNA molecule number, cDNA molecule number, and reads for each
distribution.

The technical noise model (Eqs. S1-S4) can be extended to capture these effects. The distribution of cDNA molecules
depends on unknown parameters θ1, . . . , θk that, for a pure population, do not depend on the cell j. Eqs. S1 can be
replaced by the following term.

nij ∼ Pbiol(nij |cj , θ1, . . . , θn) cDNA molecules per cell with biological variation (S30)

The measured distribution of reads, normalized by counts per million, now depends on

P (x|θ1, . . . , θn, G, var c,∆g) =
∑
n

∫
dc dy dg P (c|var c)Pbiol(n|c, θ1, . . . , θn)P (y|n)P (g|G,∆g)P (x|g, c, n, y) (S31)

In the technical noise model, we assumed that the original distribution of RNA molecules is fixed, which implies
that the subsampled distribution of cDNA molecules is a binomial distribution, which can be well approximated by
a Poisson distribution with λcDNA = pλmRNA, where p is the probability that one molecule of mRNA successfully
is reverse transcribed and amplified. The Poisson approximation allows us to model the cDNA distribution without
knowledge of p. capture efficiency noise (total mRNA content variation) makes the sampling probability dependent
on the specific cell, with a mean number of cDNA molecules cλcDNA = cpλmRNA for a relative capture efficiency c.
For an arbitrary probability distribution of mRNA molecules F(m; θ1, . . . , θk), subsampling the distribution of mRNA
may be more complex. We note that if FmRNA is the Fano factor of the mRNA molecule distribution, then we note
that FcDNA = 1 + p(FmRNA − 1) and NF ≈ GFcDNA [1 + p(FmRNA − 1)]. We can then calculate the distribution of n
cDNA molecules from m is the number of mRNA molecules in a cell with relative size c.

Pbiol(n|c, θ1, . . . , θn) =
∑
m

(
n

m

)
(cp)m(1− cp)n−mF(m; θ1, . . . , θn) (S32)
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As before, Eq. S31 can be integrated to find the mean m, v and fit to the observed mean and variance of each gene.

mbiol =

∫
dx log10(1 + x)P (x|θ1, · · · , θn, G, var c,∆g) (S33)

vbiol =

∫
dx [log10(1 + x)]

2
P (x|θ1, · · · , θn, G, var c,∆g)−m2

biol (S34)

In principle we can fit these new parameters to the technical noise model with mbiol = m(λ∗, NF ∗) and vbiol =
v(λ∗, NF ∗) for effective values of λ∗ and NF ∗, where we expected that NF ∗ & G, with NF = G when there is no
biological variation. Example of different F are shown in Fig. S11.

H. Probability of measuring a particular mean and variance

Once a P (x|λ,G) from Eq. S24 is numerically calculated, we want to know the uncertainties of an observation.
Here we will use a frequentist approach for computational convenience. The conditional probability P (m′, v′|λ,G) of
measuring mean m and variance v of log10(1 + x), given a true λ,G, depends on the vector ~µ = (m, v)ᵀ of the mean

values, and the vector ~X = (m′, v′)ᵀ of possible values,

Σ =


v

n

s
√
v

n

s
√
v

n

v2(k − 1 + 2/(n− 1))

n2

 , (S35)

P (m′, v′|λ,G) =
1

2π
√

det Σ
exp

(
−1

2
( ~X − ~µ)ᵀΣ−1( ~X − ~µ)

)
. (S36)

We would also like to determine the uncertainty in determining λ,G for each gene from the estimated λ′, G′.
Inverting this typically requires the use of Bayes’ Theorem, but in this case we will assume that log λ and logG have
a flat distribution and assume (from the Central Limit Theorem) that errors are small and normally distributed. In
this case, we would like to determine the covariance matrix Σ′ for in terms of log λ′, logG′. We can calculate this
taking a numerical derivative of Eq’s. S22 and S23. We estimate derivatives numerically, for instance ∂m/∂ log λ =
(m(λ+ dλ,G)−m(λ,G))/d log λ, typically sampled with d log λ = dλ/λ = 10−6. Then

Σ′ = RᵀΣR where R =


∂m

∂ log λ

∂m

∂ logG

∂v

∂ log λ

∂v

∂ logG

 (S37)

I. Assigning uncertainties

The covariance matrix and its inverse can be written in terms of the standard deviations σx, σy, and the Pearson
correlation coefficient ρ.

Σ =

(
〈(x− µx)2〉 〈(x− µx)(y − µy)〉

〈(x− µx)(y − µy)〉 〈(y − µy)2〉

)
=

(
σ2
x ρσxσy

ρσxσy σ2
y

)
(S38)

Σ−1 =
1

1− ρ2

(
1/σ2

x −ρ/σxσy
−ρ/σxσy 1/σ2

y

)
(S39)

If we compare the possible values of x between two distributions with the same (possibly unknown) value of y,

we need the standard deviation of the conditional distribution P (x, 0), which is 1/
√

Σ−1
xx = σx

√
1− ρ2. This would
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be the situation when comparing the change in gene expression for one gene between two samples with the same,
possibly unknown, PCR bias. On the other hand, if we compare the possible values of x between two distributions
with unknown and likely different values of y, we need the standard deviation of the marginal distribution

∫
dy P (x, y),

which is
√

Σxx = σx. This would be the situation where we compare PCR gain between two samples with different
expression levels.

P (x, y) =
1

2π
√

det Σ
exp

(
−1

2
(~x− ~µ)ᵀΣ−1(~x− ~µ)

)
joint probability distribution (S40)

P (x, 0) =
1√

2πσ2
x(1− ρ2)

exp

(
− (x− µx)2

2σ2
x(1− ρ2)

)
conditional probability distribution (S41)∫

dy P (x, 0) =
1

σx
√

2π
exp

(
− (x− µx)2

2σ2
x

)
marginal probability distribution (S42)

J. Limitations of the current approach

The previous section calculates the uncertainties of measuring m′, v′, λ′, G′ gives a known λ or G. In an experiment
we only know the data and m′, v′ and seek a range of compatible values for λ′, G′. When the number of cells is
large and standard errors are correspondingly small, we can plug the estimated values of λ′, G′ into the real values
in Eqs. S35 and S36. However, when the uncertainties are not small, when the number of cells is not great or when
λ� 1 or λ� 1, this can cause substantial errors.

An extreme case is when we measure precisely zero reads among Ncells cells. The above analysis would erroneously
estimate that both the mean and its uncertainty of λ were exactly zero (m = 0 and σm = 0). Yet such a measurement
would be compatible with λ . 1/Ncells, and therefore the correct uncertainty should be on the order of 1/Ncells.
Future work could use a Bayesian approach, though efforts were complicated by the excessive computational power
required.

II. PIPELINE

For each gene, the mean and variance of the log-normalized distribution of reads (Fig. S1b) serve as summary

statistics, which are transformed into the estimates λ̂ and Φ̂ (Fig. S1c). The uncertainties σλ and σNF of λ̂ and
Φ̂, respectively, are estimated from the technical noise model (σmodel) and from aggregating estimates between mice
of the same age (σbatch), after adjusting for systematic changes in overall gene expression (Fig. S1d). Differential
analysis of Φ̂ between different ages yields differential variance genes (DNGs), with significant fold changes typically
ranging from 3 to 100 and 1/100 to 1/3 (Fig. S1e). The pipeline is tested against simulated gene expression calculated
with technical noise but not biological noise, for artificial genes generated from the same distribution of λ and NF
as the actual data (Fig. S1, bottom row). Each step of the pipeline is verified to be unbiased and properly calibrated
within our technical noise model (Fig. 1a).

III. ENRICHMENT ANALYSIS

DNGs are found in all tissues and cell types of Tabula Muris Senis, with a set of over a hundred universal DNGs
frequently repeated across many cell types in the data set. We construct an enrichment analysis that takes into
account the repetition of DNGs as well as the varying number of genes observed in each cell types. Our enrichment
score counts the number of times that a DNG is in a given pathway, normalized by the number of genes that were
tested for significance (potential DNGs).

Enrichment(pathway) =

∑
tissue

∑
cell type∈tissue

∑
N DNGs∈cell type

{
1 DNG ∈ pathway
0 DNG /∈ pathway〈∑

tissue

∑
cell type∈tissue

∑
N genes∈cell type

{
1 gene ∈ pathway
0 gene /∈ pathway

〉
resample genes

(S43)
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The numerator counts the number of times a DNG occurs in a given pathway, in each cell type, in each tissue. The
denominator resamples genes with 10−2 < λ < 3 that were tested for differential variance, including actual DNGs.
Resampling draws the same number of genes in each cell type and tissues as the number of DNGs, to ensure that the
enrichment score averages to 1 for non-significant pathways. We further select only pathways for which at least 100
DNGs are counted with repitition, with at least 20 unique DNGs, and with a family-wise error rate less than 0.01
(Bonferroni correction), to minimize spurious results from overly narrow gene ontologies. Confidence intervals shown
are not multiple hypothesis corrected, and enrichment scores are simulated with resampled data to ensure that the
calculated FWER and confidence intervals are faithful. Pathways are downloaded from KEGG and Gene Ontology
for mouse-specific genes and pathways.

IV. ALTERNATIVE TO BENJAMINI–HOCHBERG PROCEDURE FOR MULTIPLE HYPOTHESIS
TESTING

All statistical tests in this manuscript use the Benjamini–Hochberg procedure with false discovery rate FDR =
α = 0.1, unless otherwise stated. The sole exception is choosing a number of high variance genes for clustering cell
types. For this, we reconsider the notion that the FDR should be predetermined and fixed. In many situations in
single cell analysis, small changes in the FDR can dramatically change the number of ‘significant’ genes, and thus
strongly effects the sensitivity of the test. In other words, a small increase in α may cause many more true genes
to be accepted than false ones. In these situations, it may be beneficial to relax the requirement of a fixed FDR if
downstream analysis benefits from an increased sensitivity at the expense of a decreased specificity.

For selecting the number of genes for reclustering, we take α as a variable and calculate the number of significant
genes Ns(α). We estimate the true number of significant genes as the asymptote Ns(α → 1) and estimate the true
discovery rate TDR = Ns(α)/Ns(α→ 1).
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