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Abstract—The current trend for implantable Brain Machine
Interfaces (BMIs) is to increase the channel count, towards
next generation devices that improve on information transfer
rate. This however increases the raw data bandwidth for wired
or wireless systems that ultimately impacts the power budget
(and thermal dissipation). On-implant feature extraction and/or
compression are therefore becoming essential to reduce the
data rate, however the processing power is of concern. One
common feature extraction technique for intracortical BMIs is
spike detection. In this work, we have empirically compared
the performance, resource utilization, and power consumption
of three hardware efficient spike emphasizers, Non-linear Energy
Operator (NEO), Amplitude Slope Operator (ASO) and Energy of
Derivative (ED), and two common statistical thresholding mech-
anisms (using mean or median). We also propose a novel median
approximation to address the issue of the median operator
not being hardware-efficient to implement. These have all been
implemented and evaluated on reconfigurable hardware (FPGA)
to estimate their hardware efficiency in an ultimate ASIC design.
Our results suggest that ED with average thresholding provides
the most hardware efficient (low power/resource) choice, while
using median has the advantage of improved detection accuracy
and higher robustness on threshold multiplier settings. This work
is significant because it is the first to implement and compare the
hardware and algorithm trade-offs that have to be made before
translating the algorithms into hardware instances to design
wireless implantable BMIs.

I. INTRODUCTION

BMIs have enabled disabled patients to control neuro-
prosthetics [1] or communicate through thought [2] [3]. In
such circumstances, intracortical implants record the electrical
activity of the neurons and subsequently analyze the spikes
(observed action potentials) through a behavioral decoding
algorithm in order to control external assistive technology such
as a prosthetic limb or a text-to-speech prosthesis.

With the recent trend of designing wireless distributed BMIs
with increased channel counts [4], the growing amount of
data requires unfeasible bandwidth and wireless transmis-
sion power for the implants. Real-time on-implant feature
extraction and compression are therefore essential to distill
the informative features, reduce bandwidth and consequently
reduce the transmitting power. The firing rate is one of the
most commonly used features [5]-[8] representing essential
information correlated to subject behaviors with significantly
reduced bandwidth. Using firing rate reduces the bit rate
linearly with the increase of bin count period [4]. However,

on-implant feature extraction and compression bring extra
hardware complexity and face great challenges in power con-
sumption. It has been demonstrated in [9] that in practice, the
implant power consumption should be less than 0.8 mW/mm?.

To obtain the firing rate of neurons, the neuron action
potential spikes have to be detected and counted. The detection
of spikes represents the process of discerning between the
background noise of the signal and the action potential.
Multiple spike detection techniques have been developed based
on template matching [10] [11], wavelet transform [12], and
statistics [13]-[15]. Due to its simplicity, the latter class of
methods has generated substantial interest in fully-implantable
BMIs. The expectation is generally the most used statistics
due to its low implementation cost in the form of a moving
average. The mean is usually paired with the NEO or its vari-
ants (i.e., ASO, ED, Smoothed-NEO, multi-NEO) [16]-[19]
which emphasizes the spikes before averaging. The median
is regarded in the literature as a measure of the standard
deviation of the noise through the sensible assumption of
normal distribution [20]. However, the successive comparison
and large data buffer involved make it less feasible in hardware
use. Similarly, due to high hardware cost, other thresholding
mechanisms using statistics such as standard deviation, RMS
value, and cross-correlation [15] have also not been widely
used in hardware implementations.

There are significant studies on implementing and compar-
ing various spike detection algorithms, but they rarely experi-
mentally compare their hardware trade-offs. In this work, we
have implemented three different spike emphasizers (NEO,
ASO, ED), two thresholding algorithms (mean and median),
and a compression module (spike binner). We have also
proposed a novel implementation of median thresholding to
fit the median operation in an allowable hardware budget.
A comprehensive comparison is drawn in terms of spike
detection performance of algorithm combinations and Field
Programmable Gate Arrays (FPGA) power consumption and
resource usage.

II. SYSTEM ARCHITECTURE

Fig. | depicts the general signal path of a fully-implantable
BMI with on-implant signal processing capability. This work
will focus on the last three phases (i.e., Emphasizers, Thresh-
olding, and Compression). Our implementation assumes an
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Fig. 1.

analog fronted of 7kHz and 10-bit resolution per channel, as
they have been proved to be the minimum requirements to
contain the essential information of the spikes [21]. As this
literature also suggested, a two-pole Butterworth filter is used
to remove the LPF leaked to the passband.

A. Emphasizer

Before finding the threshold, a pre-emphasis step is applied
to the LPF removed signal. Traditionally, NEO is used due to
its characteristics of accentuating high energy, high-frequency
signals (i.e., spikes) to suppress the noise.

YNEOo[n) :x[n]2—x[n—l]:c[n—|—1] (D

Eq. 1 depicts the formula of the digital NEO operator
Y nEo- There are multiple variants of NEO; however, some
involve digital filter smoothing [18] or more samples to be
buffered [19], adding extra complexity. Therefore, the only
variants of NEO considered in this work are ASO [16] and
ED [17], due to their low hardware cost, requiring one less
multiplication and one less sample than the NEO. ASO and
ED are shown in formula 2 and 3 respectively.

Yasoln] = z[n](z[n] — z[n — 1)) 2
vep[n] = (2] — z[n — 1)) 3)

After the computation of the emphasized signal, the absolute
values are then taken to preserve the amplitude and gradients
on both sides.

B. Thresholding Algorithm

Subsequent to pre-emphasis, the signal is processed with
the thresholding module. Traditionally, after the NEO pre-
emphasis, the threshold would be set using a moving average
as in the formula below.

Yty Wln— @
N
Where N is the current sample, 1 is the output of the
emphasizer, p is a constant, and N is the number of samples
included in the average. This solution is employed due to its
very low computational cost as on every cycle, an addition,
a subtraction, and a shift is performed (Given that p and N
are carefully chosen). This method was proved to yield good
performance [13] considering its simplicity. N here is set to

Thr|n] = p*

The architecture of the firing rate-based BMI. The waveform under each module represents the output wave of the respective stage

be 16, yielding good performance, low resource occupation,
and ease of bit shift.

The median operation has a high implementation complex-
ity of over O(n?), which is unsuitable for real-time processing.
In order to mitigate these shortcomings, we propose to succes-
sively find the median of medians within a set of samples to
estimate the median values. The approach divides the sequence
into sets of 5 and then finds the median of each set. The
process then repeats to the medians found until only one
number remains. This process does not guarantee to find the
median but an estimation. However, our results suggest that the
accuracy drop is under 3% in low to moderate noise scenarios,
reaching approximately 5% in high noise ones (Fig. 3).

This approach represents a hardware-efficient implementa-
tion as the implementation complexity has decreased from
over O(n?) to O(nlog(n)). Furthermore, the instances of the
modules can be set up through simple interconnections, al-
lowing for scalability. The set size of 5 was chosen as the
minimum interval that can contain a spike by itself. A higher
interval would have generated a behavior closer to a median.
However, it would have come at the cost of multiple successive
comparisons. The implementation of the median of 5 number
module achieves the optimal resource consumption by using
only 6 comparators. Notice that the median mentioned later is
this median approximation using 25 samples unless specified.

C. Compression

The compression module is constructed as a series of coun-
ters (one for each channel) that count the number of threshold
crossing in every 800 samples (about 114 ms). To allow more
robustness in the binning process and avoid multiple detections
of one spike, the binner will not increment the value after one
detection, until one refractory period has passed, usually 1 ms.
At the end of the set binning period, counts are output, and
the counters reset.

ITI. RESULTS
A. Evaluation metrics and hardware platform setting

To test the spike detection performance of the algorithms
in combination with the different emphasizers, the algorithms
have been simulated offline on a widely used dataset from
[20]. It consists of real spike shapes positioned in time
with Poisson distribution. The superimposed realistic noise
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consists of randomly selected spikes with a relative standard
deviation of 0.05, 0.1, 0.15 and 0.2 respectively. Accuracy, a
generally used metric to compare spike detection algorithms,
is presented below.

TP

Accuracy = TP+ FPLFN 5)

Where True Positive (TP) represents truly detected spikes,
False Positive (FP) represents wrongly detected spikes, and
False Negative (FN) represents the undetected spikes.

Different methods have been implemented on the XC7A35T
AMD FPGA built on the 28nm technology. The resource
utilization was reported by the synthesizer and the dynamic
power was measure by subtracting between the FPGA core
power with and without the methods implemented. In order to
avoid simplification in the synthesis stage, the out-of-context
mode is used. These steps assure that the reported power is
directly linked to the complexity of the algorithm and not
to synthesis factors. The FPGA hardware results would not
translate directly to the ultimate ASIC design, but it is still
a reliable estimation for the ease of algorithm complexity
comparison and implementation selection.

B. Algorithm performance

From Fig.2 (a), out of the three emphasizers, ED (Solid
lines) yields the highest accuracy across all noise levels and
with both methods. ED also exhibits the highest adaptability
through robustness against multiplier choice (flatter curves).
ASO (Dotted lines) shows similar characteristics but reaches
lower accuracy at higher noise levels. The performance of
NEO (Dash lines) deteriorates rapidly as the level of noise
increases. This finding suggests that the gradient is more
discriminative than amplitude in spike emphasizing, especially
when noise increases, ED outstands.

As for median approximation (MA, Red lines) and av-
erage (A, Blue lines), their performance is similar w.r.t the
highest accuracy they can achieve in different noise levels
as the figure shows. However, it is a common drawback of
the statistical-based thresholding that multiplier choosing can
affect the detection performance [22] and therefore introduces
the effort of manually tuning the threshold in practice. The
median, as the figure shows, is more robust to the choice
of the multiplier as it generates a flatter response close to
its maximum point. This behavior is most noticeable at 0.05
noise, where the algorithm can always yield high accuracy
as long as the multiplier is large enough. On the other hand,
when using the average, the accuracy decays very fast as the
multiplier gets further from the peak values. This suscepti-
bility is mitigated by using ED, while it results in the most
narrow interval by using NEO. Furthermore, The interval for
choosing a multiplier narrows as the noise increases for the
median method, however, its effect is less noticeable across
all emphasizer choices.

Based on the findings above,using ED alongside median
approximation can provide the highest spike detection per-
formance while it is the least affected by the choice of the
multiplier.

Accuracy at noise level 0.2

== A+NEO
----- A+ASO
—— A+ED
== MA+NEO

percentage(%)
()]
o

percentage(%)

percentage(%)

percentage(%)

20 40 60 80
multiplier

(a) Average (A) with 16 samples vs Median Approxima-
tion (MA) with 25 samples

Accuracy at noise level 0.2

=
© O
o o

Y
o

percentage(%)
()]
o

N
o

20 40 60 80 100 120 140
multiplier
(b) Average (A) with 90 samples vs Median Approxima-

tion (MA) with 50 samples with different emphasizers

Fig. 2. The performance difference of Average (A) vs. Median approxima-
tion (MA)
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TABLE I
THE POWER AND RESOURCE UTILIZATION OF DIFFERENT MODULES

Module name LUTs Registers Block RAM DSPs Power(uW) Power per channel (W)
Butterworth filter 196 0 1 0 71.8 0.75
NEO multiplier 235 0 1 0 58.6 0.61
NEO bitwise shift 120 0 1 0 53.0 0.55
NEO DSP 30 0 1 2 46.6 0.49
ASO DSP 40 0 0.5 1 40.0 0.42
ED DSP 13 0 0.5 1 36.4 0.38
Average 41 0 5 0 461.8 4.81
Median unrolled 1495 0 7 0 634.6 6.61
Median rolled 465 184 7 0 1107.4 11.54
Counter 85 32 0.5 0.5 25.2 0.26

C. The effect of the number of samples

We also assessed how the number of samples used to calcu-
late the median and average affects the detection performance
in high noise level cases. Detecting spikes at high noise levels
can be challenging as more numbers need to be buffered for
mean/median calculation, but the number buffering can be
resource-consuming.

The average starts outperforming the median method as the
noise increases with 16 samples for the mean and 25 samples
for the median. However, suppose we allow more samples to
use. In that case, when the number of samples is increased to
90 samples for the average and 50 for the median, the detection
accuracy can be improved by 5%, and the median outperforms
the average at all noise levels; Fig. 2(b) shows this behavior.
Therefore, if the available memory is increased, the median
yields both higher accuracy and better robustness.

D. Resource consumption

One of the most costly hardware resources in the presented
emphasizers is the multiplier. They was implemented in three
methods: Look-Up Tables (LUTs), Digital Signal Processing
units (DSP), and an approximation by left shifting according
to the index of the most significant bit. The latter has been
previously employed in spike detection yielding promising re-
sults [16]. Table. I shows bit shift approximation uses half the
resources of the LUT-based multiplier representing a reliable
comparison to their ASIC implementation. However, the shift
approximation is unsuitable when using the NEO emphasizer
as the accuracy degradation overpasses 10% shown in Fig.3.
The other two emphasizers exhibit a 4% degradation at worst.
The median with ED, in particular, exhibits almost no accuracy
degradation. Using DSP yields the lowest power consumption
as it is customized for such operation, but DSP would occupy
the extra area in ASIC design. Only the NEO emphasizer
was used to compare the multiplier methods because it would
indicate a larger power difference. The rest of the emphasizers
are implemented using DSPs.

The ED uses the least resources and power compared to the
other methods as expected. ASO and ED use half the DSP
units and the memory used by NEO. ASO uses, unexpectedly,
more LUTs than NEO, because the subtraction is fused with
multiplication in a single multiply and accumulate (MAC)
operation in the DSP core.

The average is implemented through a moving average;
thus, it uses few resources outside of the memory. The ram
blocks hold both previous samples and the previous value
of the average. For our median algorithm, we tested two
implementations: one consists of six median modules that
divide the 25 samples into groups of 5, and then the median of
medians is taken (unrolled version), and the other one has one
module fed with 5 groups of five samples and, subsequently,
with the medians (rolled version). The first solution aims to
reduce the dynamic power consumption at the cost of resource
usage, while the other targets the opposite effect. The rolled
version uses approximately a third of the logic units used
by the unrolled version. However, this improvement comes
at the cost of registers that feed the median module and a
substantially increased power consumption. The steep increase
in state transitions causes the power to almost double in the
case of the rolled version of the median.

The counter module uses memory to store the number of
arrival spikes in each channel and the bin period counts. The
output remains unchanged until the bin period is reached. Due
to the low output frequency, it has a lower power consumption
than other modules using similar resources (e.g., emphasizers).

IV. CONCLUSION

This paper discusses the trade-off between hardware com-
plexity and detection performance of the median approxima-
tion and moving average preceded by three hardware-efficient
emphasizers (NEO, ASO, ED) for spike detection. Multiple
considerations were taken into account, such as the number of
samples, different multiplication methods, and median module
reusing.

ED demonstrated superior performance with both thresh-
olding algorithms and used fewer resources. It not only
reaches a larger peak accuracy but also enables adaptability
to multiple noise levels. On the other hand, the proposed
median approximation makes the median operation achievable
in hardware with an acceptable budget and easily scalable.
Using the median approximation consumes more power and
resources than the average thresholding, but it results in better
spike detection performance and improved robustness to signal
variations. At low noise levels, the median approach does
not require tuning in multiplier choice, regardless of which
emphasizer is used.
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