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Abstract 

Background: Global life expectancy has been increasing without a corresponding 

increase in health span and with greater risk for aging-associated diseases such as 

Alzheimer’s disease (AD). An urgent need to delay the onset of aging-associated 

diseases has arisen and a dramatic increase in the number of potential molecular 

targets has led to the challenge of prioritizing targets to promote successful aging. 

Here, we developed a pipeline to prioritize aging-related genes which integrates the 

plethora of publicly available genomic, transcriptomic, proteomic and morphological 

data of C. elegans by applying a supervised machine learning approach. Additionally, 

a unique biological post-processing analysis of the computational output was 

performed to better reveal the prioritized gene’s function within the context of pathways 

and processes involved in aging across the lifespan of C. elegans.  

Results: Four known aging-related genes — daf-2, involved in insulin signaling; let-

363 and rsks-1, involved in mTOR signaling; age-1, involved in PI3 kinase signaling 

— were present in the top 10% of 4380 ranked genes related to different markers of 

cellular dysfunction, validating the computational output. Further, our ranked output 

showed that 91% of the top 438 ranked genes consisted of known genes on GenAge, 

while the remaining genes had thus far not yet been associated with aging-related 

processes.  

Conclusion: These ranked genes can be translated to known human orthologs 

potentially uncovering previously unknown information about the basic aging 

processes in humans. These genes (and their downstream pathways) could also serve 

as targets against aging-related diseases, such as AD.  

 

Keywords: aging-related targets; multi-omics; prioritization; C. elegans; supervised 

machine learning; feature selection 
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Introduction 

The global life expectancy has increased by more than 6 years in the last two decades, 

without a corresponding increase in health span (life without major disease or 

disability) (1). With an expected near doubling in the number of people over the age 

of 60 years globally by 2050, this poses a major socioeconomic burden and an urgent 

need exists to delay the onset of age-related diseases such as Alzheimer’s disease 

(AD) and cardiovascular disease (1). 

 

A major drive for the implementation of interventions that increase health span and 

delay senescent span is therefore underway (Figure 1; modified from (2) for C. 

elegans), with the aim to promote successful and to limit unsuccessful aging. 

Successful aging can be defined as the decline in cellular, tissue, and organ function 

over an organism’s lifespan without the onset of pathology and with the presence of 

high physical, cognitive, and social function (adapted from (3) using (4)). An improved 

understanding of the cellular and molecular mechanisms and the rate of their 

deterioration is needed to develop therapies for successful aging. This requirement 

has contributed to the definition of the nine hallmarks of aging, which include 

intracellular processes that manifest during normal aging (5). These include: genomic 

instability, telomere attribution, epigenetic alterations, loss of proteostasis, 

deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem 

cell exhaustion, and altered intercellular communication (5).  

 

Since the introduction of the above hallmarks of aging, potential molecules which could 

modulate the activity of mechanistic pathways involved in aging have been reported. 

The GenAge database summarizes targets associated with human longevity and 
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currently describes 307 genes (6). These targets include genes from known age-

associated pathways, such as the sirtuin, insulin/IGF-1 signaling, AMP-activated 

protein kinase (AMPK), and mTOR pathways (7,8). Although some success has been 

achieved by targeting components in these pathways with promising results in clinical 

trials, such as inhibiting mTOR by rapamycin (9), the relative contribution of each 

hallmark and consequently its involved molecular mechanisms driving and contributing 

to the overall aging process remains unclear (10). This makes the prioritization of 

targets for therapeutic intervention challenging. Moreover, longitudinal studies of 

human aging as well as the development of pharmacotherapies are time consuming 

and costly (11). Given these challenges, a particular need arises to better prioritize 

targets based on their ability to modulate the aging process, without solely relying on 

in vitro and in vivo experiments (11,12).  

 

To address these challenges, increased utilization of database searches, biological 

assays, and machine learning techniques have been implemented to better identify 

targets of interest (12–15). These techniques have been used to advance research in 

the field of neurodegeneration, with a specific focus on AD. Targets in AD have been 

identified through a multi-omics approach focusing on protein networks and pathways 

during disease progression (15). Semi-supervised machine learning has also been 

used to identify an MRI biomarker for mild cognitive impairment (MCI), effectively 

predicting the clinical conversion from MCI to AD up to three years prior to disease 

onset (16). MRI imaging data has also been used in an ML approach to aid in disease 

diagnosis (17). Given the complexity of the biological systems and the wealth of 

available data, the use of machine learning seems invaluable to accurately and 

efficiently identify targets for ND. 
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The careful consideration of targets identified with machine learning techniques in the 

context of biological processes is necessary to assess the feasibility and actionability 

of the identified targets. One such approach is taken by Pun et al., (2022) by using the 

PandaOmics platform to investigate targets associated with aging and age-associated 

diseases from human cross-sectional data based on the nine hallmarks of aging (12). 

Although the use of human data to identify targets is highly relevant for drug discovery, 

obtaining rich longitudinal data to understand disease progression across an 

individual’s lifespan has remained extremely challenging. Current approaches are 

therefore typically reliant on cross-sectional data, further limiting the deduction of 

cellular dynamics in aging. Short-lived simple animal models can, however, aid in 

circumventing this limitation as they are ideal for studying the intracellular 

evolutionarily conserved processes of aging (18,19).  

 

C. elegans is one of the most popular simple organisms used to investigate aging (8). 

Its short lifespan enables the in-depth characterization of its life stages to generate 

time-based data on different levels of Omics (20,21). Importantly, several of the 

intracellular hallmarks of aging are conserved across species. Despite C. elegans 

lacking some of the evolutionary advanced aging hallmarks present in other 

multicellular organisms due to the postmitotic nature of many of its cells, the core 

hallmarks of aging can be investigated in a multicellular organism with less complexity 

than found in mammalian species (18). As the hallmarks of aging are interconnected, 

many of the non-conserved, more advanced hallmarks exert their eventual effects 

through conserved pathways (18). Therefore, understanding the core mechanisms of 

aging in isolation can inform strategies that aim to improve their function, in order to 
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promote successful aging (Figure 1). Altered insulin signaling by knockout of daf-2, for 

example, resulted in a reduced accumulation in aging pigment (lipofuscin) and 

improved locomotor capacity, which is indicative of successful aging (22).  

 

A further benefit of working with C. elegans is the vast range of available data including 

time-based transcriptomic, proteomic, phosphorylation status, molecular data and 

detailed morphological data, allowing to describe the relationships between different 

Omics layers and their possible contributions to the aging process (20,21,23,24). 

However, prioritization of aging-related targets remains a challenge in this organism 

due to the many existing targets and their association with longevity and not 

necessarily the aging process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Markers of dysfunction observed over the lifespan of C. elegans related to the aging process, 

specific to this study. Aging-related functional decline includes morphological aging features which 

degrade over C. elegans’s lifespan and other indicators of dysfunction which include molecular markers 

of intestinal aging that accumulate over C. elegans’s lifespan. The black line indicates the normal aging 

trajectory in C. elegans, while the green dotted line indicates a successful aging trajectory in C. elegans. 
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In this study, supervised machine learning and recursive feature elimination 

techniques were used to construct a pipeline to prioritize genes associated with aging 

and thereby identify potential targets. To achieve this, several time-based biological 

layers, including markers of cellular and macroscopic function were used to 

characterize the aging process in C. elegans. This included a broad range of 

categorical and time-dependent phenotypic and genotypic data; i.e. RNA and protein 

levels, phosphorylation status, and the biological process description of each gene. A 

unique post-processing workflow was established to translate the prioritized genes to 

pathways and cellular processes in human aging, to support their potential druggability 

for aging-related diseases. 
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Methods 

A computational pipeline (workflow) was constructed which includes supervised 

machine learning on time-based data of C. elegans genes (feature variable) and 

aging-related genes (response variable) (Figure 2). An example of the computational 

output with post-processing using biological analysis is presented below.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Workflow demonstrating the synergy between biological analysis and supervised machine 

learning using time-based C. elegans data to prioritize aging-related targets using: i. Biologically-

informed curation of data from C. elegans studies and databases, used to select genes for analysis. ii. 

Processing of aging-related and proxy genes (response variables) and 4380 general genes (feature 

variables) to produce a ranking of aging-related targets. iii. Post-processing of aging-related genes to 

include supporting information for their use as aging-related targets through biological analysis to 

produce a prioritized aging-related target. 
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Data collection and formatting 

Data were collected from open-source databases and from literature. The data 

collected from different studies (Table 1) were combined with the Wormbase Gene IDs 

or alternatively the gene names. Several layers of Omics were used to understand the 

broader context in which the targets could exert effects on the aging process (Figure 

3). All computational analyses were conducted in Python 3.8 (25). MinMaxScaler from 

the Scikit-learn package was used to standardize the combined data (26). Time course 

data were used in the original format while the categorical data were converted to 

binomial data by One-hot encoding (26). Pandas and Numpy packages were used for 

data formatting (27,28). Genes with missing data fields were excluded from the 

dataset. A total number of 4380 active C. elegans genes were further included in 

computational analyses (Figure 2).  

 

Table 1: Datasets used for supervised machine learning model training and their sources. “Categorical” 

data refers to quantitative data converted to binomial data and “numerical” data refers to time course 

datasets. 

Datafield Source 

Gene IDs and Gene names Wormbase (29) 

Biotype (categorical) Wormbase (29) 

Expression pattern tissue (categorical) Wormbase (29) 

Expression pattern lifestage (categorical) Wormbase (29) 

Expression pattern lifestage (numerical) Wormbase (29) 

Gene ontology association (categorical) Gene ontology (30,31) 

Morphological feature change over time 
(numerical) 

Martineau (23,32) 

Proteome ratios over time (numerical) Narayan (20) 

Gene expression over time (numerical) Hastings (21) 

Gene expression over time (numerical) Bgee (33) 
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Gene effect on lifespan (categorical) GenAge (6,34) 

Protein Phosphorylation (numerical) Huang (24) 

Pathway labels (categorical) Uniprot (35) 

Interacting genes (categorical) Wormbase (29) 

Disease information (categorical) Wormbase (29) 

Human ortholog (categorical) Wormbase (29) 

Gene description (categorical) Wormbase (29) 

 

Compiling a concise list of genes associated with processes of aging 

A list of genes associated specifically with aging processes was required as response 

variables for training of a supervised machine learning model to highlight targets within 

aging processes (Figure 2). First, a complete dataset of the known life-extending 

genes (n=887) was utilized from the public database GenAge (6), 

https://genomics.senescence.info/genes/stats.php, accessed Feb 2022. Only 429 

genes had the required data (categorical information, gene expression, protein levels 

and phosphorylation status) to be used within our computational model. However, due 

to the discrepancy between aging and longevity (36) the life-extending (longevity) 

genes were manually filtered to compile a list of genes consisting only of genes 

associated with known aging processes. Genes were chosen if their function listed on 

UniProt or Wormbase formed part of a known intracellular process associated with the 

hallmarks of aging (5,18,35). These processes of aging included: mitochondrial 

dysfunction (mitochondrial integrity and biogenesis and reactive oxygen species), 

sequence information transfer (a combination of the hallmarks genome instability and 

epigenetic alterations), immune signaling (the intracellular component of 

inflammation), loss of proteostasis and regulatory pathways (including deregulated 

nutrient sensing) (Figure 3). Once completed, the list contained 378 genes that 
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function within a known aging process (Supplementary Table 1). These genes were 

used as response variables during model training, either as proxy genes associated 

with dysfunction markers or as non-specific aging associated genes. 

 

Dysfunction markers representative of aging  

Various markers of aging indicative of organism dysfunction in C. elegans over time 

were used to understand how genes could contribute to the aging process, not only 

on a genetic level but also on a physiological/functional basis. Three types of 

dysfunction markers were selected across omics layers: either macroscopic 

morphological markers (“morphological aging features”), molecular markers 

(“intestinal aging”) or genetic markers (“genes associated with aging processes”) 

(Figure 3).  

Morphological features 

Morphological features are used to quantify the macroscopic health of C. elegans over 

time as it ages (32). Furthermore, changes in morphological features have been 

shown to be related to cellular function, for example, changes in dopaminergic 

neuronal function in knock-out studies are evident in locomotion (37). Both locomotion 

and pharyngeal pumping are related to lifespan and possibly to each other, with both 

showing a reduction in speed over time (38). Pharyngeal pumping and three features 

related to locomotion that decline significantly during aging (speed of tail tip, width of 

tail base and tail tip angular velocity relative to tail base) were included as dysfunction 

markers (32,39). 

Markers of intestinal aging 

The C. elegans intestine is the location of many stress responses that change during 

aging (40). Several known C. elegans aging markers are associated with the intestine, 
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including autofluorescence and aging pigment (22,41). Furthermore, the accumulation 

of E. coli in the intestinal lumen is related to the lifespan of C. elegans (42). An increase 

in autofluorescence, aging pigment or E. coli accumulation are indicative of general 

cellular dysfunction during aging, including a decline in immune signaling and redox 

balance dysfunction (22,41,42). 

Non-specific genes associated with the aging process 

Genes from the list of 378 aging-related genes that did not form part of the 

morphological or intestinal aging markers were used as “genes associated with aging 

processes” markers (n=329). 

 

 

 

 

 

 

 

 

 

Figure 3: Visual representation of the different Omics layers used in the presented pipeline and the data 

used to characterize them.  

 

 

Selection of proxy genes for dysfunction markers 

Although all 378 aging-associated genes were used for model training, we wished to 

interpret the computational output within the context of dysfunction markers associated 

with aging. Therefore, seven proxy genes were selected for the markers of dysfunction 

based on computational analysis. Next, in order to identify proxy genes 
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computationally, we assumed that a change in a dysfunction marker over time will be 

highly correlated (positively or negatively) with the change in expression over time of 

the genes associated with the respective marker. Based on this assumption we 

selected the genes with the lowest (closest to zero) Root Mean Square Error (RMSE) 

between the change in gene expression and dysfunction marker over time. Only seven 

proxy genes could be found with RMSE values < 0.3 for some dysfunction markers, 

therefore seven genes were selected for each marker to ensure equal contributions 

towards the ranking process by each dysfunction marker. Gaussian Process 

Regression was used to infer gaps in temporal data (21,22,32,39,41,42) and Linear 

regression was used to calculate the RMSE values.  

 

Importantly, to ensure that the genetic association with the morphological aging 

features were biologically sensible, the genes selected to represent the feature had to 

be involved in the respective process or expressed within the corresponding tissue 

(based on Wormbase information and (43). Specifically, genes with a high RMSE 

value with involvement in movement and/or with expression in the tail were used for 

the features “speed of tail tip”, “width of tail base”, “tail tip angular velocity relative to 

tail base”. Similarly, genes expressed in the pharynx were used for pharyngeal 

pumping (Wormbase information and (43). 

 

Gene ranking with recursive feature elimination 

All genes were ranked according to their similarity to the dysfunction marker genes. 

This similarity was determined by Recursive Feature Elimination (RFE), a feature 

selection algorithm. During RFE a machine learning model was iteratively retrained 

while the weakest predictive “feature” (in this case gene) was removed with each 
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iteration. This process aids in the training of cleaner, more effective models, 

eliminating unnecessary features. RFE outputs a list of all features (genes), ranked 

from most relevant to least relevant for the model’s predictive capability. In this study, 

RFE was used to eliminate genes that contribute least to the processes of aging-

associated dysfunction, during model training. Instead of using the traditional 

elimination of unnecessary features, we eliminated unnecessary genes, generating an 

output of genes ranked from most similar to the dysfunctions markers to least similar. 

A Support Vector Machine and Generalised Linear models were used within the RFE 

wrapper algorithm (26).  

 

Validation of genes associated with aging processes ranking 

Genes from the GenAge database known to be associated with processes of aging 

were ranked, along with all other genes, by their predicted association with aging 

processes. The model was validated by its ability to highly rank genes known to be 

associated with aging. This validation is visualized in Figure 4 - the predicted ranking 

of these genes are distributed across 10 quantiles. We defined accurate predictive 

capability of the model if >75% of known genes associated with aging processes were 

ranked in the top three quantiles (30%) given the ranking output of the analyses. To 

further validate the computational ranking output, the top three genes from GenAge 

(modulating their expression results in the largest life extension) were selected: daf-2 

(insulin receptor-like gene), age-1 (PI3 kinase signaling), and let-363 (mTOR 

signaling). The positions of these genes within our ranked output were determined.  
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Rsks-1 as example aging target 

The computational output includes an overall ranking of the gene's strength of 

association with known genes from aging processes. Furthermore, the similarity of the 

ranked genes to specific dysfunction marker genes is included. The output also 

includes correlation analyses between the chosen gene’s mRNA expression, protein 

levels, phosphorylation status, and categorical information, and those of all associated 

dysfunction markers. This can potentially associate the ranked gene more strongly 

with a dysfunctional process based on the strength of the similarity. In order to validate 

the computational output, a known gene associated with the aging process of the 

mTOR pathway, rsks-1, was selected. This selection was made since rsks-1 was 

ranked in the top 100 genes of the computational output, had been reported in 

relatively few publications (16 publications on Pubmed, 

https://pubmed.ncbi.nlm.nih.gov/, in the last 5 years), and its human ortholog has 

existing drugs targeting its activity (S6K1 inhibitors) (44,45). 

 

Discovery of known and predicted associations between genes (matrix) 

Possible associations between the chosen gene (rsks-1) and dysfunction marker 

genes with the highest similarity were explored. This was done by placing the 

dysfunction marker genes and rsks-1 into their designated aging processes used for 

our list of aging-related genes (Supplementary Table 1). The aging processes 

attributed to the genes were chosen based on its Uniprot and Wormbase biological 

description (35). The known association between genes (Pubmed) or predicted 

associations based on computational output were visualized in a diagram for further 

interpretation. 
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In summary, a supervised machine learning model was trained to rank genes based 

on their similarity to known aging-related genes from GenAge. These known aging-

related genes are grouped into dysfunction marker categories: morphological features, 

intestinal aging, and non-specific aging processes. Genes can be ranked by their 

similarity to all known aging genes or by the sub-groups of genes in the dysfunction 

marker categories. 
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Results 

Assigning genes to dysfunction marker categories 

Dysfunction markers of aging were selected in three categories based on their 

biological relevance to aging. For the categories (i) Intestinal aging and (ii) 

morphological aging feature, their respective seven proxy genes are listed in Table 2. 

All other genes formed part of the (iii) genes associated with aging processes category. 

 

Table 2: Dysfunction marker types and their respective markers representative of aging. Dysfunction 

marker proxy genes associated with the eight dysfunction markers were selected from literature and 

regression analyses [Ref: Methodology_Selection of proxy genes for dysfunction markers]. The 

RMSE values of the regression analyses are included in brackets.  

Dysfunction 
marker type 

Dysfunction 
marker 

Dysfunction marker proxy genes (RMSE 
values) 

 
 
 
 
 
 
(i) Intestinal Aging  
 

Aging 
pigmentation 

age-1 (0.15), atg-18 (0.17), atg-9 (0.18), daf-2 
(0.14), hcf-1 (0.22), hlh-30 (0.17), unc-51 (0.07) 

Intestinal E. coli akt-1 (0.23), daf-8 (0.19), dcr-1 (0.24), ire-1 
(0.25), lgg-1 (0.13), sip-1 (0.18), wwp-1 (0.21) 

Autofluorescence daf-15 (0.13), hmg-4 (0.09), hsf-1 (0.12), let-765 
(0.11), lin-15B (0.11), mpk-1 (0.14), smk-1 
(0.12) 

 
 
 
 
 
 
 
 
(ii) Morphological 
Aging Feature 
 
 

Pharyngeal 
pumping 

cua-1 (0.26), elc-1 (0.22), fbp-1 (0.20), mrp-5 
(0.25), mtch-1 (0.17), tmem-135 (0.28), vha-6 
(0.23) 

Speed of tail tip arr-1 (0.13), bar-1 (0.11), blmp-1 (0.06), itr-1 
(0.09), lys-8 (0.12), pat-10 (0.12), spl-1 (0.03) 

Width of tail base atp-2 (0.08), ced-3 (0.06), egl-30 (0.04), eat-6 
(0.06), chn-1 (0.10), pat-4 (0.07), unc-64 (0.10) 

Tail tip angular 
velocity relative to 
tail base 

egl-27 (0.17), let-502 (0.18), apy-1 (0.09), glp-1 
(0.19), npp-3 (0.16), daf-7 (0.18), unc-32 (0.09) 

(iii) Genes 
associated with 
aging processes 

Uncategorised 
Aging-related 
Genes* 

Remaining 329 aging-related genes not 
included in another dysfunction marker 
classification. 

*Uncategorised aging-related genes were selected from literature only, not by regression analysis. 
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Ranking of C. elegans genes based on dysfunction marker proxy genes 

Genes were ranked based on their similarity to aging-related dysfunction markers. The 

ranking of genes by their potential involvement in the process of aging (i. e. their 

potential importance in determining the appearance of the dysfunction markers) is 

shown in Supplementary Information (Supplementary Table 2).  

 

Validation of ranked output using known aging genes 

The accuracy of the ranking of genes by their potential involvement in the aging 

process is validated by the model’s ranking of known aging-related genes. The ranking 

of known genes associated with aging processes from the GenAge database (6,34) is 

shown in Table 3. The majority of the known aging-related genes were ranked in the 

first three quantiles (n=1314) of the ranking output (Figure 4).  

 

Three known aging-related genes (daf-2, insulin signaling; let-363, mTOR signaling; 

age-1, PI3 kinase signaling) and one general aging-related gene (rsks-1) were 

selected for further validation of the output. The rankings of these four genes are also 

shown (Figure 4) indicating their positions based on each dysfunction marker type 

(aging-related genes, intestinal aging, and morphological aging feature). All four genes 

were ranked in Q1 based on the overall ranking (mean of all rankings by the individual 

dysfunction marker genes) as well as the ranking by aging-related genes, 

morphological aging features, and intestinal aging (with a ranking of <400). The 

ranking of known aging-related genes out of the 4380 genes that were analyzed are 

shown in Table 3. 

 

Figure 5 shows that the top quantile of ranked genes (Q1 in Figure 4) consists of genes 

that are listed on GenAge, known to be aging-related genes (91% of the Q1 genes) 
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(6,34). The remaining 9% of the Q1 genes are, to the best of our knowledge, not yet 

associated with aging-related processes. Based on the gene descriptions of Uniprot, 

these genes are involved in a variety of functional processes that could potentially 

affect aging (35). Some of these processes include iron metabolism, protein 

degradation and amino acid metabolism. 

 

 

 
Figure 4: Ranking of known genes associated with aging processes (6,34) by the model as validation 

of the ranked output. The number of known aging-related genes placed in each of the 10 quantiles of 

the ranked output is shown by different dysfunction marker types: (aging-related genes (green), 

intestinal aging (orange), and morphological aging (light green) feature) and across all three dysfunction 

marker types (overall; red). The rankings of the three known aging-related genes, daf-2 (black), let-363 

(gray), and age-1 (purple), as well as the selected aging-related gene, rsks-1 (blue), are shown by each 

dysfunction marker type and overall. 
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Table 3: Ranking of known aging-related genes (daf-2, let-363, and age-1), and the selected aging-

related gene, rsks-1, by the model out of 4380 C. elegans genes. The ranks of the genes per dysfunction 

marker type are shown, as well as the ranking percentiles in brackets. 

Gene 

Overall rank  

[n out of 

4380, %] 

Morphological 

aging feature 

rank 

[n out of 4380, 

%] 

Intestinal aging 

rank 

[n out of 4380, %] 

Genes 

associated with 

aging processes 

rank 

[n out of 4380, %] 

Known genes from aging processes 

daf-2  37 (1%) 50 (2%) 98 (3%) 45 (2%) 

let-363  16 (1%) 52 (2%) 284 (7%) 14 (1%) 

age-1 97 (3%) 146 (4%) 216 (5%) 98 (3%) 

Selected aging-related gene 

rsks-1 55 (2%) 259 (6%) 221 (6%) 39 (1%) 

 

 

 

 
 

Figure 5: Summary of the top quantile of the ranked genes (Q1 in Figure 4). 91% (452) of the top ranked 

genes are known aging-related genes (6,34), while 9% (42) are not previously known to be associated 

with aging. The functional categories, based on Uniprot’s gene descriptions (35), of the potential new 

aging-related genes are listed.  
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rsks-1 is similar to several dysfunction marker proxy genes 

The gene rsks-1 shows an overall high ranking (top 2%) and is highly ranked with the 

three aging dysfunction types (morphological aging feature marker rank: 6%; intestinal 

aging marker rank: 6%; Aging-related gene rank: 1%) (Table 3). This high ranking is 

determined by the large degree of similarity of rsks-1 with several dysfunction marker 

genes across the different types of aging dysfunction markers (see Figure 6 for 

similarity with different types of aging dysfunction markers and Figure 7 for individual 

gene similarity). The aging-related genes showed the highest ranking score for rsks-1 

(Figure 6), based on the phosphorylation data, biotype categorical data, gene ontology 

information, as well as the expression patterns in tissue types and different life stages.  

 

Dysfunction marker genes linked to rsks-1 

In Figure 7, the known and predicted interactions between rsks-1 and similar 

dysfunction marker genes in their associated aging processes and systems based on 

UniProt keywords are displayed (35). Based on computational output, rsks-1 was 

highly similar to genes associated with mitochondrial function, redox balance, 

proteostasis and regulatory pathway systems. Based on existing literature and 

database searches (e.g. Pubmed, Wormbase, UniProt, https://www.uniprot.org/, and 

String, https://string-db.org/), rsks-1 and the following genes have a known interaction 

or are present in interacting pathways: unc-51, hsf-1, atg-9, daf-7, daf-8, glp-1, hlh-30, 

akt-1, daf-2, daf-15 (46–52). rsks-1 is predicted by the computational output to be 

highly associated with the following genes: ced-3, unc-32, eat-6, hcf-1, hmg-4, egl-27, 

age-1, itr-1, let-765, arr-1, with no current supporting literature of a direct association.  
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Figure 6: Correlation between rsks-1 and all dysfunction marker genes (rows) per datafield (columns 2 

- 11), and overall similarity (first column) contribution to rsks-1’s ranking by each dysfunction marker 

gene.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 28, 2022. ; https://doi.org/10.1101/2022.06.24.497511doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.24.497511


 

23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: rsks-1’s known and predicted associations with the dysfunction marker genes based on the 

computationally determined similarity of gene expression (E), phosphorylation (P) and shared function 

from gene ontology (G). Black lines denote known associations based on literature, whereas red lines 

denote newly predicted associations. 
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Discussion 

As our understanding of the aging process improves, the number of potential aging-

related targets increases. This leads to the challenge of prioritizing targets of the aging 

process to promote successful aging and prevent the development of age-related 

diseases. Moreover, several functional parameters and the overall context of 

molecular targets in aging, is poorly reflected in current approaches to identify novel 

targets of interest. In this study, we propose a pipeline that integrates the plethora of 

publicly available genomic, transcriptomic, proteomic and morphological data of C. 

elegans with a supervised machine learning approach to prioritize aging-related 

genes. These ranked genes can be translated to known human orthologs potentially 

uncovering previously unknown information on the basic aging processes in humans. 

These genes could also serve as targets against aging-related diseases, such as AD. 

To test the capability of the pipeline, we used a known aging-related gene (rsks-1), 

enabling us to contextualize our findings with current literature.  

 

The computational output ranked aging-related genes of C. elegans highly 

We repurposed recursive feature elimination with SVM and GLM models to develop a 

machine learning technique which ranks genes by their potential involvement in the 

process of aging. The computational output was validated by identifying the ranks of 

well-known aging-related genes such as age-1, daf-2, and let-363, all of which were 

ranked within the top 3% of the 4380 C. elegans genes. rsks-1, a ribosomal S6 kinase 

gene, was also ranked highly by our machine learning technique due to its high 

similarity with the identified proxy genes (associated with the dysfunction markers) and 

genes associated with aging processes. The overall ranking of rsks-1 was 55 out of 

4380 genes (top 2% of all C. elegans genes), and it had the highest similarity with 

other genes associated with aging processes (n = 39, top 1%) (Table 3). The ranking 
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of the known aging-related genes and rsks-1 is comparable to the GenAge ranking of 

longevity genes based on their ability to extend lifespan, however, rsks-1 is ranked 

much higher by our pipeline (6,34). This could be due to GenAge only ranking genes 

based on the percentage increase in lifespan after gene modulation, rather than the 

involvement of the gene in the aging process.  

  

The C. elegans gene daf-2 (insulin-like receptor) is well-studied in the aging field and 

its knockout increases lifespan by 169%, whereas knockout of rsks-1 results in a 

lifespan increase of 20% (46). The dual knockout of daf-2 and rsks-1 has shown a 

synergistic lifespan extension by 454% (46). However, the mechanisms through which 

rsks-1 affects the aging process and results in this synergistic effect remains unclear. 

Characterizing the mechanisms involved in rsks-1 functioning will help discover and 

detail associated targets involved in the aging process, which could promote 

successful aging if inhibited or activated/stimulated.  

  

Our pipeline identified other aging-related genes possibly related to rsks-1’s 

mechanism of aging. The genes from aging processes which were uncategorized (not 

directly associated with dysfunction markers) were used to detect similar aging-related 

genes, such as rsks-1. Additionally, proxy genes from the other dysfunction marker 

types (intestinal aging markers and morphological aging features) were used to predict 

possible associations (Figure 7) through which rsks-1 could affect the aging process 

in C. elegans. 
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The potential interaction of rsks-1 with aging-related genes  

The interactions between the proxy genes and rsks-1 with a similarity score were 

assessed using publicly available databases (Pubmed) (Figure 7). These genes 

include atk-1, daf-15, hlh-30, hsf-1, glp-1, daf-8, unc-51, atg-9, ced-3, unc-32, eat-6, 

hcf-1, hmg-4, egl-27, age-1, itr-1, let-765, arr-1. 

 

There is supporting evidence for multiple of the associations proposed by our pipeline 

between the proxy genes and rsks-1 based on previous studies. Indeed, the String 

database (52) has predicted a functional association between rsks-1 and the 

dysfunction markers atk-1 and daf-15, based on their putative homologs interacting in 

other organisms. A possible relationship has been shown between hlh-30 and rsks-1 

in C. elegans, with knockout of rsks-1 resulting in increased hlh-30 mRNA levels 

compared to wild type (51). Further, a specific genetic interaction has been found 

between rsks-1 and hsf-1 through RNA interference screening (50). Through an RNA 

interference study it was shown that unc-51 and atg-9 extended the lifespan of C. 

elegans with an rsks-1 mutant (47). There is also a functional interaction between rsks-

1 and the dysfunction marker glp-1, in which rsks-1 promotes glp-1 fate; the nature 

however, of this interaction, remains unclear (49). A null mutation with rsks-1 and daf-

8 showed a strong synergistic Daf-c phenotype (48), further supporting the association 

between the proxy genes and rsks-1 using the similarity score from our pipeline. 

 

The remaining dysfunction marker genes were to the best of our knowledge not 

previously described in literature to have an interaction or association with rsks-1. 

These include the genes: ced-3, unc-32, eat-6, hcf-1, hmg-4, egl-27, age-1, itr-1, let-

765, and arr-1. Our computational output indicates a possible interaction or 
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association between the latter genes and rsks-1 based on a combination of 

coexpression, phosphorylation pattern, and functional description (categorical data). 

The potential relationship between the proxy genes and rsks-1 could allude to new 

mechanisms through which rsks-1 affects aging in C. elegans. Our pipeline, therefore, 

does not only rank aging-related genes, but also provides valuable information on how 

the ranked genes might interact or be associated with the proxy genes based on their 

similarity score.  

 

Using cellular and morphological dysfunction to describe effects of targets on 

the aging process and possible relevance to human disease 

When implementing the pipeline presented here, the proxy genes related to 

dysfunction markers enable the detection of aging-related genes that have a large 

potential of affecting aging outcomes. This is due to the close association between 

their gene expression and the change in the dysfunction marker over the lifespan of 

C. elegans. Although gene expression is not indicative of protein activity, for our 

purposes it is an initial indicator of a possible relationship between a gene and an 

aging-related feature (Supporting Figures: see Supplementary information).  

 

As an example, daf-2 was selected as a proxy gene for aging pigment due to its high 

RMSE value when comparing its expression with aging pigment accumulation. 

Knockout of daf-2 has resulted in a decreased accumulation of aging pigment and 

improved locomotory function (22), supporting its relevance to the presence of aging 

pigment. Similarly, in our computational output rsks-1 shows the highest similarity to 

genes related to aging pigment and tail tip movement. Both daf-2 and rsks-1 impact 

C. elegans lifespan through shared pathways, ultimately involving translation 
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regulation (53). Therefore, it is expected that they would have similar effects on 

molecular and morphological aging features, which is reflected in the computational 

output. 

 

Aging pigment forms due to a combination of dysregulation in proteostasis, as well as 

disturbances in redox balance. Locomotion (such as tail tip movement) is related to 

aging pigment formation (22). These functional outcomes could be equivalent to 

dysregulation of cellular function in neuronal cells, such as amyloid beta aggregation 

in humans. As changes in rsks-1’s function may lead to improvement (or deterioration) 

in the healthspan of C. elegans during aging, this may suggest that targeting its human 

homolog S6 kinase in neurons could prevent the accumulation of proteins that 

contribute to the onset of neurodegenerative diseases. This is supported by the 

observation that a genetic reduction in S6K1 reduced the generation of amyloid beta 

in mice (54). Therefore, the pipeline presented here is able to detect and describe 

potential aging-related genes relevant to AD.  

 

Conclusion and future outlook 

The aim of this study was to develop a computational pipeline enabling to prioritize C. 

elegans genes by their probability of being involved in aging-related functional 

processes. This was achieved by using a supervised machine learning technique to 

rank genes by their similarity to known aging-related genes and dysfunction marker 

genes (known to be present in aging C. elegans). The ranked gene output showed 

that 91% of the top-ranked quantile of genes are known aging-related genes, while the 

remainder could be potential novel aging-related genes. The accuracy of the ranked 
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output was shown through the high ranking of known aging-related genes, age-1, daf-

2, let-363, and rsks-1.  

 

Next, rsks-1 was used as an example gene to showcase the output’s functionality. The 

dysfunction marker (proxy) genes with a high similarity to rsks-1 could potentially 

indicate a functional interaction or association. Furthermore, the dysfunction markers 

(eg. aging pigment, tail tip speed, etc.) could be used to understand how a highly 

ranked gene may affect the aging process. Throughout, the computational output was 

validated through contextualisation with the most recent literature.  

 

Future work that includes information beyond gene expression may further strengthen 

approaches similar to the pipeline presented here, to describe the connection between 

genes and dysfunction markers (such as protein and phosphorylation data). In 

addition, causal inference analysis, as described in the works of Pearl et al., 2016, 

2019, may add value by uncovering the causal structure in the system, allowing one 

to identify potential new treatment targets not evident from correlation and machine 

learning analyses (55,56).  

 

Well-designed experiments that are guided by the current computational output may 

inform current gaps, such as the association between proxy genes and dysfunction 

markers, which will improve the relevance of the identified age-related targets. Such 

approaches may allow a more in-depth characterization of the association between 

gene expression and dysfunction marker decline. Finally, by using a workflow similar 

to that demonstrated in the present study for rsks-1, unknown genes could be explored 

and prioritized to potentially identify novel targets for aging.   
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